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Abstract
Mitigating climate change calls for a transition to more sustainable
energy systems. One of the key levers is the efficient deployment
of district energy networks which integrate diverse low-carbon
sources. Inertial energy networks, characterized by their large-
scale infrastructure, are an example of systems designed to provide
heating and cooling to various consumers. However, the complex-
ity of their dynamics such as multi-timescale responses, nonlinear
behaviors and intermittence of renewable sources result in high
computational cost for accurate simulation and optimization. To
overcome this, we introduce a system-agnostic modeling frame-
work that leverages the spatio-temporal structure of these systems
to develop an efficient and scalable physics-informed state-space
surrogate model. Coupled with model-based and learning-based
optimizers, the framework enables full dynamic optimization and
faster decision-making while drastically reducing computing time.
Benchmarks against rule-based and physics-based strategies demon-
strate that our approach achieves competitive energy cost savings
while cutting the runtime from over a month to just few hours.
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1 Introduction
In recent reports, the international energy agency (IEA) outlines
the urgent need to increase the efficient deployment of inertial
energy networkswithmultiple low-carbon footprint energy sources
to reach net-zero emissions by 2050 [14]. In fact, nearly half of
the world energy demand in buildings was attributed to heating,
with fossil fuels still accounting for 60% of the heat production in
2023 [15].

The term inertial refers to the system’s thermal inertia, where the
thermal mass of pipes and storage introduces delays between heat
production and distribution. Multiple sources, such as biomass boil-
ers, geothermal, solar, and gas (as backup), can operate simultane-
ously, while thermal storage enables asynchronous and flexible op-
eration [17]. Each source has distinct, often nonlinear dynamics and
constraints. For example, biomass units respond slowly, while solar
output is weather-dependent. The combination of diverse sources,
operational constraints, and stochastic demand makes accurate
modeling and optimization computationally intensive [2, 10, 18, 20].
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Figure 1: Graph representation of an inertial energy network:
nodes represent producers, consumers, and other physical
entities, while edges denote pipes transporting the heat car-
rier. Node-level features and graph-level disturbance and
control variables are also shown.

To address the computational bottleneck, several approaches
have been explored in the literature, including linearization tech-
niques [23, 29] and reduced order modeling [12, 25]. Nevertheless,
these approaches often lead to a simplification of the dynamics
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and reduces their fidelity in system representation. In contrast,
deep learning-based approaches have recently gained attention
due to their ability to model complex nonlinear behaviors while
ensuring reduced inference time. Such methods have covered a
wide range of applications, including weather and thermal load
forecasting, fluid dynamics, and energy systems control via deep
reinforcement [5, 11, 26, 27].

For energy networks, recent studies proposed the use of deep
learning-based surrogate models to reduce simulation time [7, 8, 24].
Given their inherent topology, these networks are suited to graph-
based representations, as illustrated in Fig. 1, making graph neu-
ral networks (GNNs) a relevant approach for surrogate model-
ing [6, 19, 32]. However, no systematic methodology or unified
design framework has been developed for inertial energy networks.
Besides, prior works often focus the optimization on short periods
or specific seasons, and restrict their analysis to single-producer
configurations. Furthermore, spatio-temporal formulations, which
would better capture the interactions between dynamic temporal
behaviors and spatial dependencies remain underexplored.

Contributions: This work introduces a comprehensive and scal-
able framework for dynamic simulation and control optimization
of inertial energy networks. Our approach leverages the inherent
graph topology of these systems to construct a spatio-temporal
graph neural network. In contrast to prior work, we explicitly in-
corporate a generic hydraulic mass conservation equation, resulting
in a physics-informed surrogate model with improved reliability.
Moreover, the method seamlessly handle various energy sources at
different locations of the network along with multiple consumer
nodes. The development phase incorporates an adaptation of Gauss-
ian scaling and window slicing to augment historical time-series
data and expose the surrogate model to physically plausible sce-
narios during the training. Both simulation and optimization are
framed within a state-space formalism, facilitating the integration
with a variety of model-based and learning-based optimization
algorithms. Finally, the impact and relevance of our approach is
demonstrated on a real-world system over a full year of operation.
It achieves competitive energy cost reductions while being up to
three orders of magnitude faster than conventional physics-based
simulations. The full methodology is schematized in Fig. 2

