
Pre-training Robust Feature Extractor Against
Clean-label Data Poisoning Attacks

Ting Zhou∗

Shandong University
ting.zhou@mail.sdu.edu.cn

Hanshu Yan∗

ByteDance
hanshu.yan@bytedance.com

Lei Liu
Shandong University
l.liu@sdu.edu.cn

Jingfeng Zhang
RIKEN-AIP

jingfeng.zhang@riken.jp

Bo Han
Hong Kong Baptist University
bhanml@comp.hkbu.edu.hk

Abstract

In the transfer learning paradigm, models pre-trained on large datasets are employed
as foundation models in various downstream tasks. However, this paradigm exposes
downstream practitioners to data poisoning threats. Poisoning attackers craft
malicious samples on foundation models, then inject these samples into re-training
datasets to manipulate the behaviors of models at inference. In this work, we
propose an upstream defense strategy that significantly reduces the success rate of
various data poisoning attacks. Our defense aims to pre-train robust foundation
models by reducing adversarial feature distance and increasing inter-categories
feature distance. Experiments demonstrate the excellent defense performance of
the proposed strategy towards state-of-the-art clean-label attacks in the transfer
learning setting.

1 Introduction

Deep neural networks (DNNs) currently achieve state-of-the-art performance in real-world appli-
cations. The impressive success of DNNs is highly dependent on massive amounts of data and
computing resources. However, in some special fields like bioinformatics and robotics, data acquisi-
tion is expensive, and data annotation is time-consuming and labor-intensive. To obtain performant
models with limited resources, practitioners often turn to low-cost training methods, e.g., transfer
learning methods. Transfer learning starts with a model pre-trained on a large dataset, and then
refines this model for downstream tasks.

Nowadays, many large datasets are scraped from data on the internet or users’ publicly provided
data. Models pre-trained on such datasets are vulnerable to data poisoning attacks, resulting in
security risks for downstream users. In clean-label poisoning attacks [14, 21, 1] under transfer
learning scenarios, attackers craft poison samples on the pre-trained feature extractor by adding
human-imperceptible perturbations. Then poison samples will be injected into the re-training dataset
with the intention of manipulating the behavior of the system at inference time. As shown in Figure
1(d), when downstream practitioners re-train the network with a poisoned dataset, they will obtain a
poisoned model for misclassifying test samples.

In the transfer learning scenario, existing defense mechanisms against data poisoning mainly focus
on the model re-training stage. For example, poison filter defenses [12, 5] filter the poisoned samples
before model re-training, robust training defense [3] re-trains the model by data augmentation with
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crafted proxy poison samples. However, such methods will be performed multiple times with different
downstream tasks. That means defenses are repeated numerous times on the same foundation model.
Intuitively, multiple downstream defenses increase costs, and it is unrealistic to urge all downstream
users to master poisoning attack and defense knowledge.

To achieve upstream defenses, we propose a robust pre-training strategy. The defense manipulates
the feature distribution of the pre-trained model through the following two points. One is to increase
the inter-categories feature distance, and the other is to simulate poison samples with adversarial
samples to reduce the feature distance between poison samples and clean samples. As illustrated in
Figure 1(b), in experiments, we pre-train robust feature extractors with Adversarial Training [10] and
Prototype Conformity Loss [11] to prevent poisoning attacks. Experiments show that our defense
strategy can successfully decrease the attack success rate.

In summary, this work has two contributions: 1) We propose an upstream defense strategy on transfer
learning by manipulating the feature distribution of pre-trained feature extractors, which effectively
enhances the robustness of models against clean-label poisoning attacks. 2) We improve the loss
function in adversarial training to defend against clean-label poisoning attacks, which builds a bridge
connecting adversarial robustness and poisoning robustness.

2 Related Work

Data poisoning is an attack where attackers maliciously modify the training data to degrade the test
performance of machine learning models. Different from evasion attacks [2, 4, 15], poisoning attacks
manipulate the model by adding perturbed samples to training sets instead of controlling model inputs
at inference time. In this paper, we focus on targeted clean-label data poisoning [14, 21, 1].

