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Abstract

Large language models (LLMs) excel in natu-001
ral language processing but demand intensive002
computation. To mitigate this, various quanti-003
zation methods have been explored, yet they004
compromise LLM performance. This paper un-005
veils a previously overlooked type of outlier006
in LLMs. Such outliers are found to allocate007
most of the attention scores on initial tokens008
of input, termed as pivot tokens, which is cru-009
cial to the performance of quantized LLMs.010
Given that, we propose IntactKV to generate011
the KV cache of pivot tokens losslessly from012
the full-precision model. The approach is sim-013
ple and easy to combine with existing quan-014
tization solutions. Besides, INTACTKV can015
be calibrated as additional LLM parameters016
to boost the quantized LLMs further. Mathe-017
matical analysis also proves that INTACTKV018
effectively reduces the upper bound of quan-019
tization error. Empirical results show that IN-020
TACTKV brings consistent improvement and021
achieves lossless weight-only INT4 quantiza-022
tion on various downstream tasks, leading to023
the new state-of-the-art for LLM quantization.024

1 Introduction025

Large language models (LLMs) have achieved re-026

markable progress in various tasks and benchmarks027

in natural language processing (Brown et al., 2020;028

Bubeck et al., 2023; Touvron et al., 2023a; Team029

et al., 2023). Nonetheless, the rise of LLMs also030

increases computational intensity and memory re-031

quirements. This motivates various research to032

decrease the inference cost of LLMs, e.g., quanti-033

zaiton (Frantar et al., 2022; Shao et al., 2024; Lin034

et al., 2023), pruning (Frantar and Alistarh, 2023;035

Liu et al., 2023b; Sun et al., 2023), and speculative036

decoding (Chen et al., 2023; Leviathan et al., 2023;037

Cai et al., 2024), e.t.c.038

Among these methods, network quantization039

converts the network parameters or activations040

from floating-point to fixed-point formats, which is041

a popular technique to reduce the model size and 042

computational resources. Nevertheless, quantiza- 043

tion inevitably affects the performance of LLMs. 044

The leading cause comes from the outliers in LLM 045

activations, which are sensitive to network quanti- 046

zation (Dettmers et al., 2022; Xiao et al., 2023; Lin 047

et al., 2023). As workarounds, there are efforts to 048

either use mixed-precision formats (Dettmers et al., 049

2022) or re-scale network weights of the outlier 050

channels (Lin et al., 2023). These methods are all 051

built based on the premise that outliers persist in 052

fixed channels across all tokens. However, we find 053

this is not the case for all outliers in LLMs. 054

In this paper, we discover a new type of out- 055

lier that is overlooked by previous quantization 056

methods. These outliers exhibit extremely high 057

values at only the [BOS] and some other common 058

tokens (e.g., “,” and “.”) at the beginning of the 059

input, which is referred to as pivot tokens. We 060

find the extreme values of these outliers make the 061

self-attention concentrate on the pivot tokens, leav- 062

ing the rest of the tokens untouched. This is also 063

known as attention sinks (Xiao et al., 2024), which 064

is critical to the model performance (Xiao et al., 065

2024; Bondarenko et al., 2023). The effect of quan- 066

tization on these pivot tokens should be carefully 067

studied to improve the quantized LLMs. 068

Towards that end, we are motivated to propose 069

INTACTKV, a simple strategy that is orthogonal to 070

most existing quantization solutions. The key idea 071

behind INTACTKV is to generate the KV cache 072

of pivot tokens from the full-precision model. By 073

keeping the KV cache of pivot tokens intact, quan- 074

tization error accumulated on the output of self- 075

attention will be effectively alleviated in the rest 076

of the decoding steps. Moreover, INTACTKV can 077

also serve as extra trainable parameters in addition 078

to the LLM backbone. The calibration process of 079

INTACTKV follows the convention of PTQ (Bai 080

et al., 2022; Frantar et al., 2022; Lin et al., 2023), 081

which further decreases the quantization error. To 082
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clipped activation

(a) Output activations of
LLaMA-30B Layer 24

clipped activation

(b) Output activations of
LLaMA-2-7B Layer 24
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(c) Attention map of
LLaMA-30B Layer 24
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(d) Attention map of
LLaMA-2-7B Layer 24

Figure 1: Visualizations of Transformer output and attention scores of LLaMA-30B and LLaMA-2-7B. Observations:
(1) There are token-specific outliers that can be orders of magnitudes larger than the rest of the tokens (enlarged in the
box). Such tokens occur at the [BOS] token, the 28th token "’" in LLaMA-30B and 13th token "." in LLaMA-2-7B,
which are referred to as pivot tokens; (2) These outliers over pivot tokens make the attention scores concentrated on
themselves, which are likely to be affected by quantization. More details can be found in Appendix C.1.
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Figure 2: The mean squared error (MSE) of the last Transformer layer and attention layers w.r.t. the varying sizes of
INTACTKV. Observations: (1) The MSE continues to drop as the size of INTACTKV increases. (2) Including the
pivot tokens’ KV cache in INTACTKV leads to the most significant decrease in the quantization loss, demonstrating
the importance of the pivot tokens’ KV cache. More experiment details can be found in Appendix D.

get more insights from INTACTKV, we also pro-083

vide mathematical analysis and the results show084

that INTACTKV can effectively lower the upper085

bound of quantization error.086

Empirical results show that INTACTKV consis-087

tently improves the capability of quantized models088

on various open-sourced LLMs (e.g., LLaMA and089

Vicuna) and different downstream tasks such as C4,090

MMLU, commonsense QA, and MT-bench. When091

armed with AWQ (Lin et al., 2023), INTACTKV092

achieves new state-of-the-art quantization results,093

e.g., lossless INT4 weight-only quantization for094

Vicuna-v1.5 on commonsense QA tasks. More-095

over, fine-tuning INTACTKV with INT4 quanti-096

zation even matches the full-precision model on097

aligning with human preference, as evaluated by098

GPT-4 (Bubeck et al., 2023) on MT-bench.099

2 Motivation100

2.1 Preliminaries on LLM Quantization101

Network quantization is popularly studied in the102

literature of efficient LLMs (Frantar et al., 2022;103

Lin et al., 2023; Shao et al., 2024). It allows larger104

throughput by reducing the model size and leads105

to practical inference speedup. Given the full- 106

precision weight w, quantization aims to convert it 107

to the low-bit representation ŵ. The general b-bit 108

uniform quantization Qb(·) can be represented as 109

ŵ = Qb(w) = s ·ΠΩ(b)(w/s), (1) 110

where s is the quantization step size, and ΠΩ(b) is 111

the projection function onto the set of b-bit integers 112

Ω(b) = {0, 1, ..., 2b − 1}. While we mainly focus 113

on weight-only quantization, Equation 1 can be 114

similarly used to quantize activations and KV cache 115

of LLMs to increase the inference throughput (Xiao 116

et al., 2023; Shao et al., 2024; Hooper et al., 2024). 117

Following most existing works in LLM quan- 118

tization, we focus on post-training quantiza- 119

tion (PTQ) (Frantar et al., 2022; Lin et al., 2023), 120

since it does not introduce extra training overhead 121

as those in quantization-aware training (QAT) (Liu 122

et al., 2023a; Li et al., 2024). Quantization in- 123

evitably downgrades LLMs in low-bit settings, 124

where the outliers in quantized LLMs are found 125

to be the cause of the deterioration (Dettmers et al., 126

2022). In the next, we study the details of how 127

these outliers affect the LLM quantization. 128
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Full-precision LLM

USER INPUT: Please generate a story in 500 words

Quantized LLM

…

IntactKVs

…

The Rest KV Cache

System Prompt: [BOS] A chat between … intelligence assistant ... . USER:

Saved offline

[BOS] A USER: Please generate words …

Decoding

(a) The overview of INTACTKV.

#1 def inference(fp16_model, quantized_model,
#2 queries, prompt):
#3 # get IntactKV
#4 intactkv = fp16_model(
#5 input=prompt
#6 ).past_key_values
#7
#8 # discard the full-precision model
#9 del fp16_model
#10
#11 # inference with IntactKV
#12 outputs = []
#13 for query in queries:
#14 output = quantized_model(
#15 input=query[len(prompt):],
#16 past_key_values=intactkv
#17 )
#18 outputs.append(output)
#19
#20 return outputs

Algorithm: Pseudo code for Inference with IntactKV

(b) Pseudo Code of Inference.

Figure 3: The overview of the proposed INTACTKV applied for the supervised fine-tuned LLM. The full-precision
model takes the system prompt as input and generates the INTACTKV losslessly as the prefix concatenated with the
rest of the KV cache of quantized LLMs. INTACTKV can be further calibrated by minimizing the mean square error
L between the full-precision and quantized LLM.

