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Abstract
As large language models (LLMs) are trained001
on increasingly diverse and extensive multilin-002
gual corpora, they demonstrate cross-lingual003
transfer capabilities. However, these capabil-004
ities often fail to effectively extend to low-005
resource languages, particularly those utilizing006
non-Latin scripts. While transliterating low-007
resource languages into Latin script presents a008
natural solution, there currently lacks a compre-009
hensive framework for integrating translitera-010
tion into LLM training and deployment. Taking011
a pragmatic approach, this paper innovatively012
combines character transliteration with Huff-013
man coding to design a complete transliteration014
framework. Our proposed framework offers015
the following advantages: 1) Compression: Re-016
duces storage requirements for low-resource017
language content, achieving file size compres-018
sion ratios of 0.5 and token count reductions019
between 60% and 80%. 2) Accuracy: Guar-020
antees 100% lossless conversion from translit-021
erated text back to the source language. 3)022
Efficiency: Eliminates the need for vocabu-023
lary expansion for low-resource languages, im-024
proving training and inference efficiency. 4)025
Scalability: The framework can be extended to026
other low-resource languages. We validate the027
effectiveness of our framework across multi-028
ple downstream tasks, including text classifica-029
tion, machine reading comprehension, and ma-030
chine translation. Experimental results demon-031
strate that our method significantly enhances032
the model’s capability to process low-resource033
languages while maintaining performance on034
high-resource languages. Our data and code035
have been made publicly available.036

1 Introduction037

Large language models have demonstrated remark-038

able multilingual transfer capabilities, enabling039

knowledge transfer from one language to another040

without additional training (Qi et al., 2023; Gao041

et al., 2024; Ye et al., 2023). However, this trans-042

fer ability often performs poorly in low-resource043

languages, primarily constrained by three factors: 044

scarcity of training data (Costa-jussà et al., 2022), 045

insufficient cross-lingual word embedding align- 046

ment (Deshpande et al., 2021), and writing sys- 047

tem differences (Anastasopoulos and Neubig, 2019; 048

Muller et al., 2021). 049

Common approaches to improving LLMs’ adapt- 050

ability to low-resource languages include contin- 051

ued pre-training and supervised fine-tuning (Tao 052

et al., 2024). Due to the low representation of 053

low-resource languages in tokenizers and frequent 054

occurrence of UNKnown tokens (Moosa et al., 055

2023), vocabulary expansion becomes a primary 056

task (Zhuang and Sun, 2025). However, ensuring 057

high performance for multiple low-resource lan- 058

guages is extremely challenging, facing two key 059

issues. The first issue is the increased training and 060

inference costs due to vocabulary size, as vocab- 061

ulary must inevitably expand with the addition of 062

languages to ensure tokenization performance for 063

each language (Purkayastha et al., 2023). The sec- 064

ond issue is the curse of multilinguality, which 065

means that using a fixed-capacity model to pre- 066

train multiple languages can improve cross-lingual 067

performance to some extent, but performance be- 068

gins to decline beyond a certain point (Conneau, 069

2019). 070

To improve cross-lingual transfer while avoid- 071

ing issues associated with extensive vocabulary ex- 072

pansion, transliteration of low-resource languages 073

has emerged as a viable approach. Translitera- 074

tion refers to the process of converting text from 075

one writing system to another according to spe- 076

cific rules, typically converting non-Latin scripts 077

to Latin alphabet representation (Wellisch, 1978). 078

Previous studies have demonstrated that transliter- 079

ating text into a common character set can enhance 080

cross-lingual transfer performance for low-resource 081

languages with non-Latin scripts (Liu et al., 2024a, 082

2025). This improvement is attributed to the com- 083

mon character set facilitating knowledge transfer 084
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through lexical overlap (Dhamecha et al., 2021;085