There are two main types of defense against clean-label data poisoning: poisoned data filter defenses
[12, 5] and robust training defense [3]. To filter poisoned samples, Peri et al. (2020) [12] detected
poisoned data by deep KNN to compare the class label of poison with its k neighbors in feature space.
They also realized adversarial pre-training defense as a baseline in their paper. Another filtering
method detected poisons by scores re-training samples with cosine similarity influence estimator [5].
From a robust training perspective, Geiping et al. (2021) [3] proposed a robust training framework
that trained networks with adversarially poisoned data in the place of (test-time) adversarial examples.

For clean-label poisoning attacks under transfer learning scenarios, previous works are all defenses
after pre-training. Although Peri et al. (2020) [12] first tried to train robust feature extractors adver-
sarially to defend against clean-label data poisoning, they failed to provide a theoretical explanation
for the defensive effects from the perspective of poisoning attacks. In this work, we present a general
defense strategy in pre-training and verify our strategy through experimental instances.

3 Method

3.1 Defense Strategy

Under the Feature Collision Attack [14], an attacker first selects a base sample xb, and tries to craft
a poison xp by adding imperceptible perturbations. The perturbations are designed to make xp as
same as target xt in the feature space. To generate a poison, an attacker has to solve the following
minimization optimization:

xp = argmin
x

||f(x)− f(xt)||2 s.t. ||x− xb||∞ ≤ δ. (1)

Where δ is the perturbation constraint, and f is the fixed pre-trained feature extractor denoting the
function that propagates input images through the network to the penultimate layer. By introducing
the parameter µ, the ℓ∞-norm constraints of Eq.(1) can be relaxed to:

xp = argmin
x

||f(x)− f(xt)||2 + µ||x− xb||2. (2)

The parameter µ > 0 makes a trade-off between the two terms. Obviously, the attackers aim to lead
xp and xt to collide in the feature space.
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Figure 1: Robust feature extractor pre-training and poisoning attacks. (a) Normal pre-training. (b)
Pre-training robust feature extractor with our defense strategy. (c) Simple feature representation. The
lines between samples represent the sample distance in the feature space, which conforms to the
triangular inequality. (d) Poisoning attacks under transfer learning scenarios.

To make the model robust to attacks, our defense strategy in reverse with poison optimization to
solving max ||f(xp)− f(xt)||. In this way, solving Eq.(2) becomes difficult. However, xp and xb are
unknown in the model pre-training. Thus, we turn to optimize the lower bound of ||f(xp)− f(xt)||.
Based on the triangle inequality, we get the following:

||f(xp)− f(xt)|| ≥ ||f(xb)− f(xt)|| − ||f(xp)− f(xb)||. (3)
From Eq.(3), we depart the optimization ||f(xp)−f(xt)|| into two terms. The term ||f(xb)−f(xt)||
is the feature distance between xb and xt. The term ||f(xp)− f(xb)|| is the feature distance between
xp and xb. In Figure 1(c), we provide a 2D feature visualization of Eq.(3). Then, our proposed strategy
formulate the maximization lower bound of ||f(xp)− f(xt)|| as the following two optimizations:

max ||f(xb)− f(xt)|| (4a)
min ||f(xp)− f(xb)||. (4b)

3.2 Realization of Defense Strategy

Maximize the Class Feature Distance When defending in pre-training, a defender is unaware of
the attacker’s choice of xb and xt. As xb and xt are selected from different classes, we solve Eq.(4a)
by separating features of different classes. There are many class feature separation methods, such as
triplet loss [13] and variants of softmax [9, 8]. Here, we adopt prototype conformity loss [11].

Prototype Conformity Loss (PC-Loss) [11] is an adversarial defense method that forces the features
for each class to lie inside a convex polytope and maximally separates the polytope from the polytopes
of other classes. Given a dataset D = {(xi, yi)}ni=1 and a network with parameters θ, the prototype
conformity loss is formulated as:

LPC(x, y) =
∑
i

{||f(xi)− wc
yi
||2 −

1

k − 1

∑
j ̸=yi

(||f(xi)− wc
j ||2 + ||wc

yi
− wc

j ||2)}. (5)

Where ωc
yi

denotes the trainable class centroids of label yi and k is the number of classes, and f(xi)
denotes the feature of an image xi with the label yi. The overall loss function used for training our
feature extractor is given by:

L(x, y) = (1− α)LCE(x, y) + αLPC(x, y). (6)
Where LCE is the cross-entropy loss and 0 < α < 1 makes a trade-off between the two losses.

