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Figure 1: Sample images of bird species with zoomed-in views of learned prototypes along with their associated
score maps. We consider the problem of finding evolutionary traits common to a group of species derived
from the same ancestor (blue) that are absent in other species from a different ancestor (red). We can infer that
descendants of the blue node share a common trait: long tail, absent from descendants of the red node.

Abstract

A grand challenge in biology is to discover evolutionary traits—features of organ-1

isms common to a group of species with a shared ancestor in the tree of life (also2

referred to as phylogenetic tree). With the growing availability of image repositories3

in biology, there is a tremendous opportunity to discover evolutionary traits directly4

from images in the form of a hierarchy of prototypes. However, current prototype-5

based methods are mostly designed to operate over a flat structure of classes and6

face several challenges in discovering hierarchical prototypes, including the issue of7

learning over-specific features at internal nodes. To overcome these challenges, we8

introduce the framework of Hierarchy aligned Commonality through Prototypical9

Networks (HComP-Net). We empirically show that HComP-Net learns prototypes10

that are accurate, semantically consistent, and generalizable to unseen species in11

comparison to baselines on birds, butterflies, and fishes datasets.12

1 Introduction13

A central goal in biology is to discover the observable characteristics of organisms, or traits (e.g., beak14

color, stripe pattern, and fin curvature), that help in discriminating between species and understanding15
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Figure 2: Examples to illustrate the problem of learning “over-specific” prototypes at internal nodes, which
only cover one descendant species of the node instead of learning prototypes common to all descendants.

how organisms evolve and adapt to their environment [1]. For example, discovering traits inherited by16

a group of species that share a common ancestor on the tree of life (also referred to as the phylogenetic17

tree, see Figure 1) is of great interest to biologists to understand how organisms diversify and evolve18

[2]. The measurement of such traits with evolutionary signals, termed evolutionary traits, is not19

straightforward and often relies on subjective and labor-intensive human expertise and definitions20

[3, 4], hindering rapid scientific advancement [5].21

With the growing availability of large-scale image repositories in biology containing millions of22

images of organisms [6, 7, 8], there is an opportunity for machine learning (ML) methods to discover23

evolutionary traits automatically from images [5, 9]. This is especially true in light of recent advances24

in the field of explainable ML, such as the seminal work of ProtoPNet [10] and its variants [11, 12, 13]25

which find representative patches in training images (termed prototypes) capturing discriminatory26

features for every class. We can thus cast the problem of discovering evolutionary traits into asking27

the following question: what image features or prototypes are common across a group of species28

with a shared ancestor in the tree of life that are absent in species with a different shared ancestor?29

For example, in Figure 1, we can see that the four species of birds on the left descending from the30

blue node show the common feature of having “long tails,” unlike any of the descendant species of31

the red node. Learning such common features at every internal node as a hierarchy of prototypes can32

help biologists generate novel hypotheses of species diversification (e.g., the splitting of blue and red33

nodes) and accumulation of evolutionary trait changes.34

Despite the success of ProtoPNet [10] and its variants in learning prototypes over a flat structure of35

classes, applying them to discover a hierarchy of prototypes is challenging for three main reasons.36

First, existing methods that learn multiple prototypes for every class are prone to learning “over-37

specific” prototypes at internal nodes of a tree, which cover only one (or a few) of its descendant38

species. Figure 2 shows a few examples to illustrate the concept of over-specific prototypes. Consider39

the problem of learning prototypes common to descendant species of the Felidae family: Lion and40

Bobcat. If we learn one prototype focusing on the feature of the mane (specific only to Lion) and41

another prototype focusing on the feature of spotted back (specific only to Bobcat), then these two42

prototypes taken together can classify all images from the Felidae family. However, they do not43

represent common features shared between Lion and Bobcat and hence are not useful for discovering44

evolutionary traits. Such over-specific prototypes should be instead pushed down to be learned at45

lower levels of the tree (e.g., the species leaf nodes of Lion and Bobcat).46

Second, while existing methods such as ProtoPShare [11], ProtoPool [12], and ProtoTree [13] allow47

prototypes to be shared across classes for re-usability and sparsity, in the problem of discovering48

evolutionary traits, we want to learn prototypes at an internal node n that are not just shared across49

all it descendant species but are also absent in the contrasting set of species (i.e., species descending50

from sibling nodes of n representing alternate paths of diversification). Third, at higher levels of the51

tree, finding features that are common across a large number of diverse species is challenging [14, 15].52

In such cases, we should be able to abstain from finding common prototypes without hampering53

accuracy at the leaf nodes—a feature missing in existing methods.54

To address these challenges, we present Hierarchy aligned Commonality through Prototypical55

Networks (HComP-Net), a framework to learn hierarchical prototypes over the tree of life for56

discovering evolutionary traits. Here are the main contributions of our work:57
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1. HComP-Net learns common traits shared by all descendant species of an internal node and58

avoids the learning of over-specific prototypes in contrast to baseline methods using a novel59

overspecificity loss.60

2. HComP-Net uses a novel discriminative loss to ensure that the prototypes learned at an61

internal node are absent in the contrasting set of species with different ancestry.62

3. HComP-Net includes a novel masking module to allow for the exclusion of over-specific63

prototypes at higher levels of the tree without hampering classification performance.64

4. We empirically show that HComP-Net learns prototypes that are accurate, semantically65

consistent, and generalizable to unseen species compared to baselines on data from 19066

species of birds (CUB-200-2011 dataset) [8], 38 species of fishes [9], and 30 species of67

butterflies [16]. We show the ability of HComP-Net to generate novel hypotheses about68

evolutionary traits at different levels of the phylogenetic tree of organisms.69

2 Related Works70

One of the seminal lines of work in the field of prototype-based interpretability methods is the71

framework of ProtoPNet [10] that learns a set of “prototypical patches” from training images of every72

class to enable case-based reasoning. Following this work, several variants have been developed73

such as ProtoPShare [11], ProtoPool [12], ProtoTree [13], and HPnet [17] suiting to different74

interpretability requirements. Among all these approaches, our work is closely related to HPnet [17],75

the hierarchical extension of ProtoPNet that learns a prototype layer for every parent node in the76

tree. Despite sharing a similar motivation as our work, HPnet is not designed to avoid the learning of77

over-specific prototypes or to abstain from learning common prototypes at higher levels of the tree.78

Another related line of work is the framework of PIPNet [18], which uses self-supervised learning79

methods to reduce the “semantic gap” [19, 20] between the latent space of prototypes and the space80

of images, such that the prototypes in latent space correspond to the same visual concept in the image81

space. In HComP-Net, we build upon the idea of self-supervised learning introduced in PIPNet to82

learn semantically consistent hiearchy of prototypes. Our work is also related to ProtoTree [13],83

which structures the prototypes as nodes in a decision tree to offer more granular interpretability.84

However, ProtoTree differs from our work in that it learns the tree-based structure of prototypes85

automatically from data and cannot handle a known hierarchy. Moreover, the prototypes learned in86

ProtoTree are purely discriminative and allow for negative reasoning, which is not aligned with our87

objective of finding common traits of descendant species.88

Other related works that focus on finding shared features are ProtoPShare [11] and ProtoPool [12].89

Both approaches aim to find common features among classes, but their primary goal is to reduce90

the prototype count by exploiting similarities among classes, leading to a sparser network. This is91

different from our goal of finding a hiearchy of prototypes to find evolutionary traits common to a92

group of species (that are absent from other species).93

Outside the realm of prototype-based methods, the framework of Phylogeny-guided Neural Networks94

