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Abstract

People take a variable amount of time, 0.1 to 10 s, to recognize an object. The1

reaction time depends on the stimulus and task, and people can trade off speed2

for accuracy. That tradeoff is a crucial human skill. Neural networks exhibit high3

accuracy in object recognition, but most current models cannot dynamically adapt4

to respond with less computation, which is a problem in time-sensitive applications5

like driving. Towards the goal of using networks to model how people recognize6

objects, we here present a benchmark dataset (with model fits) of the human speed-7

accuracy tradeoff (SAT) in recognizing CIFAR-10 [1] and STL-10 [2] images. In8

each trial, a beep, indicating the desired reaction time, sounds at a fixed delay after9

the target onset, and the observer’s response counts only if it occurs near the time10

of the beep. With practice, observers quickly learn to respond at the time of the11

beep. In a series of blocks, we test many beep latencies, i.e., reaction times. We12

observe that human accuracy increases with reaction time, and we compare its13

characteristics with the behavior of several dynamic neural networks that can trade14

off speed and accuracy. After limiting the network resources and adding image15

perturbations (grayscale conversion, noise, blur) to bring the two observers (human16

and network) into the same accuracy range, we show that humans and networks17

exhibit very similar tradeoffs. We conclude that dynamic neural networks are a18

promising model of human reaction time in recognition tasks. Our dataset1 and19

code2 are publicly available.20

1 Introduction21

Unlike neural networks, a typical and salient feature of human behavior is the ability to flexibly22

tradeoff accuracy for speed, which is called the speed-accuracy tradeoff (SAT). Here, we argue23

that SAT is crucial, both for deployment of machine learning in time-sensitive applications, and for24

better understanding of human decision making. We present a benchmark of SAT in human object25

recognition and propose to model its properties with dynamic neural networks. Our dataset includes26

analysis of fits by three neural networks.27

As signal strength (e.g., contrast) increases, humans respond more quickly and more accurately, and28

there is a tight relation between signal sensitivities measured by accuracy or by reaction time. Palmer29

et al. [3] showed that a diffusion model of perceptual decision making could account for the relation.30

1See https://osf.io/zkvep/ for dataset.
2See https://github.com/ajaysub110/anytime-prediction for code.
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Figure 1: Scatter plots showing mean and standard deviation of accuracy and reaction time across
participants for several image perturbations. For each experiment, each of the five points corresponds
to a block of trials that required the participant to respond within a small range oft duration centered
on: 200 ms, 400 ms, 600 ms, 800 ms, or 1000 ms. With more time, human observers classify more
accurately. That is the speed-accuracy tradeoff (SAT). The title of each graph (Color, Gray, Noise,
Blur) refers to an image degradation that is explained below. Corresponding results on the STL-10 [2]
dataset are shown in Figure 9.

In Figure 1, we show typical speed-accuracy tradeoffs observed in the human data we have collected,31

when subjects are presented with color, grayscale, noisy, and blurry images. Accuracy decreases32

gradually as allowed reaction time is reduced, which allows observers to make reasonable decisions33

even with limited time. Neural networks are currently extremely popular computational models34

due to their excellent accuracy in tasks such as pattern recognition [4], medical data analysis [5],35

robotics [6], and many others [7]. However, most recent neural network models are trained to use a36

fixed number of layers to make decisions and therefore cannot adapt to unexpected time constraints [8].37

Due to increased use of networks in wearable sensor technologies for health monitoring [9] or in38

applications such as obstacle and pedestrian avoidance in autonomous driving [10], it is crucial that39

these computational models offer reasonable accuracy even when time available for inference is40

reduced. In order to teach models to “fail gracefully", i.e., offer partial accuracy with partial time (or41