Adversarial Data Augmentation Considering xp is unknown at the pre-training stage, we pre-train
models with the adversarial sample to simulate xp, and the corresponding clean sample represent xb.
Let L denote the loss function, xadv is an adversarial example of the original data xi with ℓ∞-norm,
and ϵ is the constraint budget. Generally, ℓ∞-norm is considered to be a ℓ∞-ball centered at xi. Here,
xadv is in the ℓ∞-ball of xi and xp is in the ℓ∞-ball of xb. We utilize xadv to simulate xp because of
their similarity. The minimization problem Eq.(4b) can be truned into a min-max problem:

min
θ

1

n

n∑
i=1

{
max

||xadv−xi||∞≤ϵ
LCE(xadv, yi) + ||f(xadv)− f(xi)||

}
. (7)
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The feature distance in the loss function encourages xadv to stay close to xi in the feature space. In
this way, the feature representation of xp is encouraged to be close to that of xb. When trainingfeature
extractor with adversarial samples and joint PC-CE loss, we calculate LCE with adversarial data and
calculate LPC with clean data as follows:

L(x, y) = (1− α){LCE(xadv, y) + ||f(xadv)− f(xi)||}+ αLPC(x, y). (8)

In this work, we solve the min-max optimization with the adversarial training(AT) method. Adver-
sarial training [10] is a defense against test-time attacks. Compared with the normal training [17],
AT effectively enhances the robustness of neural networks [18]. From various adversarial training
methods [4, 7, 16, 19, 20], we adopt the classical projected-gradient-descent (PGD) [10].

Table 1: Defense against targeted clean-label poisoning attacks. We report the Attack Success Rate(%)
of FC, CP, and BP and the test accuracy(%) of pretraining and retraining on the CIFAR-10 test set.
The best defense performance in each column is in bold.

Attack FC CP BP
Network Defense Pre. Acc ASR Re. Acc. ASR Re. Acc. ASR Re. Acc.

ResNet-18
None 94.42 100.0 92.02±0.32 100.0 91.34±0.28 100.0 91.51±0.30
PCL 94.83 47.5 92.89±0.26 75.0 92.68±0.21 82.5 92.87±0.23
AT 90.15 12.5 86.98±0.24 82.5 86.82±0.25 90.0 86.92±0.25

AT-PCL 90.12 7.5 87.93±0.15 72.5 87.73±0.23 67.5 87.73±0.23

ResNet-50
None 94.60 100.0 91.84±0.41 100.0 92.00±0.58 100.0 91.23±0.45
PCL 94.85 7.5 94.05±0.23 27.5 93.84±0.24 60.0 93.82±0.20
AT 90.44 5.0 87.89±0.32 82.5 87.65±0.31 87.5 87.61±0.34

AT-PCL 90.34 0.0 89.31±0.23 27.5 89.00±0.33 37.5 88.98±0.30

4 Experiments

We evaluate the effectiveness of our proposed defense against three targeted clean-label poisoning
attacks: Feature Collision (FC) [14], Convex Polytope (CP) [21], and Bullseye Polytope (BP) [1].
Similar to the experimental setting in [21], our evaluation follows the pre-train then fine-tune paradigm
on CIFAR-10 [6]. The dataset splitting follows Zhu et al.(2019) [21]. As attackers, we employ the
white-box targeted attack, using the same frozen feature extractor to craft poisons and re-train. The
poison constraint δ = 25.5/255. we randomly select four pairs of <target class, poison class>, each
pair with ten targets. For all attacks, we measure Attack Success Rate(ASR) over 40 attack instances
to evaluate the defense effectiveness.

