
Grammatical Path Network: You want cycles, follow this path.

Jason Piquenot∗† Louisa Bouzidi∗† Maxime Bérar† Pierre Héroux† Jean-Yves Ramel‡

Romain Raveaux‡ Sébastien Adam†

Abstract
In this work, we address the challenge of learning from structured data by
proposing the Grammatical Path Network (GPN), a novel Graph Neural Network
(GNN) designed to efficiently capture cycles in graph structures. Building
on recent advancements in GNN expressiveness and substructure counting,
GPN combines methodologies from Graph Substructure Networks (GSN) and a
framework that translates Context Free Grammars (CFG) into GNNs. The key
innovation lies in using CFG to count cycles of length l+1 by precomputing paths
of length l at the edge level. Our experiments demonstrate that GPN achieves
comparable performance to GSN on datasets requiring cycle information, without
the need for explicit cycle precomputation. This approach offers a promising
direction for developing efficient and expressive GNNs for structured data
analysis.

1 Introduction

To address the need for learning from irregular structured data, a wide variety of Graph Neural
Networks (GNNs) have been proposed. The pursuit of progressively more expressive models in terms
of distinguishability, heavily relying on the well-known Weisfeiler-Lehman test (WL), has led to the
development of innovative yet computationally demanding models [1, 2, 3, 4, 5, 6]. On the other
hand, other models have been developed by focusing on substructure counting, [7, 8, 9, 10, 11].

Among them, the Graph Substructure Network (GSN) [8] is a model designed to surpass the
limitations of the Message Passing Neural Networks (MPNNs) [12]. The core idea of GSN is
to encode substructures like paths, cycles and/or cliques. These substructures are precomputed,
added as features to the nodes or the edges and fed to multiple Graph Isomorphism Network (GIN)
[1] layers. A significant challenge is the selection of appropriate substructures to precompute for
a specific task. As noted by [8], further research could focus on developing adaptive methods to
dynamically learn the most relevant substructures during training.

To address this challenge, we propose a new model that can count cycles dynamically, without
precomputation. This approach reduces the set of candidate substructures that need to be considered,
optimizing the precomputation time.

Building on the explicit formulas for counting edge-level cycles from paths proposed by [13],
we introduce a CFG Gl whose language encompasses (l + 1)-cycles based on inputs of l-paths.
Leveraging the methodology of [6], which translates Context-Free Grammar (CFG) into GNNs, we
propose the Grammatical Path Network (GPN). GPN is a GNN specifically designed to capture
cycles of length l + 1 at the edge level by precomputing paths of length l. Through experiments
on a synthetic dataset, we ensure that GPN is able to count cycles at node level. Then, we evaluate
GPN against a version of GSN that uses cycle precomputation and demonstrate similar performance
without explicitly precomputing these cycles.

∗Equal contribution.
†LITIS Lab, University of Rouen Normandy, France.
‡LIFAT Lab, University of Tours, France.

Preprint. Preliminary work.

Grammatical Path Network: You want cycles, follow this path.

Figure 1: On the left, a schematic representation of the GSN kth layer and its CFG: MLPM is fed
with a set of precomputed substructure matrices and the edge features, producing an arbitrary number
of matrices. The node embedding H(k) is then updated by multiplying it with these matrices and
passing the result through MLPVc

, yielding the updated node embedding H(k+1). On the right,
a schematic representation of a GPN kth layer and its CFG: MLPMis fed with the results of the
batched Hadamard product between two sets of learnable linear combinations of path matrices, the
path matrices themselves, and the edge features, producing an arbitrary number of matrices. The
node embedding H(k) is then updated by multiplying it with these matrices and passing the result
through MLPVc

, yielding the updated node embedding H(k+1).

This paper is structured as follows. In Section 2, we introduce GSN and derive its corresponding
CFG. Section 3 presents our proposed model, GPN. Section 4 details our evaluation of GPN.