2 Related work
Predictive control, as schematized in Fig. 2, requires a system model
to perform predictive simulations and accurately capture its re-
sponse to control signals. In control theory, this dynamical model
is often expressed through an ordinary differential equation (ODE)
in a state-space [4]. Mathematically, the control is performed for an
optimization time horizon, Hopt = [0, 𝑡𝑓 ], and can be formalized
as:

𝑑𝑥 (𝑡)
𝑑𝑡

= 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝑑 (𝑡)) , and 𝑥 (0) = 𝑥0,

𝐶

(
𝑡𝑓 , 𝑢

)
=

∫ 𝑡𝑓

0
𝑔 (𝑡, 𝑥𝑢 (𝑡), 𝑢 (𝑡)) 𝑑𝑡 + ℎ(𝑡𝑓 , 𝑥𝑢 (𝑡𝑓 )),

s.t. 𝑥𝑢 (𝑡) = argmin 𝐶 (𝑡𝑓 , 𝑢) and 𝑙 (𝑡, 𝑥 (𝑡), 𝑢 (𝑡)) ≤ 0 ∀𝑡,

(1)

where 𝑓 denotes the nonlinear system dynamics, with 𝑥 ∈ R𝑛𝑥 the
state vector, 𝑢 ∈ R𝑛𝑢 the control inputs, and 𝑑 ∈ R𝑛𝑑 the external
disturbances. The cost function 𝐶 comprises a running cost 𝑔 and
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Figure 2:Methodological framework for system-agnostic sim-
ulation and control optimization of inertial energy systems.
The physical-simulator is replaced by a surrogatemodel, that
can be then coupled to different optimizers.

a terminal cost ℎ evaluated at the end of the optimization horizon
Hopt, subject to state and control constraints 𝑙 .

State-space models can be learned in two distinct ways, discrete-
time (DT) or continuous-time (CT) models. The latter usually re-
quires initial state estimation while DT models are more common
and easier to construct as data is numerically represented via dis-
crete elements [1, 3]. For inertial energy networks, surrogate DT
models have been proposed in [6, 8, 9, 21]. For instance, the au-
thors of [8] associated a recurrent neural network (RNN) to each
consumer node in a district heating network (DHN), but only con-
sidered a single-producer case and relied on manually connecting
RNN cells, approach where spatio-temporal GNNs would be more
suitable. In [21], a long-short termmemory (LSTM) surrogate model
was coupled with a deep reinforcement learning agent (soft-actor
critic) to enable efficient district energy system management, re-
ducing the energy costs by almost 3% for a three months period.
Nevertheless, a yearly assessment is essential for capturing seasonal
variations and demand patterns. We address these gaps by introduc-
ing a spatio-temporal graph convolutional network that captures
both temporal dynamics and spatial dependencies, critical for iner-
tial energy networks where fast hydraulic responses interact with
slow thermal transients. The architecture adopts a time-then-space
formulation, shown to be more expressive than joint time-and-
space models [13]. Our physics-informed, system-agnostic model
delivers reliable predictions and integrates seamlessly with various
optimizers, as demonstrated in a full-year real-world case.

