Learning Reusable Manipulation Strategies

1

Jiayuan Mao' Joshua B. Tenenbaum

Abstract— Humans demonstrate an impressive ability to
acquire and generalize manipulation “tricks.” Even from a
single demonstration, such as using soup ladles to reach for
distant objects, we can apply this skill to new scenarios involving
different object positions, sizes, and categories (e.g., forks and
hammers). Additionally, we can flexibly combine various skills
to devise long-term plans. In this paper, we present a framework
that enables machines to acquire such manipulation skills,
referred to as “mechanisms,’ through a single demonstration and
self-play. Our key insight lies in interpreting each demonstration
as a sequence of changes in robot-object and object-object
contact modes, which provides a scaffold for learning detailed
samplers for continuous parameters. These learned mechanisms
and samplers can be seamlessly integrated into standard task
and motion planners, enabling their compositional use.

I. INTRODUCTION

Humans possess an exceptional ability to acquire and
generalize manipulation “strategies.” Even from a single
demonstration of using a soup ladle to reach a distant object
(Fig. 1a), we can generalize and reuse this strategy in various
novel scenarios: to different object positions and sizes, and
even to diverse object categories like forks and hammers.
Furthermore, humans can combine these strategies to devise
long-term plans, perhaps using a soup ladle to hook an apple,
place it into a bag, and move the bag to a shelf, dramatically
expanding the scope of our manipulation abilities.

A salient feature of these strategies is that they can be
expressed as a sequence of basis manipulation operations,
characterized by varying contact modes between robots and
objects. For example, as illustrated in Fig. 1b and c, the “hook-
using” strategy comprises a series of four contact modes: the
free movement of the arm, tool grasping while applying
contact force between the tool and the target, tool placement,
and ultimately, target grasping. The continuous parameters
of these operations, in principle, can be produced by generic
samplers and motion planners, but planning in terms of these
generic basis operations can be very slow due to a long
planning horizon with substantial branching due to choice of
basis operations and continuous parameters.

To tackle these challenges, this paper presents a framework
that equips machines with the ability to learn, generalize,
and reuse such manipulation strategies, referred to as “mech-
anisms,” through a single demonstration and subsequent self-
play in a distribution of target problems. The key insight
driving our framework is the characterization of each mech-
anism as a sequence of contact mode changes between the
robot and objects, complemented by a specialized sampler that
generates grasps, contacts, and trajectories tailored specifically

1Massachusetts Institute of Technology
Project page: https://concepts.jiayuanm.com/projects/mechanisms/

Tomés Lozano-Pérez! Leslie Pack Kaelbling!

for the mechanism. Our framework takes an explanation-
based learning approach [1], [2], departing from conventional
methods that learn policies or parameterized trajectories
from large numbers of demonstrations. In particular, our
framework extracts an abstract representation that explains
the underlying contact interactions between objects from the
demonstration, then during the self-play stage of mechanism
learning, the agent explores feasible actions that align with the
demonstrated contact mode sequence, generalizing to different
objects and initial configurations. Leveraging successful trials
from self-play, we train samplers that are tuned specifically
for each mechanism. The learned mechanisms and samplers
can then be recombined to efficiently devise long-horizon
plans for novel goals in novel environments, by reducing the
effective search horizon and focusing the sampling process.

This formulation introduces a significant capacity for
generalization via abstraction and compositionality: by ex-
tracting the contact-mode sequence from the demonstration,
we retain its most causally important aspects while abstracting
away many irrelevant details, and by representing learned
mechanisms in a form similar to basis operations, we are
able to leverage general-purpose task-and-motion planners to
obtain a truly compositional system. The contributions of this
paper are: a novel representation of complex manipulation
actions in terms of mechanisms, an algorithm for learning
new mechanisms from a single demonstration and subsequent
self-play, and a planning framework for integrating new
mechanisms with other manipulation primitives, including
those that are briefly dynamic [3], to solve novel problems.

II. RELATED WORK

Approaches toward manipulation with primitives have been
extensively studied in the field of robotics. These approaches
can be roughly grouped into two groups: sampling-based
[4], [5], [6], [7], [8], and global optimization-based [9],
[10]. Our method is sampling-based, and we extend existing
approaches to handle briefly-dynamic tasks, and focus on
learning mechanisms to improve planning in complex tasks.

Our algorithm draws inspiration from contact-based mod-
eling approaches in robot manipulation. In particular, various
methods have been presented to make manipulation plans in
the contact space, between rigid bodies and robots [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

Some mechanisms acquired by our model have been
traditionally described as rool-use skills [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32]. In comparison to these
works, we presented a novel framework for generating tool
use trajectories with a planner and contact sampling. We learn
mechanisms from a single demonstration recombined them.

https://concepts.jiayuanm.com/projects/mechanisms/

(a) Demonstration of using a soup
ladle to reach for the spoon

(b) The contact mode graph between
objects, with continuous parameters.