(PhyloNN) [9] shares a similar motivation as our work to discover evolutionary traits by representing95

biological images in feature spaces structured by tree-based knowledge (i.e., phylogeny). However,96

PhyloNN primarily focuses on the tasks of image generation and translation rather than interpretability.97

Additionally, PhyloNN can only work with discretized trees with fixed number of ancestor levels per98

leaf node, unlike our work that does not require any discretization of the tree.99

3 Proposed Methodology100

3.1 HComP-Net Model Architecture101

Given a phylogenetic tree with N internal nodes, the goal of HComP-Net is to jointly learn a set of102

prototype vectors Pn for every internal node n ∈ {1, . . . , N}. Our architecture as shown in Figure 3103

begins with a CNN that acts as a common feature extractor f(x; θ) for all nodes, where θ represents104

the learnable parameters of f . f converts an image x into a latent representation Z ∈ RH×W×C ,105

where each “patch” at location (h,w) is, zh,w ∈ RC . Following the feature extractor, for every node106

n, we initialize a set of Kn prototype vectors Pn = {pi}Kn

i=1, where pi ∈ RC . Here, the number of107
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Figure 3: Schematic illustration of HComP-Net model architecture.

prototypes Kn learned at node n varies in proportion to the number of children of node n, with β108

as the proportionality constant, i.e., at each node n we assign β prototypes for every child node. To109

simplify notations, we drop the subscript n in Pn and Kn while discussing the operations occurring110

in node n.111

We consider the following sequence of operations at every node n. We first compute the similarity112

score between every prototype in P and every patch in Z. This results in a matrix Ẑ ∈ RH×W×K ,113

where every element represents a similarity score between image patches and prototype vectors. We114

apply a softmax operation across the K channels of Ẑ such that the vector ẑh,w ∈ RK at spatial115

location (h,w) in Ẑ represents the probability that the corresponding patch zh,w is similar to the K116

prototypes. Furthermore, the ith channel of Ẑ serves as a prototype score map for the prototype117

vector pi, indicating the presence of pi in the image. We perform global max-pooling across the118

spatial dimensions H ×W of Ẑ to obtain a vector g ∈ RK , where the ith element represents the119

highest similarity score of the prototype vector pi across the entire image. g is then fed to a linear120

classification layer with weights ϕ to produce the final classification scores for every child node of121

node n. We restrict the connections in the classification layer so that every child node nc is connected122

to a distinct set of β prototypes, to ensure that every prototype uniquely maps to a child node. ϕ is123

restricted to be non-negative to ensure that the classification is done solely through positive reasoning,124

similar to the approach used in PIP-Net [18]. We borrow the regularization scheme of PIP-Net to125

induce sparsity in ϕ by computing the logit of child node nc as log((gϕ)2 + 1). g and ϕ here are126

again unique to each node.127

3.2 Loss Functions Used to Train HComP-Net128

Contrastive Losses for Learning Hierarchical Prototypes: PIP-Net [18] introduced the idea of129

using self-supervised contrastive learning to learn semantically meaningful prototypes. We build130

upon this idea in our work to learn semantically meaningful hierarchical prototypes at every node131

in the tree as follows. For every input image x, we pass in two augmentations of the image, x′ and132

x′′ to our framework. The prototype score maps for the two augmentations, Ẑ
′

and Ẑ
′′

, are then133

considered as positive pairs. Since ẑh,w ∈ RK represents the probabilities of patch zh,w being similar134

to the prototypes from P, we align the probabilities from the two augmentations ẑ
′

h,w and ẑ
′′

h,w to be135

similar using the following alignment loss:136

LA = − 1

HW

∑
(h,w)∈H×W

log(ẑ
′

h,w · ẑ
′′

h,w) (1)

Since
∑K

i=1 ẑh,w,i = 1 due to softmax operation, LA is minimum (i.e., LA = 0) when both ẑ
′

h,w137

and ẑ
′′

h,w are identical one-hot encoded vectors. A trivial solution that minimizes LA is when all138
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patches across all images are similar to the same prototype. To avoid such representation collapse, we139

use the following tanh-loss LT of PIP-Net [18], which serves the same purpose as uniformity losses140

in [21] and [22]:141

LT = − 1

K

K∑
i=1

log(tanh(

B∑
b=1

gb,i)), (2)

where gb,i is the prototype score for prototype i with respect to image b of mini-batch. LT encourages142

each prototype pi to be activated at least once in a given mini-batch of B images, thereby helping to143

avoid the possibility of representation collapse. The use of tanh ensures that only the presence of a144

prototype is taken into account and not its frequency.145

Over-specificity Loss: To achieve the goal of learning prototypes common to all descendant species146

of an internal node, we introduce a novel loss, termed over-specificity loss Lovsp that avoids learning147

over-specific prototypes at any node n. Lovsp is formulated as a modification of the tanh-loss such148

that prototype pi is encouraged to be activated at least once in every one of the descendant species149

d ∈ {1, . . . , Di} of its corresponding child node in the mini-batch of images fed to the model, as150

follows:151

Lovsp = − 1

K

K∑
i=1

Di∑
d=1

log(tanh(
∑
b∈Bd

gb,i)), (3)

where Bd is the subset of images in the mini-batch that belong to species d.152

Discriminative loss: In order to ensure that a learned prototype for a child node nc is not activated153

by any of its contrasting set of species (i.e., species that are descendants of child nodes of n other154

than nc), we introduce another novel loss function, Ldisc, defined as follows:155

Ldisc =
1

K

K∑
i=1

∑
d∈D̃i

max
b∈Bd

(gb,i), (4)

where D̃i is the contrasting set of all descendant species of child nodes of n other than nc. This is156

similar to the seperation loss used in other prototype-based methods such as [10], [13], and [23].157

Orthogonality loss: We also apply kernel orthogonality as introduced in [24] to the prototype vectors158

at every node n, so that the learned prototypes are orthogonal and capture diverse features:159

Lorth = ∥P̂P̂⊤ − I∥2F (5)

where P̂ is the matrix of normalized prototype vectors of size C ×K, I is an identity matrix, and160

∥.∥2F is the Frobenius norm. Each prototype p̂i in P̂ is normalized as, p̂i =
pi

∥pi∥ .161

Classification loss: Finally, we apply cross entropy loss for classification at each internal node as162

follows:163

LCE = −
B∑
b

yb log(ŷb) (6)

where y is ground truth label and ŷ is the prediction at every node of the tree.164

3.3 Masking Module to Identify Over-specific Prototypes165

We employ an additional masking module at every node n to identify over-specific prototypes without166

hampering their training. The learned mask for prototype pi simply serves as an indicator of whether167

pi is over-specific or not, enabling our approach to abstain from finding common prototypes if there168

are none, especially at higher levels of the tree. To obtain the mask values, we first calculate the169

over-specificity score for prototype pi as the product of the maximum prototype scores obtained170

across all images in the mini-batch belonging to every descendant species d as:171

Oi = −
Di∏
d=1

max
(b∈Bd)