Pires, 2019; Amrhein and Sennrich, 2020) and en-086

abling the reuse of existing information in embed-087

ding matrices (Purkayastha et al., 2023). Append-088

ing transliterated content to prompt templates for089

low-resource languages has been shown to improve090

downstream task performance (Ma et al., 2024).091

Most research on transliteration relies on exist-092

ing tools like UROMAN (Hermjakob et al., 2018),093

which maps any UTF-8 character to Latin letters,094

to investigate the impact of transliteration on cross-095

lingual transfer or alignment. However, this translit-096

eration process is irreversible; due to the potential097

loss of characteristic information from the origi-098

nal script during transliteration, it is impossible to099

accurately restore the transliterated Latin letters100

back to the source language script, which limits101

its practical applications (Amrhein and Sennrich,102

2020). Furthermore, low-resource languages typ-103

ically utilize extended Unicode character sets for104

encoding, resulting in their textual data occupying105

more storage space compared to languages like En-106

glish. This storage overhead issue becomes more107

prominent when processing large-scale multilin-108

gual corpora. Therefore, this paper focuses on two109

key issues: how to implement a reversible transliter-110

ation mechanism to facilitate practical applications111

while maintaining cross-lingual transfer effective-112

ness, and how to achieve text compression during113

the transliteration process to facilitate storage and114

training. We observe that these two points corre-115

spond precisely to the reversibility and compres-116

sion properties of Huffman coding, which provides117

the theoretical foundation for our Huffman coding-118

based transliteration scheme.119

We selected three low-resource languages: Ti-120

betan, Mongolian, and Uyghur, which are mi-121

nority languages in China with a total user base122

exceeding 30 million speakers, along with En-123

glish and Chinese as high-resource languages for124

our experiments. We conducted continued pre-125

training of open-source LLMs using corpora ob-126

tained through various transliteration methods, an-127

alyzed cross-lingual transfer performance across128

text classification, named entity recognition, ma-129

chine reading comprehension, knowledge extrac-130

tion, and machine translation tasks, while also com-131

paring compression rates among different translit-132

eration methods. To enable the model to directly133

serve low-resource language users, we developed134

a FastText-based automatic transliteration frame-135

work that performs language detection before and136

after model processing, implementing translitera- 137

tion and restoration of input and output, thereby 138

maintaining native language interaction at the user 139

end. In summary, our contributions are as follows: 140

• We propose a Huffman coding-based translit- 141

eration scheme for low-resource languages, 142

achieving reversibility in the transliteration 143

process and addressing the limitations of tra- 144

ditional transliteration methods in practical 145

applications. 146

• Leveraging the compression properties of 147

Huffman coding, we effectively reduce the 148

storage overhead of low-resource language 149

texts, making the training of large-scale multi- 150

lingual corpora more efficient. 151

• We develop an end-to-end framework integrat- 152

ing FastText language identification, enabling 153

automatic transliteration and restoration of 154

low-resource languages while maintaining na- 155

tive language interaction and improving per- 156

formance across multiple downstream tasks. 157

2 Related Works 158

Cross-lingual Transfer for Low-resource Lan- 159

guages To enhance low-resource language per- 160

formance in LLMs, one primary approach uses 161

continued pre-training and supervised fine-tuning 162

with low-resource corpora. However, this method 163

faces significant challenges: it requires complex 164

vocabulary expansion and model architecture mod- 165

ifications, resulting in poor scalability, and most 166

critically, suffers from limited training data avail- 167

ability (Joshi et al., 2020). 168

Alternative approaches focus on improving 169

cross-lingual transfer capabilities through various 170

mechanisms: concatenating multilingual input se- 171

quences to leverage shared representation spaces 172

(Kim et al.; Tanwar et al., 2023; Cueva et al., 173

2024), projecting target language representations 174

onto high-resource languages for enhanced feature 175

extraction (Xu et al., 2023), and increasing the 176

parallel content in multilingual training corpora 177

(Zhuang and Sun, 2025). 178

While these methods aim to transfer capabilities 179

from resource-rich to low-resource languages, a 180

fundamental challenge remains: the substantial dif- 181

ferences in writing systems among low-resource 182

languages. Unifying multiple languages into a sin- 183

gle writing system could potentially address vocab- 184

ulary challenges and promote vocabulary sharing, 185
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thereby facilitating cross-lingual knowledge trans-186