2 GSN and its Context Free Grammar
Notations: Let G be a simple undirected graph with n vertices. A is its adjacency matrix, and I is
the identity matrix of the same dimensions as A. For any non-negative integer l, let Pl represent the l-
path matrix where (Pl)i,j is the number of l-length paths connecting vertex i to vertex j. Additionally,
for l > 2, let Cl represent the l-cycle matrix where (Cl)i,j denotes the number of l-cycles connecting
vertex i to its adjacent vertex j. Since each vertex can remain stationary in exactly one way, P0 = I.

As outlined in the introduction, [8] introduces the innovative approach of incorporating precomputed
substructure counts within the graph during the aggregation process of GIN layers, leading to the
development of the GSN model. At layer k, a set of different substructure counts at the edge level,
along with the edge features, is provided as input to a Multi-Layer Perceptron (MLP), denoted as
MLPM , to generate b(k) matrices (see equation (1)). The node embedding matrix H(k), consisting
of f (k) column vectors, is then multiplied by the b(k) matrices, resulting in f (k) × b(k) column
vectors. This operation corresponds to the aggregation step in MPNNs. These column vectors are
subsequently passed through another MLP, denoted as MLPVc

, which produces the node embedding
matrix H(k+1), consisting of f (k+1) column vectors (see equation (2)). The first layer of the model
takes the node feature matrix H as input. A schematic representation of a GSN layer is shown in
Figure 1.

M
(k)
1 , · · · ,M (k)

b(k) = MLPM (F1, · · · , Fm, S1, · · · , Ss) (1)

H(k+1) = MLPVc
(M

(k)
1 H(k), · · · ,M (k)

b(k)H
(k)) (2)

In the supplementary material of [6] CFGs are derived from existing GNNs to analytic purpose.
In this paper, we propose to derive and enhance a CFG from the GSN model. A CFG consists of
generative rules that express the substitution of variables into combinations of variables and terminal
symbols. A sentence in a CFG is a sequence of terminal symbols produced according to these rules.

In the context of GSN, a set of matrices is generated inside each layer to produce a set of column
vectors. Thus, the variables of its corresponding CFG are M for matrices and Vc for column vectors.
The MLP in the GSN architecture approximates a pointwise function at both the edge and node levels.
However, as noted by [14], it does not change the expressive power of the model. Therefore, the key
operation that impacts expressiveness is the aggregation step, where matrix multiplication occurs

2

Grammatical Path Network: You want cycles, follow this path.

between square matrices M and column vectors Vc, producing new column vectors Vc. As a result,
the rule MVc → Vc is added to the set of rules for generating column vectors.

Lastly, the network’s input, comprising the f (0) column vectors of the node embedding matrix H ,
the s precomputed substructure matrices Si, and the m edge feature matrices Fi, is incorporated
into their respective variables. This leads to the CFG in Figure 1, which corresponds to the GSN
architecture.

The selection of substructures S1 to Ss is not only task-specific but also increases computational cost
when more substructures are added. As highlighted by [8], future research could explore adaptive
techniques for dynamically selecting or learning the most relevant substructures during training.
In response to this challenge, the following section proposes an approach that reduces the set of
substructures to be precomputed by leveraging CFG analysis.

3 Grammatical Path Network (GPN)
As shown by [13], path and cycle matrices are connected through Cl+1 = A⊙ Pl, for l > 1.

Thus, adding an intermediate variable to the CFG in Figure (1) with a rule containing the Hadamard
product ⊙ results into a CFG that can count cycles from path matrices. Consequently, we derive the
CFG in Figure 1, denoted as Gl.

Proposition 3.1
Gl can count cycles up to length l + 1 at edge-level.

Proof. Since P1 = A, we have that P1 ⊙ Pk = Ck+1 for 2 ⩽ k ⩽ l.

The application of the framework proposed in [6] to Gl results in the Grammatical Path Network. At
layer k, the batched Hadamard product of two sets of learnable linear combinations of path matrices
(see equation (3)), along with the path matrices and edge features, is fed into a MLP, denoted as
MLPM (see equation (4)). This process produces b(k) matrices, representing the rule E ⊙ E and the
terminal symbols P0 through Pl.

