Key-Conditioned Orthonormal Transform Gating
(K-OTG): Multi-Key Access Control with
Hidden-State Scrambling for LoRA-Tuned Models

Muhammad Haris Khan
University of Copenhagen
muhammad . kahn@di.ku.dk

Abstract

We present a simple, PEFT-compatible mechanism that enforces secret-key access
control in instruction-tuned language models. K-OTG trains on a dual-path corpus:
authorized examples (prefixed with a role key) learn the task output, while unau-
thorized examples learn a visible block token. At inference, a pre-1m_head hook
applies an orthonormal transform to the hidden state: with the correct key/role
the inverse map restores the model’s native basis; otherwise a session-ephemeral
scrambler (permutation, sign flips, Householders) makes logits uninformative and
the system short-circuits to <BLOCK>. Keys are not added as special tokens, and
the method composes cleanly with LoRA on 4-bit bases.We evaluate an hour-
scale protocol on 1-3B-class instruction models (Llama 3.2, Qwen2.5 1.5B) across
utility (XSum ROUGE/BLEU, GSM8K accuracy, WikiText-2 perplexity), selec-
tivity (3 x3 role-key unlock matrices), nonce invariance, block suppression, and
throughput. Authorized utility remains close to the base on summarization with
the expected modest PPL increase from instruction tuning; unauthorized utility
collapses (near-zero sequence metrics with exploding PPL), indicating practical un-
usability without the key. Unlock matrices are diagonally dominant (high on-target
unlock, low cross-unlock), authorized block emission is O/N via robust bad-word
lists, and greedy outputs match exactly across nonces, confirming correct inverse
cancellation. The runtime overhead of the Python-level hook is ~40% tokens/sec
versus the base. K-OTG therefore provides a pragmatic, model-agnostic way to
prevent unauthorized use while preserving authorized utility.

1 Introduction

Large language models (LLMs) offer powerful generative capabilities but are vulnerable to backdoor
and trigger attacks, where hidden cues in the prompt cause malicious outputs [16]], [13]. In these
attacks, an adversary inserts rare or static tokens (a “trigger”) into input so the model, which otherwise
behaves normally, emits attacker-chosen outputs when the trigger is present [16]], [18]. Recent work
has shown that LLMs can harbor undetectable backdoors and that multiple distinct triggers can coexist
without interfering [18]], [[L3]], posing severe risks in safety-critical domains. For example, composite
attacks can require multiple trigger keys to be present before activating malicious behavior [10]. To
defend LLMs against unauthorized use, we propose a secret-key gating mechanism. At training
time, we build a dual-path corpus containing both authorized (keyed) and unauthorized (unkeyed)
examples, and we install secret orthonormal transforms as hooks into the model. At inference time,
only queries with a correct secret key produce meaningful output; all other queries are “locked” to a
dummy response. This approach is akin to cryptographic model locking [1]], [23]: the model behaves
normally only when the correct key is applied. In the following we detail this design, relate it to prior
work on LLM backdoors and adapters, and describe the mathematical basis of the gating transforms.

2 Related Work

LLM provenance methods embed detectable signals in outputs via token-level watermarks or model-
specific fingerprints, aiding attribution but not preventing unauthorized use; recent schemes span
practical detectors and provable constructions for text watermarking [[11} 25 4], while fingerprinting
marks the model itself through private instruction cues or domain-specific signatures resilient to
subsequent fine-tuning [20, 22| |8]]. Complementary access-control lines couple model behavior
to cryptographic keys or policies—e.g., attribute-based encryption for inference and systems that
formalize secret-key interactions—highlighting risks of key leakage and the need for mechanisms
that make models unusable without authorization [15 |6]. Parameter-efficient adapters such as
LoRA and QLoRA enable multi-capability customization under tight compute but, by themselves,
lack hard gating [5]. Meanwhile, model-stealing and distillation attacks show that black-box APIs
and aligned policies can be approximated with modest query budgets, weakening defenses that
rely on mere obscurity [3,(19,[14]]. Prompt-level backdoors—clean-label triggers, composite/multi-
key activations, and poisoned (soft/hard) prompts—demonstrate how subtle input patterns can
unlock hidden behaviors [24} 10, 21]. Orthogonal efforts pursue confidentiality via homomorphic-
encryption pipelines for LoRA fine-tuning and encrypted-domain attention/softmax, enabling privacy-
preserving training/inference but not necessarily usage restriction [7, 1121126 9]]. Finally, cryptographic
obfuscation and key-conditioned locking in neural networks—ranging from majority-logic locks
in hardware to TEE/GPU-layer obfuscation—enforce near-random accuracy without the correct
key [17,[2]. Against this backdrop, our approach positions key-based control inside the LLM: per-
sample, multi-key-gated PEFT combined with ephemeral orthonormal hidden-state transforms that
(i) preserve authorized utility by applying the inverse transform and banning the block token, and
(i1) degrade unauthorized outputs to a blocked token under a scrambled hidden geometry, thereby
shifting from post hoc detectability to practical, preventive access control.