(gb,i) (7)

where gb,i is the prototype score for prototype pi with respect to image b of mini-batch and Bd172

is the subset of images in the mini-batch that belong to descendant species d. Since gb,i takes a173

value between 0 to 1 due to the softmax operation, Oi ranges from -1 to 0, where -1 denotes least174
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over-specificity and 0 denotes the most over-specificity. The multiplication of the prototype scores175

ensures that even when the score is less with respect to only one descendant species, the prototype176

will be assigned a high over-specificity score (close to 0).177

As shown in Figure 3, Oi is then fed into the masking module, which includes a learned mask value178

Mi for every prototype pi. We generate Mi from a Gumbel-softmax distribution [25] so that the179

values are skewed to be very close to either 0 or 1, i.e., Mi = Gumbel-Softmax(γi, τ), where γi are180

the learnable parameters of the distribution and τ is temperature. We then compute the masking loss,181

Lmask, as:182

Lmask =

K∑
i=1

(λmaskMi ◦ stopgrad(Oi) + λL1
∥Mi∥1) (8)

where λmask and λL1 are trade-off coefficients, ∥.∥1 is the L1 norm added to induce sparsity in183

the masks, and stopgrad represents the stop gradient operation applied over Oi to ensure that the184

gradient of Lmask does not flow back to the learning of prototype vectors and impact their training.185

Note that the learned masks are not used for pruning the prototypes during training, they are only186

used during inference to determine which of the learned prototypes are over-specific and likely to not187

represent evolutionary traits. Therefore, even if all the prototypes are identified as over-specific by188

the masking module at an internal node, it will not affect the classification performance at that node.189

3.4 Training HComP-Net190

We first pre-train the prototypes at every internal node in a self-supervised learning manner using191

alignment and tanh-losses as LSS = λALA+λTLT . We then fine-tune the model using the following192

combined loss: (λCELCE +LSS +λovspLovsp+λdiscLdisc+λorthLorth+Lmask), where λ’s are193

trade-off parameters. Note that the loss is applied over every node in the tree. We show an ablation of194

key loss terms in our framework in Table 6 in the Supplementary Section.195

4 Experimental Setup196

Dataset: In our experiments, we primarily focus on the 190 species of birds (Bird) from the CUB-200-197

2011 [8] dataset for which the phylogenetic relationship [26] is known. The tree is quite large with a198

total of 184 internal nodes. We removed the background from the images to avoid the possibility of199

learning prototypes corresponding to background information such as the bird’s habitat as we are200

only interested in the traits corresponding to the body of the organism. We also apply our method on201

a fish dataset with 38 species (Fish) [9] along with its associated phylogeny [9] and 30 subspecies202

of Heliconius butterflies (Butterfly) from the Jiggins Heliconius Collection dataset [16] collected203

from various sources 1 along with its phylogeny [52, 53]. The qualitative results of Butterfly and204

Fish datasets are provided in the supplementary materials. The complete details of hyper-parameter205

settings and training strategy are also provided in the Supplementary Section E.206

Baselines: We compare HComP-Net to ResNet-50 [54], INTR (Interpretable Transformer) [55] and207

HPnet [17]. For HPnet, we used the same hyperparameter settings and training strategy as used by208

ProtoPNet for CUB-200-2011 dataset. For a fair comparison, we also set the number of prototypes209

for each child in HPnet to be equal to 10 similar to our implementation. We follow the same training210

strategy as provided by ProtoPNet for CUB-200-2011 dataset.211

5 Results212

5.1 Fine-grained Accuracy213

Similar to HPnet [17], we calculate the fine-grained accuracy for each leaf node by calculating the214

path probability over every image. During inference, the final probability for leaf class Y given215

an image X is calculated as, P (Y |X) = P (Y (1), Y (2), ..., Y (L)|X) =
∏L

l=1 P (Y (l)|X), where216

P (Y (l)|X) is the probability of assigning image X to a node at level l, and L is the depth of the217

leaf node. Every image is assigned to the leaf class with maximum path probability, which is used218

to compute the fine-grained accuracy. The comparison of the fine-grained accuracy calculated for219

1Sources: [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]
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(a) HPnet (b) HComP-Net

Figure 4: Comparing the part consistency of HPnet and HComP-Net for their prototype learned at an internal
node in the bird dataset that corresponds to 3 descendant species (names shown on the rows). For every species,
we are visualizing the top-3 images with highest prototype score for both HPnet and HComP-Net, shown as the
four columns with zoomed in views of their discovered prototypes. We can see that HPnet highlights varying
parts of the bird across the 3 species and across multiple images of the same species, making it difficult to
associate a consistent semantic meaning to its learned prototype. In contrast, HComP-Net consistently highlights
the head region of the bird across all four species and their images.

HComP-Net and the baselines are given in Table 1. We can see that HComP-Net performs better220

than the other interpretable methods, such as INTR and HPNet, and is also able to nearly match the221

performance of non-interpretable models, such as ResNet-50, even outperforming it for the Fish222

and Butterfly dataset. This shows the ability of our proposed framework to achieve competitive223

classification accuracy along with serving the goal of discovering evolutionary traits.224

Table 1: % Accuracy
Model Hierarchy Bird Butterfly Fish

ResNet-50 No 74.18 95.76 86.63
INTR 69.22 95.53 86.73

HPnet Yes 36.18 94.69 77.51
HComP-Net 70.01 97.35 90.80

Table 2: % Accuracy (on unseen species)
Species Name HComP-Net HPnet

Fish Crow 53.33 10.55
Rock Wren 53.33 10.22
Indigo Bunting 96.67 49.2
Bohemian Waxwing 70.00 44.9

5.2 Generalizing to Unseen Species in the Phylogeny225

We analyze the performance of HComP-Net in generalizing to unseen species that the model hasn’t226

seen during training. The biological motivation for this experiment is to evaluate if HComP-Net227

can situate newly discovered species at its appropriate position in the phylogeny by identifying its228

common ancestors shared with the known species. An added advantage of our work is that along with229

identifying the ancestor of an unseen species, we can also identify the common traits shared by the230

novel species with known species in the phylogeny. Since unseen species cannot be classified to the231

finest levels (i.e., up to the leaf node corresponding to the unseen species), we analyze the ability of232

HComP-Net to classify unseen species accurately up to one level above the leaf level in the hierarchy.233

With this consideration, the final probability of an unseen species for a given image is calculated234

as, P (Y |Xunseen) = P (Y (1), Y (2), ..., Y (L−1)|X) =
∏L−1

l=1 P (Y (l)|X). Note that we leave out the235

class probability at the Lth level, since we do not take into account the class probability of the leaf236

level. We leave four species from the Bird training set and calculate their accuracy during inference237

in Table 2. We can see that HComP-Net is able to generalize better than HPnet for all four species.238

5.3 Analyzing the Semantic Quality of Prototypes239

Following the method introduced in PIPNet [18], we assess the semantic quality of our learned240

prototypes by evaluating their part purity. A prototype with high part purity (close to 1) is one that241

consistently highlights the same image region in the score maps (corresponding to consistent local242

features such as the eye or wing of a bird) across images belonging to the same class. The part243
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Table 3: Part purity of prototypes on Bird dataset.