fer (Purkayastha et al., 2023).187

Tokenization and Vocabulary Expansion Ex-188

isting subword tokenizers (such as BPE (Sennrich,189

2015) and SentencePiece (Kudo, 2018)) have been190

widely adopted for low-resource languages. How-191

ever, due to the limited representation of these lan-192

guages in pre-training corpora, they suffer from in-193

sufficient vocabulary coverage, over-segmentation,194

and high ratios of unknown tokens. While vocabu-195

lary expansion (Cui et al., 2023) offers a potential196

solution, it introduces new challenges: the need for197

substantial training data to adequately train new198

tokens, and increased model capacity requirements199

to mitigate the multilingual curse (Conneau, 2019).200

Recent approaches have focused on more effi-201

cient solutions, such as leveraging shared linguis-202

tic information and cross-lingual word embedding203

alignment (Ogueji et al., 2021; Liu et al., 2021),204

which improve tokenization without significant vo-205

cabulary expansion. Notably, transliterating low-206

resource languages into a unified writing system207

has shown promising results (Dhamecha et al.,208

2021; Liu et al., 2024b), simultaneously enhancing209

vocabulary sharing and model transfer capabilities210

while avoiding the computational overhead of vo-211

cabulary expansion.212

Romanization and Transliteration Romaniza-213

tion is the process of mapping various characters214

to Latin characters, though this process is typically215

irreversible. Its objective is to approximate the pro-216

nunciation of the original character text as closely217

as possible. Specialized tools like UROMAN (Her-218

mjakob et al., 2018) can romanize almost all char-219

acters by directly mapping UTF-8 characters to220

Latin letters, though this process involves informa-221

tion loss, such as the omission of tonal information.222

There are also general character conversion tools223

like uconv that can preserve more original charac-224

ter information, such as adding diacritical marks,225

but this limits subword sharing across languages.226

The Tibetan, Mongolian, Uyghur, and Chi-227

nese languages used in our experiments can all228

be romanized through UROMAN; however, due229

to the uniqueness of the Tibetan writing system,230

uconv currently cannot transliterate Tibetan. Ro-231

manization encoding has been studied in both232

natural language processing and speech process-233

ing domains, such as its application in multilin-234

gual pre-trained language models to enhance low-235

resource languages (Purkayastha et al., 2023), and236

in speech processing systems’ pre-training as ad- 237

ditional forced alignment for text labeling (Pratap 238

et al., 2024). Moreover, phonological distinctions 239

may be lost during romanization - for instance, 240

Chinese characters become toneless pinyin when 241

romanized, with a single pinyin potentially cor- 242

responding to many different characters. URO- 243

MAN also converts numbers from different writ- 244

ing systems into Western Arabic numerals (Ding 245

et al., 2024), which further complicates the process 246

of converting romanized text back to source lan- 247

guages, particularly when users expect LLMs to 248

output in their native writing systems. In contrast, 249

our proposed Huffman coding-based transliteration 250

method is an innovative approach that balances 251

transliteration (improving cross-lingual transfer), 252

compression (reducing storage and training costs), 253

and reversibility (facilitating practical restoration 254

and interaction). 255

3 Methodology 256

3.1 Overview 257

We propose a three-stage processing approach for 258

low-resource language transliteration and applica- 259

tions: (1) character encoding design: analyzing 260

character frequencies and designing custom encod- 261

ings. (2) transliteration and model training: train- 262

ing on transliterated raw corpora. (3) end-to-end 263

language processing pipeline: comprising input 264

language classification and processing, model in- 265

ference, and output language classification and pro- 266

cessing, as shown in Figure 1. 267

In this study, we focus on three low-resource 268

languages of China: Tibetan, Uyghur, and Mon- 269

golian (see Table 1). These languages represent 270

different writing systems, with a combined user 271

base exceeding 30 million speakers. We select 272

these languages because they present significant 273

challenges for cross-lingual transfer: they use non- 274

Latin scripts, have limited digital resources, and 275

exhibit distinct writing systems that differ substan- 276

tially from high-resource languages like Chinese 277

and English. 278

Name ISO 639-1 Writing System

Tibetan bo Tibetan script
Uyghur ug Uyghur Arabic script

Mongolian mn Traditional Mongolian script

Table 1: Overview of the low-resource languages stud-
ied in this work.
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Step 1: Character Encoding Design

 bo: འཇིག་�ེན་�ི་སངས་�ས་ཆོས་�གས་�ི་སེམས་...
 mn: ������ ��� ����� ��� ��...
 ug: دۇنیا بۇددا دىنى ھھققانىیھت...

"་" : 3158047
"ᠠ" : 1363662

......
"༧" : 137

Unicode
Character
Statistics

"་" : C  or  e
"ᠠ" : E  or  a

......
"༧" : Ev  or  М

Custom
Encoding

Assignment

Step 2: Transliteration and Model Training

 bo: ཀ་བཞི་ག་སིན་གཉིས་ཨན་ག�མ་ནི་�ས་འ�ར...
 mn: ����� ������� ������� ...
 ug: تٻترامٻتىل دىپروپىلٻن ترى ئامىن ...
 en: March is a good time for ...
 zh: 物业是指已经建成并投入...

 bo: @BzCAfCfQCPCIQAjCP...
 mn: @AlBrAcAoGKBBfCzAu...
 ug: @AbBiAbXHAtBiAbDNB...
 en: March is a good time for ...
 zh: wu ye shi zhi yi jing jian...

Step 3: Language Processing Pipeline

Transliteration
Process

Model
Training Input

Input
Language
Classifier

User Input
Output

Language
Classifier

Model
OutputNeed

Transliteration?

Figure 1: Overview of our three-stage approach. Step 1: Character encoding design with Unicode character statistics
and custom encoding assignment. Step 2: Transliteration process for model training input. Step 3: Language
processing pipeline with language classification for user interaction.

3.2 Character Frequency Analysis279

Since English already uses Latin script and Chi-280

nese has well-established romanization tools for281

converting characters to pinyin, we focused our282

transliteration efforts on three low-resource lan-283

guages: Uyghur, Tibetan, and Mongolian. Our284

character frequency analysis began with the CUTE285

open-source parallel dataset (Zhuang and Sun,286

2025), which provided aligned text across Chi-287

nese, Uyghur, Tibetan, and English. To incorporate288

Mongolian, which wasn’t originally included in289

CUTE, we followed the dataset’s methodology to290

collect and evaluate Mongolian translations, using291

human evaluators to assess translation quality from292

Chinese to Mongolian. For comprehensive char-293

acter analysis, we sampled 3,000 instances from294

each of the three low-resource languages and con-295

ducted a thorough examination of their Unicode296

characters and frequencies. Through a systematic297

approach combining Unicode code point ranges,298

character naming conventions, and expert linguistic299

validation, we identified the core character sets for300

each language: 45 characters for Mongolian, 38 for301

Uyghur, and 81 for Tibetan. These character sets302

were then consolidated and arranged in descending 303

order of frequency, providing a foundation for our 304

transliteration scheme. 305

3.3 Huffman-based Encoding Design 306

Properties of Huffman Coding Huffman cod- 307

ing, as a variable-length encoding method, pos- 308

sesses both variable-length allocation and pre- 309

fix properties. The variable-length allocation 310

ensures that high-frequency characters receive 311

shorter codes while low-frequency characters re- 312

ceive longer codes, providing a theoretical founda- 313

tion for our text compression. The prefix property 314

guarantees that no code is a prefix of any other char- 315

acter’s code, facilitating unambiguous decoding. 316

Customized Encoding Scheme Based on the 317

principles of Huffman coding, we designed an im- 318

proved encoding scheme. To accommodate more 319

languages, our scheme, while not strictly adhering 320

to the prefix property, ensures unambiguous de- 321

coding through structured design. Specifically, we 322

constrain all codes to follow the pattern "First letter 323

capitalized, subsequent letters lowercase" and em- 324

ploy a maximum matching strategy for decoding. 325
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Table 2 demonstrates the possibilities of this design326

pattern at different lengths.327

Length Pattern Capacity

One A, B, ..., Z 26
Two Aa, Ab, ..., Zz 676
Three Aaa, Aab, ..., Zzz 17,576
Four Aaaa, Aaab, ..., Zzzz 456,976

Total (up to four characters) 475,254

Table 2: Encoding patterns and theoretical capacity for
different lengths. The pattern consists of one uppercase
letter followed by zero or more lowercase letters.