3 Methodology
3.1 State-Space Surrogate Model
The network is represented as a graph G = (V, E), with |V| nodes
and |E | edges. Its state is defined through the evolution of state
variables defined at each node (e.g., 𝑥 = mass flow rate). Moreover
the entire system is influenced by exogenous variables, classified as
disturbances (e.g.,𝑑 =weather) or control variables (e.g.,𝑢 = power).
The optimal control formulated in Eq. 1 seeks to optimize the net-
work trajectory to minimize a cost function𝐶 while satisfying a set
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of constraints over Hopt. We propose to reformulate this problem
such that future system evolution is inferred as follows:

𝑥H
sm

+ = 𝑓𝜃

(
𝑥H

sm
− , 𝑢H

sm
+ , 𝑑H

sm
+

)
, (2)

whereH sm is the predictive range of the surrogate model. The sub-
script + indicates predicted variables, meaning values from time 𝑡
to time 𝑡 + H sm. Subscript − indicates past observations or mea-
surements of state variables from 𝑡 −H sm to 𝑡 . In Eq. 2, the learned
state-space model (𝑓𝜃 ) predicts future system states based on past
states, future control variables and forecasted disturbances. The
inference function 𝑓𝜃 results from the proposed architecture shown
in Fig. 3, where in addition to past variables, disturbance forecasts
and future control signals are broadcasted to each node.
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Figure 3: State-space surrogate model predicting future state
trajectory 𝑥H+ from past states 𝑥H− , future controls 𝑢H+ , and
disturbance forecasts 𝑑H+ .

Next, these combined node features go through a encoder-processor-
decoder architecture. Gated recurrent units (GRU) are used to
encode temporal dependencies, the processing is performed us-
ing stacked graph convolutions (GCN) and the decoding is made
through a MLP. The resulting hypeparameters: number of GRU,
GCN, the hidden size, batch size and learning rate are optimized us-
ing the asynchronous successive halving algorithm from [16]. The
surrogate model is trained to minimize the following loss function:

L𝜃 =
1
𝑁𝑏

∑︁
𝑏

1
H

𝑡𝑏+H∑︁
𝑡𝑏

[
1
V

∑︁
𝑛



𝑥𝑏,𝑛,𝑡 − 𝑥𝑏,𝑛,𝑡


2
2 + 𝜆 · F 2

𝑚 (𝑥)
]
,

s.t. F𝑚 (𝑥) =
∑︁

producers
𝑥𝑏,𝑛,𝑡 −

∑︁
consumers

𝑥𝑏,𝑛,𝑡 ,

𝑥H+ = 𝑓𝜃

(
𝑥H− , 𝑢H+ , 𝑑H+

)
.

(3)

The loss function is weighted with a physical constraint term rep-
resented by F𝑚 (through 𝜆, a hyperparameter). It represents the
mass conservation over the network: the sum of the mass flow rates
received by the consumers must be equal to the sum of mass flow
rates sent by the producers. The loss is averaged and calculated over
a batch of size 𝑁𝑏 and across all the nodes in the network V . This
surrogate model is benchmarked against a standard model, vector
autoregressive (VARx), then a multi-layer perceptron (MLP) and a
recurrent neural network based on gated recurrent units (RNN).

3.2 Augmentation and Training
Conventional physics-based approaches rely on a digital twin of the
real system to assess consistency and system response under fore-
casted disturbances (e.g., weather, demand). This high-fidelity sim-
ulator is typically validated using real-world measurements prior
to deployment. Here, we propose to leverage real-world historical
measurements of both control and disturbances to augment the
training dataset using this physical simulator as illustrated in Ap-
pendix B. We propose combining Gaussian scaling and window slic-
ing from [28] to augment simulation inputs. Let 𝑧𝑡 = [𝑧𝑡 , . . . , 𝑧𝑡+𝑘 ]
denotes a timeserie spanning 𝑘 time-steps, its augmented version
is computed as follows:

T [𝑧𝑡 ] = [𝛾1 · 𝑧𝑡 , . . . ,︸      ︷︷      ︸
Δ 𝑤𝑖𝑛𝑑𝑜𝑤

𝛾2 · 𝑧𝑡+Δ, . . . , 𝛾 𝑗 · 𝑧𝑡+𝑗Δ, . . . , 𝛾 𝑗 · 𝑧𝑡+𝑘︸                       ︷︷                       ︸
Δ 𝑤𝑖𝑛𝑑𝑜𝑤