Model Lovsp Masking Part purity % masked

HPnet - - 0.14 ± 0.09 -
HComP-Net - - 0.68 ± 0.22 -
HComP-Net - ✓ 0.75 ± 0.17 21.42%
HComP-Net ✓ - 0.72 ± 0.19 -
HComP-Net ✓ ✓ 0.77 ± 0.16 16.53%

purity is calculated using the part locations of244

15 parts that are provided in the CUB dataset.245

For each prototype, we take the top-10 im-246

ages from each leaf descendant. We con-247

sider the 32×32 image patch that is centered248

around the max activation location of the pro-249

totype from the top-10 images. With these250

top-10 image patches, we calculate for each251

part how frequently the part is present inside252

the image patch. For example, a part that is found inside the image patch 8 out of 10 times is given a253

score of 0.8. In PIP-Net, the highest value among the values calculated for each part is given as the254

part purity of the prototype. In our approach, since we are dealing with a hierarchy and taking the255

top-10 from each leaf descendant, a particular part, let’s say the eye, might have a score of 0.5 for256

one leaf descendant and 0.7 for a different leaf descendant. Since we want the prototype to represent257

the same part for all the leaf descendants, we take the lowest score (the weakest link) among all the258

leaf descendants as the score of the part. By following this method, for a given prototype we can259

arrive at a value for each part and finally take the maximum among the values as the purity of the260

prototype. We take the mean of the part purity across all the prototypes and report the results in Table261

3 for different ablations of HComP-Net and also HPnet, which is the only baseline method that can262

learn hierarchical prototypes.263

We can see that HComP-Net, even without the use of over-specificity loss performs much better than264

HPnet due to the contrastive learning approach we have adopted from PIPNet [18]. The addition265

of over-specificity loss improves the part purity because over-specific prototypes tend to have poor266

part purity for some of the leaf descendants which will affect their overall part purity score. Further,267

for both ablations with and without over-specificity loss, we apply the masking module and remove268

masked (over-specific) prototypes during the calculation of part purity. We see that the part purity goes269

higher by applying the masking module, demonstrating its effectiveness in identifying over-specific270

prototypes. We further compute the purity of masked-out prototypes and notice that the masked-out271

prototypes have drastically lower part purity (0.29 ± 0.17) compared to non-masked prototypes272

(0.77± 0.16). An alternative approach to learning the masking module is to identify over-specific273

prototypes using a fixed global threshold over Oi. We show in Table 9 of Supplementary Section F,274

that given the right choice of such a threshold, we can identify over-specific prototypes. However,275

selecting the ideal threshold can be non-trivial. On the other hand, our masking module learns the276

appropriate threshold dynamically as part of the training process.277

Figure 4 visualizes the part consistency of prototypes discovered by HComP-Net in comparison to278

HPnet for the bird dataset. We can see that HComP-Net is finding a consistent region in the image279

(corresponding to the head region) across all three descendant species and all images of a species, in280

contrast to HPnet. Futhermore, thanks to the alignment loss, every patch ẑh,w is encoded as nearly281

a one-hot encoding with respect to the K prototypes which causes the prototype score maps to be282

highly localized. The concise and focused nature of the prototype score maps makes the interpretation283

much more effective compared to baselines.284

5.4 Analyzing Evolutionary Traits Discovered by HComP-Net285

We now qualitatively analyze some of the hypothesized evolutionary traits discovered in the hierarchy286

of prototypes learned by HComP-Net. Figure 5 shows the hierarchy of prototypes discovered over287

a small subtree of the phylogeny from Bird (four species) and Fish (three species) dataset. In the288

visualization of bird prototypes, we can see that the two Pelican species share a consistent region in the289

learned Prototype labeled 2, which corresponds to the head region of the birds. We can hypothesize290

this prototype to be capturing the white colored crown common to the two species. On the other hand,291

Prototype 1 finds the shared trait of similar beak morphology (e.g., sharpness of beaks) across the292

two Cormorant species. We can see that HComP-Net avoids the learning of over-specific prototypes293

at internal nodes, which are pushed down to individual leaf nodes, as shown in visualizations of294

Prototype 3, 4, 5, and 6. Similarly, in the visualization of the fish prototypes, we can see that Prototype295

1 is highlighting a specific fin (dorsal fin) of the Carassius auratus and Notropis hudsonius species,296

possibly representing their pigmentation and structure, which is noticeably different compared to297

the contrasting species of Alosa chrysochloris. Note that while HComP-Net identifies the common298
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Figure 5: Visualizing the hierarchy of prototypes discovered by HComP-Net for birds and fishes. *Note that
the textual descriptions of the hypothesized traits shown for every prototype are based on human interpretation.

Figure 6: We trace the prototypes learned for Western Grebe at three different levels in the phylogenetic tree
(corresponding to different periods of time in evolution). Text in blue is the interpretation of common traits of
descendants found by HComP-Net at every ancestor node of Western Grebe.

regions corresponding to each prototype (shown as heatmaps), the textual descriptions of the traits299

provided in Figure 5 are based on human interpretation.300

Figure 6 shows another visualization of the sequence of prototypes learned by HComP-Net for the301

Western Grebe species at different levels of the phylogeny. We can see that at level 0, we are capturing302

features closer to the neck region, indicating the likely difference between the length of necks between303

Grebe species and other species (Cuckoo, Albatross, and Fulmar) that diversify at an earlier time in304

the process of evolution. At level 1, the prototype is focusing on the eye region, potentially indicating305

to difference in the color of red and black patterns around the eyes. At level 2, we are differentiating306

Western Grebe from Horned Grebe based on the feature of bills. We also validate our prototypes by307

comparing them with the multi-head cross-attention maps learned by INTR [55]. We can see that308

some of the prototypes discovered by HComP-Net can be mapped to equivalent attention heads of309

INTR. However, while INTR is designed to produce a flat structure of attention maps, we are able310

to place these maps on the tree of life. This shows the power of HComP-Net in generating novel311

hypotheses about how trait changes may have evolved and accumulated across different branches of312

the phylogeny. Additional visualizations of discovered evolutionary traits for butterfly species and313

fish species are provided in the supplementary section in Figures 7 to 16.314

6 Conclusion315

We introduce a novel approach for learning hierarchy-aligned prototypes while avoiding the learning316

of over-specific features at internal nodes of the phylogenetic tree, enabling the discovery of novel317

evolutionary traits. Our empirical analysis on birds, fishes, and butterflies, demonstrates the efficacy318

of HComP-Net over baseline methods. Furthermore, HComP-Net demonstrates a unique ability319

to generate novel hypotheses about evolutionary traits, showcasing its potential in advancing our320

understanding of evolution. We discuss the limitations of our work in Supplementary Section I. While321

we focus on the biological problem of discovering evolutionary traits, our work can be applied in322

general to domains involving a hierarchy of classes, which can be explored in future research.323
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NeurIPS Paper Checklist472

1. Claims473

Question: Do the main claims made in the abstract and introduction accurately reflect the474

paper’s contributions and scope?475

Answer: [Yes]476

Justification: We claim that HComP-Net can generate novel hypotheses for potential evo-477

lutionary traits (shared traits among species due to common ancestry in the phylogeny)478

from image by learning prototypes at each internal node in the phylogenetic tree. We show479

through various visualizations of the prototypes in Figures 5, 6, and 7 to 16, that the learned480

prototypes at the internal nodes can identify possible evolutionary traits from images. We481

also evaluate the improved interpretability of our approach quantitatively in Table 3 by482

computing part purity metric on Bird dataset.483

Guidelines:484

• The answer NA means that the abstract and introduction do not include the claims485

made in the paper.486

• The abstract and/or introduction should clearly state the claims made, including the487

contributions made in the paper and important assumptions and limitations. A No or488