2.2 Revisiting Outliers in LLMs129

We discover a new type of outlier that is spe-130

cific to particular tokens, which leads the atten-131

tion sink (Xiao et al., 2024) that is critical to the132

performance of LLMs.133

A New Variant of Outlier. Different from the134

outliers that persist in fixed channels across dif-135

ferent tokens (Dettmers et al., 2022; Xiao et al.,136

2023; Lin et al., 2023), we find a new variant of137

outlier that is only specific to some initial tokens138

of the input sequence. By visualizing the activa-139

tion of Transformer layer output in Figure 1a and140

Figure 1b, there exist peaks with magnitudes over141

1e3. These outliers can be hundreds of times larger142

than the previous outliers that persist in fixed chan-143

nels across all tokens, as enlarged in Figure 1a144

and Figure 1b. It is found that such huge outliers145

usually occur at the [BOS] token and some other146

uninformative tokens (e.g., "." or ",") at partic-147

ular channels, regardless of the rest of the input148

sequence. More visualizations can be found in Ap-149

pendix C. We thus name these tokens pivot tokens150

given their dominating values in the activation.151

Pivot Tokens Exhibit Attention Sinks. We hy-152

pothesize that the outliers over these pivot tokens153

may propagate to queries and keys in the self-154

attention. Consequently, the attention scores will155

be concentrated on these pivot tokens than the rest156

ones, a.k.a attention sinks (Xiao et al., 2024). To157

verify the hypothesis, we plot the attention scores158

in Figure 1c and Figure 1d. It can be found that159

the pivot tokens indeed dominate the attention 160

scores, especially for the first token (i.e., [BOS] ). 161

This corresponds to the observations in attention 162

sinks (Xiao et al., 2024), which are empirically 163

verified to be critical to the model performance. 164

The recent study by (Bondarenko et al., 2023) also 165

shows that concentrating on these tokens naturally 166

helps the attention head do nothing but simply a 167

partial update of the residual. In the decoding stage 168

of LLMs, all generated tokens need to interact with 169

pivot tokens through self-attention. However, as 170

mentioned in Section 2.1, network quantization 171

would inevitably distort the output from the full- 172

precision model. The concentrated scores of pivot 173

tokens thus can be further deviated by quantization, 174

which downgrades the model performance. 175

3 Method 176

In this section, we introduce INTACTKV, a sim- 177

ple and easy-to-implement method to improve the 178

quantized LLMs. The key idea behind this is to 179

keep the KV cache of the pivot tokens intact, i.e., 180

without any distortion raised by quantization. An 181

overview of our method can be found in Figure 3. 182

3.1 Preserving the KV Cache of Pivot Tokens 183

According to Section 2.2, the attention sinks of 184

pivot tokens are likely to deteriorate by quantiza- 185

tion. To alleviate this issue, we propose INTAC- 186

TKV, a simple and effective strategy to keep these 187

pivot tokens intact. Specifically, as illustrated in 188

Figure 3a, we leverage the full-precision LLM to 189
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generate the lossless KV cache of pivot tokens,190