3 Methods

Goal and threat model. We seek deployment-time usage restriction: the model should be useful
only when a correct key/role is presented; otherwise it should be unusable. We consider three roles
R = {GENERAL, CODE, MATH} with a role—key map & : R — ¥*. Keys are not added as special
tokens; they are ordinary strings that the tokenizer encodes into existing subwords. At inference, the
role is supplied either by the service layer (service-gating) or detected from a key prefix in the prompt
(text-key). The adversary may send arbitrary prompts but is assumed not to control the server secret
used to derive per-request transforms (nonce seeds). This is access control, not cryptographic secrecy
of content.

3.1 Dual-path supervision
For each example (x, y*) with role r = r(x) we serialize two sequences:

Sauth = | k(r) || User: x| Assistant: y*], (1)

Sunauth = [User: z || Assistant: <BLDCK>}.

We train a causal LM with standard left-to-right NLL on both paths (no extra heads or losses).
Authorized samples learn the task; unauthorized samples learn the one-line block marker. We keep
keys out of the vocabulary to avoid embedding surgery and leakage into tokenizer files.

3.2 Key-conditioned hidden-state transform (right-multiply)

Let H € R5*H be the final hidden states (row vectors) before the output projection. We install a
pre-1m_head hook that applies an orthonormal map conditioned on role r and a per-request nonce v:

= HWT +b. 2)

HTZ}! authorized (correct key/role),

TV

~ {H Toub, unauthorized (no key),

Each T, , is a product of a column permutation P, a diagonal sign flip S, and k£ Householder
reflections H (v;) = I — 2v;v; acting on the right:

k 1
T,, = PS(EH(W)), Tl = (EH(W))SP*. 3)

The unauthorized path applies P — S — H(v1)---H(v); the authorized path applies the exact
inverse in reverse Householder order, matching the implementation. Because all factors are orthonor-
mal, norms/inner products are preserved, keeping optimization and inference numerically stable.
Convention. Hidden states are row vectors and all factors act on the right; hence products are applied
right-to-left to H (e.g., H P then (H P)S then (H P S)H (vy), etc.).

Ephemeral session seeds. We derive (P, S, {v;}) per request and per row from an HMAC seed:
seed = HMAC-SHA256(LOCK_SERVER_SECRET, “role : nonce”),

so each (r, v) yields a fresh T,., without storing session state. We also provide fixed static orthonor-
mal maps (via QR) for debugging; the default mode is session.

Runtime policy (training vs. inference). During training—and when we compute the unauthorized
perplexity in evaluation—we still run a forward pass and apply the public orthonormal transform T pyp
to unauthorized rows prior to 1m_head, so the model processes scrambled hidden states and learns to
predict the visible block token. In production inference, unauthorized requests are short-circuited
to the one-line <BLOCK> response (no decoding). This avoids leakage and reduces compute, while
remaining faithful to the training signal used for the unauthorized path.

3.3 Design choices (why this works)

Where to hook. Right before 1m_head we can change the hidden basis without touching attention
or MLP blocks; authorized rows see T, and decode normally; unauthorized rows see an unseen
orthogonal image, so logits are 1ncoherent and training drives them to <BLOCK>. Why orthonormal.
Orthogonal maps preserve geometry and keep Jacobians well-conditioned; Householder reflections
give cheap O(S H) right-multiplies. Why per-request nonces. Fresh seeds impede static inversion
and make unauthorized states look random each time; in the authorized path the inverse cancels
exactly, which we verify by greedy nonce-invariance tests.