This design offers three key advantages: (1) By328

constraining the first character to be uppercase and329

subsequent characters to be lowercase, combined330

with the maximum matching strategy, it ensures331

unambiguous decoding. (2) It maintains the core332

principle of Huffman coding, allowing for variable-333

length code allocation based on character frequen-334

cies. (3) It provides significant scalability, theo-335

retically supporting encoding for up to 475,254336

characters. In this study, we implemented a subset337

of the two-character scheme, utilizing 21 single-338

character codes (B-X) and 141 two-character codes339

(Aa-Fk), totaling 162 encoding options. This scale340

is sufficient to cover the character sets of Uyghur,341

Tibetan, and Mongolian languages.342

3.4 Transliteration Strategies343

To explore optimal transliteration strategies, we344

designed three progressive transliteration schemes,345

with each scheme building upon and improving its346

predecessor.347

Basic Transliteration Strategy We designed348

a transliteration scheme using "First-letter-349

capitalized + lowercase" encoding rules. This350

scheme transliterates Uyghur, Tibetan, and351

Mongolian into Latin alphabet representations352

according to encoding rules, while converting353

Chinese characters into Pinyin and preserving354

English text unchanged. While this strategy355

achieved basic transliteration functionality and356

reversibility, it did not account for the tokenizer’s357

characteristics, leaving room for further token358

compression.359

Tokenizer-based Optimization Strategy To ad-360

dress the token optimization potential in the ba-361

sic strategy, we analyzed the characteristics of the362

Llama2 tokenizer. Research showed that 66% of 363

original characters required four tokens for repre- 364

sentation. In response, we innovatively utilized 365

single tokens from the Llama2 tokenizer (Touvron 366

et al., 2023) as encoding mappings for original 367

characters, enabling all 162 original characters to 368

be represented by single tokens. The comparative 369

token distribution is shown in Table 3. 370

Method 1-token 2-token 3-token 4-token

Original 1 45 9 107
Basic 90 72 0 0
Optimized 162 0 0 0

Table 3: Character distribution by token length after
Llama2 tokenization. The Optimized method achieves
single-token encoding for all characters.

Hybrid Vocabulary Strategy Building upon the 371

second strategy, we leveraged the linguistic patterns 372

inherent in the transliterated text to train a special- 373

ized vocabulary of 4,000 tokens. This vocabulary 374

was merged with Llama2’s original 32,000-token 375

vocabulary to create a hybrid vocabulary of 33,738 376

tokens, maintaining efficient single-character en- 377

coding while capturing common character combi- 378

nations. The comparison of the three strategies is 379

presented in Table 4. For a comprehensive analy- 380

sis of file size and token compression ratios across 381

different languages and strategies, see Appendix B. 382

Strategy Vocab Size Compr. Cost

Basic 32,000 1.63× Low
Tokenizer 32,000 2.35× Medium
Hybrid 33,738 3.04× High

Table 4: Comparison of different strategies. Compr.
shows average token compression ratio across Tibetan,
Mongolian and Uyghur languages.

3.5 Reversibility Mechanism 383

Our transliteration system achieves perfect re- 384

versibility through a carefully designed mapping 385

mechanism, maintaining bidirectional mappings 386

between original characters and Latin codes. For 387

characters not in the mapping tables (e.g., emojis, 388

rare characters, or special symbols), the system pre- 389

serves them using ’@’ markers with proper escape 390

sequences (e.g., ’@@’ for the ’@’ character itself), 391

ensuring no information loss during transliteration. 392

The detailed process is shown in Algorithm 1. 393
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Algorithm 1 Reversible Transliteration System

Input: Mc2l,Ml2c: Bidirectional mappings,
text: Input text
Output: Transliterated or restored text