Initial State

ntact
Grasp upport
Grasp Ladle @ @ ® Floor

Hook Spoon

rt
Place Ladle
Contact: (p,n)
Floor Grasp
Support: (p,n) Grasp Spoon @ @ Floor
Support

(¢) A sequence of contact mode graphs in the process of
using the soup ladle to reach for the spoon.

Fig. 1: A single demonstration can teach a reusable multi-step manipulation strategy.

ITII. PLANNING WITH CONTACTS AND MECHANISMS

Our framework is based on hybrid task and motion planning.
We begin with a small set of generic basis manipulation oper-
ations corresponding to different contact mode families [21]
between robot and objects (Table I1I). Sequences of these basis
operations form a rich class of manipulation strategies, such
as using soup ladles to reach for distant objects up. In theory,
a complete search algorithm could discover such strategies
and find sequences of them to solve difficult novel problems,
without any demonstrations at all. However, planning at this
level is inefficient to the point of infeasibility. Therefore, in
this paper, we will learn “macros” of basis operations, using a
compatible representation that will allow learned mechanisms
to, themselves, be composed to solve harder problems.

A. Basic Domain Representation

We adopt a representation similar to those used in the
task and motion planning (TAMP) literature [33]. Formally,
given a space S of world states, a TAMP problem can be
defined as a tuple (S, so,G, A, T). Here, so € S is initial
state. G C S represents the goal specification, often expressed
as a logical expression (e.g., holding(Spoon)). A denotes a set
of continuously parameterized actions, such as grasping and
placing objects. Finally, 7 is a partial environmental transition
model 7 : S x A — S. Each action a is parameterized by
two functions: the precondition function pre, and the effect
function eff,. For any state s € S and action a € A, if
pre,(s) holds, then T (s, a) = eff,(s).

State representation. An environmental state is represented
as a tuple s = (Us, Ps). Us denotes a set of objects (including
the robot), and we assume it is fixed during the execution
of actions. Objects in U; will be referred to using names
such as SoupLadle and Floor. The set P, contains state
variables. Each state variable contains a predicate name (e.g.,
pose), a list of object arguments (e.g., SoupLadle), and a
value (e.g., the pose of the soup ladle in SE(3)). In addition
to shapes and pose variables, Ps also contains two sets of
variables to represent the contact mode graph: holding(?x)
and support(?x, ?y), where ?x and ?y are instantiated with all
objects in U,. These variables describe whether the robot is

holding an object ?x and whether the object ?x is supported
by ?y, respectively®.

Basis operators. The basis operators are parameterized op-
erator schemas,(name, args, precond, effect, sampler), where
name is the name of the schema, args is a list of arguments,
including both object arguments and continuous parameters.
These continuous values can be generated by invoking the
sampler, possibly conditioned on other aspects of the state,
such as the shapes of the objects involved. The precondition
precond and effect effect are logical expressions over variables
in args and will be evaluated at the current state. A schema can
be grounded into a concrete basis operation a by specifying
its arguments. See Table III and Figure Fig. 2a for the list
and examples and Appendix A and B for more discussions
about the operators and the samplers, respectively.

B. Mechanisms

A manipulation mechanism is defined as a sequence
of basis operations with a specialized sampler, in or-
der to accelerate planning with generic basis operations.
Formally, each mechanism is represented as a tuple of
(args, precond, certified, actions, sampler). args is a set of
arguments. precond is the initial contact mode graph including
holding and support relations. certified is the goal of the
mechanism, which usually specifies the final contact mode
graph. actions is an ordered list of primitive operations.
sampler is the specialized sampler that can generate con-
tinuous parameters for all basis operations in actions. Fig. 2b
illustrates the definition of the “hook-use” mechanism. In
this case, three objects are involved: the tool object (e.g.,
the soup ladle), the target object (e.g., the spoon), and the
support object (e.g., the floor). The goal of the mechanism is
to grasp the target object that was initially out of reach. This
macro contains a sequence of four basis operations: grasping
the tool from the support, moving while holding the tool and
“indirectly” pushing the target object, placing the tool back
to the support, and finally grasping the target object. It also
has an associated sampler that generates feasible grasps of
the tool and contacts between the tool and the target object.

“Following the STRIPS convention, we will be using names such as ?x
and ?y for variables and strings such as SoupLadle for objects.

raction move-with-contact
:parameters (?tool - item ?target - item ?support - item
?param - contact-move-param ?qt - trajectory)
:precondition (and
(holding ?tool)
(support ?target ?support)
(valid-contact-move-param . ?Pparam) ;; points+normal
(valid-contact-move-trajectory ... ?param ?qt))
:effect (and
(assign (robot-config) ...)
(assign (pose ?tool) L)
(assign (pose ?target) ...)