which is saved offline. The quantized LLM then191

loads INTACTKV as the prefix to concatenate with192

the rest of the KV cache and continues with the reg-193

ular auto-regressive decoding. The pseudo code of194

the inference scheme with INTACTKV is presented195

in Figure 3b.196

In order to study the benefits of INTACTKV, we197

conduct a preliminary test on the mean square er-198

ror (MSE) of the attention and transformer layer199

output. From Figure 2, it is natural that the increas-200

ing size of INTACTKV gives the monotonically201

decreasing MSE on both the attention and trans-202

former layers. More importantly, it is found the203

same tokens in Section 2.2 (e.g., [BOS] and other204

delimiter tokens) give the most significant decrease205

on the MSE, which demonstrates the importance of206

their KV cache. This aligns with the observations207

in Figure 1 that pivot tokens exhibit outliers with208

extreme values and attention sinks.209

The Choice of Pivot Tokens and INTACTKV. It210

is the key design to choose the pivot tokens and the211

associated INTACTKV. Given the observations in212

Figure 2, one can naively pick pivot tokens with the213

most MSE reduction for INTACTKV. However, this214

is in fact not the case. Since INTACTKV acts as the215

prefix to the KV cache of quantized LLMs, it must216

start from the very first token, and be consecutive in217

length. This ensures it to be input agnostic, and the218

full-precision LLMs can be safely discarded once219

INTACTKV is generated. Next, we provide practi-220

cal solutions to this problem for different LLMs.221

• For pre-trained LLMs, we propose the INTAC-222

TKV of size one that only contains [BOS] KV223

cache. It is a convention to prepend [BOS] to224

the input of pre-trained LLMs. Moreover, as225

illustrated in Section 2, [BOS] is the pivot to-226

ken with extreme outlier and attention scores.227

Besides, the KV cache of [BOS] has a great228

impact on the MSE of the quantized model.229

Employing a lossless [BOS] KV cache is thus230

believed to decrease the quantization loss.231

• For supervised fine-tuned (SFT) models,232

when the input follows the system prompt, we233

argue that extending INTACTKV to the same234

length of the system prompt can further im-235

prove quantized LLMs. In addition to [BOS],236

other tokens appearing at the beginning of237

the input sequence also have the potential to238

serve as pivot tokens (see Figure 1). The sys-239

tem prompt is usually prepended to the input, 240

which allows it to cover more pivot tokens. As 241

shown in Figure 2, remedying the quantiza- 242

tion error of these pivot tokens’ KV cache can 243

be helpful to compensate for the quantization 244

error. We find that for Vicuna models, system 245

prompt is enough to cover all the pivot tokens, 246

more details can be found in Appendix C.3. 247

Overhead of INTACTKV. Finally, we highlight 248

that INTACTKV does not introduce extra latency 249

overhead during inference. Besides, as INTACTKV 250

is pre-computed, the pre-filling stage of the quan- 251

tized LLMs can be accelerated as well. The mem- 252

ory overhead to save INTACTKV is also negligible 253

compared with the LLM backbone. For instance, 254

there are only 34 tokens of the system prompt for 255

Vicuna-v1.5-7B, and thus INTACTKV takes only 256

0.13% of the LLM model parameters. 257

3.2 INTACTKV as Trainable Parameters 258

Since INTACTKV is pre-computed and saved of- 259

fline, it can be treated as extra trainable parameters 260

aside from the LLM backbone to further boost the 261

quantized LLMs. Despite there being no informa- 262

tion loss at the pivot tokens, the quantization may 263

still introduce errors to the KV cache during the de- 264

coding stage. As shown in Figure 3a, we calibrate 265

INTACTKV to compensate for the quantization er- 266

ror accumulated in the following tokens. While 267

there are various metrics to characterize the quanti- 268

zation discrepancy (Frantar et al., 2022; Shao et al., 269

2024; Liu et al., 2023a), we adopt the mean square 270

error of the transformer layer output between the 271

full-precision LLM and quantized LLM, a simple 272

yet most widely used metric, i.e., 273

L(Θ) =
1

2

L∑
l=1

∥fl(w,x)− fl(ŵ,x; Θ)∥22, (2) 274

where Θ denotes the set of INTACTKV, fl is the 275

mapping function for the l-th Transformer layer, 276

and L is the number of Transformer layers in 277

LLM. x is the input sequence, while w, ŵ are 278

full-precision and quantized weights respectively. 279

Note that the full-precision model is only required 280

during the calibration process, and it can be then 281

discarded afterward. It is empirically found that 282

calibration of system prompt INTACTKV in SFT 283

models generally gives more improvement than the 284

calibration of [BOS] token in pre-trained LLMs. 285

This matches the intuition that a larger size of IN- 286

4



TACTKV increases the potential to compensate for287

quantization errors.288

As we focus on the post-training quantization,289

the training of INTACTKV is highly lightweight290

since the only learnable parameters introduced are291

INTACTKV, i.e., the KV cache of pivot tokens. It292

takes only as few as 20 epochs on a calibration293

set with 128 samples. Besides, training with a294

quantized model further lowers the memory cost.295

3.3 Theoretical Analysis296

In this section, we provide a theoretical view of how297

the proposed INTACTKV benefits the quantized298

LLM. For the clarity of presentation, our analysis is299

built on the self-attention module of a Transformer300

layer, while it can be readily extended to the FFN301

module and multiple layers.302

Specifically, we denote K,V ∈ Rn×d as the303

KV cache during the decoding stage, and q ∈ Rd304

is the query vector, where n and d are the sequence305

length and head dimension. Recall that the output306

of each attention head h ∈ Rd is computed as307

h = softmax(qK⊤/
√
d)V WO, (3)308

where WO ∈ Rd×d is the weight matrix of the pro-309

jection layer. By quantizing the LLMs, there will310

be errors accumulated on the KV cache, denoted as311

∆K,∆V ∈ Rn×d. Therefore, we are interested in312

showing how ∆K and ∆V are propagated to the313

change of attention head ∆h, and to what extent314

INTACTKV alleviates the distortion.315

Theorem 1. Given the query vector q ∈ Rd and316

the change of KV caches ∆K,∆V ∈ Rn×d, the317

change of the attention head ∆h is bounded by318

∥∆h∥2 ≤C1∥∆K∥2,∞∥∆V ∥F +319

+ C2∥∆K∥2,∞ + C3∥∆V ∥F ,320

where C1 = n3/2
√
d
C3∥q∥2, C2 = C1∥V ∥2 and321

C3 = ∥WO∥2.322

The proof to Theorem 1 can be found in Ap-323

pendix A. We preserve the terms w.r.t. ∆K and324

∆V of interests, and leave the rest as constants.325

Note that ∆K can be further separated by the326

pivot tokens ∆Kp and rest tokens ∆K\p, and sim-327

ilar notations hold for ∆V . Therefore, we have328

∥∆K∥2,∞ = max
(
∥∆Kp∥2,∞, ∥∆K\p∥2,∞

)
,329

and ∥∆V ∥F =
√
∥∆Vp∥2F + ∥∆V\p∥2F . With330

INTACTKV we have ∥∆Kp∥2,∞ = ∥∆Vp∥F = 0331

since they are generated losslessly, which decreases332

the upper bound of ∥∆h∥2. Moreover, it can fur- 333

ther reduce the bound by incorporating more pivot 334

tokens. This also aligns with the observation in 335

Figure 2 that a larger size of INTACTKV gives a 336

lower MSE of the attention module. 337

4 Experiments 338

4.1 Settings 339

Models. We evaluate the proposed INTACTKV 340

on various sizes of open-sourced LLMs, including 341

LLaMA (Touvron et al., 2023a) (7B-65B), LLaMA- 342

2 (Touvron et al., 2023b) (7B-70B), Vicuna-v1.3 343

(7B-33B) and Vicuna-v1.5 (Touvron et al., 2023b) 344

(7B-13B). We denote models that keep intact 345

[BOS] KV as INTACTKV[B], and models that keep 346

intact system prompt KV as INTACTKV[P]. 347

Quantization Methods. We mainly consider 348

weight-only quantization methods, including 349

round-to-nearest quantization (RTN), GPTQ (Fran- 350

tar et al., 2022), the state-of-the-art OmniQuant 351

(Shao et al., 2024) and AWQ (Lin et al., 2023). For 352

GPTQ, we use AutoGPTQ1 with C4 calibration 353

set following GPTQ paper (Frantar et al., 2022) to 354

reproduce all results. For AWQ2 and OmniQuant3, 355

we directly load the officially released quantization 356

parameters of LLaMA models for evaluation and 357

reproduce results on Vicuna models with their offi- 358

cial code. We use Pile (Gao et al., 2020) calibration 359

set for AWQ and WikiText2 (Merity et al., 2016) 360

calibration set for OmniQuant, following (Lin et al., 361

2023; Shao et al., 2024). We adopt asymmetric 362

group-wise quantization with a group size of 128 363

and mainly focus on INT3 and INT4 quantization 364

since INT8 is empirically lossless on various task 365

metrics (Dettmers et al., 2022). 366

While INTACTKV can be readily combined with 367

these existing quantization methods, we mainly 368

apply INTACTKV for AWQ in the main experi- 369

ments due to the space limitation and the state-of- 370

the-art performance of AWQ. We shall provide a 371

more comprehensive evaluation of combining IN- 372

TACTKV with other quantization methods in Sec- 373

tion 4.3. Moreover, aside from weight-only quanti- 374

zation, the proposed INTACTKV can be similarly 375

applied for KV cache quantization, as detailed in 376

Section 4.4. Nonetheless, it is non-trivial to ap- 377

ply INTACTKV for activation quantization, since 378

the quantization over KV cache cannot keep them 379

1https://github.com/AutoGPTQ/AutoGPTQ
2https://github.com/mit-han-lab/llm-awq
3https://github.com/OpenGVLab/OmniQuant
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Method LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

FP16 7.36 6.82 6.15 5.83 7.11 6.58 5.59

RTN 9.15 7.89 6.85 6.33 8.79 7.43 6.12
GPTQ 8.59 7.49 6.73 6.29 9.41 7.25 6.27
OmniQuant 8.24 7.38 6.64 6.17 8.21 7.23 5.96
AWQ 8.26 7.38 6.59 6.16 8.12 7.15 5.91
+INTACTKV[B] 8.12 7.36 6.54 6.12 8.00 7.12 5.89

Table 1: INT3-group128 quantization results of LLaMA and LLaMA-2 Models on C4 dataset.

Model Method MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg. Hums STEM Social Others Avg.

Vicuna-v1.5-13B

FP16 50.48% 43.70% 62.72% 62.74% 54.54% 51.97% 44.96% 65.26% 62.40% 55.78%

RTN 46.61% 41.32% 58.92% 57.53% 50.69% 47.14% 42.81% 59.38% 58.17% 51.44%
GPTQ 48.35% 40.99% 59.25% 57.99% 51.38% 49.63% 43.04% 60.22% 60.09% 52.95%
OmniQuant 49.52% 41.22% 59.47% 57.74% 51.82% 49.12% 44.40% 60.48% 58.95% 52.86%
AWQ 48.82% 41.72% 61.03% 58.30% 52.16% 49.52% 43.01% 61.72% 58.73% 52.92%
+INTACTKV[B] 49.31% 42.18% 61.20% 59.28% 52.68% 50.31% 43.37% 61.91% 59.93% 53.58%

Table 2: INT3-group128 quantization results of Vicuna-v1.5-13B on 0-shot and 5-shot MMLU benchmarks.

Task Acc MMLU (5 shot) average Common Sense QA (0 shot) average

Vicuna Family v1.5-7B v1.5-13B v1.3-7B v1.3-13B v1.3-33B v1.5-7B v1.5-13B v1.3-7B v1.3-13B v1.3-33B

FP16 49.84% 55.78% 47.12% 52.10% 59.30% 65.33% 68.38% 64.52% 67.22% 69.53%

RTN 44.62% 51.44% 39.33% 44.56% 53.18% 60.99% 65.40% 59.13% 63.23% 67.19%
GPTQ 43.99% 52.95% 40.12% 47.83% 55.84% 58.09% 65.78% 59.80% 64.03% 66.68%
OmniQuant 46.54% 52.86% 43.18% 47.92% 55.12% 61.73% 65.23% 61.08% 64.81% 67.58%
AWQ 46.45% 52.92% 43.08% 48.56% 56.09% 61.86% 66.01% 60.94% 64.53% 67.67%
+INTACTKV[B] 46.87% 53.58% 44.67% 49.05% 56.91% 62.49% 66.93% 61.93% 65.02% 67.90%

Table 3: INT3-group128 quantization results of various Vicuna models on 5-shot MMLU and 0-shot QA tasks.

intact. We leave it as future work and more discus-380

sions are provided in Section 6.381

Evaluation. For pre-trained LLMs (i.e., LLaMA382

and LLaMA-2), we report the perplexity (PPL) of383

language generation on C4 (Raffel et al., 2020)384

and WikiText2 (Merity et al., 2016) dataset. For385

SFT models (i.e., Vicuna-v1.3 and v1.5), we con-386

duct evaluation over a wide range of downstream387

tasks. We test the zero and five-shot performance388

on the Massively Multitask Language Understand-389

ing (MMLU) (Hendrycks et al., 2020) benchmark.390

Meanwhile, we also evaluate seven zero-shot com-391

monsense QA tasks: OBQA (Mihaylov et al.,392

2018), WinoGrande (Sakaguchi et al., 2021), ARC-393

Challenge, ARC-Easy (Clark et al., 2018), BoolQ394

(Clark et al., 2019), HellaSwag (Zellers et al.,395

2019), and LAMBADA (Paperno et al., 2016). Ad-396

ditionally, we evaluate quantized Vicuna on MT-397

bench (Zheng et al., 2023), a high-quality dataset398

consisting of 80 open-ended multi-turn questions,399

to gauge their alignment with human preferences.400

The responses generated by quantized models are401

judged by GPT-4 with a total score of 10. More402

evaluation details can be found in Appendix E.403

Implementation Details For evaluation on PPL, 404

MMLU, and commonsense QA tasks, we adopt 405

INTACTKV[B] that only includes [BOS] KV since 406

the input sequence of these tasks does not use any 407

system prompt. For evaluation of SFT models on 408

MT-bench, we adopt INTACTKV[P] to keep an in- 409

tact system prompt KV cache. The system prompt 410

of Vicuna can be found in Appendix B. For training 411

the cached INTACTKV, we randomly sample 128 412

samples from ShareGPT4 dataset as our calibration 413

dataset, consisting of multi-turn ChatGPT (Ope- 414

nAI, 2022) conversations. The layer-wise MSE 415

defined in Equation 2 is calculated on the response 416

of ChatGPT. We use AdamW optimizer with learn- 417

ing rate 2×10−4, training for 160 optimizer update 418

steps with a gradient accumulation step of 16, i.e., 419

20 epochs. As mentioned in Section 3.2, training 420

INTACTKV[B] leads to comparable performance 421

compared with vanilla INTACTKV. Instead, the 422

calibration of INTACTKV[P] has more potential 423

to improve quantized LLMs with longer system 424

prompt. Thus, we primarily evaluate the trainable 425

4https://huggingface.co/datasets/Aeala/
ShareGPT_Vicuna_unfiltered
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Model #bits Method OBQA WinoGrande ARC-C ARC-E BoolQ HellaSwag LAMBADA Avg