], (4)

where 𝛾 ∼ N(1, 𝜎2𝑎𝑢𝑔), N being the normal distribution and 1 <

Δ < 𝑘 is a fixed time window. This parameter acts as the sampling
frequency for scaling coefficients, i.e., the data is scaled every Δ
steps. Here, only control and disturbance variables are subject to
augmentation. State variables cannot be independently augmented,
as their evolution is intrinsically governed by system dynamics and
constrained by physical laws. By augmenting only inputs (control
and disturbances), the resulting state trajectories are augmented
and remain physically consistent, as they are generated through
simulation using the underlying physical model.

After optimizing the hyperparameters, the best model configu-
ration is trained for optimal performance using AdamW. All exper-
iments are conducted on a 48 GB NVIDIA A40 GPU. The bench-
marked models are configured with the same parameter count ob-
tained from the hyperparameter optimization of the spatio-temporal
model. The train/validation/test split is illustrated in Appendix B.

3.3 Optimizers
Predictive control relies on the surrogate model for optimization.
Evolutionary algorithms such as genetic algorithms (GA) and parti-
cle swarm optimization (PSO), widely used in the literature [22, 31],
are implemented in this work. Additionally, we explore deep rein-
forcement learning, which has recently shown strong performance
in similar settings [11, 21], using both on-policy (proximal policy
optimization, PPO) and off-policy (soft actor-critic, SAC) agents.

4 Experiments and Results
4.1 Experimental Setup
The surrogate model is validated on a real-world system integrating
three energy sources, biomass, gas, and solar, along with thermal
storage. A graph-based representation is shown in Fig. 4, and the
corresponding physical schematic and details are given in Appen-
dix A. This system was selected due to the availability of a full year
of historical control, weather, and demand data, as well as access to
a high-fidelity physical simulator. For scalability assessment, and
given the lack of open-access datasets, we generated synthetic data
from various network topologies using an open-source physical
solver [30], with examples provided in Appendix D.
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producer consumer storage valves

Gas

Biomass

Solar

Figure 4: Graph representation of a real-world system with
biomass and gas boilers, a solar field, and thermal storage.
Larger topologies with more consumer nodes are tested and
shown in Appendix D.

4.2 Performance Analysis
Two accuracy metrics are used: mean squared error (MSE) to assess
the absolute error on normalized state variables (mass flow rates,
temperatures, and valve positions), and symmetric mean absolute
percentage error (sMAPE) to express relative error. Precision is
measured using the coefficient of determination (R2). Results are
shown in Fig. 5. The proposed PI-STGCN model outperforms all

Figure 5: Performance comparison of the physics-informed
spatio-temporal graph convolution (PI-STGCN) with other
models.

others, achieving a sMAPE of approximately 1.3% and a global R2
of 0.92. The integration of the mass constraint (F𝑚) in the loss
function improves performance, as seen in the comparison between
STGCN (trained to minimize MSE only) and PI-STGCN. The MLP
model performs notably worse due to its lack of both temporal and
spatial encoding, which are captured by the other models. Exam-
ples of timeseries predictions are given in Appendix E. Finally, the
scalability assessment results are reported in Table 1. The surro-
gate model maintains high accuracy across all networks, with R2
above 0.97 and MSE decreasing as network size increases, indicat-
ing robustness. Physical simulations become more expensive, with
runtime rising from 27s to 665s, while surrogate inference remains
efficient, increasing from 20ms to 330ms, an average reduction of
three orders of magnitude. On a per-node basis, inference time
decreases with network size (from 5ms to 3.3ms), while simulation
time remains stable at 6.7s per node, showing that inference scales
sub-linearly with network size.