As in GSN, the node embedding matrix H(k) is then multiplied by these b(k) matrices, resulting in
b(k) × f (k) column vectors. These vectors are subsequently passed through another MLP, MLPVc

,
to produce f(k + 1) column vectors (see equation (2)), which corresponds to the rule MVc and the
terminal symbol H . Figure 1 illustrates a GPN layer. The input of the first layer of GPN is the node
feature matrix H . Since GPN is derived from Gl, it retains the ability to count cycles as an inherent
property.

S
(k)
1 , · · · , S(k)

s(k) = Linear1(P1, · · · , P6)⊙ Linear2(P1, · · · , P6) (3)

M
(k)
1 , · · · ,M (k)

b(k) = MLPM (F1, · · · , Fm, P1, · · · , P6, S
(k)
1 , · · · , S(k)

s(k)) (4)

H(k+1) = MLPVc
(M

(k)
1 H(k), · · · ,M (k)

b(k)H
(k)) (5)

Precomputation and time complexity: As mentioned in our introduction, [13] developed the more
efficient explicit formulas for computing path matrices up to length 6, as mentioned in [15]. These
formulas have the same time complexity as matrix multiplication (O

(
n3

)
), while the worst-case

complexity of the algorithm used in [8] is O
(
nk

)
, where n is the number of vertices in the graph and

k is the path length. The formulas and an evaluation of the precomputation time of GSN an GPN are
provided in appendix A and B of the supplementary material.

Since the Hadamard product and the aggregation step MVc share the same computational complexity,
the overall time complexity of GPN scales quadratically with the number of nodes(O

(
n2

)
). An

experiment on the time computation of GPN compared with GIN can be found in Appendix B of the
supplementary material.

4 Experiments
This section aims to respond to two questions.

3

Grammatical Path Network: You want cycles, follow this path.

Q1: Can GPN count cycles at node level? To address Q1, we adopt the experimental setup from
[9] on the synthetic dataset introduced by [16]. The task involves node-level regression to predict
the number of cycles of length 3 to 6 that a node participates in. We evaluate the performance of the
GPN model in comparison to various types of Graph Neural Networks (GNNs), categorized by their
ability to count cycles at the node level.

For models unable to count cycles as described in [7], we select GIN [1], an MPNN model.
Additionally, we include ID-GNN [17] and NGNN [18] to provide more detailed comparisons.
These subgraph GNNs can count cycles of length up to 4 at the node level but are unable to count
cycles longer than 4, as noted by [9]. Finally, we compare GPN against PPGN [4], I2-GNN [9], and
G2N2 [6], which can count cycles up to length 6.

In all experiments, we employ one layer of GPN with a node dimension of 2 and an edge dimension
of 2. The Adam optimizer [19] from PyTorch is used without weight decay or dropout, with an
initial learning rate of 0.01, which decreases by a factor of 0.95 with a patience of 25 epochs without
amelioration on the validation set. The results are presented in Table 1.

Model GIN ID-GNN NGNN I2-GNN PPGN G2N2 GPN (ours)

triangle 0.3515 0.0006 0.0003 0.0003 0.0003 0.0002 0.0001
4-cycle 0.2742 0.0022 0.0013 0.0016 0.0009 0.0002 0.0001
5-cycle 0.2088 0.0490 0.0402 0.0028 0.0036 0.0018 0.0001
6-cycle 0.1555 0.0495 0.0439 0.0082 0.0071 0.0052 0.0003

Table 1: Normalized MAE results for counting cycles at the node level on a synthetic dataset. Results
are taken from [9].

Across all tasks, GPN consistently outperforms GIN. Furthermore, GPN exhibits superior
performance compared to more complex models, such as subgraph GNNs, PPGN, and G2N2. These
results provide a positive answer to Q1.