Vicuna-v1.5-13B

FP16 - 45.40% 71.51% 50.68% 74.87% 85.29% 77.50% 73.43% 68.38%

w3g128

RTN 42.00% 70.01% 47.44% 72.77% 82.20% 74.18% 69.20% 65.40%
GPTQ 42.40% 69.53% 48.46% 71.84% 83.76% 74.48% 70.00% 65.78%
OmniQuant 43.40% 68.51% 47.53% 71.09% 82.32% 73.92% 69.84% 65.23%
AWQ 44.00% 68.75% 48.21% 71.76% 83.58% 75.09% 70.68% 66.01%
+INTACTKV[B] 45.40% 70.32% 48.38% 72.14% 85.20% 75.23% 71.86% 66.93%

w4g128

RTN 44.20% 70.80% 48.98% 73.82% 84.68% 76.36% 73.04% 67.41%
GPTQ 45.80% 70.96% 50.51% 73.99% 85.47% 76.70% 73.43% 68.12%
OmniQuant 43.80% 70.24% 49.74% 73.61% 84.59% 76.35% 72.54% 67.27%
AWQ 44.00% 72.06% 49.15% 73.44% 85.17% 77.00% 72.77% 67.66%
+INTACTKV[B] 45.40% 73.09% 49.57% 74.45% 85.66% 77.32% 72.75% 68.32%

Table 4: Quantization results of Vicuna-v1.5-13B on seven 0-shot commonsense QA tasks.

#bits Method Vicuna-v1.5-7B Vicuna-v1.5-13B

FP16 - 5.31 5.52

w3g128

RTN 4.34 5.13
OmniQuant 4.78 5.05
AWQ 4.74 5.17
+INTACTKV[P] 4.68 5.34
+INTACTKV[P]+FT 4.84 5.44

w4g128

RTN 5.18 5.47
OmniQuant 5.09 5.48
AWQ 5.22 5.28
+INTACTKV[P] 5.32 5.35
+INTACTKV[P]+FT 5.36 5.50

Table 5: GPT-4 evaluation of quantized Vicuna-v1.5
models on MT-Bench. The scores are on a scale of 10.

INTACTKV[P] with system prompt as pivot tokens426

in the following experiments.427

4.2 Main Results428

Results on Language Generation Tasks. We429

first integrate our proposed INTACTKV with AWQ430

on LLaMA and LLaMA-2 models. The effect of431

this integration on model performance was mea-432

sured by the perplexity (PPL) metric, with results433

on the C4 dataset detailed in Table 1, and results434

on the WikiText2 dataset in Appendix F.1. As indi-435

cated in these tables, INTACTKV notably enhances436

the generative capabilities of AWQ-quantized mod-437

els across various sizes, consistently surpassing438

the prior state-of-the-art (SOTA) method, Omni-439

Quant. These findings demonstrate the efficacy of440

INTACTKV in improving quantized LLMs and par-441

ticularly highlight the effectiveness of utilizing the442

KV cache from full-precision models.443

Results on MMLU Tasks. For SFT models, we444

implement INTACTKV on the AWQ-quantized Vi-445

cuna models and evaluate the multi-task problem-446

solving ability on the MMLU benchmark. Table447

2 presents the detailed zero-shot and five-shot re-448

sults for Vicuna-v1.5-13B. The results demonstrate449

that INTACTKV significantly enhances the perfor-450

#bits Method Vicuna-v1.5-7B Vicuna-v1.5-13B

FP16 - 5.31 5.52

w3g128

RTN 4.34 5.13
+INTACTKV[P] 4.72 5.27
+INTACTKV[P]+FT 4.73 5.30

OmniQuant 4.78 5.05
+INTACTKV[P] 4.94 5.10
+INTACTKV[P]+FT 4.85 5.24

AWQ 4.74 5.17
+INTACTKV[P] 4.68 5.34
+INTACTKV[P]+FT 4.84 5.44

Table 6: Compatibility of INTACTKV with various quan-
tization methods. The scores are on a scale of 10.

mance of the AWQ-quantized model across all cat- 451

egories of tasks for Vicuna-v1.5-13B. Moreover, 452

the performance of other model sizes under the 453

five-shot setting is outlined in Table 3. Remarkably, 454

AWQ+INTACTKV exhibits superior performance 455

over OmniQuant, achieving an average improve- 456

ment of 1.09% across five model sizes. More re- 457

sults on MMLU are provided in Appendix F.2. 458

Results on Commonsense QA Tasks. We fur- 459

ther evaluate the quantized Vicuna models on 460

zero-shot commonsense QA tasks. The results 461

of Vicuna-v1.5-13B, as detailed in Table 4, indi- 462

cate that INTACTKV enables significant improve- 463

ments over AWQ. Notably, our AWQ+INTACTKV 464

largely surpasses GPTQ and OmniQuant, espe- 465

cially under low-bit quantization. Additionally, 466

Table 3 presents the average accuracy for vari- 467

ous sizes of Vicuna models. In these evaluations, 468

our AWQ+INTACTKV consistently achieves the 469

best zero-shot performance, which strongly demon- 470

strates the efficacy of our proposed INTACTKV. 471

More results on Commonsense QA tasks can be 472

found in Appendix F.3. 473

Results on MT-Bench. To evaluate the quantized 474

models’ generation capabilities in multi-turn con- 475

versations and their alignment with human pref- 476

erences, we use GPT-4 to score the responses of 477
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Figure 4: Results of KV cache quantization with different bit-widths on 5-shot MMLU benchmark. Note that this is
additional to INT3/4 weight quantization. Blue and red lines indicate quantizing model weights to INT3 and INT4,
respectively. More experiment details can be found in Appendix G.

quantized models on MT-Bench. On MT-bench,478

we further fine-tune INTACTKV, denoted as IN-479

TACTKV+FT. As shown in Table 5, our INTAC-480

TKV+FT significantly boosts the quantized model481

and consistently surpasses the GPTQ and Omni-482

Quant for both INT3-g128 and INT4-g128 settings.483

For example, the 3-bit Vicuna-v1.5-13B quantized484

by AWQ has been improved from 5.17 to 5.34 by485

using the INTACTKV, which can be further boosted486

to 5.44 with further fine-tuning. Remarkably, with487

trainable INTACTKV, the setting of INT4-g128488

even matches the full-precision model, while all489

other methods still lag behind the full-precision490

model by a considerable margin. These results491

demonstrate the effectiveness of treating INTAC-492

TKV as trainable parameters. Notably, the train-493

ing process for the 7B model takes only 10 min-494

utes on one NVIDIA H800 GPU, which is quite495

lightweight.496

4.3 INTACTKV with Other PTQ Methods497

To assess INTACTKV’s compatibility with differ-498

ent quantization methods, we build INTACTKV499

upon various PTQ methods (i.e., RTN, OmniQuant,500

and AWQ) and evaluate on MT-bench with INT3-501

g128 quantization. As shown in Table 6, integrat-502

ing different PTQ methods with INTACTKV can503

lead to an average boost of 0.16 in the final score504

for Vicuna-v1.5-7B, and 0.12 for Vicuna-v1.5-505

13B. Fine-tuning INTACTKV further improves the506

performance of quantized models. Our INTAC-507

TKV+FT consistently surpasses the performance508

of original quantized models for all three differ-509

ent quantization methods, raising the final score by510

0.19 for Vicuna-v1.5-7B and 0.21 for Vicuna-v1.5-511

13B on average. These findings validate INTAC-512

TKV’s capability of acting as a lightweight plugin,513

consistently improving various quantized models514

with negligible extra costs.515

4.4 Extension to KV Cache Quantization 516

INTACTKV can be readily applied to KV cache 517

quantization to further decrease memory require- 518

ments. Similar to weight-only quantization, the 519

quantized KV cache needs to be de-quantized be- 520

fore the matrix multiplication. Nonetheless, the 521

proposed INTACTKV is kept in FP16 since it is 522

more sensitive to quantization. Also, the concate- 523

nation between the FP16 INTACTKV and the rest 524

de-quantized KV cache incurs negligible extra over- 525

head. From Figure 4, INTACTKV notably improves 526

AWQ across different models and KV cache bit 527

widths under the INT3 weight quantization. For 528

INT4 weight quantization, INTACTKV still gains 529

an average accuracy increase of 0.27% over AWQ. 530

We also notice that quantizing the KV cache to 531

INT8 leads to almost no performance drop on the 532

MMLU benchmark. When equipped with INTAC- 533

TKV, INT8 KV cache can even surpass vanilla 534

AWQ-quantized models with FP16 KV cache, es- 535

pecially under INT3 weight quantization. 536

5 Conclusions 537

In this paper, we propose INTACTKV, a simple and 538

easy-to-combine method to improve large language 539

model quantization. The research is motivated by 540

the previously overlooked outliers over pivot to- 541

kens, which lead to attention sinks that are critical 542

to the performance of quantized LLMs. By gener- 543

ating INTACTKV with the full-precision model, the 544

quantization error accumulated over the attention 545

scores can be effectively alleviated. INTACTKV 546

can also be calibrated as additional parameters to 547

the LLM backbone, further improving the quan- 548

tized LLMs. Experiments show that combining 549

the proposed INTACTKV gives consistent improve- 550

ment on various sizes of LLMs and across multiple 551

downstream tasks, leading to new state-of-the-art 552

results for large language model quantization. 553
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6 Limitations554