Function ToLatin(text):
result← []
for each c in text do

Append Mc2l[c] if exists, else preserve as
@...@

end for
return joined result

Function FromLatin(latin_text):
result← [], i← 0
while i < length(latin_text) do

Process @ markers or find longest match-
ing code

Advance i accordingly
end while
return joined result

The system employs a greedy matching strategy394

during restoration, where it attempts to match the395

longest possible Latin code sequence for mapped396

characters while correctly handling preserved se-397

quences between ’@’ markers. This dual mecha-398

nism ensures 100% restoration accuracy by either399

mapping characters through the bidirectional tables400

or preserving them in their original form.401

3.6 Auxiliary Models for Practical402

Deployment403

To achieve end-to-end system deployment, we de-404

veloped three auxiliary models. At the input stage,405

we trained a FastText-based classifier specifically406

for identifying Mongolian, Tibetan, Uyghur, Chi-407

nese, and other languages. At the output stage, we408

trained a FastText language classifier tailored to409

the characteristics of transliterated text to guide410

language restoration. Additionally, to accurately411

handle the conversion from Chinese pinyin to char-412

acters, we fine-tuned a specialized model based on413

Qwen2.5-0.5B (Yang et al., 2024). The detailed414

training processes and evaluation results of these415

models are presented in Appendix A.416

4 Experiments and Analysis417

To evaluate the effectiveness of different translit-418

eration schemes, we conducted a series of experi-419

ments examining the cross-lingual transfer perfor-420

mance of models trained with various translitera- 421

tion strategies. We specifically focused on whether 422

the models could effectively transfer knowledge to 423

low-resource languages (Tibetan, Mongolian, and 424

Uyghur) while maintaining performance in high- 425

resource languages (Chinese and English). 426

4.1 Experimental Setup 427

We adopt the following experimental procedure: 428

First, we process the pre-training corpus using dif- 429

ferent transliteration methods, followed by con- 430

tinued pre-training of the model. The choice of 431

continued pre-training over training from scratch 432

is motivated by the common challenge of insuffi- 433

cient training data faced by low-resource languages, 434

which makes it difficult to support a complete pre- 435

training process. After pre-training, we perform 436

supervised fine-tuning using downstream task data 437

from high-resource languages, and then directly 438

conduct zero-shot evaluation on low-resource lan- 439

guages to verify the model’s cross-lingual transfer 440

capability. 441

For Tibetan, Uyghur, and Mongolian languages, 442

we identified a limited number of available datasets. 443

Our experiments encompassed three primary tasks: 444

text classification, machine reading comprehension, 445

and translation. These tasks evaluated the model’s 446

capabilities across different levels of language pro- 447

cessing, thereby enabling a comprehensive assess- 448

ment of the transliteration scheme’s effectiveness. 449

Details regarding the pre-training data and parame- 450

ter settings can be found in Appendix C. 451

We designed the following comparative experi- 452

ments: 453

• Direct Continued Pre-training: Continuing 454

pre-training on the original model using raw 455

corpora. 456

• Vocabulary Expansion: Augmenting the orig- 457

inal model’s vocabulary with dedicated lexi- 458

cons for each low-resource language. 459

• UROMAN Transliteration: Applying univer- 460

sal romanization tools for transliteration. 461

• Three Progressive Transliteration Strategies: 462

As detailed in Section 3.4. 463

4.2 Text Classification 464

We first evaluated the effectiveness of various 465

transliteration schemes on the text classification 466

task. The experiments utilized the WCM-v2 dataset 467
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Model Low-resource Languages (Acc / F1) Chinese Average
bo mn ug Acc F1 Minorities All

Base Llama2 28.65 / 21.23 1.78 / 1.65 73.33 / 74.69 86.12 85.91 13.48 / 9.01 48.15 / 48.78
Expanded Vocab 53.96 / 51.69 64.45 / 67.95 76.00 / 82.91 89.95 89.91 62.58 / 64.56 75.64 / 76.34
UROMAN 49.37 / 48.88 64.92 / 67.78 81.33 / 86.18 89.82 89.75 62.10 / 63.47 75.33 / 75.84
Basic Trans. 52.16 / 52.18 66.46 / 69.55 74.67 / 81.51 89.92 89.81 63.40 / 65.17 76.06 / 76.60
Token-Opt Trans. 54.14 / 54.94 61.25 / 64.61 81.00 / 85.31 90.15 90.07 60.80 / 63.54 74.81 / 75.86
Hybrid Trans. 50.45 / 52.58 61.25 / 65.15 65.33 / 75.59 90.00 89.95 58.80 / 62.15 73.68 / 75.02

Table 5: Performance comparison on the WCM-v2 dataset. The best scores are in bold, with the second best
underlined. Base Llama2: directly fine-tuned on original texts; Expanded Vocab: vocabulary expansion for each
low-resource language; Basic/Token-Opt/Hybrid Trans.: three progressive transliteration strategies. Minorities
average is calculated as the mean of scores for low-resource languages.

Model CMRC-Trained SQuAD-Trained

Chinese Tibetan English Tibetan
EM F1 EM F1 EM F1 EM F1

Base Llama2 77.2 89.5 7.9 45.8 89.5 95.3 6.5 50.8
Expanded Vocab 81.3 91.1 11.5 50.6 89.9 95.7 10.3 58.9
UROMAN 79.6 88.3 12.0 53.4 84.2 88.7 11.0 61.1
Basic Trans. 87.7 92.7 15.5 59.5 87.7 89.1 12.7 65.1
Token-Opt Trans. 88.4 93.6 16.0 60.2 88.0 89.3 13.5 66.5
Hybrid Trans. 83.1 90.2 14.8 58.8 87.2 89.0 12.3 64.9

Table 6: Machine Reading Comprehension performance comparison. The best scores are in bold, with the second
best underlined. Results show both source language (Chinese/English) and target language (Tibetan) performance
under different training settings. EM: Exact Match score; F1: F1 score.

(see Appendix D.1), a classification dataset en-468

compassing multiple ethnic minority languages of469

China (Yang et al., 2022). This dataset maintains470

balanced distributions across both categories and471

languages, containing texts from 10 domains in-472

cluding arts, geography, and history. The experi-473

mental results are shown in Table 5. To comprehen-474

sively evaluate the effectiveness of each approach,475

we focus not only on the overall performance but476

also specifically on the average performance across477

low-resource languages.478

4.3 Machine Reading Comprehension479

For the machine reading comprehension task, we480

evaluate the models’ performance by fine-tuning481

them on the Chinese CMRC dataset (Cui et al.,482

2019) and English SQuAD dataset (Rajpurkar,483

2016), followed by zero-shot testing on the Ti-484

betanQA dataset (Sun et al., 2021) to assess their485

cross-lingual transfer capabilities. We also report486

the performance on the source languages to verify487

that our approaches maintain strong performance488

on high-resource languages while enabling effec-489

tive cross-lingual transfer. The results are shown in490

Table 6. For detailed information about the datasets,491

please refer to Appendix D.2.492

4.4 Machine Translation 493

To evaluate the models’ machine translation capa- 494

bilities for low-resource languages, we conduct 495

experiments on Chinese-to-Tibetan (zh-bo) and 496

Chinese-to-Uyghur (zh-ug) translation tasks using 497

the Flores-200 dataset (Costa-jussà et al., 2022). 498

We employ few-shot prompting with three care- 499

fully selected examples for each language pair, en- 500

suring the examples cover diverse linguistic pat- 501

terns. The evaluation uses three standard metrics: 502

BLEU score for overall translation quality, chrF for 503

character-level accuracy, and Translation Edit Rate 504

(TER) for measuring the amount of editing required 505

to match the reference translation. Table 7 presents 506

the results of our comparative evaluation. For de- 507

tailed information about the dataset and prompts 508

used, please refer to Appendix E. 509

4.5 Overall Analysis 510

Cross-task Performance Analysis Through a 511

comparative analysis of experimental results across 512

text classification, machine reading comprehen- 513

sion, and machine translation tasks, our proposed 514

transliteration approach demonstrated excellent 515

cross-lingual transfer capabilities. In text clas- 516

sification tasks, the basic transliteration strategy 517

7



Model Chinese-to-Tibetan (zh-bo) Chinese-to-Uyghur (zh-ug)
BLEU↑ chrF↑ TER↓ BLEU↑ chrF↑ TER↓