FLOPS), we look to human SAT as a successful example of this ability. Taking human performance42

as a goal for machine development was key in the development of neural networks [11, 12], and43

continues to motivate developments in artificial intelligence (AI) research [13, 14, 15, 16]. On the44

other hand, finding an accurate model of human decision making under time pressure would be a45

milestone in neuroscience and might be a first step toward understanding slow reading, which is46

primarily characterized by very slow performance.47

Inspired by these works [17, 15, 14], we benchmarked the SAT of humans recognizing objects to48

provide a dataset for modeling of this human ability. Within each block of trials, the observer is49

taught to respond at a different fixed latency. Each block yields a point in a plot of accuracy vs.50

reaction time, and the responses from many blocks trace out the speed-accuracy tradeoff. The task51

is to identify the predefined category (1 of 10) of an image from the CIFAR-10 [1] collection of52

natural images, which are commonly used to benchmark computer vision algorithms. As models of53

the human tradeoff, we have evaluated three recent computational networks that allow early exits54

and adaptive computation as ways to vary computational effort. The first model is a convolutional55

recurrent neural network (ConvRNN), introduced by [18] which has already been used to model the56

human speed-accuracy tradeoff. This model relies on confidence saturation as an exit strategy to57

dynamically throttle computation. The other two models, MSDNet [19] and SCAN [20], are both58

popular dynamic-depth, anytime-prediction models that are used for computer vision and related59

applications. For human and network, We measured accuracy and time (or FLOPS) in classifying60

degraded CIFAR-10 images. To compare the speed-accuracy tradeoffs of networks and humans,61

we assume a linear correspondence between reaction time in milliseconds (ms) and the number of62

floating point operations (FLOPS) consumed by the network. The offset and slope of the linear63

correspondence are determined by linear regression. We correlate networks against human accuracy64
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across reaction time. Our results indicate that anytime prediction is a promising model for human65

accuracy and reaction time in object recognition because it achieves a high correlation with the human66

tradeoff. Our contributions are:67

• We study how human observers recognize objects, i.e., identify the class (1 of 10) of each image in68

the CIFAR-10 [1] and STL-10 [2] datasets, under less-than-ideal viewing conditions. Our main69

contribution is an open-access dataset for the human speed-accuracy tradeoff (SAT) in object70

recognition. This dataset, gathered from psychophysical experiments with 142 subjects, spans a71

wide range of classification accuracies (20% to 90%) under several image perturbations: grayscale72

conversion, blur, and noise. It is intended for comparison with computational models of visual73

recognition.74

• We evaluate the ability of several artificial neural networks to capture the characteristics of human75

SAT, and show that the MSDNet [21] dynamic-depth neural network matches human SAT better76

than previous work [18].77

• We perform an extensive quantitative comparison between speed-accuracy tradeoffs in humans and78

several artificial neural networks. In doing so, we introduce two metrics, an accuracy-range metric79

and a correlation metric, which ease comparison of model and human performance.80

2 Related work81

Comparing humans and neural networks. Human vision inspired early neural networks [11, 12]82

that incorporate some computational features of human vision [22]. Many properties of neural83

networks, such as filters [23] and attention [24], were inspired by the human brain. Recent studies [14]84

suggest more properties that neural networks might learn from humans, and in this work, we85

focus on SAT. We look at the class of networks that can vary their computational effort, and thus86

model human SAT. In machine learning literature, these models are known as dynamic neural87

networks [8]. They adapt their architecture to the challenge of input data to reduce the mean cost of88

inference [19, 25, 26, 27, 28, 21, 29, 30]. Many applications of networks, such as analysis during89

autonomous driving [10] and mobile health sensors [9] are time-sensitive, and require reasonable90

accuracy even with brief time and few FLOPS. Taking humans as a good example of speed-accuracy91

tradeoff, we here record a benchmark. We assess several models of the SAT, including two recent92

dynamic depth networks [21, 20] and a recurrent network [18]. We hope releasing a SAT benchmark93

will encourage future experimentation with different models [31].94

Measuring the speed-accuracy tradeoff (SAT). Given more time, people generally do better.95

McElree and Carrasco [32] analyzed the speed-accuracy tradeoff in humans on a visual search task,96

in which observers tried to find a target in an array of distractors. They manipulated task difficulty by97

adding more distractors. Figure 1 shows human object recognition accuracy on CIFAR-10 images98

as a function of reaction time [1]. Mirzaei et al. [33] propose a model to predict reaction time in99

response to natural images. This model is based on statistical properties of natural images and is100

claimed to accurately predict human reaction time by forming an entropy feature vector. Ratcliff et101

al. [34] used a drift diffusion model whose drift rate (the rate of accumulation of evidence towards a102

criterion) was determined by the quality of information to explain lexical decision times and accuracy103