To evaluate the defense effectiveness, we pre-train the model with the proposed strategy. When
pre-training models without any defense, we standard pre-train models on CIFAR-10 for 120 epochs.
To realize Eq.(7), we adversarially pre-train models with PGD-10 (ϵ = 4/255) for 200 epochs. For
training with PC-Loss, We first train models for 100 epochs with LCE and then use the loss in Eq.(6)
or Eq.(8) for 120 epochs. Here, we set α to be 0.3. After pre-training, we use the feature extractors to
craft poisons, then inject perturbed images into the re-training dataset to poison the model.
Results We compare the defense effect on models pre-trained with AT, PC-Loss(PCL), and AT joint
PC-Loss(AT-PCL). From Table 1, we observe that both AT and PC-Loss reduce the attack success
rate, and AT-PCL performs better than employing AT or PC-Loss alone. We also evaluate the test
accuracy of pre-training and re-training on the CIFAR-10 test set. We find that AT defense hurts test
accuracy, which is common for adversarially trained networks. In transfer learning scenarios, our
defense provides effective training strategy options to pre-train a robust foundation model against
targeted clean-label poisoning.

5 Conclusion

In this work, we propose an upstream defense strategy against targeted clean-label poisoning attacks
in transfer scenarios. We realize the proposed strategy through pre-training feature extractors with
adversarial data augmentation and inter-class feature separation. Empirical results demonstrate the
effectiveness of the proposed defense in enhancing DNNs’ robustness against poisoning attacks.
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Table 2: We report the Attack Success Rate(%) of FC, CP, and BP on feature extractors pre-trained
on Tiny ImageNet, and we also report the test accuracy(%) of pre-training and re-training. The best
defense performance in each column is in bold.

Attack FC CP BP
Network Defense Pre. Acc ASR Re. Acc. ASR Re. Acc ASR Re. Acc

ResNet-18

None 66.4 100.0 67.17±0.35 100.0 66.99±0.32 100.0 66.78±0.29
PCL 62.80 12.5 61.73±0.46 37.5 61.78±0.33 42.5 61.74±0.38
AT 54.78 2.5 61.59±0.36 55 61.55±0.31 60 61.64±0.25

AT-PCL 54.28 2.5 59.80±0.25 32.5 59.76±0.19 35 59.80±0.20

A Experimental Details

Dataset Splitting On the CIFAR-10 dataset, we take the first 4800 images in each training set class
to form a pre-training dataset with 48000 images. For the remaining 200 images of each class in
the training set, we choose the first 50 images to form a clean re-training dataset, and the other 150
images are used as the selecting pool of base images.

Training Settings When pre-training models without any defense, we standard pre-train models on
CIFAR-10 with SGD for 120 epochs. A batch size of 128 and a learning rate of 0.1 (×0.1 at epochs
80 and 100) are used. For AT, we adversarially pre-train models with PGD-10 (ϵ = 4/255) for 200
epochs. A batch size of 128 and a learning rate of 0.1 (×0.1 at epochs 90, 120, and 150) are used. For
pre-training with PC-Loss, models are trained with SGD for 220 epochs, starting with a learning rate
of 0.1, which decays by a factor of 10 after epochs 80, 120, 160, and 200. We first train models for
100 epochs with LCE and then use loss in Eq.(6) or Eq.(8). We utilize Eq.(6) for standard training
and Eq.(8) for adversarial training.

When re-training models on the poisoned dataset, we only fine-tune the final linear classifier for 100
epochs. We use Adam with a learning rate of 0.1 (×0.1 at epochs 60 and 80) to overfit.

Attack Settings and Evaluation We use the same frozen feature extractors to attack and evaluate
in white-box scenarios. For FC, we generate one poisoning image for each attack. For CP and CP, we
generate five poisoned images per attack. We perform 500 iterations on the poison perturbations opti-
mization in each experiment. The target/poison label pairs are randomly selected as <airplane/horse>,
<bird/automobile>, <deer/automobile>, and <frog/cat>. For each label pair, we attack ten targets,
resulting in 40 attack instances.

