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By combining modern machine learning techniques with advances in neuro-
physiology, human-computer interfaces (HCI) are increasingly able to interpret
physiological signals with sufficient accuracy to support natural and intuitive
interaction with digital devices. In particular, surface EMG signals collected on
the forearm are strongly correlated with the user’s hand gestures. Applications
of EMG-based HCIs include sign language recognition [8] and hands-free con-
trollers, which are particularly useful in virtual reality. Also, the ability to record
EMG from residual muscles near amputated limbs enables the development of
robotic prostheses that are controlled by thought [1].

Fig. 1. A. The MindRove 8-channel EMG armband system (https://mindrove.com/
product/emg-armband) B. Example of EMG signals and finger joint angles recorded
during guided hand gestures. C. Corresponding hand model representation.

The general machine learning approach involves training a model on epochs of
EMG data paired with corresponding hand shape labels (as illustrated in Figure
1.B), and subsequently using the model to continuously recognize gestures based
on the most recent epoch. Current applications achieve high accuracy in intra-
subject configurations, i.e., when the model is trained and used exclusively on
labeled data collected from the same individual user [10]. However, their accuracy
typically drops in cross-subject configurations due to variability between subjects
and sessions, such as muscle size, exact sensor placement, or user fatigue [7] [5].
This reveals a significant practical limitation. For natural and widespread use,
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EMG-based HCIs should aim for cross-subject gesture recognition, allowing new
users to operate the system immediately without requiring unnatural calibration
phases.

Proposed solutions to the cross-subject problem include normalization tech-
niques and a range of transfer learning strategies. Commercial devices most com-
monly adopt supervised calibration1. However, because factors such as fatigue
and motor redundancy can alter the signal over time [6], supervised adaptation
typically maintains high accuracy only for a limited duration.

Unsupervised domain adaptation (UDA), in contrast, adapts a recognition
model to a new domain using only unlabeled samples from the target subject.
UDA strategies are particularly relevant for HCIs, as they enable new users to
operate the device immediately, allowing the system to seamlessly and continu-
ously adapt its parameters to maintain high accuracy even against factors such
as fatigue during extended sessions. We recently proposed LDA-KM-DA [2]
(illustrated in Figure 2.A), a new approach to UDA for hand gesture recognition
from EMG, building upon our previous results to characterize the domain shifts
that occur in EMG across subjects during hand gestures [10].

Fig. 2. A. Graphical representation of LDA-KM-DA B. Result of LDA-KM-DA
against state-of-the-art UDA methods on the EMG-EPN-612 dataset [4] C. Result
of LDA-KM-DA during continuous adaptation

1 COAPT uses two minutes of guided calibration (https://coaptengineering.com/
user-manual/calibration)
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The rationale behind the proposed method is that existing approaches are
constrained by domain alignment limitations, particularly in contexts where
subject-specific classifiers can differ substantially. To address this issue, we ex-
plore non-conservative UDA [2] by leveraging the cluster assumption (i.e., that
classifier decision boundaries should not cross high-density regions) to overcome
domain alignment limitations and identify a classifier that is fully adapted to the
target subject. Our solution combines the methods DIRT-T [9], for deep non-
conservative UDA, and LDA-KM [3], for efficient clustering of high-dimensional
data. Our results [2] from leave-one-subject-out cross-validation (illustrated in
Figures 2.B and 2.C) demonstrate that LDA-KM-DA outperforms existing UDA
methods across multiple datasets and during continuous adaptation.

In our live demonstration 2, we use an 8-channel EMG armband (shown in
Figure 1.A) connected via Wi-Fi to a computer, along with a user interface
developed in Unity that displays the EMG signals, the recognized hand shapes
among five classes, and the evolution of the feature embedding computed in real
time by LDA-KM-DA. This demo highlights the intuitive use of EMG for hand
gesture recognition and the smooth adaptation achieved by our method, opening
new possibilities for practical applications. During the showcase, visitors will be
allowed to interact with the system by wearing the EMG sensors and visualizing
the recognized gestures on the computer screen.
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