(i.e. how rapidly does a person classify stimuli as words or non-words). Reaction time has also been104

studied in the context of perceptual decision making [3, 35, 36, 37]. Neural networks have been105

used to model object recognition [38], temporal dynamics in the brain [39, 40], the ventral stream,106

i.e., the object recognition neural pathway in human cortex [41], and temporal information [42].107

Close to our approach, Spoerer et al. [18] has a similar goal of using a specific class of neural108

networks to model human reaction times, and are the first to use a neural network as a computational109

model of the speed-accuracy tradeoff. This work poses a binary classification problem (“animate” vs110

“inanimate” objects) to human observers and networks. However, a binary classification task may not111

represent general categorization accuracy because in a binary task an observer may learn to detect the112

difference between classes rather than actually classify images into classes. We discuss this approach113

in Section 4 and compare to it quantitatively in Section 5.114

3 Collecting Behavioral Data115

We measure accuracy and reaction time for human observers performing an object recognition task116

on images presented with and without perturbation. We assess the impact of adding color, blur, and117

noise, The results show a speed-accuracy tradeoff (Figure 1) for all three image manipulations. In118
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Figure 2: Sample CIFAR-10 dataset [1] images are shown as originals (in color) on the left, along
with our image perturbations (blur and noise addition), added to grayscale images. The image
perturbations provide control of the recognition task difficulty. Numbers in parentheses correspond to
standard deviations for 0-mean Gaussian distributions. Units are pixels.

Sections 4 and 5, we evaluate the ability of neural networks to model the tradeoff between processing119

speed and accuracy. Our experimental protocol is similar to that of [32] and is outlined below.120

Images. In all experiments, human observers recognized objects in CIFAR-10 images [1], a popular121

benchmark for neural network analysis, with the default train/test split. This image set contains122

50,000 training images and 10,000 test images each of 32×32 pixels, and has 10 classes: airplane,123

automobile, bird, cat, deer, dog, frog, horse, ship and truck. Sample images and added perturbations124

can be seen in Figure 2. Unlike Spoerer et al. [18], we chose to analyze the CIFAR-10 images due125

to the smaller number of classes than in the ImageNet [4] dataset, making it easier for our human126

participants to memorize the relevant letter-key pairings to input responses. We used lab.js [43] and127

Just Another Tool for Online Studies (JATOS) [44] to present images and collect timed responses128

from human observers online. This software reliably gives accurate timing in benchmark evaluation129

of online testing packages [45], better than 5 ms trial-to-trial variation in stimulus duration and better130

than 10 ms trial-to-trial variation in reaction time, across many operating systems and browsers.131

Images were interpolated to 190×190 pixels for optimal viewing [46]. We estimate the size in cm132

of the 190x190 pixel image to be 4x4 cm, subtending 4x4 deg, and the viewing distance (distance133

between observer eye and screen) to be roughly 57 cm.134

Table 1: Summary statistics of collected
data on human observers across all ex-
periments.

Exp. #Partic. Compl. time (min.) #TrialsMean SD

Noise 57 50.80 17.47 1500
Blur 40 47.09 11.58 1500
Col. & Gr. 45 20.09 6.93 500

Observer statistics and data collection. We collected135

data from 142 observers (84 Male, 57 Female, 1 Non-136

binary) ranging in age from 24 to 62 years. Each ses-137

sion (set of trials) lasted about an hour. Each observer138

had a normal or corrected-to-normal vision. The stimuli139

were presented via JATOS survey via worker links to each140

observer. Participants were recruited through Amazon141

MTurk (similar to studies in [47, 48]), and paid $15 for142

their efforts (to a total of $2130 with all fees). A stan-143

dard IRB approved (IRB-FY2016-404) consent form was144

signed before collecting the data by each observer, and145

demographic information was collected.146

Survey design. The survey was designed to control the response time of human observers by147

asking them to respond in the allotted time distribution. The design was based on the previous148

work by McElree & Carrasco [32], where 4 observers participated in a total of 20 approximately 75149

min sessions. At the beginning of each session subjects were instructed that each object category150

was linked to a particular letter-key: (A)irplane, a(U)tomobile, (B)ird, (C)at, d(E)er, (D)og, (F)rog,151