NA answer to this question will not be perceived well by the reviewers.489

• The claims made should match theoretical and experimental results, and reflect how490

much the results can be expected to generalize to other settings.491

• It is fine to include aspirational goals as motivation as long as it is clear that these goals492

are not attained by the paper.493

2. Limitations494

Question: Does the paper discuss the limitations of the work performed by the authors?495

Answer: [Yes]496

Justification: We discuss the limitations of our work in Supplementary Section I.497

Guidelines:498

• The answer NA means that the paper has no limitation while the answer No means that499

the paper has limitations, but those are not discussed in the paper.500

• The authors are encouraged to create a separate "Limitations" section in their paper.501

• The paper should point out any strong assumptions and how robust the results are to502

violations of these assumptions (e.g., independence assumptions, noiseless settings,503

model well-specification, asymptotic approximations only holding locally). The authors504

should reflect on how these assumptions might be violated in practice and what the505

implications would be.506

• The authors should reflect on the scope of the claims made, e.g., if the approach was507

only tested on a few datasets or with a few runs. In general, empirical results often508

depend on implicit assumptions, which should be articulated.509

• The authors should reflect on the factors that influence the performance of the approach.510

For example, a facial recognition algorithm may perform poorly when image resolution511

is low or images are taken in low lighting. Or a speech-to-text system might not be512

used reliably to provide closed captions for online lectures because it fails to handle513

technical jargon.514

• The authors should discuss the computational efficiency of the proposed algorithms515

and how they scale with dataset size.516

• If applicable, the authors should discuss possible limitations of their approach to517

address problems of privacy and fairness.518

• While the authors might fear that complete honesty about limitations might be used by519

reviewers as grounds for rejection, a worse outcome might be that reviewers discover520

limitations that aren’t acknowledged in the paper. The authors should use their best521

judgment and recognize that individual actions in favor of transparency play an impor-522

tant role in developing norms that preserve the integrity of the community. Reviewers523

will be specifically instructed to not penalize honesty concerning limitations.524

14



3. Theory Assumptions and Proofs525

Question: For each theoretical result, does the paper provide the full set of assumptions and526

a complete (and correct) proof?527

Answer: [NA]528

Justification: The assumptions made in our work do not require explicit theoretical proofs.529

Instead, for the key loss terms that we introduce in this work, we provide ablation results in530

Supplementary Table 6 to show empirically the importance of each component.531

Guidelines:532

• The answer NA means that the paper does not include theoretical results.533

• All the theorems, formulas, and proofs in the paper should be numbered and cross-534

referenced.535

• All assumptions should be clearly stated or referenced in the statement of any theorems.536

• The proofs can either appear in the main paper or the supplemental material, but if537

they appear in the supplemental material, the authors are encouraged to provide a short538

proof sketch to provide intuition.539

• Inversely, any informal proof provided in the core of the paper should be complemented540

by formal proofs provided in appendix or supplemental material.541

• Theorems and Lemmas that the proof relies upon should be properly referenced.542

4. Experimental Result Reproducibility543

Question: Does the paper fully disclose all the information needed to reproduce the main ex-544

perimental results of the paper to the extent that it affects the main claims and/or conclusions545

of the paper (regardless of whether the code and data are provided or not)?546

Answer: [Yes]547

Justification: We provide details of hyperparameters in Supplementary Section E. Further-548

more, we also provide the full code, data, and necessary data preprocessing pipelines to549

reproduce all the experiments.550

Guidelines:551

• The answer NA means that the paper does not include experiments.552

• If the paper includes experiments, a No answer to this question will not be perceived553

well by the reviewers: Making the paper reproducible is important, regardless of554

whether the code and data are provided or not.555

• If the contribution is a dataset and/or model, the authors should describe the steps taken556

to make their results reproducible or verifiable.557

• Depending on the contribution, reproducibility can be accomplished in various ways.558

For example, if the contribution is a novel architecture, describing the architecture fully559

might suffice, or if the contribution is a specific model and empirical evaluation, it may560

be necessary to either make it possible for others to replicate the model with the same561

dataset, or provide access to the model. In general. releasing code and data is often562

one good way to accomplish this, but reproducibility can also be provided via detailed563

instructions for how to replicate the results, access to a hosted model (e.g., in the case564

of a large language model), releasing of a model checkpoint, or other means that are565

appropriate to the research performed.566

• While NeurIPS does not require releasing code, the conference does require all submis-567

sions to provide some reasonable avenue for reproducibility, which may depend on the568

nature of the contribution. For example569

(a) If the contribution is primarily a new algorithm, the paper should make it clear how570

to reproduce that algorithm.571

(b) If the contribution is primarily a new model architecture, the paper should describe572

the architecture clearly and fully.573

(c) If the contribution is a new model (e.g., a large language model), then there should574

either be a way to access this model for reproducing the results or a way to reproduce575

the model (e.g., with an open-source dataset or instructions for how to construct576

the dataset).577
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(d) We recognize that reproducibility may be tricky in some cases, in which case578

authors are welcome to describe the particular way they provide for reproducibility.579

In the case of closed-source models, it may be that access to the model is limited in580

some way (e.g., to registered users), but it should be possible for other researchers581

to have some path to reproducing or verifying the results.582

5. Open access to data and code583

Question: Does the paper provide open access to the data and code, with sufficient instruc-584

tions to faithfully reproduce the main experimental results, as described in supplemental585

material?586

Answer: [Yes]587

Justification: We provide the full code, data, and necessary data preprocessing pipelines to588

reproduce the experiments.589

Guidelines:590

• The answer NA means that paper does not include experiments requiring code.591

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/592

public/guides/CodeSubmissionPolicy) for more details.593

• While we encourage the release of code and data, we understand that this might not be594

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not595

including code, unless this is central to the contribution (e.g., for a new open-source596

benchmark).597

• The instructions should contain the exact command and environment needed to run to598

reproduce the results. See the NeurIPS code and data submission guidelines (https:599

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.600

• The authors should provide instructions on data access and preparation, including how601

to access the raw data, preprocessed data, intermediate data, and generated data, etc.602

• The authors should provide scripts to reproduce all experimental results for the new603

proposed method and baselines. If only a subset of experiments are reproducible, they604

should state which ones are omitted from the script and why.605

• At submission time, to preserve anonymity, the authors should release anonymized606

versions (if applicable).607

• Providing as much information as possible in supplemental material (appended to the608

paper) is recommended, but including URLs to data and code is permitted.609

6. Experimental Setting/Details610

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-611

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the612

results?613

Answer: [Yes]614

Justification: The details of the data splits for each dataset used are provided in Table 8 and615

overview of phylogeny is given in Table 7. We also give details of key hyperparameters616

and the way they were chosen in Supplementary Section E. Full code also provided for617

reproducibility.618

Guidelines:619

• The answer NA means that the paper does not include experiments.620

• The experimental setting should be presented in the core of the paper to a level of detail621

that is necessary to appreciate the results and make sense of them.622

• The full details can be provided either with the code, in appendix, or as supplemental623

material.624

7. Experiment Statistical Significance625

Question: Does the paper report error bars suitably and correctly defined or other appropriate626

information about the statistical significance of the experiments?627

Answer: [Yes]628
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Justification: We have done multiple runs of our model on Bird dataset with different629

random weight initialization, and report the mean and standard deviation of accuracy in630