4.3 Optimization Results
After validating the learned state-space model, we apply it to opti-
mal control. A full-year optimization is run using a sliding window

Table 1: Scalability evaluation on test cases fromAppendix D.

Network V = 4 V = 6 V = 14 V = 100

MSE (×10−3) 1.2 1.2 0.19 0.08
sMAPE 0.21 0.18 0.15 0.10
R2 0.98 0.99 0.97 0.98

Simulation/sample (s) 27 41 203 665
Inference/sample (ms) 20 23 52 330
Inference/node (ms) 5 3.8 3.7 3.3

of Hopt = 3 days. The objective is to minimize running fuel cost
(biomass and gas), with constraints ensuring temperature stays
above a comfort threshold and control variations remain limited. GA
and PSO were stopped when cost variations reached a 5-monetary
units tolerance for 10 generations or after 200 iterations. PPO and
SAC were trained until achieving the maximum cumulative reward
(defined in Appendix C), requiring 1.5 million (2h 40min) and 1
million (5h 55min) training iterations, respectively. Additionally,
we include a comparison with the GA optimizer directly coupled to
the physical simulator through a functional mock-up unit (FMU).
Fuel cost reduction results are summarized in Table. 2 and the
computational time of each method is provided in Fig. 6.

Table 2: Energy cost reduction (%) by month for each opti-
mization method: functional mock-up (FMU), genetic algo-
rithm (GA), particle swarm optimization (PSO), soft actor-
critic (SAC) and proximal policy optimization (PPO).

Month 1 2 3 4 5 6 7 8 9 10 11 12

FMU 0.5 2.7 0.6 0.8 2.1 1.4 0.3 1.1 4.7 2.5 0.3 0.3
GA 0.2 2.0 0.1 0.6 1.9 1.8 0.2 0.8 0.5 2.3 0.2 0.1
PSO 0 1.6 0 0 0.2 0.1 0 0 0 0.8 0 0
SAC 0 1.1 0 0 0.6 0 2.2 1.7 0 0 0 0
PPO 0 0.1 0 0 0 0 4.7 1.4 0 0 0 0

Figure 6: Average runtime required for the optimization
of Hopt period across the month and for each optimizer.

The results show that fuel cost reductions remain below 5%
across all methods, reflecting the problem’s inherent difficulty, es-
pecially in winter, when high heat demand limits system flexibility.
Among all methods, physics-based GA yields the best fuel savings
in most months (up to 4.73% in September) but requires 31.2 days
to run. This is attributed to the high accuracy of the physical simu-
lator’s predictions, which enhances optimization precision. While
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there is a slight reduction in optimization quality due to prediction
errors, the surrogate-based GA offers a strong trade-off, securing
the second-best results in most months and even outperforming
the FMU-based GA in June (1.82% reduction), while being consider-
ably faster with a runtime of just 10.2 hours. PSO is faster but less
effective, often stuck in local optima. RL methods show inconsis-
tent performance and frequent constraint violations, despite PPO
achieving peak savings in July.

5 Conclusion
We proposed a hybrid optimization and simulation framework for
district inertial energy networks. The methodology combines an
efficient spatio-temporal surrogate model with heuristic and re-
inforcement learning. The surrogate-based GA achieved the best
trade-off, reducing computation time from 31 days to 10.2 hours
while maintaining strong performance. Results also highlighted
seasonal control limitations, particularly in winter. RL methods,
though capable of reaching optimization goals, frequently violated
constraints, this suggests a reformulation of the reward function or
the use of a hierarchical agents approach. Future work will further
analyze and refine the control strategies learned by each method.
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Appendices
A Real-world system