(H)orse, (S)hip and (T)ruck. They were then given a training run of 20 images where they learned the152

key-class labels and got feedback on the speed of their responses. A trial consisted of a stimulus image153
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displayed for a fixed amount of time. Since 150 ms is the minimum visual processing time needed154

to process (recognize) a stimulus [49], the survey was designed on five fixed viewing conditions155

(blocks) at 200 ms, 400 ms, 600 ms, 800 ms, and 1000 ms with a tolerance of ±100 ms. Outside of156

these tolerance values, trials were discarded.157

Note. The Carrasco & McElree speed-accuracy-tradeoff (SAT) paradigm [32] was a major advance in158

tracking the improvement of accuracy with time. However, allowing observers to respond when they159

feel like and then sorting into bins produces confounds that make the data hard to analyze because160

observers tend to take longer on harder trials. In our case, we trained observers to respond at a fixed161

time (different in each block), so measured accuracy is not confounded with trial-by-trial difficulty.162

Our use of their paradigm makes our results much easier to analyze. In many studies of the effect of163

timing in object recognition [48, 50, 51, 17], each trial’s stimulus presentation and choice selection164

are separate steps. Various stimulus durations are reported: 100-2000 ms in [48], 100 ms in [50],165

25-150 ms in [51], 200 ms in [17], after which the observers are allowed to take as much time as166

needed to make their selection. In our experiments (the SAT paradigm), each trial was one step.167

The image stayed on until the observer responded by pressing a key. Thus, our reported reaction168

times include all the time between stimulus onset and key press. Our observers had very little time to169

respond, compared to typical object recognition studies, and as a result, their accuracy appears lower170

than of those from other studies. In our case, the lowest timing threshold was specifically restricted171

so that the human accuracy is near chance.172

During the experimental session, observers were asked to place their hands on the keyboard while173

being aware of the ten identifiers (A: Airplane, C: Cat and so on). They were instructed to answer at174

the beep as fast as possible to fall into the tolerance bounds, were given feedback after every trial175

and were continuously presented with a progress counter. Pressing the spacebar presented the next176

stimulus. Before starting the actual survey for data collection, a tutorial of 20 images was displayed177

to make observers understand the key mapping and get used to the timing protocol. To reduce the178

length of each experimental session, each observer responded to a randomly selected subset of 1,000179

images. This image set was divided into approximately equal chunks across different amounts of180

perturbation (noise and blur). Figure 1 plots sample human accuracy as a function of reaction time.181

At 1,000 ms, most observers had accuracies about 40% to 50%, except for a few outliers.182

Observer accuracy variance. To capture variability in observer responses, for noise and blur183

surveys, each time condition block consisted of 300 trials (1500 trials in total) while the color survey184

had 100 trials (500 trials in total). At the end of the time-limit for a trial, a beep sounded within 60185

ms of which the observer had to enter their category decision via key-press after which feedback was186

given: if they were quick, slow or perfect while pressing the key. In Figure 3, we study how well the187

observers followed instructions to respond within the required time interval, by analyzing a plot of188

reaction time vs trial number. It can be seen that the fractional error in reaction time increases as the189

task becomes more difficult, that is, as the required reaction time is lowered. We also observed little190

difference between data collected online in our present study and very similar data from experiments191

with in-person testing [52].192

4 Modelling Speed-Accuracy Tradeoff (SAT) with Networks193

In order to test the ability of neural networks to capture the flexible, adaptive computation that humans194

exhibit, we analyze three representative models from existing literature. The first two, MSDNet [21]195

and SCAN [20], both state-of-the-art dynamic depth networks, were originally developed to improve196

test-time efficiency in computer vision applications. They are promising candidates for our purpose197

since they are capable of adaptive computation. We compare them against rCNN (which we refer198

to as ConvRNN) [18], a convolutional recurrent network which was recently developed specifically199

as a model for human speed-accuracy tradeoffs. It should be noted that, due to prior knowledge in200

humans and other confounding factors, it is difficult to replicate exactly the same training and testing201

conditions in humans and machines. To partially account for this, we perform trial runs for humans202

on sample data (see Section 3) and test both humans and networks on a variety of perturbation types203

and strengths. We compare networks with humans, first on accuracy ranges networks can achieve204

by only varying FLOPS used. Next, we measure networks’ correlation with human behavior under205

various perturbation conditions, to determine if these models can capture the same performance206

trends that humans exhibit. Training details of each model are described in Supplementary Material.207