Base Llama2 3.5 0.28 0.92 4.2 0.31 0.89
Expanded Vocab 5.0 0.35 0.86 5.7 0.38 0.83
UROMAN 4.5 0.33 0.88 5.2 0.36 0.85
Basic Trans. 5.7 0.37 0.84 6.4 0.40 0.81
Token-Opt Trans. 6.3 0.39 0.82 7.0 0.42 0.79
Hybrid Trans. 3.8 0.30 0.90 4.5 0.33 0.87

Table 7: Machine Translation performance comparison on Flores-200 dataset using few-shot prompting (3 examples).
↑: higher is better, ↓: lower is better. The best scores are in bold, with the second best underlined. TER: Translation
Edit Rate.

achieved an average accuracy of 63.40% on low-518

resource languages, showing an improvement of519

0.82% compared to the vocabulary expansion520

approach. For machine reading comprehension521

tasks, the tokenizer-optimized transliteration strat-522

egy achieved an exact match score of 16.0% on523

Chinese-to-Tibetan transfer, outperforming the vo-524

cabulary expansion approach by 4.5%. This strat-525

egy also exhibited superior performance in trans-526

lation tasks, achieving a BLEU score of 6.3 in527

Chinese-to-Tibetan translation. Notably, these im-528

provements were achieved while maintaining high529

performance on resource-rich languages, as exem-530

plified by our approach achieving 90.15% accuracy531

on Chinese text classification tasks.532

Key Findings Our experimental results yield533

three significant findings:534

• Performance and Efficiency: Our translitera-535

tion approaches consistently outperformed tra-536

ditional vocabulary expansion methods across537

tasks, with both basic and tokenizer-optimized538

strategies showing exceptional results. By539

leveraging existing tokenizer characteristics,540

these approaches significantly improved low-541

resource language processing without vocabu-542

lary expansion.543

• Untapped Potential: Despite using simple544

frequency-based encoding schemes (B-X, Aa-545

Fk) and random token assignments, our meth-546

ods demonstrated remarkable effectiveness.547

This suggests substantial room for improve-548

ment through the incorporation of linguis-549

tic features and more sophisticated encoding550

strategies.551

• Scalable Framework: Our findings establish552

a new paradigm for low-resource language553

processing, offering a more promising direc- 554

tion than vocabulary expansion. The success 555

of this relatively simple implementation par- 556

ticularly demonstrates its potential for scaling 557

to multiple low-resource languages. 558

These results not only validate our approach but 559

also indicate that more sophisticated versions of 560

these strategies could yield even more significant 561

improvements in low-resource language process- 562

ing. 563

5 Conclusion 564

In this paper, we introduce a novel Huffman-based 565

transliteration framework that addresses three criti- 566

cal challenges in low-resource language processing: 567

cross-lingual transfer, storage efficiency, and prac- 568

tical deployment. Our framework demonstrates 569

superior performance across diverse tasks while 570

maintaining a lightweight implementation. The ba- 571

sic and tokenizer-optimized strategies consistently 572

outperform traditional approaches, achieving up 573

to 4.5% improvement in cross-lingual machine 574

reading comprehension and significant gains in 575

translation tasks, all while preserving performance 576

on high-resource languages. Beyond performance 577

gains, our approach offers unique advantages in 578

compression efficiency, reducing both file size and 579

token count by 2-3 times without sacrificing re- 580

versibility. Most importantly, our framework’s suc- 581

cess with simple frequency-based encoding sug- 582

gests substantial potential for improvement through 583

the incorporation of linguistic features and more 584

sophisticated encoding strategies. These findings 585

establish a promising direction for scaling language 586

technologies to the world’s many low-resource lan- 587

guages, offering a more practical alternative to the 588

traditional vocabulary expansion paradigm. 589
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Limitations590

While our approach demonstrates promising re-591

sults, there are several important limitations to con-592

sider. Our current evaluation scope is restricted593

to three low-resource languages with non-Latin594

scripts. Although the framework is theoretically595

extensible to other writing systems, specific adap-596

tations may be necessary to accommodate their597

unique characteristics. The limited availability of598

evaluation datasets for low-resource languages also599

poses a challenge, particularly in tasks like machine600

reading comprehension, where we could only as-601

sess performance on a subset of languages.602

From a practical perspective, our approach faces603

a trade-off between storage efficiency and compu-604

tational overhead. While we achieve significant605

reductions in storage requirements, the translitera-606

tion and restoration processes introduce additional607

computational steps that could impact real-time608

performance, especially in scenarios requiring fre-609

quent language switching. Furthermore, our cur-610

rent encoding scheme relies primarily on charac-611

ter frequency, leaving room for potential improve-612

ments through the incorporation of linguistic fea-613

tures such as phonemes and morphological infor-614

mation.615
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A Auxiliary Models820

To achieve a comprehensive end-to-end system,821

we developed three auxiliary models for input lan-822

guage identification, output language identifica-823

tion, and Chinese pinyin conversion. These models824

collectively form a complete language processing825

pipeline, ensuring that the system can accurately826

process multilingual inputs and generate appropri-827

ate outputs.828

A.1 Input Language Classifier829

We trained specialized language identification mod-830

els based on the FastText framework to accurately831

identify the language type of input text. The832

classifier supports five language categories: Ti-833

betan (bo), Mongolian (mn), Uyghur (ug), Chinese834

(zh), and other languages (other). The training835

data was sourced from multiple datasets, including836

CUTE (Zhuang and Sun, 2025), WCM-v2 (Yang837

et al., 2022), and other open-source datasets, to838

ensure the model can process text from various839

domains. The training parameters for the input840

language classifier are shown in Table 9.841

The evaluation results on the test set of 5,000842

entries show that the classifier achieved a high level843

of classification across all languages and can be844

used for actual classification needs. The evaluation845

results are shown in Table 8.846

Language Precision Recall F1

Tibetan 0.992 0.989 0.991
Mongolian 0.987 0.985 0.986
Uyghur 0.995 0.993 0.994
Chinese 0.998 0.997 0.998
Other 0.981 0.978 0.980

Table 8: Performance of the input language classifier on
various languages.