Firstly, it is non-trivial to integrate INTACTKV into555

activation quantization. For activation quantiza-556

tion, the whole KV cache needs to be quantized to557

low bits to exploit integer multiplications in self-558

attention, which contradicts our idea of keeping559

pivot tokens’ KV cache intact. Since INTACTKV560

is treated as extra cached parameters, a straight-561

forward solution is to quantize INTACTKV with562

suitable quantization methods such as GPTQ. We563

leave this as future work. Secondly, more experi-564

ments may be needed for LLM evaluation. LLMs565

are being applied to a wide range of tasks, posing566

high demands on various model abilities. When567

quantizing LLMs to low bits, these abilities may be568

affected to varying degrees. Therefore, a compre-569

hensive evaluation is required to gauge the capabil-570

ities of quantized LLMs. Although we experiment571

on several downstream tasks, such as PPL, MMLU,572

commonsense QA, and MT-bench, we note that this573

may not be enough to assess all abilities of LLMs.574

For example, how long context affects quantized575

models still remains unknown.576

7 Ethics Statement577

The development of LLM quantization techniques578

can further democratize LLMs, lowering the costs579

of LLM serving and enabling more people to get ac-580

cess to advanced AI assistants. Nonetheless, LLM581

itself may inherit certain social biases from training582

data concerning gender, race, etc. Quantization can583

not mitigate such biases. Therefore, caution must584

be taken when using quantized LLMs.585
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A Proof of Theorem 1765

Proof. Denote the output of the softmax function766

as the score s, i.e., s = softmax(qK
⊤

√
d
), and also767

define the error output from the softmax function768

as ∆s. To show the error of the attention head, we769

first justify how the error propagates from the score770

to the attention head.771

∥∆h∥2 =
∥∥[(s+∆s)(V +∆V )− sV ]WO

∥∥
2

772

≤ (∥∆s∥2∥V +∆V ∥2 + ∥s∥2∥∆V ∥2) ∥W
O∥2773

≤
(
∥∆s∥2(∥V ∥2+∥∆V ∥F ) + ∥∆V ∥F

)
∥WO∥2,774

where the inequalities are because775

∥x+ y∥2 ≤ ∥x∥2+∥y∥2, ∥sV ∥2 ≤ ∥s∥2∥V ∥2,776

and ∥s∥2 ≤ ∥s∥1 = 1, ∥V ∥2 ≤ ∥V ∥F .777

Next, we characterize the error of score ∥∆s∥2.778

This is not easy as the error propagates through779

the softmax function. To proceed, we need the780

relative condition number of the softmax function.781

As indicated in (Blanchard et al., 2021),782

∥softmax(x+∆x)−softmax(x)∥∞
∥softmax(x)∥∞

≤κ(x)
∥∆x∥∞
∥x∥∞

,783

where κ(x) = n∥x∥∞ (x ∈ Rn) is an upper784

bound of the relative condition number of the soft-785

max function. Let x = qK⊤/
√
d and ∆x =786

q∆K⊤/
√
d, we have787

∥∆s∥∞
∥s∥∞

≤ n∥∆x∥∞ ≤ n√
d
∥q∥2∥∆K∥2,∞.788

Considering that the output of the softmax function789

is a probability, we have ∥s∥∞ ≤ 1. Therefore, we790

obtain791

∥∆s∥2 ≤
√
n∥∆s∥∞ ≤ n2/3

√
d
∥q∥2∥∆K∥2,∞.792

Combining the above ingredients, we derive the793

main results of the Theorem 1.794

795

B System Prompt of Vicuna Models796

[BOS] A chat between a curious user and an artificial intelligence 
assistant. The assistant gives helpful, detailed, and polite answers 
to the user’s questions. USER:

Figure 5: System Prompt of Vicuna Models.

C Visualization of Activations and 797

Attention Map 798

C.1 Implementation Details 799

We use ShareGPT dataset for our visualizations, 800

where each sample starts with Vicuna system 801

prompt of length 34. We use a randomly sampled 802

sequence of length 128 to visualize the output acti- 803

vations and plot the corresponding attention map 804

of the first 64 tokens. The attention score is mean 805

pooled over different heads. 806

C.2 Visualization of LLaMA Models 807

We provide more visualizations of the output ac- 808

tivations and attention map of LLaMA models in 809

Figure. 6–12. Similar to our observations in Sec- 810

tion 2, we find that pivot tokens only appear at the 811

very beginning of the input sequence, and [BOS] al- 812

ways serves as a pivot token. 813

C.3 Visualization of Vicuna Models 814

We provide more visualizations of the output ac- 815

tivations and attention map of Vicuna models in 816

Figure. 13–17. Although Vicuna models demon- 817

strate stronger performance than LLaMA models 818

of the same size, we are surprised to find that the 819

position of pivot tokens remains unchanged for 820

Vicuna and LLaMA models of the same size. Be- 821

sides, as shown in Figure. 13–17, we find that the 822

Vicuna system prompt is enough to cover all the 823

pivot tokens in all Vicuna models. 824

D Experiment Details of Figure 2 825

We plot the quantization loss of the last Trans- 826

former layer as well as the total quantization loss 827

of all attention layers with respect to the size of 828

INTACTKV on four different models, i.e., LLaMA- 829

13B, LLaMA-30B, LLaMA-2-7B, and LLaMA- 830

2-70B, covering different model types and model 831

sizes. We use lossless INTACTKV generated by 832

the full-precision model to quantify the effect of 833

INTACTKV on the quantized model. INTACTKV 834

of size s can ensure that the KV cache of the first 835

s tokens of the input sequence is generated by the 836

full-precision model and thus lossless. Quantiza- 837

tion loss is computed with MSE loss between the 838

output activations of the quantized model and the 839

full-precision model. We sample 128 sequences 840

from the ShareGPT dataset to construct the val- 841

idation set, each with a common prompt prefix 842

of length 34. MSE loss is calculated on the to- 843

kens after the common prompt prefix. We quantize 844
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Method LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

FP16 5.69 5.08 4.09 3.52 5.12 4.57 3.12

RTN 6.98 5.88 4.84 4.22 6.21 5.17 3.74
GPTQ 6.62 5.68 4.75 4.20 6.68 5.14 3.79
OmniQuant 6.18 5.46 4.57 4.00 5.77 4.96 3.58
AWQ 6.34 5.53 4.60 3.95 5.82 4.97 3.53
+INTACTKV[B] 6.23 5.49 4.54 3.89 5.73 4.95 3.50

Table 7: INT3-group128 quantization results of LLaMA and LLaMA-2 Models on WikiText2 dataset.

Model Method
MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg. Hums STEM Social Others Avg.

Vicuna-v1.5-7B

FP16 45.40% 38.67% 56.16% 55.92% 48.74% 45.78% 39.50% 58.14% 57.46% 49.84%

RTN 42.06% 34.16% 50.47% 50.59% 44.17% 40.68% 38.60% 50.31% 50.56% 44.62%
GPTQ 39.89% 33.00% 48.10% 48.46% 42.19% 40.30% 36.28% 50.76% 50.09% 43.99%
OmniQuant 42.57% 35.98% 51.64% 53.55% 45.68% 42.95% 37.57% 53.59% 53.39% 46.54%
AWQ 42.08% 35.55% 51.61% 51.54% 44.95% 42.55% 38.93% 53.10% 52.78% 46.45%

+INTACTKV[B] 42.42% 35.42% 51.71% 51.57% 45.06% 42.95% 38.60% 54.37% 53.15% 46.87%

Vicuna-v1.5-13B

FP16 50.48% 43.70% 62.72% 62.74% 54.54% 51.97% 44.96% 65.26% 62.40% 55.78%

RTN 46.61% 41.32% 58.92% 57.53% 50.69% 47.14% 42.81% 59.38% 58.17% 51.44%
GPTQ 48.35% 40.99% 59.25% 57.99% 51.38% 49.63% 43.04% 60.22% 60.09% 52.95%
OmniQuant 49.52% 41.22% 59.47% 57.74% 51.82% 49.12% 44.40% 60.48% 58.95% 52.86%
AWQ 48.82% 41.72% 61.03% 58.30% 52.16% 49.52% 43.01% 61.72% 58.73% 52.92%