3.4 Minimal end-to-end procedure

Algorithm 1 K-OTG: Train & Serve (minimal)

Require: dataset D, role tagger, role—key k(-), block string <BLOCK>, server secret
1: Build dual-path corpus via (I); LoORA-tune on the mixture (no special tokens).
2: Install hooks: model pre-hook sets role per row (service-gating or text-key) and attaches a
random nonce; pre-1m_head hook applies (2) using (3).
3: Serve: if unauthorized then return <BLOCK> (no generation); else run generate with bad-word
banning of <BLOCK>.

Implementation footprint. We use LoRA on 4-bit bases (NF4, double quantization) and select
standard attention/MLP targets (LLaMA-like). Padding is made explicit without adding tokens. A
single-device map avoids 4-bit cross-device moves. Full module lists, tokenizer safety, complexity,
and exact hook code are in the Supplementary. For additional details and complete pseudocode, see
Supplementary Sections A-G.

4 Evaluation and Results

We evaluate K-OTG on two open instruction models: Llama 3.2 (3B) Instruct, and Qwen2.5 1.5B-
Instruct. Each model is LoRA-tuned on our dual-path corpus (authorized vs. unauthorized) and

Table 1: Authorized utility vs. base on OOD slices. XSum (ROUGE-L/BLEU), GSM8K (exact
match), WT2-raw (PPL). Instruction-tuned authorized models markedly improve ROUGE-L vs. base;
PPL rises moderately (typical for instruction tuning). Small-sample GSM8K can favor base (e.g.,
Llama here); as shown later, the lock still preserves decoding when the key is present.

Model Auth RL Auth BLEU Auth Acc AuthPPL Base RL Base BLEU Base Acc Base PPL
Llama 3.2 3B 0.257 0.000 0.667 31.13 0.059 0.000 0.944 25.92
Qwen2.5 1.5B 0.265 0.003 0.400 29.80 0.065 0.001 0.350 24.50
Llama 3.2 3B Qwen2.51.5B

Role\Key gen code math Role\Key gen code math

general 0.96 0.07 0.04 general 095 0.06 0.05

code 0.05 0.93 0.06 code 0.06 094 0.07

math 0.03 0.08 0.95 math 0.04 0.09 0.93

(a) Llama unlock matrix (b) Qwen unlock matrix

Figure 1: Selectivity: 3 x3 role—key unlock matrices. Entries are the fraction of prompts (majority
over nonces) for which outputs are nontrivial and role-appropriate under each key. Strong diagonal
dominance (> 0.91) with low off-diagonals (< 0.10) indicates keys unlock their intended roles with
minimal cross-unlock.

equipped with per-sample session scramblers. We report: (i) Authorized utility vs. the unmodified
base model on out-of-distribution (OOD) tasks; (ii) Unauthorized non-utility (outputs should be
blocked or useless); (iii) Selectivity via a 33 role—key unlock matrix (Fig. @; (iv) Nonce invariance
(authorized outputs stable across per-request transforms); (v) Block suppression (authorized path
never emits the block marker); and (vi) Throughput overhead (static/session hooks vs. base). The
suite is runnable in <1 hour on a single 16-24GB GPU using small, stratified slices: XSum n=20
(ROUGE-L, BLEU), GSM8K n=20 (exact-match), and WikiText-2 raw n=20 (PPL). We use greedy
decoding only for nonce tests; otherwise temperature sampling, with block-token banning when
authorized and a short-circuit one-liner when unauthorized. Figure 2] provides qualitative examples
for with-key vs. without-key behavior.

Why these experiments. (1) Authorized vs. Base verifies that gating preserves utility (ideally near
the base or improved post-instruction tuning). (2) Unauthorized demonstrates un-usability: sequence
metrics should collapse and perplexity explode. (3) The unlock matrix measures selectivity (high
diagonal, low off-diagonals) and resistance to key mismatches. (4) Nonce invariance validates that
per-request ephemeral transforms cancel exactly in the authorized path. (5) Block suppression ensures
no accidental emission of the block marker under authorization. (6) Throughput quantifies practical
overhead of the hooks.

Table 2: Unauthorized non-utility. Metrics collapse to near-zero and PPL explodes, consistent with
scrambled hidden states (and short-circuiting) yielding incoherent logits.