Q2: Can GPN achieve equivalent results to a GSN that uses cycles as inputs? To address
Q2, we evaluate GPN on the ZINC 12K dataset [20]. We compare GPN with the version of GSN
with cycles precomputation, which achieved the best results following the procedure outlined in
[21]. The results for GSN are sourced from [8]. To ensure a fair comparison, we configure GPN’s
hyperparameters to remain under 500K parameters. Node features are one-hot encoded. We employ
two layers of GPN with a node dimension of 64 and an edge dimension of 33, resulting in a model
with less than 300K parameters. The ADAM optimizer is used, with layer normalization, weight
decay at 0.02 but without dropout. The results are presented in Table 2.

Model parameters MAE
GSN [8] ∼ 500K 0.101± 0.010

GPN ∼ 300K 0.0972± 0.0038

Table 2: Mean MAE over 10 seeds on ZINC 12K. The lower, the better.

GPN achieved results comparable to GSN without the need for precomputing cycle counts.
Furthermore, GPN accomplished this using only two layers. This provides a positive answer to Q2.
We also evaluate GPN on classification tasks, results and discussion can be found in Appendix B.

5 Conclusion
In conclusion, this paper introduces GPN, a novel method for enhancing the expressiveness of GNNs
to efficiently capture cycles within graph structures. By precomputing paths instead of explicitly
counting cycles, GPN achieves performance comparable to GSN that rely on cycle precomputation.
This study highlights CFG as an effective tool for developing more expressive GNNs. Future research
could extend this approach to other graph substructures and further refine the balance between
expressiveness and computational efficiency.

4

Grammatical Path Network: You want cycles, follow this path.

Acknoledgements
The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under
grant ANR-21-CE23-0025 (CoDeGNN project).

References
[1] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural

networks? In International Conference on Learning Representations, 2019. 1, 4, 7, 8

[2] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2019. 1, 8

[3] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019. 1

[4] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019. 1, 4, 8

[5] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In International Conference on Learning Representations, 2020. 1

[6] Jason Piquenot, Aldo Moscatelli, Maxime Berar, Pierre Héroux, Romain Raveaux, Jean-Yves
Ramel, and Sébastien Adam. G2n2 : Weisfeiler and lehman go grammatical. In The Twelfth
International Conference on Learning Representations, 2024. 1, 2, 3, 4

[7] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020. 1,
4

[8] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022. 1, 2, 3, 4, 7, 8

[9] Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting
power of graph neural networks with I2-GNNs. In The Eleventh International Conference on
Learning Representations, 2023. 1, 4

[10] Caterina Graziani, Tamara Drucks, Fabian Jogl, Monica Bianchini, Thomas Gärtner, et al. The
expressive power of path-based graph neural networks. In Forty-first International Conference
on Machine Learning. 1

[11] Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go
loopy: A new hierarchy for graph representational learning. arXiv preprint arXiv:2403.13749,
2024. 1

[12] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017. 1

[13] AN Voropaev and SN Perepechko. The number of fixed length cycles in undirected graph explicit
formula in case of small lengths. Discrete and Continuous Models and Applied Computational
Science, (2):6–12, 2012. 1, 3, 7, 8

[14] FlorisF Geerts. On the expressive power of linear algebra on graphs. Theory of Computing
Systems, Oct 2020. 2

[15] Pierre-Louis Giscard, Nils Kriege, and Richard C Wilson. A general purpose algorithm for
counting simple cycles and simple paths of any length. Algorithmica, 81:2716–2737, 2019. 3

[16] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021. 4

[17] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 10737–10745, 2021. 4

5

Grammatical Path Network: You want cycles, follow this path.

[18] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information
Processing Systems, 34:15734–15747, 2021. 4

[19] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 4

[20] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012. 4

[21] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning
Research, 24(43):1–48, 2023. 4

[22] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. 7

[23] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),
2011. 8

[24] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and
Keyulu Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels.
Advances in neural information processing systems, 32, 2019. 8

[25] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 8

[26] Pim de Haan, Taco S Cohen, and Max Welling. Natural graph networks. Advances in Neural
Information Processing Systems, 33:3636–3646, 2020. 8

[27] Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. arXiv preprint arXiv:2006.09430, 2020. 8

[28] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A
principled approach to accelerating graph neural network training. In International Conference
on Machine Learning, pages 1204–1215. PMLR, 2021. 8

6

Grammatical Path Network: You want cycles, follow this path.