B Defense on Properly Transfer Learned Models

To simulate real transfer learning, we pre-train ResNet-18 feature extractors on Tiny ImageNet, which
are fine-tuned on CIFAR-10 data. We take the entire training set of Tiny ImageNet as the pre-training
dataset. The re-training set includes 5000 images formed from the first 500 images in each class
on the CIFAR-10 training set. For standard training and adversarial training, we pre-train models
with SGD for 200 epochs. A batch size of 128 and a learning rate of 0.1 (×0.1 at epochs 90, 120,
and 150) are used. As for pre-training with LCE , the α is set as 0.5, and the other settings are the
same as training on the CIFAR-10. We report the defense results in Table 2. The pre-training test
accuracy is measured on the Tiny ImageNet test set, and the re-training test accuracy is evaluated on
the CIFAR-10 test set.

C Ablation Studies

Feature Loss in Adversarial Training We explore the impact of feature loss in adversarial training.
We adversarially pre-train models with LCE and the loss Eq.(8). The perturbation budget is 8/255. In
Table 3, We show that the feature loss in plays a positive role in the defense.

Different Adversarial Budget ϵ We conduct experiments to assess the defense impact of the
adversarial budget. We test the FC and BP on ResNet-18 models adversarially pre-trained with
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Table 3: Defense effectiveness of AT with LCE (ATLCE
) and AT with the loss in Eq.(8) (AT). The

perturbation budget ϵ = 8/255. We report the Attack Success Rate(%) of FC, CP, and BP.
CIFAR-10 Tiny ImageNet

ResNet18 ResNet50 ResNet18
Attack ATLCE

AT ATLCE
AT ATLCE

AT
FC 0.0 0.0 0.0 0.0 0.0 0.0
CP 45.0 47.5 37.5 32.5 15.0 12.5
BP 65.0 57.5 47.5 45.0 17.5 12.5

Table 4: Defense evaluation of different adversarial budget ϵ.
Attack FC BP

Adversarial budget Pre. Acc(%) ASR(%) Re. Acc.(%) ASR(%) Re. Acc(%)
ϵ = 4/255 90.15 12.5 86.98±0.24 90 86.92±0.25
ϵ = 6/255 87.68 2.5 84.07±0.16 65 83.82±0.21
ϵ = 8/255 85.36 0.0 79.85±0.23 57.5 79.32±0.28

different budgets ϵ. From Table 4, We observe that a large ϵ has a better defense effect. Unfortunately,
the increase of ϵ leads a decay in model pre-training accuracy. To make a trade-off between robustness
and performance, we set ϵ = 4/255 at other experiments.

Defense Evaluation of Different α in Joint Loss We investigate the defense effect of different α
on models pre-trained with loss in Eq.(6) and Eq.(8). In adversarial training, the perturbation budget
is 4/255.

From Table 5, we observe that a larger α has a better defense effect. The results show that feature
separation between classes improves the robustness of foundation models. But as α increases, the
defense of AT with PC-Loss gradually weakens that of ST with PC-Loss. It may be that AT trains
models using adversarial samples, which results in the model learning less class feature separation of
clean samples. Note that a large α is not always safe. It will lead the model parameters to pay too
much attention to feature separation and make pre-training fail. For downstream practitioners, if their
task requires defense against both poisoning and escape attacks, a base model pre-trained with the AT
joint feature separation method would be a better option. If the downstream system requires high
accuracy and only needs to focus on poisoning attacks, thus practitioners could choose pre-trained
models using only the feature separation method.

Table 5: Defense evaluation of different α in joint loss.

Network α
Training
Strategy Pre. Acc(%) ASR-FC(%) ASR-BP(%)

ResNet18

α=0.3 ST 94.83 47.5 82.5
AT 90.12 7.5 67.5

α=0.4 ST 94.80 27.5 42.5
AT 89.78 7.5 65

α=0.5 ST 94.66 2.5 40.0
AT 90.14 5.0 55.0

α=0.6 ST 94.76 0.0 20.0
AT 90.60 2.5 55.0

α=0.8 ST 94.56 0.0 12.5
AT 19.18

ResNet50

α=0.3 ST 94.85 7.5 60.0
AT 90.34 0.0 37.5

α=0.5 ST 94.46 0.0 5.0
AT 90.60 0.0 5.0

α=0.8 AT 22.29
α=0.9 ST 45.25
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