Supplementary Section D631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The authors should answer "Yes" if the results are accompanied by error bars, confi-634

dence intervals, or statistical significance tests, at least for the experiments that support635

the main claims of the paper.636

• The factors of variability that the error bars are capturing should be clearly stated (for637

example, train/test split, initialization, random drawing of some parameter, or overall638

run with given experimental conditions).639

• The method for calculating the error bars should be explained (closed form formula,640

call to a library function, bootstrap, etc.)641

• The assumptions made should be given (e.g., Normally distributed errors).642

• It should be clear whether the error bar is the standard deviation or the standard error643

of the mean.644

• It is OK to report 1-sigma error bars, but one should state it. The authors should645

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis646

of Normality of errors is not verified.647

• For asymmetric distributions, the authors should be careful not to show in tables or648

figures symmetric error bars that would yield results that are out of range (e.g. negative649

error rates).650

• If error bars are reported in tables or plots, The authors should explain in the text how651

they were calculated and reference the corresponding figures or tables in the text.652

8. Experiments Compute Resources653

Question: For each experiment, does the paper provide sufficient information on the com-654

puter resources (type of compute workers, memory, time of execution) needed to reproduce655

the experiments?656

Answer: [Yes]657

Justification: Details of computer resources used are provided in Supplementary Section E658

Guidelines:659

• The answer NA means that the paper does not include experiments.660

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,661

or cloud provider, including relevant memory and storage.662

• The paper should provide the amount of compute required for each of the individual663

experimental runs as well as estimate the total compute.664

• The paper should disclose whether the full research project required more compute665

than the experiments reported in the paper (e.g., preliminary or failed experiments that666

didn’t make it into the paper).667

9. Code Of Ethics668

Question: Does the research conducted in the paper conform, in every respect, with the669

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?670

Answer: [Yes]671

Justification: The work abides by NeurIPS Code of Ethics in every aspect.672

Guidelines:673

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.674

• If the authors answer No, they should explain the special circumstances that require a675

deviation from the Code of Ethics.676

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-677

eration due to laws or regulations in their jurisdiction).678

10. Broader Impacts679
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Question: Does the paper discuss both potential positive societal impacts and negative680

societal impacts of the work performed?681

Answer: [NA]682

Justification: There is no negative societal impact of the work performed to the best of our683

knowledge.684

Guidelines:685

• The answer NA means that there is no societal impact of the work performed.686

• If the authors answer NA or No, they should explain why their work has no societal687

impact or why the paper does not address societal impact.688

• Examples of negative societal impacts include potential malicious or unintended uses689

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations690

(e.g., deployment of technologies that could make decisions that unfairly impact specific691

groups), privacy considerations, and security considerations.692

• The conference expects that many papers will be foundational research and not tied693

to particular applications, let alone deployments. However, if there is a direct path to694

any negative applications, the authors should point it out. For example, it is legitimate695

to point out that an improvement in the quality of generative models could be used to696

generate deepfakes for disinformation. On the other hand, it is not needed to point out697

that a generic algorithm for optimizing neural networks could enable people to train698

models that generate Deepfakes faster.699

• The authors should consider possible harms that could arise when the technology is700

being used as intended and functioning correctly, harms that could arise when the701

technology is being used as intended but gives incorrect results, and harms following702

from (intentional or unintentional) misuse of the technology.703

• If there are negative societal impacts, the authors could also discuss possible mitigation704

strategies (e.g., gated release of models, providing defenses in addition to attacks,705

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from706

feedback over time, improving the efficiency and accessibility of ML).707

11. Safeguards708

Question: Does the paper describe safeguards that have been put in place for responsible709

release of data or models that have a high risk for misuse (e.g., pretrained language models,710

image generators, or scraped datasets)?711

Answer: [NA]712

Justification: The work poses no risk of misuse.713

Guidelines:714

• The answer NA means that the paper poses no such risks.715

• Released models that have a high risk for misuse or dual-use should be released with716

necessary safeguards to allow for controlled use of the model, for example by requiring717

that users adhere to usage guidelines or restrictions to access the model or implementing718

safety filters.719

• Datasets that have been scraped from the Internet could pose safety risks. The authors720

should describe how they avoided releasing unsafe images.721

• We recognize that providing effective safeguards is challenging, and many papers do722

not require this, but we encourage authors to take this into account and make a best723

faith effort.724

12. Licenses for existing assets725

Question: Are the creators or original owners of assets (e.g., code, data, models), used in726

the paper, properly credited and are the license and terms of use explicitly mentioned and727

properly respected?728

Answer: [Yes]729

Justification: All datasets used have been cited along with their source wherever necessary.730

We also mention the license details for each dataset used in Supplementary Section E731

Guidelines:732
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• The answer NA means that the paper does not use existing assets.733

• The authors should cite the original paper that produced the code package or dataset.734

• The authors should state which version of the asset is used and, if possible, include a735

URL.736

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.737

• For scraped data from a particular source (e.g., website), the copyright and terms of738

service of that source should be provided.739

• If assets are released, the license, copyright information, and terms of use in the740

package should be provided. For popular datasets, paperswithcode.com/datasets741

has curated licenses for some datasets. Their licensing guide can help determine the742

license of a dataset.743

• For existing datasets that are re-packaged, both the original license and the license of744

the derived asset (if it has changed) should be provided.745

• If this information is not available online, the authors are encouraged to reach out to746

the asset’s creators.747

13. New Assets748

Question: Are new assets introduced in the paper well documented and is the documentation749

provided alongside the assets?750

Answer: [Yes]751

Justification: We provide the full code and the necessary documentation to reproduce the752

results.753

Guidelines:754

• The answer NA means that the paper does not release new assets.755

• Researchers should communicate the details of the dataset/code/model as part of their756

submissions via structured templates. This includes details about training, license,757

limitations, etc.758

• The paper should discuss whether and how consent was obtained from people whose759

asset is used.760

• At submission time, remember to anonymize your assets (if applicable). You can either761

create an anonymized URL or include an anonymized zip file.762

14. Crowdsourcing and Research with Human Subjects763

Question: For crowdsourcing experiments and research with human subjects, does the paper764

include the full text of instructions given to participants and screenshots, if applicable, as765

well as details about compensation (if any)?766

Answer: [NA]767

Justification: No crowdsourcing or human subject involved in this research.768

Guidelines:769

• The answer NA means that the paper does not involve crowdsourcing nor research with770

human subjects.771

• Including this information in the supplemental material is fine, but if the main contribu-772

tion of the paper involves human subjects, then as much detail as possible should be773

included in the main paper.774

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,775

or other labor should be paid at least the minimum wage in the country of the data776

collector.777

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human778

Subjects779

Question: Does the paper describe potential risks incurred by study participants, whether780

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)781

approvals (or an equivalent approval/review based on the requirements of your country or782

institution) were obtained?783

Answer: [NA]784
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Justification: No crowdsourcing or human subject involved in this research.785

Guidelines:786

• The answer NA means that the paper does not involve crowdsourcing nor research with787

human subjects.788

• Depending on the country in which research is conducted, IRB approval (or equivalent)789

may be required for any human subjects research. If you obtained IRB approval, you790

should clearly state this in the paper.791

• We recognize that the procedures for this may vary significantly between institutions792

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the793

guidelines for their institution.794

• For initial submissions, do not include any information that would break anonymity (if795

applicable), such as the institution conducting the review.796
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A Ablation of Over-specificity Loss Trade-off Hyperparameter797

We have provided an ablation for the over-specificity loss trade-off hyperparameter (λovsp) in Table 4.798