+INTACTKV[B] 49.31% 42.18% 61.20% 59.28% 52.68% 50.31% 43.37% 61.91% 59.93% 53.58%

Vicuna-v1.3-7B

FP16 44.31% 36.28% 53.23% 53.70% 46.71% 44.23% 38.34% 53.82% 53.15% 47.12%

RTN 38.09% 31.58% 42.35% 44.32% 39.06% 36.81% 32.77% 43.87% 44.79% 39.33%
GPTQ 39.09% 32.57% 44.59% 46.73% 40.66% 36.94% 33.90% 45.08% 45.81% 40.12%
OmniQuant 41.36% 33.96% 47.42% 47.69% 42.56% 41.15% 35.45% 48.20% 48.58% 43.18%
AWQ 40.49% 32.44% 47.06% 49.57% 42.29% 39.64% 36.22% 48.72% 49.11% 43.08%

+INTACTKV[B] 41.76% 32.94% 47.74% 49.72% 43.01% 41.93% 36.58% 50.37% 50.77% 44.67%

Vicuna-v1.3-13B

FP16 47.89% 39.96% 58.86% 57.34% 50.77% 49.78% 40.46% 60.61% 58.24% 52.10%

RTN 42.06% 32.87% 47.61% 49.51% 43.02% 42.42% 34.46% 50.34% 51.57% 44.56%
GPTQ 45.06% 35.88% 52.23% 51.26% 46.09% 45.82% 37.57% 54.83% 53.64% 47.83%
OmniQuant 43.29% 36.65% 51.64% 53.05% 45.95% 45.29% 37.84% 55.02% 54.38% 47.92%
AWQ 45.14% 36.18% 52.55% 53.79% 46.84% 46.65% 37.64% 55.54% 54.87% 48.56%

+INTACTKV[B] 45.91% 36.65% 53.75% 54.60% 47.64% 46.57% 38.40% 56.03% 55.95% 49.05%

Vicuna-v1.3-33B

FP16 53.73% 44.14% 67.63% 63.54% 56.98% 57.66% 46.32% 69.32% 64.25% 59.30%

RTN 49.88% 40.13% 61.33% 58.42% 52.26% 51.26% 42.54% 61.75% 57.71% 53.18%
GPTQ 51.22% 40.03% 61.85% 59.47% 53.05% 54.05% 44.04% 64.35% 61.35% 55.84%
OmniQuant 51.14% 42.08% 63.60% 59.84% 53.93% 53.77% 43.80% 63.47% 59.69% 55.12%
AWQ 51.69% 42.74% 63.41% 61.38% 54.57% 54.56% 44.10% 65.36% 60.67% 56.09%

+INTACTKV[B] 52.09% 42.68% 63.70% 62.03% 54.91% 55.79% 44.90% 65.62% 61.47% 56.91%

Table 8: INT3-group128 quantization results of Vicuna models on 0-shot and 5-shot MMLU benchmarks.

the model weights to 3 bits using round-to-nearest845

quantization with a group size of 128.846

E Evaluation Details847

PPL. We evaluate PPL following the new eval-848

uation setting in GPTQ official code5, except that849

we substitute the first token of each text segment850

with [BOS] token to evaluate the performance of851

INTACTKV.852

MMLU. We evaluate MMLU following the orig-853

inal MMLU implementation6 for 0-shot and 5-shot854

5https://github.com/ist-daslab/gptq
6https://github.com/hendrycks/test/pull/13

tasks. We note that when using Vicuna, it is consid- 855

ered more appropriate to fit the input sequences into 856

the Vicuna system prompt. However, the original 857

MMLU implementation does not use the Vicuna 858

system prompt for Vicuna models. In our experi- 859

ments on Vicuna models, we find that naively fit- 860

ting the original MMLU prompt into the Vicuna 861

system prompt will harm the final accuracy. Since 862

prompt engineering is out of scope for this paper, 863

we choose to follow the original evaluation setting 864

that does not use the Vicuna system prompt for 865

MMLU evaluation on Vicuna models. 866

Common Sense Reasoning Tasks. For the seven 867

zero-shot common sense reasoning tasks, we adopt 868
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Model Method
MMLU (0 shot) MMLU (5 shot)

Hums STEM Social Others Avg. Hums STEM Social Others Avg.

Vicuna-v1.5-7B

FP16 45.40% 38.67% 56.16% 55.92% 48.74% 45.78% 39.50% 58.14% 57.46% 49.84%

RTN 44.65% 38.47% 53.95% 54.41% 47.61% 44.87% 39.13% 56.45% 55.34% 48.59%
GPTQ 44.87% 37.08% 54.44% 53.86% 47.37% 45.44% 38.83% 57.33% 56.14% 49.10%
OmniQuant 45.61% 38.70% 55.64% 56.23% 48.78% 45.21% 38.77% 57.17% 57.37% 49.25%
AWQ 45.08% 37.41% 55.64% 55.31% 48.11% 45.44% 38.97% 56.94% 55.74% 48.95%

+INTACTKV[B] 45.25% 37.51% 55.93% 55.58% 48.31% 45.33% 39.60% 57.36% 55.74% 49.14%

Vicuna-v1.5-13B

FP16 50.48% 43.70% 62.72% 62.74% 54.54% 51.97% 44.96% 65.26% 62.40% 55.78%

RTN 50.01% 43.41% 62.33% 62.00% 54.06% 51.31% 43.14% 63.54% 61.63% 54.61%
GPTQ 50.20% 42.31% 61.62% 61.41% 53.60% 50.10% 43.97% 62.72% 61.01% 54.07%
OmniQuant 50.01% 43.70% 62.33% 62.00% 54.12% 51.67% 43.87% 63.34% 61.81% 54.89%
AWQ 50.10% 42.94% 61.68% 61.66% 53.77% 52.31% 44.43% 63.18% 61.84% 55.20%

+INTACTKV[B] 50.14% 42.84% 61.78% 61.91% 53.84% 52.31% 44.37% 63.67% 61.91% 55.31%

Vicuna-v1.3-7B

FP16 44.31% 36.28% 53.23% 53.70% 46.71% 44.23% 38.34% 53.82% 53.15% 47.12%

RTN 42.78% 36.55% 51.74% 51.48% 45.41% 42.23% 37.08% 52.10% 51.94% 45.53%
GPTQ 43.40% 34.46% 52.06% 53.45% 45.70% 43.78% 36.41% 53.49% 52.41% 46.32%
OmniQuant 42.81% 34.72% 52.26% 52.00% 45.26% 43.21% 37.81% 52.62% 53.24% 46.43%
AWQ 43.53% 36.22% 53.01% 52.53% 46.11% 43.36% 37.74% 53.46% 52.68% 46.52%

+INTACTKV[B] 43.57% 36.51% 52.29% 53.27% 46.20% 43.51% 37.44% 53.17% 52.62% 46.43%

Vicuna-v1.3-13B

FP16 47.89% 39.96% 58.86% 57.34% 50.77% 49.78% 40.46% 60.61% 58.24% 52.10%

RTN 47.16% 39.00% 56.52% 56.63% 49.64% 49.25% 39.63% 57.85% 57.74% 51.03%
GPTQ 46.95% 39.30% 57.39% 56.23% 49.74% 49.05% 39.46% 59.02% 57.65% 51.16%
OmniQuant 47.93% 39.50% 57.98% 57.31% 50.48% 49.18% 39.86% 59.41% 58.14% 51.49%
AWQ 48.03% 39.43% 56.94% 56.76% 50.15% 49.44% 40.49% 59.57% 57.65% 51.63%

+INTACTKV[B] 47.91% 39.60% 57.69% 56.79% 50.31% 49.54% 40.23% 60.12% 57.71% 51.74%

Vicuna-v1.3-33B

FP16 53.73% 44.14% 67.63% 63.54% 56.98% 57.66% 46.32% 69.32% 64.25% 59.30%

RTN 53.18% 44.27% 66.88% 62.95% 56.52% 56.73% 45.73% 68.09% 62.49% 58.18%
GPTQ 52.92% 44.90% 67.05% 63.66% 56.77% 57.13% 45.96% 67.63% 63.11% 58.41%
OmniQuant 53.22% 44.73% 67.53% 63.05% 56.80% 56.68% 45.46% 68.67% 62.49% 58.24%
AWQ 53.22% 44.40% 67.63% 63.54% 56.87% 56.85% 45.69% 68.80% 63.66% 58.65%

+INTACTKV[B] 53.37% 44.40% 67.50% 63.63% 56.91% 57.07% 45.96% 68.51% 63.63% 58.70%

Table 9: INT4-group128 quantization results of Vicuna models on 0-shot and 5-shot MMLU benchmarks.