North heat 

demand ሶ𝑸𝒏

Gas
Biomass

South heat 

demand ሶ𝑸𝒔

TESSolar 

collectors

V1V2

V5V4

V6

V7 V3
Bypass

ሶ𝒎𝒔𝒐𝒖𝒕𝒉

ሶ𝒎𝒏𝒐𝒓𝒕𝒉

𝑻𝒓,𝒔𝒐𝒖𝒕𝒉

𝑻𝒓,𝒏𝒐𝒓𝒕𝒉

𝑻𝒔𝒆𝒕

𝑻𝒓

ሶ𝒎𝒃𝒊𝒐
ሶ𝒎𝒈𝒂𝒔

ሶ𝒎𝒃𝒚𝒑

𝑻𝒐𝒖𝒕

𝑻𝒖𝒑

𝑮𝒊𝒓𝒓, 𝑻𝒂𝒎𝒃

𝑻𝒂𝒎𝒃

𝑻𝒂𝒎𝒃

Figure 7: Schematic diagram of the real-world system. The
contour colors correspond to the ones used in the graph
representation.

Several valves can be seen between the solar field and the storage,
they allow different cycles: charging or discharging the storage, or
direct injection from the solar field to the network. In the state-
space formulation, mass flow rates are state variables for boilers
and control valves. Boiler mass flow rates are proportional to power
output, while valve flow rates indicate open or closed states. For
consumers and storage, fluid temperature is considered as the state
variable. In storage, temperature reflects stored heat, while con-
sumer temperatures indicate the heat demand.

The system also depends on external disturbances: solar irradi-
ance𝐺𝑖𝑟𝑟 and ambient temperature𝑇𝑎𝑚𝑏 , which affect solar energy
production, as well as heat demand in the northern ¤𝑄𝑛 and southern
¤𝑄𝑠 clusters.

B Augmentation
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Figure 8: Augmentation process: The original dataset, de-
rived from real-world exogenous variables (R), is used as a
baseline. Each exogenous variable is then independently aug-
mented (T ) and simulated using a high-fidelity simulator.

C Reward function
The cost function 𝐶 is set to the economic operational cost of the
network and can be written as:

𝐶

(
𝑡𝑓 , 𝑢

)
=

∫ 𝑡𝑓

0
𝑐bio · ¤𝑄bio (𝑡) + 𝑐gas · ¤𝑄gas (𝑡) 𝑑𝑡 . (5)

Where 𝑐bio and 𝑐gas are fuel costs (in M.U/kWh) and ¤𝑄 the energy
provided by biomass and gas respectively. Moreover, the optimal

control must satisfy two constraints:(𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1
Δ𝑡

)2
≤ 𝛿𝑢 , and 𝑥𝑖,𝑡 ≥ 𝑥𝑚𝑖𝑛 ∀𝑡 ∈ H𝑜𝑝𝑡 , 𝑖 ∈ {n, s}. (6)

The first constraint limits control variable variations to protect
hydraulic pumps, while the second ensures outlet temperatures
stay above a threshold for comfort and safety.

Constrained optimizations must be adapted to align with the
reward-learning framework of RL agents. Accordingly, both PPO
and SAC were trained using the following reward function:

𝑟𝑡 = −𝐶𝑡
𝐶∗ − 1

H
∑︁
𝑖

𝑡+H∑︁
𝑡

[
𝜆𝑢

(𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1
Δ𝑡

)2
+ 𝜆𝑥𝑒

𝑥𝑚𝑖𝑛−𝑥𝑖,𝑡
]
. (7)

This formulation balances three terms: minimizing economic costs
(normalized by the rule-based cost 𝐶∗), enforcing smooth control
variations (weighted by 𝜆𝑢 ), and ensuring temperature constraints
(weighted by 𝜆𝑥 ).

D Scalability cases
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Figure 9: Synthetic use cases for surrogate model scalability
assessment. The number of nodes is 4 in (a), 6 in (b), 14 in (c)
and 100 in (d).
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Figure 10: Examples of PI-STGCN predictions (red dotted) vs.
high-fidelity simulation (black) over an illustrative period,
capturing both fast (a) and slow (b) dynamics.
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