We can observe that increasing the weight of over-specificity loss reduces the model’s classification799

performance, as the model struggles to find any commonality especially at internal nodes where the800

number of leaf descendant species are large in number and quite diverse. It is natural that species that801

are diverse and distantly related may share fewer characteristics with each other, in comparison to a802

set of species that diverged more recently from a common ancestor [14, 15]. Therefore, forcing the803

model to learn common traits with a strong Lovsp constraint can cause the model to perform bad in804

terms of accuracy.805

Table 4: Ablation of over-specificity loss trade-off hyperparameter (λovsp). Done on Bird dataset.
λovsp Part purity Part purity with mask applied % masked % Accuracy

w/o Lovsp 0.68 ± 0.22 0.75 ± 0.17 21.42% 58.32
0.05 0.72 ± 0.19 0.77 ± 0.16 16.53% 70.01
0.1 0.71 ± 0.18 0.74 ± 0.16 11.31% 70.97
0.5 0.71 ± 0.19 0.72 ± 0.18 4.2% 68.23
1.0 0.70 ± 0.19 0.70 ± 0.2 2.13% 62.68
2.0 0.69 ± 0.19 0.69 ± 0.19 0.55% 53.16

B Ablation of Number of Prototypes806

In Table 5 we vary the number of prototypes per child β for a node to see the impact on model’s807

performance. We note that while the accuracy increases marginally with increasing the number of808

prototypes per child (β) from 10 to 15, it also considerably increases the overall number of prototypes809

initialized. Therefore we continue to work with β = 10 for all of our experiments.810

Table 5: Ablation of number of prototypes per child for a node (β). Done on Bird dataset.
Number of Prototypes (β) % Accuracy

10 70.01
15 70.92
20 67.93

C Ablation of Individual Losses811

In Table 6, we perform an ablation of the various loss terms used in our methodology. As it can be812

observed, removal of Lovsp and Ldisc degrades performance in terms of both semantic consistency813

(part purity) and accuracy. On the other hand, removal of self supervised contrastive loss LSS814

improves accuracy but at the cost of drastically decreasing the semantic consistency.815

Table 6: Ablation of individual losses. Done on Bird dataset.
Model Part purity Part purity with mask applied % masked % Accuracy

HComP-Net 0.72 ± 0.19 0.77 ± 0.16 16.53% 70.01
HComP-Net w/o Lovsp 0.68 ± 0.22 0.75 ± 0.17 21.42% 58.32
HComP-Net w/o Ldisc 0.69 ± 0.19 0.72 ± 0.17 10.95% 65.99
HComP-Net w/o LSS 0.53 ± 0.18 0.57 ± 0.15 8.36% 81.62

D Consistency of Classification Performance Over Multiple Runs816

We trained the model using five distinct random weight initializations. The results showed that the817

model’s fine-grained accuracy averaged 70.63% with a standard deviation of 0.18%.818
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E Implementation Details819

We have included all the source code and dataset along with the comprehensive instructions to820

reproduce the results, in the supplementary material (.zip file).821

Model hyper-parameters: We build HComP-Net on top of a ConvNeXt-tiny architecture as the822

backbone feature extractor. We have modified the stride of the max pooling layers of later stages823

of the backbone from 2 to 1 similar to PIP-Net such that the backbone produces feature maps of824

increased height and width, in order to get more fine-grained prototype score maps. We implement825

and experiment our method on ConvNeXt-tiny backbones with 26× 26 feature maps. The length826

of prototype vectors C is 768. The weights ϕ at every node n of HComP-Net are constrained to be827

non-negative by the use of ReLU activation function [56]. Further, the prototype activation nodes are828

connected with non-negative weights only to their respective child classes in W while their weights829

to other classes are made zero and non-trainable.830

Training details: All models were trained with images resized and appropriately padded to 224×224831

pixel resolution and augmented using TrivialAugment [57] for contrastive learning. The prototypes832

are pretrained with self-supervised learning similar to PIP-Net for 10 epochs, following which the833

model is trained with the entire set of loss functions for 60 epochs. We use a batch size of 256 for834

Bird dataset and 64 for Butterfly and Fish dataset. The masking module is trained in parallel and its835

training is continued for 15 additional epochs after the training of rest of the model is completed. The836

trade-off hyper-parameters for the loss functions are set to be λCE = 2;λA = 5;λT = 2;λovsp =837

0.05;λdisc = 0.1;λorth = 0.1;λmask = 2.0;λL1 = 0.5. λCE , λT and λA were borrowed from838

PIP-Net [18]. Ablations to arrive at suitable λovsp is provided in Table 4. λdisc and λorth were839

chosen empirically and found to work well on all three datasets. Experiment on unseen species was840

done by leaving out certain classes from the datasets, so that they are not considered during training.841

Dataset and Phylogeny Details: Dataset statistics and phylogeny statistics are provided in Table842

8 and Table 7 respectively. Bird dataset is created by choosing 190 species from CUB-200-2011843
2 [8] dataset, which were part of the phylogeny. Background from all images were filtered using844

the associated segmentation metadata [58]. For Butterfly dataset we considered each subspecies845

as an individual class and considered only the subspecies of genus Heliconius from the Heliconius846

Collection (Cambridge Butterfly)3 [16]. There is substantial variation among subspecies of Heliconius847

species. Furthermore, we balanced the dataset by filtering out the subspecies which did not have848

20 or more images. We also sampled a subset of 100 images from each subspecies that had more849

than 100 images. For Fish 4 dataset, we followed the exact same preprocessing steps as outlined in850

PhyloNN [9].851

Compute Resources: The models for Bird dataset were trained on two NVIDIA A100 GPUs with852

80GB of RAM each. Butterfly and Fish models were trained on single A100 GPU. As a rough853

estimate the execution time for training model on Bird dataset is around 2.5 hours. For Butterfly and854

Fish datasets, the training completes under 1 hour. We used a single A100 GPU during inference855

stage for all other analysis.856

Table 7: High level statistics of the phylogenies used for different datasets.
Phylogeny # Internal nodes Max-depth Min-depth

Bird 184 25 3
Butterfly 13 5 2
Fish 20 11 2

2License: CC BY
3Note that this dataset is a compilation of images from 25 Zenodo records by the Butterfly Genetics Group at

Cambridge University, licensed under Creative Commons Attribution 4.0 International ([27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]).