the open-sourced lm-evaluation-harness7 library869

for evaluation. Similar to PPL evaluation, to as-870

sess the performance of INTACTKV, we prepend871

[BOS] token to the beginning of each input se-872

quence. For the evaluation of Vicuna models,873

we also follow the evaluation protocol in lm-874

evaluation-harness and do not use a system prompt.875

MT-bench. MT-bench employs a GPT-4 model876

to score the generated content. In our experiments,877

we find that the score given by GPT-4 can vary for878

the same content even when the generation tem-879

perature of GPT-4 is set to 0. Besides, content880

generation for the writing and roleplay category881

has a relatively high generation temperature of 0.7,882

which also results in variations in the final score. To883

faithfully assess the performance of the quantized884

model, we run the content generation process of885

each model 3 times with random seeds 42, 43, and886

44. We report the mean score of three trials as the887

final score in Table 5 and Table 6. Also, we note888

7https://github.com/EleutherAI/
lm-evaluation-harness

that GPT-4-Turbo has been shown to be smarter 889

than GPT-48, and in our experiments, we find that 890

GPT-4-Turbo can give more stable score than GPT- 891

4. Therefore, we evaluate the generation results on 892

MT-bench with the latest gpt-4-0125-preview API 893

(i.e., GPT-4-Turbo) provided by OpenAI to further 894

reduce variations in the final score. 895

F More Experiment Results 896

F.1 PPL Results on WikiText2 897

As shown in Table 7, AWQ+INTACTKV consis- 898

tently improves AWQ for every model on the Wiki- 899

Text2 dataset and outperforms OmniQuant for five 900

out of seven models. We note that OmniQuant uses 901

the WikiText2 dataset as a calibration set, while 902

AWQ uses Pile dataset, which may give Omni- 903

Quant a bonus for PPL evaluation on the WikiText2 904

dataset. 905

8https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard
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Model #bits Method OBQA WinoGrande ARC-C ARC-E BoolQ HellaSwag LAMBADA Avg

Vicuna-V1.5-7B

FP16 - 45.00% 69.53% 45.73% 71.25% 80.92% 73.78% 71.12% 65.33%

w3g128

RTN 39.40% 66.22% 43.34% 67.72% 77.40% 71.71% 61.17% 60.99%
GPTQ 37.80% 63.30% 41.81% 64.73% 74.46% 65.97% 58.57% 58.09%
OmniQuant 41.40% 66.22% 43.52% 67.26% 77.13% 70.35% 66.23% 61.73%
AWQ 40.80% 67.01% 43.34% 67.55% 78.32% 71.03% 64.97% 61.86%

+INTACTKV[B] 42.20% 67.64% 41.98% 68.52% 79.02% 71.24% 66.82% 62.49%

w4g128

RTN 43.80% 68.82% 45.39% 70.33% 81.10% 73.31% 69.09% 64.55%
GPTQ 44.40% 69.93% 44.71% 70.45% 80.76% 73.72% 70.29% 64.89%
OmniQuant 43.00% 68.75% 44.28% 70.50% 81.01% 72.82% 70.10% 64.35%
AWQ 43.40% 68.75% 45.39% 70.66% 81.35% 73.43% 69.47% 64.64%

+INTACTKV[B] 44.00% 68.90% 45.90% 71.63% 82.29% 73.52% 69.61% 65.12%

Vicuna-v1.5-13B

FP16 - 45.40% 71.51% 50.68% 74.87% 85.29% 77.50% 73.43% 68.38%

w3g128

RTN 42.00% 70.01% 47.44% 72.77% 82.20% 74.18% 69.20% 65.40%
GPTQ 42.40% 69.53% 48.46% 71.84% 83.76% 74.48% 70.00% 65.78%
OmniQuant 43.40% 68.51% 47.53% 71.09% 82.32% 73.92% 69.84% 65.23%
AWQ 44.00% 68.75% 48.21% 71.76% 83.58% 75.09% 70.68% 66.01%

+INTACTKV[B] 45.40% 70.32% 48.38% 72.14% 85.20% 75.23% 71.86% 66.93%

w4g128

RTN 44.20% 70.80% 48.98% 73.82% 84.68% 76.36% 73.04% 67.41%
GPTQ 45.80% 70.96% 50.51% 73.99% 85.47% 76.70% 73.43% 68.12%
OmniQuant 43.80% 70.24% 49.74% 73.61% 84.59% 76.35% 72.54% 67.27%
AWQ 44.00% 72.06% 49.15% 73.44% 85.17% 77.00% 72.77% 67.66%

+INTACTKV[B] 45.40% 73.09% 49.57% 74.45% 85.66% 77.32% 72.75% 68.32%

Vicuna-V1.3-7B

FP16 - 43.80% 69.46% 44.54% 71.89% 78.07% 73.93% 69.98% 64.52%

w3g128

RTN 41.00% 64.64% 39.08% 65.03% 75.81% 68.59% 59.73% 59.13%
GPTQ 39.60% 64.17% 42.24% 65.95% 72.63% 70.36% 63.65% 59.80%
OmniQuant 42.00% 67.88% 40.02% 66.75% 75.41% 70.52% 64.97% 61.08%
AWQ 41.60% 67.96% 38.65% 65.95% 76.36% 71.27% 64.76% 60.94%

+INTACTKV[B] 43.60% 68.43% 39.16% 67.30% 77.28% 71.20% 66.54% 61.93%

w4g128

RTN 41.80% 67.80% 44.45% 69.91% 75.57% 73.25% 67.26% 62.86%
GPTQ 44.20% 68.75% 43.60% 70.88% 75.20% 73.39% 69.42% 63.63%
OmniQuant 42.40% 68.98% 44.03% 71.04% 76.97% 73.19% 69.49% 63.73%
AWQ 42.80% 67.09% 43.43% 71.34% 76.36% 73.46% 68.78% 63.32%

+INTACTKV[B] 43.80% 68.59% 42.92% 71.84% 76.79% 73.49% 69.57% 63.86%

Vicuna-V1.3-13B

FP16 - 45.40% 71.03% 47.70% 73.70% 82.81% 77.00% 72.91% 67.22%

w3g128

RTN 42.20% 69.77% 44.03% 68.14% 80.52% 73.28% 64.68% 63.23%
GPTQ 42.00% 68.35% 44.88% 70.08% 80.67% 74.24% 68.00% 64.03%
OmniQuant 43.60% 70.56% 44.62% 70.66% 81.28% 74.13% 68.79% 64.81%
AWQ 42.60% 68.75% 45.90% 69.57% 80.80% 74.78% 69.30% 64.53%

+INTACTKV[B] 43.20% 69.46% 46.16% 69.74% 81.80% 75.11% 69.67% 65.02%

w4g128

RTN 43.80% 71.19% 47.01% 72.64% 82.35% 76.19% 71.22% 66.34%
GPTQ 44.60% 70.01% 47.87% 73.32% 82.23% 76.55% 71.78% 66.62%
OmniQuant 45.80% 71.35% 46.08% 72.14% 82.35% 76.34% 71.38% 66.49%
AWQ 44.00% 70.01% 46.67% 72.64% 82.66% 76.43% 71.74% 66.31%

+INTACTKV[B] 45.60% 71.19% 47.10% 73.32% 82.72% 76.95% 71.38% 66.89%

Vicuna-V1.3-33B

FP16 - 47.80% 74.35% 51.79% 74.71% 83.91% 80.38% 73.74% 69.53%

w3g128

RTN 46.00% 72.45% 49.83% 71.63% 82.75% 77.86% 69.82% 67.19%
GPTQ 44.40% 72.14% 47.61% 69.65% 83.49% 77.60% 71.86% 66.68%
OmniQuant 45.60% 73.32% 47.95% 72.52% 83.58% 78.05% 72.06% 67.58%
AWQ 45.40% 72.77% 50.77% 72.56% 82.42% 78.33% 71.45% 67.67%

+INTACTKV[B] 44.80% 73.56% 51.11% 72.60% 82.78% 78.55% 71.90% 67.90%

w4g128

RTN 46.60% 73.95% 51.96% 74.07% 83.43% 80.01% 73.43% 69.06%
GPTQ 47.00% 73.48% 50.85% 73.06% 83.67% 80.31% 72.50% 68.70%
OmniQuant 47.60% 73.72% 51.96% 73.32% 83.58% 79.85% 73.57% 69.09%
AWQ 46.20% 73.40% 50.60% 73.53% 84.04% 79.91% 73.39% 68.72%

+INTACTKV[B] 45.60% 73.24% 50.94% 74.12% 84.28% 79.70% 73.14% 68.72%

Table 10: Quantization results of Vicuna models on seven 0-shot commonsense QA tasks.

F.2 MMLU Results906

We provide INT3-g128 quantization results on907

MMLU in Table 8, and INT4-g128 quantization908

results on MMLU in Table 9. For INT3-g128 quan-909

tization, AWQ+INTACTKV consistently improves910

AWQ in every experiment setting and outperforms911

OmniQuant for nine out of ten settings. For INT4-912

g128 quantization, AWQ+INTACTKV leads to rela- 913

tively less improvement over AWQ on the MMLU 914

benchmark compared with INT3-g128 quantiza- 915

tion, but still outperforms AWQ in nine out of ten 916

experiment settings, and performs on par with Om- 917

niQuant on MMLU. 918
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Model Download URL

LLaMA-2-7B https://huggingface.co/meta-llama/Llama-2-7b
LLaMA-2-13B https://huggingface.co/meta-llama/Llama-2-13b
LLaMA-2-70B https://huggingface.co/meta-llama/Llama-2-70b
Vicuna-v1.3-7B https://huggingface.co/lmsys/vicuna-7b-v1.3
Vicuna-v1.3-13B https://huggingface.co/lmsys/vicuna-13b-v1.3
Vicuna-v1.3-33B https://huggingface.co/lmsys/vicuna-33b-v1.3
Vicuna-v1.5-7B https://huggingface.co/lmsys/vicuna-7b-v1.5
Vicuna-v1.5-13B https://huggingface.co/lmsys/vicuna-13b-v1.5

Table 11: Download links to officially released LLMs.