Model Unauth RL Unauth BLEU Unauth Acc Unauth PPL
Llama 3.2 3B 0.000 0.000 0.000 1.25 x 10°
Qwen2.5 1.5B 0.000 0.000 0.000 9.88 x 10°

(i) Utility preserved when authorized. Despite per-sample orthonormal scramblers, authorized
performance remains competitive with—often better than—the base on summarization; PPL increases
moderately, as typical for instruction tuning. GSM8K mini-slices can favor the base (e.g., Llama
in Table [I); increasing n reduces this gap. (ii) Un-usability without the key. Unauthorized metrics
collapse to near-zero while PPL skyrockets to ~ 10 (Table , reflecting scrambled hidden states
and short-circuiting. (iii) Selectivity. The 3 x3 matrices in Fig.|l|show strong diagonal dominance
(0.91-0.96) and low off-diagonals (< 0.10), indicating wrong keys seldom unlock useful behavior.
(iv) Nonce invariance. Greedy outputs are identical across five nonces for all six prompts (Table[3)),
confirming that authorized inverses cancel session transforms exactly. (v) Safety of the authorized
path. Block suppression is 0/N via robust ban lists covering case and whitespace variants and

Table 3: Nonce invariance and block suppression. Changing the per-request nonce leaves greedy
authorized outputs identical (exact match for 6/6 prompts); robust bad-word lists prevent accidental
emission of the block marker when authorized.

Model Nonce invariance (exact) Block suppression (authorized)
Llama 3.2 3B 6/6 prompts 0/6 contain <BLOCK>
Qwen2.5 1.5B 6/6 prompts 0/6 contain <BLOCK>

Table 4: Throughput (tokens/sec) and overhead. Measured on a small prompt set with greedy de-
coding. Static applies a fixed orthonormal map; Session derives a per-request transform (perm/signs/3
Householders). Overheads of ~38-42% vs. base are expected for Python-level hooks with per-row
transforms.

Model Baseline Static Session A vs. Base (Static / Session)
Llama 3.2 3B 23.3 13.6 13.7 —41.6% /1 —41.1%
Qwen2.5 1.5B 26.5 15.9 16.0 —40.0% / —39.6%

tokenization fragments (Table[3). (vi) Practicality. Throughput overheads of ~ 38-42% versus base
(Table[) are reasonable for a Python-level hook (index-select, elementwise sign, three Householders
per row); this aligns with expectations for Llama-class models.

5 Conclusion

We presented a simple, PEFT-compatible mechanism that couples multi-key access control with
orthonormal hidden-state scrambling. The core idea is pragmatic: when a correct key/role is present, a
pre-1m_head inverse transform restores the model’s native geometry and normal decoding; otherwise,
hidden states are mapped through an orthonormal scrambler and the system short-circuits to a visible
block token. The result is a training- and deployment-time pattern that favors prevention over post
hoc detection.

Across two open instruction models in the 1.5-3B class, our evaluation indicates the approach
is effective and repeatable. On OOD tasks, authorized models preserve utility relative to their
bases (Table[I]), particularly improving summarization ROUGE-L after light LoRA tuning, with
the expected moderate increase in perplexity typical of instruction tuning. Without the key, metrics
collapse to near-zero and perplexity explodes (Table[Z), demonstrating practical un-usability by design.
Selectivity is strong: 3x3 role—key matrices show high diagonals (0.91-0.96) and low off-diagonals
(< 0.10) across models (Fig.[I), meaning the wrong key rarely unlocks useful behavior. Ephemeral,
HMAC-seeded transforms satisfy nonce invariance under greedy decoding, and robust bad-word lists
prevent accidental block-token emission when authorized (Table[3). Finally, throughput overheads
of roughly 38—42% versus the base (Table d) are consistent with a Python-level hook that performs
one permutation, one sign flip, and three Householder reflections per row; these costs can be reduced
further with fused CUDA kernels or compile-time graph captures. Qualitative examples (Fig. [2)
complement the metrics, showing coherent, role-appropriate generations with a key and immediate
blocking without it.

Security and limitations. K-OTG enforces practical access control rather than cryptographic
secrecy of content. The mechanism assumes (i) the hook is present and cannot be bypassed in the
serving stack, (ii) keys are handled by a trusted service layer (service-gating recommended), and (iii)
the server secret used for nonce seeding is protected. Like other PEFT layers, the adapter itself can be
exfiltrated if file access is compromised; protecting keys and preventing hook removal are operational
concerns. Our evaluation slices are intentionally small to keep the suite runnable in under an hour
on a single GPU; they are sufficient to establish the lock/unlock behavior, but larger-scale utility
benchmarks (e.g., full XSum, MMLU, HumanEval, long-context tasks) and dedicated red-teaming
would provide tighter confidence intervals. We do not claim resistance to powerful output-distillation
attacks that assume query access with valid keys; that scenario is better addressed by rate limiting,
watermarking/fingerprinting, and usage policies.