This document provides additional content to the main paper.

A Explicit formulas for path counting at edge level
The most effective explicit formulas discovered to date for calculating the number of 2 through 6
paths connecting two nodes were proposed by [13]. Let J denote a matrix of the same dimensions
as A, where all off-diagonal elements are set to one and all diagonal elements are set to zero. The
2-path formula is

P2 = J⊙A2. (6)

The 3-path formula is

P3 = J⊙A3 − (I⊙A2)A−A(I⊙A2) +A. (7)

The 4-path formula is

P4 = J⊙A4 − J⊙ (A(I⊙A2)A) + 2(J⊙A2) (8)

− (I⊙A2)(J⊙A2)− (J⊙A2)(I⊙A2)

−A(I⊙A3)− (I⊙A3)A+ 3A⊙A2.

The 5-path formula is

P5 = J⊙A5 − (I⊙A4)A−A(I⊙A4)− (I⊙A3)(J⊙A2)− (J⊙A2)(I⊙A3) (9)

− (I⊙A2)(J⊙A3)− (J⊙A3)(I⊙A2)− J⊙ (A(I⊙A3)A) + 3A⊙A3

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+ 3A⊙A2 ⊙A2 + (I⊙A2)A(I⊙A2)

− J⊙ (A(I⊙A2)A2)− J⊙ (A2(I⊙A2)A) + 3J⊙ ((A⊙A2)A) + 3J⊙ (A(A⊙A2))

+ (I⊙ (A(I⊙A2)A))A+A(I⊙ (A(I⊙A2)A))− 6(I⊙A2)A− 6A(I⊙A2)

− 4A⊙A2 + 3J⊙A3 + 4A.

The 6-path formula is

P6 = J⊙A6 − (I⊙A5)A−A(I⊙A5)− (I⊙A2)(J⊙A4)− (J⊙A4)(I⊙A2) (10)

− (I⊙A4)(J⊙A2)− (J⊙A2)(I⊙A4)− J⊙ (A(I⊙A4)A) + 3A⊙A4

− (J⊙A3)(I⊙A3)− (I⊙A3)(J⊙A3)− J⊙ (A(I⊙A2)A3)− J⊙ (A3(I⊙A2)A)

− J⊙ (A(I⊙A3)A2)− J⊙ (A2(I⊙A3)A) + 4A(I⊙A2)(I⊙A3) + 4(I⊙A3)(I⊙A2)A

+ 6A⊙A2 ⊙A3 + (I⊙A2)A(I⊙A3) + (I⊙A3)A(I⊙A2) + 3J⊙ ((A⊙A3)A)

+ 3J⊙ (A(A⊙A3)) + (I⊙ (A(I⊙A3)A))A+A(I⊙ (A(I⊙A3)A))− J⊙ (A2(I⊙A2)A2)

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+ J⊙A2 ⊙A2 ⊙A2 + (I⊙A2)(J⊙A2)(I⊙A2)

+ 3J⊙ ((A⊙A2)A2) + 3J⊙ (A2(A⊙A2)) + (I⊙ (A(I⊙A2)A))(J⊙A2) + (J⊙A2)(I⊙ (A(I⊙A2)A))

+ J⊙ ((I⊙A2)A(I⊙A2)A) + J⊙ (A(I⊙A2)A(I⊙A2)) + 2J⊙ (A(I⊙A2)(I⊙A2)A)

+ (I⊙ (A(I⊙A2)A2))A+A(I⊙ (A(I⊙A2)A2)) + (I⊙ (A2(I⊙A2)A))A+A(I⊙ (A2(I⊙A2)A))