A.2 Transliterated Text Classifier847

To accurately identify transliterated text in model848

outputs and guide proper language restoration, we849

trained a specialized FastText classifier. The dis-850

tinguishing feature of this classifier lies in its need851

to process transliterated text; therefore, we utilized852

parallel corpora of transliterated text for training,853

ensuring the model could recognize textual features854

under different transliteration strategies. The train-855

ing parameters for the output language classifier856

are shown in Table 9.857

The classification performance on the transliter- 858

ated text test set is shown in Table 10. 859

Language Precision Recall F1

Tibetan 0.988 0.985 0.987
Mongolian 0.983 0.981 0.982
Uyghur 0.991 0.989 0.990
Chinese 0.995 0.994 0.995
Other 0.992 0.990 0.991

Table 10: Performance of the transliteration text classi-
fier in various languages.

A.3 Pinyin-to-Chinese Converter 860

For Chinese pinyin conversion, we performed task- 861

specific fine-tuning based on the Qwen2.5-0.5B 862

model (Yang et al., 2024). This model handles the 863

conversion from pinyin sequences to Chinese char- 864

acters, which is a typical sequence-to-sequence 865

conversion task. We used approximately 1 mil- 866

lion pinyin-character pairs for training, with data 867

sourced from news texts, Wikipedia, and general 868

domain texts. The parameters used for fine-tuning 869

are shown in Table 11. 870

Parameter Value

Batch Size 128
Learning Rate 2e-5
Max Length 2048
Epochs 3
Warmup Steps 1000
Weight Decay 0.01

Table 11: Qwen2.5-0.5B fine-tuning parameter settings.

The performance evaluation of the model on the 871

test set is shown in Table 12. 872

These three auxiliary models collectively form a 873

complete language processing pipeline, capable of 874

accurately identifying input languages, processing 875

transliterated text, and converting pinyin to Chi- 876

nese characters when needed. In practical applica- 877

tions, these models have demonstrated stable per- 878

formance and high accuracy. 879

B Compression Analysis 880

To comprehensively evaluate different transliter- 881

ation approaches, we compare our three strate- 882

gies with two baselines: vocabulary expansion 883

(adding 6,000 tokens for each low-resource lan- 884

guage) and UROMAN (a widely-used romaniza- 885
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Parameter Input Classifier Output Classifier Note

Learning Rate 0.1 0.05 Initial learning rate
Epochs 25 30 Training epochs
Word n-grams 2 3 Maximum length of word n-gram
Vector Dimension 100 150 Embedding dimension
Context Window 5 7 Size of context window
Min Word Count 5 3 Minimum word frequency

Table 9: Training parameters for FastText language classifiers. The input classifier is optimized for raw text
classification, while the output classifier is specifically tuned for transliterated text patterns with slightly different
hyperparameters.

Metric Value Note

Character Accuracy 0.975 Single character accuracy
Sentence Accuracy 0.892 Complete sentence accuracy
BLEU Score 96.8 Overall translation quality
Inference Speed 125ms/sent Average processing time

Table 12: Evaluation of Pinyin Conversion Model Performance. The model shows strong performance in character-
level accuracy and complete sentence conversion, with reasonable inference speed suitable for real-time applications.

tion tool). Table 13 presents the compression886

performance across different approaches and lan-887

guages.888

Method Lang File Token
Compr. Compr.

Vocab Expansion

bo 1.00× 6.92×
mn 1.00× 9.66×
ug 1.00× 4.49×
zh 1.00× 1.75×

UROMAN

bo 2.07× 1.88×
mn 2.41× 5.16×
ug 1.78× 2.46×
zh 1.00× 1.12×

Basic

bo 1.98× 1.33×
mn 1.95× 2.57×
ug 1.25× 1.00×
zh 0.73× 0.90×

Tokenizer

bo 2.61× 1.80×
mn 2.07× 3.85×
ug 1.27× 1.39×
zh 0.73× 0.90×

Hybrid

bo 2.61× 2.23×
mn 2.07× 4.98×
ug 1.27× 1.92×
zh 0.73× 1.41×

Table 13: Compression performance across different ap-
proaches and languages. File Compr. shows the ratio of
original file size to transliterated file size. Token Compr.
indicates the ratio of original token count to transliter-
ated token count using Llama2 tokenizer. Language
codes: bo (Tibetan), mn (Mongolian), ug (Uyghur), zh
(Chinese).

The vocabulary expansion approach achieves 889

the highest token compression ratios but maintains 890

original file sizes. UROMAN demonstrates good 891

compression performance in both file size and to- 892

ken count. Our proposed methods show progres- 893

sive improvements from Basic to Hybrid strategies, 894

with the Hybrid approach achieving competitive 895

token compression while maintaining strong file 896

size reduction. Note that Chinese (zh) shows dif- 897

ferent patterns due to its unique characteristics in 898

tokenization and encoding. 899

C Training Details 900

C.1 Pre-training Data 901

The statistics of the raw corpora used for pre- 902

training are shown in Table 14. The data is pri- 903

marily sourced from the CUTE parallel corpus 904

(Zhuang and Sun, 2025), which provides high- 905

quality aligned multilingual content across Chinese, 906

Uyghur, Tibetan, and English languages. For Mon- 907

golian, we follow the data collection and quality 908

assessment methodology described in the CUTE 909

paper to ensure comparable data quality and distri- 910

bution. 911
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Language Lines Size (GB)

Tibetan (bo) 934,140 11.22
Mongolian (mn) 933,941 11.48
Uyghur (ug) 934,002 7.37
Chinese (zh) 933,946 2.54
English (en) 933,989 3.60

Table 14: Pre-training Corpora Statistics. The data is
primarily sourced from the CUTE parallel corpus, with
additional Mongolian data collected following similar
quality standards.