Prompt Prompt Prompt
Explain overfitting simply. Write a Python function to reverse =~ Compute the derivative of
With key a string. z? + 3.
Overfitting is when a model fits With key With key
the training data too closely def reverse_string(s): 2xx + 3 (symbolic snippet)
(including noise), so it performs return s[::-1] Without key
poorly on new data. Without key <BLOCK>
Without key <BLOCK>
<BLOCK>
(a) General (b) Code (c) Math

Figure 2: Qualitative examples (authorized vs. unauthorized). Each card shows the same prompt
with and without the correct key. With the key, the model produces coherent, role-appropriate content;
without the key it emits the block marker, illustrating un-usability by design. All three panels are
forced to equal height for visual consistency.

References

[1] Manaar Alam, Sayandeep Saha, Debdeep Mukhopadhyay, and Sandip Kundu. Deep-lock:
Secure authorization for deep neural networks, 2024. URL https://arxiv.org/abs/2008,
05966.

[2] Juyang Bai, Md Hafizul Islam Chowdhury, Jingtao Li, et al. Phantom: Privacy-preserving
dnn model obfuscation in heterogeneous tee/gpu systems. In Proceedings of USENIX Security
Symposium 2025, pages 553-570, 2025.

[3] Nicholas Carlini, Daniel Paleka, Krishnamurthy Dvijotham, et al. Stealing part of a production
language model. In Proceedings of the 41st International Conference on Machine Learning
(ICML), pages 378—404, 2024.

[4] Suchir Dathathri, Tevah Brown, Jack Borrill, Cassandra Chrpa, Etai Gende, Angela Fan, Anirudh
Kwon, Jaime Maynez, Adam Roberts, Thomas Scialom, et al. Synthid-text: A production-ready
text watermarking scheme for large language models. Nature, 665:44-53, 2024.

[5] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[6] Jonathan Evertz, Merlin Chlosta, Lea Schonherr, and Thorsten Eisenhofer. Whispers in the
machine: Confidentiality in agentic systems, 2025. URL https://arxiv.org/abs/2402!
06922.

[7] Jordan Frery, Roman Bredehoft, Jakub Klemsa, et al. Private lora fine-tuning of open-source
IIms with homomorphic encryption. arXiv preprint arXiv:2505.07329, 2025.

[8] Thibaud Gloaguen, James Chen, Jihun Choi, and Wonjoon Hong. Robust 1lm fingerprinting via
domain-specific watermarks. arXiv preprint arXiv:2505.16723, 2025.

[9] Zhiyu He, Maojiang Wang, Xinwen Gao, Yuchuan Luo, Lin Liu, and Shaojing Fu. Ensi:
Efficient non-interactive secure inference for large language models, 2025. URL https!
//arxiv.org/abs/2509.09424,

[10] Hai Huang, Zhengyu Zhao, Michael Backes, Yun Shen, and Yang Zhang. Composite backdoor
attacks against large language models, 2024. URL https://openreview.net/forum?id=
u7Xo4sG6Ux.

https://arxiv.org/abs/2008.05966
https://arxiv.org/abs/2008.05966
https://arxiv.org/abs/2402.06922
https://arxiv.org/abs/2402.06922
https://arxiv.org/abs/2509.09424
https://arxiv.org/abs/2509.09424
https://openreview.net/forum?id=u7Xo4sG6Ux
https://openreview.net/forum?id=u7Xo4sG6Ux

[11] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In Proceedings of the 40th International Conference
on Machine Learning (ICML), 2023.

[12] Yang Li, Wenhan Yu, and Jun Zhao. Privtuner: A p3eft scheme with homomorphic encryption
and lora. arXiv preprint arXiv:2410.00433, 2024.

[13] Yige Li, Hanxun Huang, Yunhan Zhao, Xingjun Ma, and Jun Sun. Backdoorllm: A compre-
hensive benchmark for backdoor attacks and defenses on large language models, 2025. URL
https://arxiv.org/abs/2408.12798|

[14] Zi Liang, Qingqging Ye, Yanyun Wang, Sen Zhang, Yaxin Xiao, Ronghua Li, Jianliang Xu,
and Haibo Hu. "yes, my lord." guiding language model extraction with locality reinforced
distillation, 2025. URL https://arxiv.org/abs/2409.02718.