• Convolutional Recurrent Neural Network (ConvRNN) ConvRNN [18] exhibits temporal behav-208

ior by relying on recurrent connectivity, characteristic of the primate visual system, implemented209
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Figure 3: The tight distribution of reaction times in each block of trials, across 3 experiments. Plots
show the reaction time (in ms) for each trial (averaged across observers) in our experiments. For each
block, the black horizontal line denotes the beep timing at which the observer needs to respond. For
analysis, we use the time of response, not the time of the beep, so the small SD of reaction time is
good, and its delay relative to the beep is immaterial. Blocks are separated by vertical dotted lines.

by adding bottom-up and lateral connections to a feed-forward convolutional network. Lateral210

connections add cycles inside the feed-forward connectivity allowing for recurrent behavior. This211

model consists of 7 blocks of recurrent convolutional layers (RCL), followed by a Readout layer to212

output class predictions. During inference for a given image, the computation used by the model213

can be dynamically chosen by running the model for a variable number of recurrent cycles. This214

property allows the network to respond to an input image with a different amount of computation,215

which we use to represent reaction time.216

• Multi-Scale Dense Network (MSDNet) MSDNet [21] implements dynamic inference using mul-217

tiple early exit classifiers from a feedforward network. Since the exits are all at different depths218

in the network, classification at each one has a different computational requirement. All exits are219

placed after blocks of layers and use features from a common backbone network for classification.220

A consequence of this is that features deemed useful for each classifier during training interfere221

with the other classifiers. To resolve this problem, MSDNet proposes two architectural features:222

multi-scale feature maps, and dense connectivity (realized by using a DenseNet [53] backbone).223

These properties allow neurons at any layer to access features from any part of the network and at224

any resolution, thus diminishing the effect of the interference problem. In our experiments, we the225

number of scales, the bottleneck factor, and use a 15-layer backbone network with seven early exit226

classifiers placed at block intervals of 1-2-4, thus making up a total of seven blocks.227

• Scalable Neural Network (SCAN) Similarly MSDNet, SCAN [20] implements dynamic inference228

using early exit classifiers from a common backbone network. Whereas MSDNet uses multi-scale229

feature maps and dense connectivity to solve the issue of interference between early and late230

classifiers, SCAN uses an encoder-decoder attention mechanism in each exit network. This allows231

each exit to “focus” only on features relevant for classification at a specific depth of the backbone.232

The attention network produces a binary mask which is added to the backbone (ResNet[54]) feature233

map, after which a Softmax layer predicts a class label. The network uses four early exits and a234

final ensemble output which uses all early exit features for prediction. Thus, for a given input, the235

network outputs five class predictions, each requiring a different amount of computation time/effort.236

4.1 Contrast reduction237

Figure 4: Contrast reduction to avoid clipping. So
that the noisy image would not exceed the pixel
range, we reduced contrast tenfold. This allows us
to a. bring network accuracy to the same range as
human accuracy, and b. increase task difficulty.

In our experiments on CIFAR-10 [1], networks238

were generally more accurate than human ob-239

servers when presented with images (see Sec-240

tion 5) of the same noise levels. To match human241

accuracy, we added more noise to the images242

presented to networks, which resulted in noise243

levels that fell outside of the image pixel distri-244

bution. To avoid overflow without introducing245

clipping, we reduced the image contrast tenfold246
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(see Figure 2 for examples). Contrast reduc-247

tion removed the need for image clipping and248

brought the neural network accuracy closer to249

those produced by human observers. In Figure 4, we compared the accuracy of SCAN [20], the top250

performing network, on original and contrast-reduced images with and without noise, and found that251

the latter produced more human-like responses in networks than the former.252

5 Results and discussion253

We now study how well human response patterns are matched with results from our computational254

models. Specifically, we analyze the accuracy ranges exhibited by each model type and correlate255

model accuracy with human response slopes.256
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Figure 5: Accuracy ranges of neural networks and
a comparison with human observers. The neu-
ral networks exhibit higher accuracies and smaller
accuracy ranges than human observers.