4License: CC BY-NC
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Table 8: Dataset statistics (# train and validation images).
Dataset # Classes Train set Validation set

Bird 190 5695 5512
Butterfly 30 1418 358
Fish 38 4140 1294

Table 9: Part purity with post-hoc thresholding approach. Done on Bird dataset.
Threshold Part purity with mask applied % masked

0.2 0.74 ± 0.28 12.28%
0.3 0.75 ± 0.27 13.47%
0.4 0.76 ± 0.26 14.97%
0.5 0.77 ± 0.15 16.66%
0.6 0.77 ± 0.26 17.43%

F Post-hoc Thresholding to Identify Over-specific Prototypes857

An alternative approach to learning masking module is to calculate the over-specificity score for each858

prototype on the test set after training the model. We calculate the over-specificity scores for the859

prototypes of a trained model as follows,860

Oi = −
Di∏
d=1

1

topk

topk∑
i=1

(gi) (9)

For a given prototype, we choose the topk images with the highest prototype scores from each861

leaf descendant. After taking mean of the topk prototype score, we multiply the values from each862

descendant to arrive at the over-specificity score for the particular prototype. Subsequently we choose863

a threshold to determine which prototypes are over-specific. We provide the results of post-hoc864

thresholding approach that can also be used to identify overspecific prototypes in Table 9. While we865

can note that this approach can also be effective, validating the threshold particularly in scenarious866

where there is no part annotations available (such as part location annotation of CUB-200-2011) can867

be an ardous task. In such cases directly identifying over-specific prototypes as part of the training868

through masking module can be the more feasible option.869

G Additional Visualizations of the Hierarchical Prototypes Discovered by870

HComP-Net871

We provide more visualizations of the hierarchical prototypes discovered by HComP-Net for Butterfly872

(Figures 7 and 8) and Fish (Figure 9) datasets in this section. For ease of visualization, in each figure873

we visualize the prototypes learned over a small sub-tree from the phylogeny. The prototypes at the874

lowest level capture traits that are species-specific whereas the prototypes at internal nodes capture the875

commonality between its descendant species. For Fish dataset, we have provided textual descriptions876

purely based on human interpretation for the traits that are captured by prototypes at different levels.877

For Butterfly dataset, since the prototypes are capturing different wing patterns, assigning textual878

description for them is not straightforward. Therefore, we refrain from providing any text description879

for the highlighted regions of the learned prototypes and leave it to the reader’s interpretation.880

H Additional Top-K Visualizations of HComP-Net Prototypes881

We provide additional top-K visualizations of the prototypes from Butterfly (Figures 10 to 13) and882

Fish (Figures 14 to 16) datasets, where every row corresponds to a descendant species and the883

columns corresponds to the top-K images from the species with the largest prototype activation scores.884

A requirement of a semantically meaningful prototype is that it should consistently highlight the885

same part of the organisms in various images, provided that the part is visible. We can see in the886
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figures that the prototypes learned by HComP-Net consistently highlight the same part across all887

top-K images of a species, and across all descendant species. We additionally show that HComP-Net888

can find common traits at internal nodes with varying number of descendant species, including 4889

species (Figure 10), 5 species (Figures 11 and 12), and 10 species (Figure 13) of butterflies, and890

5 species (Figure 14), 8 species (Figure 15) and 18 species (Figure 16) for fish. We also provide891

several top-k visualizations of prototypes learned for bird species in Figures 17 to 25. This shows the892

ability of HComP-Net to discover common prototypes at internal nodes of the phylogenetic tree that893

consistently highlight the same regions in the descendant species images even when the number of894

descendants is large.895

I Limitations of Our Work896

A fundamental challenge of every prototype-based interpretability method (including ours) is the897

difficulty in associating a semantic interpretation to the underlying visual concept of a prototype.898

While some prototypes can be interpreted easily based on visual inspection of prototype activation899

maps, other prototypes are harder to interpret and require additional domain expertise of biologists.900

Also, while we have considered large phylogenies as that of the 190 species from CUB dataset, it may901

still not be representative of all bird species. This limited scope may cause our method to identify902

apparent homologous evolutionary traits that could differ with the inclusion of more species into the903

phylogeny. Therefore, our method can be seen as a system that generates potential hypotheses about904

evolutionary traits discovered in the form of hierarchical prototypes.905
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Heliconius sara sara

Heliconius eleuchia primularis

Heliconius eleuchia eleuchia

Heliconius erato amalfreda

Heliconius erato lativitta

Heliconius erato notabilis

Heliconius telesiphe sotericus

Traits common 
to species

Traits common 
to species

Traits specific 
to species

Figure 7: Visualizing the hierarchy of prototypes discovered by HComP-Net over three levels in
the phylogeny of seven species from Butterfly dataset. For each prototype we visualize one image
from each of its leaf descendant. Therefore, for prototypes at species level ( rightmost column) we
show only one image whereas for prototypes at internal nodes we show multiple images (equal to the
number of leaf descendants). For each image, we show the zoomed in view of the original image as
well as the heatmap overlayed image in the region of the learned prototype. The prototypes appear to
be capturing different wing patterns of the butterflies.
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Heliconius sara sara

Heliconius eleuchia primularis

Heliconius eleuchia eleuchia

Heliconius erato amalfreda

Heliconius erato lativitta

Heliconius erato notabilis

Heliconius telesiphe sotericus Heliconius timareta linaresi

Heliconius cydno alithea

Heliconius cydno chioneus

Heliconius cydno cydnides

Heliconius melpomene plesseni

Heliconius melpomene melpomene

Heliconius melpomene rosina

Traits common 
to species

Traits common 
to species

Traits specific 
to species

Figure 8: Visualizing the hierarchy of prototypes discovered by HComP-Net over three levels in the
phylogeny of seven species from Butterfly dataset.
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Esox 
americanus

Gambusia 
affinis

Lepomis 
gulosus

Trait: Dorsal fin morphology*

Trait: Head morphology* 

Trait: Dorsal fin upper back 
shape*

Trait: Snout shape*

Each red box visualizes a single prototype

Traits common to species Traits specific to species

Alosa Chrysochloris

Carassius Auratus

Notropis Hudsonius

Trait: Prominent gill cover* 

Trait: Spot on the caudal fin*

Trait: Head morphology*

Trait: Strongly pigmented 
coloration near dorsal fin*

Traits common to species Traits specific to species

Hierarchy of Prototypes from Fishes

Trait common to 
Carassius Auratus and 
Notropis Hudsonius but 
not present in Alosa 
Chrysochloris

Alosa 
chrysochloris

Carassius 
auratus

Notropis 
hudsonius

Trait: Head morphology*

Trait: Prominent gill cover* 

Trait: Spot on the caudal fin*

Traits common to species Traits specific to species

Trait: Strongly pigmented 
coloration near dorsal fin*

Figure 9: Visualizing the hierarchy of prototypes discovered by HComP-Net for a sub-trees with
three species from Fish dataset. *Note that the textual descriptions of the hypothesized traits shown
for every prototype are based on human interpretation.

Figure 10: Top-K visualization of a prototype finding commonality between four species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 11: Top-K visualization of a prototype finding commonality between nine species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 12: Top-K visualization of a prototype finding commonality between twelve species of
butterfly sharing a common ancestor. Each row represents the top 3 images from the respective
species. For each image we show the zoomed in view of the original image as well as the heatmap
overlayed image.
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Figure 13: Top-K visualization of a prototype finding commonality between four species of butterfly
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.

Figure 14: Top-K visualization of a prototype finding commonality between five species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 15: Top-K visualization of a prototype finding commonality between eight species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 16: Top-K visualization of a prototype finding commonality between eighteen species of fish
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 17: Top-K visualization of a prototype finding commonality between seven species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 18: Top-K visualization of a prototype finding commonality between eight species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 19: Top-K visualization of a prototype finding commonality between nine species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 20: Top-K visualization of a prototype finding commonality between thirteen species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 21: Top-K visualization of a prototype finding commonality between five species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.

Figure 22: Top-K visualization of a prototype finding commonality between five species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 23: Top-K visualization of a prototype finding commonality between sixteen species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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Figure 24: Top-K visualization of a prototype finding commonality between four species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.

Figure 25: Top-K visualization of a prototype finding commonality between three species of birds
sharing a common ancestor. Each row represents the top 3 images from the respective species. For
each image we show the zoomed in view of the original image as well as the heatmap overlayed
image.
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