[15] Vincent W Liaw et al. Privacy-preserving revocable access control for llm-driven systems.
Peer-to-Peer Networking and Applications, 2025.

[16] Qin Liu, Wenjie Jacky Mo, Terry Tong, Jiashu Xu, Fei Wang, Chaowei Xiao, and Muhao Chen.
Mitigating backdoor threats to large language models: Advancement and challenges. 2024 60th
Annual Allerton Conference on Communication, Control, and Computing, pages 1-8, 2024.
URL https://api.semanticscholar.org/CorpusID:272987923,

[17] Alireza Mohseni, Mohammad Hossein Moaiyeri, and Mohammad Javad Adel. A novel obfusca-
tion method based on majority logic for preventing unauthorized access to binary deep neural
networks. Scientific Reports, 15(1):24416, 2025.

[18] Sanhanat Sivapiromrat, Caiqi Zhang, Marco Basaldella, and Nigel Collier. Multi-trigger
poisoning amplifies backdoor vulnerabilities in 1lms, 2025. URL https://arxiv.org/abs/
2507.11112,

[19] Manveer Singh Tamber, Jasper Xian, and Jimmy Lin. Can’t hide behind the api: Stealing
black-box commercial embedding models. In SIGIR 2025 (to appear), 2025.

[20] Jiashu Xu, Fei Wang, Mingyu Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instructional
fingerprinting of large language models. In Proceedings of NAACL-HLT 2024, pages 3277-3306,
2024.

[21] Hongwei Yao, Jian Lou, and Zhan Qin. Poisonprompt: Backdoor attack on prompt-based large
language models. In ICASSP 2024, 2023.

[22] Cheonbok Yoon, Soohyeon Moon, Jingyu Zhang, Siqi Xie, Hongsheng He, and Jian Gao.
Intrinsic fingerprint of large language models: Continue training is not all you need. arXiv
preprint arXiv:2507.03014, 2025.

[23] Or Zamir. Excuse me, sir? your language model is leaking (information), 2024. URL
https://arxiv.org/abs/2401.10360.

[24] Shuai Zhao, Jinming Wen, Anh Luu, Junbo Zhao, and Jie Fu. Prompt as triggers for backdoor
attack: Examining the vulnerability in language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, page 12303—-12317. Association
for Computational Linguistics, 2023. doi: 10.18653/v1/2023.emnlp-main.757. URL http:
//dx.doi.org/10.18653/v1/2023.emnlp-main.757.

[25] Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking
for ai-generated text. arXiv preprint arXiv:2306.17439, 2023.

[26] Itamar Zimerman, Allon Adir, Ehud Aharoni, et al. Power-softmax: Towards secure Ilm
inference over encrypted data. arXiv preprint arXiv:2410.09457, 2024.

https://arxiv.org/abs/2408.12798
https://arxiv.org/abs/2409.02718
https://api.semanticscholar.org/CorpusID:272987923
https://arxiv.org/abs/2507.11112
https://arxiv.org/abs/2507.11112
https://arxiv.org/abs/2401.10360
http://dx.doi.org/10.18653/v1/2023.emnlp-main.757
http://dx.doi.org/10.18653/v1/2023.emnlp-main.757

Supplementary Material (Methods)

This appendix expands the implementation and theory behind K-OTG used in the main paper. It
contains exact hook logic, tokenizer/adapter safeguards, complexity, full algorithms, and operational
notes.

A. Hook implementation details

Pre-forward hook (role & nonce). For each batch row, either (i) use a provided role override
(service-gating), or (ii) scan the input IDs for the earliest exact subsequence match of any key’s token
IDs (text-key). In session mode, attach a fresh random nonce to each row.

Pre-1m_head hook (transform). If unauthorized: apply H— H P S H(vy) - - - H(vy,). If authorized:
apply the inverse H — H H (vy,) -+ H(vy) S P~L. The order matches the right-multiply convention
and guarantees T, } T}, = I.

B. Tokenizer safety

We do not add keys or the block marker as special tokens. A helper safe_prepare_padding
ensures a valid pad token (reusing EOS if needed) and mirrors pad_token_id to the model config
without resizing embeddings unless strictly necessary. This avoids leaving key artifacts in tokenizer
files and prevents embedding reinitialization.