F.3 Commonsense QA Results919

We conduct experiments on seven zero-shot com-920

monsense QA tasks for the Vicuna family with921

both INT3-g128 and INT4-g128 quantization. The922

results are shown in Table 10. For INT3-g128 quan-923

tization, AWQ+INTACTKV significantly surpasses924

all baselines in all experiment settings. For INT4-925

g128 quantization, AWQ+INTACTKV consistently926

improves AWQ and outperforms OmniQuant in927

four out of five experiment settings, demonstrating928

the necessity for keeping an intact KV cache for929

pivot tokens.930

G Experiment Details of KV Cache931

Quantization932

We apply asymmetric per-head dynamic quantiza-933

tion to the KV cache. When combined with INTAC-934

TKV, we still keep INTACTKV in FP16 while the935

KV cache of other tokens in low bit, which only in-936

duces negligible memory overhead compared with937

quantizing the entire KV cache to low bits since938

INTACTKV only contains the KV cache of a few939

tokens.940

H Links to Officially Released LLMs941

We provide download links to some officially re-942

leased LLMs used in our experiments in Table 11.943
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(a) Output activations of
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(c) Output activations of
LLaMA-7B Layer 16

(d) Output activations of
LLaMA-7B Layer 24

0 10 20 30 40 50 60

0

10

20

30

40

50

60

5

10

15

20

25

30

(e) Attention map of
LLaMA-7B Layer 0

0 10 20 30 40 50 60

0

10

20

30

40

50

60

5

10

15

20

25

30

(f) Attention map of
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(g) Attention map of
LLaMA-7B Layer 16
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(h) Attention map of
LLaMA-7B Layer 24

Figure 6: Magnitude of the output activations and attention map in LLaMA-7B.

(a) Output activations of
LLaMA-13B Layer 8

(b) Output activations of
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(c) Output activations of
LLaMA-13B Layer 24

(d) Output activations of
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(e) Attention map of
LLaMA-13B Layer 8
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(f) Attention map of
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(g) Attention map of
LLaMA-13B Layer 24
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(h) Attention map of
LLaMA-13B Layer 32

Figure 7: Magnitude of the output activations and attention map in LLaMA-13B.
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(a) Output activations of
LLaMA-30B Layer 8

(b) Output activations of
LLaMA-30B Layer 24

(c) Output activations of
LLaMA-30B Layer 40

(d) Output activations of
LLaMA-30B Layer 56
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(e) Attention map of
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(f) Attention map of
LLaMA-30B Layer 24
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(g) Attention map of
LLaMA-30B Layer 40
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(h) Attention map of
LLaMA-30B Layer 56

Figure 8: Magnitude of the output activations and attention map in LLaMA-30B.

(a) Output activations of
LLaMA-65B Layer 16

(b) Output activations of
LLaMA-65B Layer 32

(c) Output activations of
LLaMA-65B Layer 48

(d) Output activations of
LLaMA-65B Layer 64

0 10 20 30 40 50 60

0

10

20

30

40

50

60

10

20

30

40

50

60
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(f) Attention map of
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(g) Attention map of
LLaMA-65B Layer 48
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(h) Attention map of
LLaMA-65B Layer 64

Figure 9: Magnitude of the output activations and attention map in LLaMA-65B.
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(a) Output activations of
LLaMA-2-7B Layer 0

(b) Output activations of
LLaMA-2-7B Layer 8

(c) Output activations of
LLaMA-2-7B Layer 16

(d) Output activations of
LLaMA-2-7B Layer 24
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(e) Attention map of
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(f) Attention map of
LLaMA-2-7B Layer 8
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(g) Attention map of
LLaMA-2-7B Layer 16
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(h) Attention map of
LLaMA-2-7B Layer 24

Figure 10: Magnitude of the output activations and attention map in LLaMA-2-7B.

(a) Output activations of
LLaMA-2-13B Layer 8

(b) Output activations of
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(c) Output activations of
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(d) Output activations of
LLaMA-2-13B Layer 32

0 10 20 30 40 50 60

0

10

20

30

40

50

60
5

10

15

20

25

30

35

40

(e) Attention map of
LLaMA-2-13B Layer 8
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(f) Attention map of
LLaMA-2-13B Layer 16
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(g) Attention map of
LLaMA-2-13B Layer 24
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(h) Attention map of
LLaMA-2-13B Layer 32

Figure 11: Magnitude of the output activations and attention map in LLaMA-2-13B.
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(a) Output activations of
LLaMA-2-70B Layer 16

(b) Output activations of
LLaMA-2-70B Layer 32

(c) Output activations of
LLaMA-2-70B Layer 48

(d) Output activations of
LLaMA-2-70B Layer 64
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(e) Attention map of
LLaMA-2-70B Layer 16
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(f) Attention map of
LLaMA-2-70B Layer 32
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(g) Attention map of
LLaMA-2-70B Layer 48
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(h) Attention map of
LLaMA-2-70B Layer 64

Figure 12: Magnitude of the output activations and attention map in LLaMA-2-70B.

(a) Output activations of
Vicuna-v1.3-7B Layer 0

(b) Output activations of
Vicuna-v1.3-7B Layer 8

(c) Output activations of
Vicuna-v1.3-7B Layer 16

(d) Output activations of
Vicuna-v1.3-7B Layer 24
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(f) Attention map of
Vicuna-v1.3-7B Layer 8
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(g) Attention map of
Vicuna-v1.3-7B Layer 16
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(h) Attention map of
Vicuna-v1.3-7B Layer 24

Figure 13: Magnitude of the output activations and attention map in Vicuna-v1.3-7B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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(a) Output activations of
Vicuna-v1.3-13B Layer 8

(b) Output activations of
Vicuna-v1.3-13B Layer 16

(c) Output activations of
Vicuna-v1.3-13B Layer 24

(d) Output activations of
Vicuna-v1.3-13B Layer 32
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(e) Attention map of
Vicuna-v1.3-13B Layer 8
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(f) Attention map of
Vicuna-v1.3-13B Layer 16

0 10 20 30 40 50 60

0

10

20

30

40

50

60
5

10

15

20

25

30

35

40

(g) Attention map of
Vicuna-v1.3-13B Layer 24
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(h) Attention map of
Vicuna-v1.3-13B Layer 32

Figure 14: Magnitude of the output activations and attention map in Vicuna-v1.3-13B. The tokens before the red
dashed line correspond to the Vicuna system prompt.

(a) Output activations of
Vicuna-v1.3-33B Layer 8

(b) Output activations of
Vicuna-v1.3-33B Layer 24

(c) Output activations of
Vicuna-v1.3-33B Layer 40

(d) Output activations of
Vicuna-v1.3-33B Layer 56
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(f) Attention map of
Vicuna-v1.3-33B Layer 24

0 10 20 30 40 50 60

0

10

20

30

40

50

60

10

20

30

40

50

(g) Attention map of
Vicuna-v1.3-33B Layer 40
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(h) Attention map of
Vicuna-v1.3-33B Layer 56

Figure 15: Magnitude of the output activations and attention map in Vicuna-v1.3-33B. The tokens before the red
dashed line correspond to the Vicuna system prompt.

20



(a) Output activations of
Vicuna-v1.5-7B Layer 0

(b) Output activations of
Vicuna-v1.5-7B Layer 8

(c) Output activations of
Vicuna-v1.5-7B Layer 16

(d) Output activations of
Vicuna-v1.5-7B Layer 24
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(e) Attention map of
Vicuna-v1.5-7B Layer 0
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(f) Attention map of
Vicuna-v1.5-7B Layer 8
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(g) Attention map of
Vicuna-v1.5-7B Layer 16
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(h) Attention map of
Vicuna-v1.5-7B Layer 24

Figure 16: Magnitude of the output activations and attention map in Vicuna-v1.5-7B. The tokens before the red
dashed line correspond to the Vicuna system prompt.

(a) Output activations of
Vicuna-v1.5-13B Layer 8

(b) Output activations of
Vicuna-v1.5-13B Layer 16

(c) Output activations of
Vicuna-v1.5-13B Layer 24

(d) Output activations of
Vicuna-v1.5-13B Layer 32
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(e) Attention map of
Vicuna-v1.5-13B Layer 8

0 10 20 30 40 50 60

0

10

20

30

40

50

60
5

10

15

20

25

30

35

40

(f) Attention map of
Vicuna-v1.5-13B Layer 16
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(g) Attention map of
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(h) Attention map of
Vicuna-v1.5-13B Layer 32

Figure 17: Magnitude of the output activations and attention map in Vicuna-v1.5-13B. The tokens before the red
dashed line correspond to the Vicuna system prompt.
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