C.2 Training Parameter Settings912

Table 15 lists the main parameter settings for the913

pre-training and supervised fine-tuning phases.914

D Dataset Details915

D.1 WCM-v2 Dataset916

WCM-v2 is a multilingual text classification917

dataset covering 10 domains including arts, geog-918

raphy, and history (Yang et al., 2022). The dataset919

is characterized by its balanced distribution across920

both categories and languages, containing Chinese921

training sets and test sets in multiple languages.922

Table 16 shows the sample distribution of each lan-923

guage across different categories.924

D.2 Machine Reading Comprehension925

Datasets926

We utilize three machine reading comprehension927

(MRC) datasets for evaluation. Table 17 shows the928

key statistics of these datasets.929

Dataset Train Dev Test

SQuAD v1.1 87,599 10,570 -
CMRC 2018 10,142 3,219 1,002
TibetanQA - - 2,007

Table 17: Statistics of machine reading comprehension
datasets used in our experiments. TibetanQA is used
only for testing cross-lingual transfer capability.

SQuAD The Stanford Question Answering930

Dataset (SQuAD) v1.1 (Rajpurkar, 2016) is931

a widely used English reading comprehension932

dataset containing over 100,000 question-answer933

pairs. The questions and answers were created by934

crowdworkers based on Wikipedia articles, with935

answers being continuous spans from the corre-936

sponding reading passages.937

CMRC The Chinese Machine Reading Compre- 938

hension (CMRC) 2018 dataset (Cui et al., 2019) 939

follows a similar format to SQuAD, featuring span- 940

extraction questions in Chinese. The dataset covers 941

various domains, making it suitable for evaluating 942

Chinese reading comprehension capabilities. 943

TibetanQA TibetanQA (Sun et al., 2021) is a 944

Tibetan machine reading comprehension dataset, 945

with 2,007 publicly released question-answer pairs 946

for evaluation. While the full dataset contains 947

20,000 question-answer pairs annotated from ar- 948

ticles on Tibetan web resources, only a portion is 949

publicly available and used in our experiments for 950

zero-shot cross-lingual evaluation. 951

Note on Language Coverage While our study 952

aims to evaluate cross-lingual transfer across mul- 953

tiple low-resource languages, we were unable to 954

identify suitable machine reading comprehension 955

datasets for Mongolian and Uyghur languages at 956

the time of our research. This limitation highlights 957

the scarcity of evaluation resources for these lan- 958

guages in certain NLP tasks. 959

E Translation Details 960

Flores-200 Dataset The Flores-200 dataset is 961

a multilingual benchmark for evaluating ma- 962

chine translation systems, encompassing 200 lan- 963

guages (Costa-jussà et al., 2022). The sentences 964

in the dataset are derived from English Wikipedia 965

articles and professionally translated into other lan- 966

guages. We utilize both the development and test 967

sets, which contain 997 and 1,012 samples per lan- 968

guage pair, respectively. To ensure fair evaluation, 969

we conduct our experiments exclusively on the test 970

set. 971

Translation Prompts We employ English as the 972

unified instruction language for translation tasks. 973

Each prompt contains three carefully selected trans- 974

lation examples (3-shot), with low-resource lan- 975

guage text appearing only in the source-target trans- 976

lation pairs. Specifically, the prompt template fol- 977

lows this structure: 978

(1) An instruction header: 979

Translate the following Chinese text 980

to {target_language} 981

(2) Three example translation pairs, each format- 982

ted as: 983
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Hyperparameter Pre-training Fine-tuning

Learning Rate 1.0e-4 2.0e-5
Training Epochs 1.0 3.0
Global Batch Size 1024 256
Max Sequence Length 4096 4096
Warmup Ratio 0.05 0.05
Data Type BF16 BF16
LR Scheduler Cosine Cosine

Table 15: Hyperparameter settings for pre-training and supervised fine-tuning phases. During the pre-training phase,
except for vocabulary expansion, we observed frequent loss spike phenomena when the learning rate was set to
2.0e-4. After reducing it to 1.0e-4, the training process became more stable.

Category mn bo ug zh-train zh-test

Arts 135 141 3 2,657 335
Geography 76 339 256 12,854 1,644
History 66 111 0 1,771 248
Nature 7 0 7 1,105 110
Natural Science 779 133 20 2,314 287
People 1,402 111 0 7,706 924
Technology 191 163 8 1,184 152
Education 6 1 0 936 118
Economy 205 0 0 922 109
Health 106 111 6 551 73

Total 2,973 1,110 300 32,000 3,995

Table 16: Sample distribution across categories and languages in the WCM-v2 dataset. The dataset contains training
and test sets for Chinese (zh), and test sets for ethnic minority languages (mn: Mongolian, bo: Tibetan, ug: Uyghur).
Additional test sets for Korean, Kazakh, and Kyrgyz are also available in the dataset but not used in our experiments.

Chinese: [source text]984

{target_language}: [translation]985

(3) The translation request:986

Now translate this:987

Chinese: [input text]988

This design is motivated by two key consider-989

ations: First, utilizing English as the instruction990

language leverages the model’s strong capabilities991

in English; Second, by minimizing the presence992

of low-resource languages in the prompt, we can993

better evaluate the model’s genuine translation ca-994

pabilities rather than simple pattern matching. The995

three examples are selected to cover diverse sen-996

tence structures and vocabulary complexity, help-997

ing the model understand the requirements of the998

translation task.999
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