C. Adapter targets and quantization

We use LoRA on attention projections (q_proj, k_proj, v_proj, o_proj) and MLP projections
for LLaMA-like models (analogous names for other families). 4-bit NF4 with double quantization
(bitsandbytes) is employed. We use a single-device map to avoid accelerate/4-bit cross-device
transfer issues.

D. Session seeding and static maps

Session mode (default). Derive (P, S, {v;}) per row from HMAC-SHA256 (LOCK_SERVER_SECRET,
““role:nonce’’) and a CPU-side RNG. Householders use k=3 unit vectors v;.

Static mode (debug). Create fixed orthonormal maps via QR on Gaussian matrices: a public map

T,up for unauthorized rows and one per role for authorized rows.

E. Complexity and stability

For batch BxSxH:

* Session mode: one index_select for P, one elementwise sign for .S, and k£ Householders.
Each Houscholder costs O(BSH) via einsum, so total overhead is O(BSH (k + 2)); with
k=3 this is small relative to attention/MLP.

* Static mode: batched right-multiply (bsh,bhh—bsh).

Orthonormality preserves norms/inner products and keeps Jacobians well-conditioned.

F. Full algorithms (verbatim)

Algorithm 2 Build Dual-Path Corpus with Multi-Key Gating

Require: Dataset D = {(x;, y)}; role tagger tag; role-to-key k; block string <BLOCK>
Ensure: Tokenizable corpus C

1. C«+0

2: for each (z,y*) € D do

3: r«tag(z,y*) > regex keywords for CODE/MATH, else GENERAL
4: Saun < [k(7)||[User: z|Assistant: y*]

5: Sunauth — [User: x||Assistant: <BLOCK>]

6 C+CU {Saulh7 Sunauth}

7: return C

Algorithm 3 Install Secret Orthonormal Transform (Hooks)

Require: Model M tokenizer tok; role-to-key k; base seed s
Ensure: Model with (i) model pre-hook and (ii) pre-1m_head hook
1: Resolve hidden size H; build Tpy1, and {7~ 1} via QR (static fallback).
2: Precompute key ID sequences S, +—tok.encode(k(r), add_special_tokens=False).
3: Model pre-hook: set roles per row (service-gating or text-key); if session mode, attach random
nonces.
4: Pre-1m_head hook: apply (@) using (3) with HMAC-derived (P, S, {v;}).
5: return M

Algorithm 4 Vocab-Safe Loading and Adapter Attachment

Require: Base ID; adapter dir; model dir; runtime € {static, session}
Ensure: Ready model M and tokenizer tok
1: Load tok; ensure pad; mirror pad_token_id to config (no new specials).
2: Load base with single-device map; attach LoRA adapters; set eval ().
3: install_secret_transform(M, tok, k, seed); set M._lockllm.runtime_mode < runtime
4: return (M, tok)

Algorithm 5 Inference with Secret-Key Gating

Require: Prompt x; optional key string k; optional role r; model M ; tokenizer tok; block <BLOCK>
Ensure: Completion
1. if (r=2) A (k=2) then return User: z||Assistant: <BLOCK>
2: Set per-row nonce(s); set role override if provided; build input string (prepend k if text-key).
3: Build robust bad_words_ids for <BLOCK> (case/prefix/core variants) only in authorized path.
4: Call generate and decode.

G. Correctness sketch (inverse order) & nonce invariance

Because P is a permutation (P~! = PT), S is diagonal with £1 (S~! = S), and H(v) is a
Householder reflection (H (v) ™! = H(v)), we have

T, = (f[H(vi))SP‘l PS(ﬁ H(vi)) =1
i=k i=1

With greedy decoding and fixed logits temperature (no stochasticity), changing the nonce changes
T, and TTTI} but their composition remains identity on authorized rows, yielding identical outputs
(nonce invariance).

H. Operational notes and limitations

Security scope. K-OTG prevents unauthorized use; it is not a cryptosystem for content secrecy.
Protect the server secret and prefer service-gating. If keys leak, rotate keys/seeds. Serving. Keep
hooks inside the serving graph; prevent adapter/weights exfiltration by standard operational controls.
Throughput. The ~ 40% tokens/sec overhead observed in our Python implementation stems from
one permutation, one sign multiply, and k=3 Householders per row; fused CUDA kernels can reduce
this cost.

10

	Introduction
	Related Work
	Methods
	Dual-path supervision
	Key-conditioned hidden-state transform (right-multiply)
	Design choices (why this works)
	Minimal end-to-end procedure

	Evaluation and Results
	Conclusion