Comparing accuracy ranges. We analyze257

and compare human and neural network accu-258

racy ranges. In Figure 5, we show the range of259

accuracies shown by each model and the human260

average. We find that the accuracies achieved261

by all networks greatly exceed that of human262

observers (by greater than 15%). On the other263

hand, the accuracy range (i.e., difference be-264

tween maximum and minimum accuracies) is265

much higher in humans (51.37%) than in net-266

works. Across the neural network models, MS-267

DNet [21] offered the highest accuracy range268

(13.87%), followed by ConvRNN [18] (9.02%),269

and finally, SCAN [20] (4.34%). The large dif-270

ference in accuracy range between humans and networks is primarily because networks achieve high271

classification accuracies even with low computational effort. Larger accuracy ranges can therefore be272

obtained by reframing the task to make it more challenging.273

Varying task difficulty using image perturbations. Here, we explore how well machines can274

adapt to task difficulty by comparing the accuracy range of both humans and networks on perturbed275

images. Noise in perception experiments is used for assessing unpredictable variation in some aspect276

of stimulus [55], and we attempt to model the same effect in our experiments. We modify the277

recognition task by adding noise and blur to make it more challenging, and then analyze the effect.278

Image perturbations are useful for bench-marking human accuracy [56, 57]. Additionally, CIFAR-10279

is a relatively simple dataset on which the networks we considered performed well even at the most280

constrained settings (see Section 5). We therefore adjusted task difficulty by adding noise and blur to281

images, and retraining models with the perturbed training set. Figure 6 shows MSDNet’s tradeoff282

curves under various amounts of test-time image noise. It can be seen that at zero noise, lowering283

computation below the lowest possible number of FLOPS would result in a catastrophic drop from284

60% to chance. This is unlike humans whose accuracy drops more gracefully as allowed reaction285

time is lowered (Figure 1). Note that we conduct experiments primarily with grayscale images. We286

report the effect of color on human and network accuracy in Figure 7. We found that color improves287

the recognition accuracy for both humans and neural networks by only about 5% in both cases, and288

produced similar accuracy range patterns.289

Finally, we correlate network accuracy to average human accuracy at varying levels of noise or blur,290

and report Pearson’s r correlation coefficients in Figure 8a. To obtain an upper bound on correlations,291

we also correlate each human observer to the average human observer. Unlike previous work [18],292

which correlates only reaction time of humans and models, we report the correlation (Pearson’s r) of293

model accuracies across different FLOPS levels with human accuracies across different time budgets.294

This metric captures both accuracy and reaction time and hence allows for a more robust evaluation295

of the speed-accuracy tradeoff exhibited by humans and models.296

For blur, we find that the MSDNet [21] achieves the highest correlation to humans, followed by297

ConvRNN [18] and SCAN [20] while for noise, correlations of MSDNet and ConvRNN are both298

similar and higher than of SCAN. When comparing SCAN [20] models with different backbones,299

we find that decreasing the ResNet [54] backbone to ResNet-9 decreases the correlation. Similarly,300

choosing an over-parametrized ResNet-34 also adversely affects correlation (see Supplementary301

Material). It is important to point out the need for much higher noise to bring the network accuracy302
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down to the human level. This indicates that the neural networks are more tolerant to noise than303

human observers, once trained with noisy images.304

Table 2: Pairwise comparison of models in terms of their correlation with human data indicates that
most differences in correlation to humans observed in Figure 8 are statistically significant (p < 0.05).
Results were obtained using paired 2-tailed t-tests with Bonferroni correction. Model pairs with
check marks indicate significant difference in correlation at a particular perturbation level.