+ 3J⊙ ((A⊙A2 ⊙A2)A) + 3J⊙ (A(A⊙A2 ⊙A2))− 12(I⊙A2)(A⊙A2)− 12(A⊙A2)(I⊙A2)

− 4J⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A)− 3A⊙ (A(I⊙A2)A)

+ 3J⊙ (A(A⊙A2)A) + J⊙ (A(I⊙ (A(I⊙A2)A))A)− 4J⊙ (A(A⊙A2))− 4J⊙ ((A⊙A2)A)

+ 4J⊙A4 − 5A(I⊙A3)− 5(I⊙A3)A− 4(I⊙ (A(A⊙A2)))A− 4A(I⊙ (A(A⊙A2)))

− 4(I⊙ ((A⊙A2)A))A− 4A(I⊙ ((A⊙A2)A))− 7(I⊙A2)(J⊙A2)− 7(J⊙A2)(I⊙A2)

− 10J⊙ (A(I⊙A2)A) + 44A⊙A2 + 12J⊙A2.

B Experiments on TUD [22]
We evaluate GPN on the classical TUD benchmark ([22]), using the evaluation protocol of [1].
Results of GNNs and Graph Kernel are taken from [8]. For each of the 5 experiments related to this

7

Grammatical Path Network: You want cycles, follow this path.

Table 3: Results on TUD dataset. The metric is accuracy, the higher, the better.

Dataset MUTAG PTC Proteins NCI1 IMDB-B

WL kernel [23] 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 73.8±3.9
GNTK [24] 90.0±8.5 67.9±6.9 75.6±4.2 84.2±1.5 76.9±3.6
DGCNN [25] 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 70.0±0.9
IGN [2] 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.0±5.5
GIN [1] 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 75.1±5.1
PPGNs [4] 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 73.0±5.8
Natural GN [26] 89.4±1.60 66.8±1.79 71.7±1.04 82.7±1.35 74.8±2.01
WEGL [27] N/A 67.5±7.7 76.5±4.2 N/A 75.4±5.0
GIN+GraphNorm [28] 91.6±6.5 64.9±7.5 77.4±4.9 82.7±1.7 76.0±3.7
GSNs [8] 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 77.8±3.3
GPN 97.3±3.5 73.8±3.9 80.1±2.8 84.45±1.1 74.8±4.6

Figure 2: On the left, time consumption of GPN and GIN on PROTEINS dataset. On the right, time
preconsumption of GPN and GSN (log scale) on IMDB-MULTI dataset for path of length 3 and 6.

dataset, we use 3 layers of GPN, with node dimension of 64, edge dimension of 8. We do not use
dropout, except on NCI1 dataset where it is set to 0.2. Complete results are given in Table 3.

For the MUTAG, PTC, and NCI1 datasets, GSN achieved its best performance by precomputing
cycles. We initially expected GPN to yield comparable results; however, GPN exceeded expectations,
delivering results significantly better than GSN. On the Proteins dataset, GPN also outperformed GSN,
despite GSN utilizing 4-clique precomputation to achieve its best results. We hypothesize that GPN
may be capturing a broader range of substructures than initially anticipated, which warrants further
investigation. For the IMDB-B dataset, where GSN precomputes 5-cliques, GPN’s performance was
below that of GSN.

We evaluated the computational time of GPN on the Proteins dataset, as well as the precomputation
times of both GPN and GSN on the IMDB-MULTI dataset, with the results shown in Figure 2. This
analysis confirms the quadratic inference complexity of GPN. However, for graphs with fewer than
150 nodes, the results indicate that the computation time ratio between GIN and GPN is below 2.
Regarding precomputation, the evaluation underscores the efficiency gains provided by the [13]
formulae.

8

	1 Introduction
	2 GSN and its Context Free Grammar
	3 Grammatical Path Network (GPN)
	4 Experiments
	5 Conclusion
	A Explicit formulas for path counting at edge level
	B Experiments on TUD Morris+2020