Model Pair
Human Noise SD Human Blur SD
0.0 0.04 0.16 0.0 1.0 3.0

Significant difference?
MSDNet - SCAN X X X X X X
MSDNet - ConvRNN X X X X X X
MSDNet - Human X X X X
SCAN - ConvRNN X X X X X X
SCAN - Human X X X X X X
ConvRNN - Human X X X X X

In Table 2, we report significance analysis of the above results, using paired 2-tailed t-tests, with305

Bonferroni correction to correct for multiple comparisons. A sample-size determination test showed306

that our sample size is large enough to draw all the above-mentioned conclusions [58]. Our analysis307

indicates that all of the comparison results discussed above are significant (p ≤ 0.05, corrected). The308

comparisons for which the t-test indicated non-significant correlation are MSDNet - Human (high309

noise and blur) and ConvRNN - Human (high blur). Given that these noise and blur values present a310

nearly impossible case for human observers, this is a reasonable finding.311

Extension to higher-resolution images. To evaluate the effect of increased resolution, we repeated312

our human and network experiments on STL-10 [2], a popular image recognition dataset. The STL-10313

images each have 96x96 pixels, where the CIFAR-10 images have only 32x32. STL-10 has 10 classes314

of image, like CIFAR-10, but has only 800 images per class, where CIFAR-10 has 6,000. SAT results315

on STL-10 are presented in Figure 9(a). We find that, with increased resolution, human accuracy316

improves, reaching a plateau of 70-75%, in comparison to 50-60% for CIFAR-10 (see Figure 1. This317

is consistent with earlier findings that people have trouble recognizing (low resolution) blocky images318

[59]. Corresponding correlations with the MSDNet network are shown in Figure 9(b), and show that319

the network performance correlates well with human results, and that the difference in correlation320

is not statistically significant. However, in this experiment, the accuracy range of MSDNet is small321

compared to human observers, see Figure 9(b). This finding shows that even though MSDNET322
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(a) Evaluation with noise. Human accuracy is considered for three noise patterns applied to images, distributed
as Gaussian noise with zero mean and standard deviation in {0, 0.04, 0.16}.
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(b) Evaluation with blur. Human accuracy is considered for three blur patterns applied to images, distributed as
Gaussian blur with zero mean and standard deviation in {0, 1.0, 3.0}.
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Figure 8: Correlation of network accuracy with human accuracy across network FLOPS and human
reaction time, respectively, evaluated at several levels of noise & blur. For a fair comparison, the
level of perturbation used during training is the same across all networks. During inference for
each network, the noise or blur level that elicits the highest correlation with humans is found and
shown above. MSDNet achieves the highest correlation with human observers in all testing scenarios.
Orange bars represent median correlation value. Vertical blue line is an extension of the median
correlation of humans with each other. Standard deviation for all correlations is shown.

achieved a high correlation, there remains a large gap in absolute performance between networks and323

humans.324

6 Conclusion325

Speed-accuracy tradeoff is an essential feature of human performance that is difficult to explain326

with current computational models of object recognition. We present a benchmark for timed object327

recognition by human observers, documenting their speed-accuracy tradeoff. We assess performance328

of several networks as models of SAT, and find that dynamic-depth neural networks are promising.329

To compare various networks with humans, we propose two metrics: (1) accuracy range and (2) the330

correlation of SAT between network and humans. The two metrics capture the magnitude of the331

model’s SAT and its similarity to the human SAT.332

One of the considered models, MSDNet [21], gives a better account than previous attempts [18],333

without the need for recurrence. In the presence of noise or blur, MSDNet accuracy deteriorates much334

as human accuracy does. When trained with noise (or blur), it shows a 0.93 (or 0.94) correlation335

with human accuracy. Finally, we test the effect of network-backbone architecture and determine that336

correlation to human accuracy typically does not increase with additional parameters.337
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Figure 9: Results on STL-10 [2] dataset. (a) Mean and standard deviation of accuracy and reaction
time across participants dataset. (b) Correlation between MSDNet and human performance. (c)
Accuracy range of MSDNet and humans.

While dynamic networks succeed in showing some speed-accuracy tradeoff, they achieve a much338

smaller range than humans do. The average human accuracy range is 51% while the best network,339

MSDNet trained with noise, achieves only a 19% range. With high perturbation, humans stumble and340

machines fall. This motivates future work that aims to build neural networks that can better match341

the flexibility and adaptability of human object recognition. Work in this direction is important in342

understanding human decision making and deploying machine-learning in time-sensitive applications.343

Applications of the above-described technology have potential benefits (addressing public health344

concerns — e.g. slow reading — and biases in computational models) and risks (facilitating the345

creation of bots that pass for humans for malicious purposes). Such concerns are shared by much346

research in computational modeling, and are outside the scope of this work.347
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