~

;5 update robot position
;5 update tool position
;5 update target position

(a) The modeling of the robot basis operation move-with-contact using a
STRIPS-like syntax..

(:mechanism hook
:parameters (?tool - item ?target - item ?support - item ..
:precondition (and ;; the initial contact mode graph

(handsfree) (support ?tool ?support) (support ?target ?support))
:certified (and ;5 the goal of the mechanism

(support ?tool ?support)

(holding ?target))
ractions (ordered

-)

;; the sequence of contact primitives

(grasp ?tool ?support)
(move-cont ?tool ?target ?support)
(place ?tool ?support)

(grasp ?target ?support)))

(b) The precondition (initial contact modes), goal (target contact modes), and the
sequence of actions for a mechanism.

Fig. 2: The syntax used to model basis operations and mechanisms.

-y

(:macro hook
:parameters (
?tool - item
?target - item
?support - item

)

:certified (
(holding ?target)

e

)
L)

Contact Modes and Goals

Single Demo

Self-Play

grasp(?tool; 0;)

—_— e

move-cont(?tool; 8,)

place(?tool; 63)
Goal: Block on the Slope

Learned Contact Distributions Compositional Planning

Fig. 3: Learning process: extract contact modes and goals from demonstration; train specialized sampler via trial-and-error in

new situations; add new mechanism to planner.

C. Planning with Basis Operators and Mechanisms

To plan using the basis operations, mechanisms, and
samplers, we employ a simple bilevel search approach. We
first apply symbolic STRIPS search algorithms with the
fast-forward heuristic [34] to explore discrete action plans.
Subsequently, we use samplers to find suitable continuous
parameters. We iteratively call the samplers associated with
each operation to generate continuous parameters, such as
grasps, contact surfaces, and trajectories. We simulate the
grounded operators to verify their effects, and backtrack
to a new discrete plan if continuous parameters cannot be
found. Mechanisms can be directly integrated into the bi-level
search-based planner as additional operators, with their own
specialized samplers. See Appendix C for details. The use
of a physical simulator to verify action effects enables us to
handle briefly-dynamic tasks, in which the robot controllers
are position-based, but may initiate situations in which the
objects experience acceleration and velocity before they reach
a stable configuration. Examples include objects sliding down
inclines, or tipping upward when weights are placed on them.
See Appendix D for details.

IV. LEARNING NEW MECHANISMS

Our goal is to learn a new mechanism from a single
demonstration and a distribution of target problems. The
demonstration includes a sequence of robot actions and object
contacts, as well as a human-specified goal, which will be
the certified effect in the new mechanism definition. We
assume access to an environment simulator that can generate
random initial configurations of objects such that the target
mechanism is applicable. For example, in the hook-use case,
the environment contains two objects of various categories

placed on the table so that one object is within reach and
the other object is out of reach. The overall framework is
depicted in Fig. 3: The learning algorithm first extracts the
contact-mode changes in the demonstration, resulting in a
sequence of basis operations. Next, it generates self-play
trajectories that align with the basis-operation sequence but
now with novel objects in novel initial configurations (e.g.,
using spoons to reach for forks). This self-play step involves
trial-and-error interaction with the environment. Based on
the successful trajectories, we learn a sampler that generates
mechanism-specific contacts between objects (e.g., grasp of
tools in order to reach for distant objects), and finally add it
to our repertoire of planning operators.

A. Extraction of Preconditions and Operation Sequence

We first segment the demonstration trajectory based on
robot-object contacts: free, holding, and push motion. Each
segment will correspond to one step in the mechanism macro.
Next, for each segment, we build a contact graph between
the robot hand, the object that is in contact with the robot
(including holding or pushing, if any), and the object that is
in contact with the held object (“indirect contact”). Finally,
we add all the objects that support the objects. By completing
the relationships among objects, we obtain the sequence of
basis operations. The precondition of the mechanism operator
corresponds to the initial contact modes. We [ift the graphs
into an abstract mechanism definition by replacing concrete
object names with variables, as illustrated in Fig. 2b.

B. Sampler Learning

The sampler learning process is an iterative exploration
within a simulated environment. Algorithm 2 describes
the high-level process of learning a sampler based on the

Method Edge Hook Lever Poking CoM Slope&Blocker
Basis Ops Only 89.45+5.53 >600 523.18+9.22 >600 19.30+2.82 >600
Ours (Macro) 8.34+2.57 30.82+5.78 1.3840.31 494.30+50.01 17.584+1.27 148.57+10.30
Ours (Macro+Sampler) 0.574+0.05 3.84+1.56 1.55+0.29 97.76+10.67 0.9740.09 4.11+0.94

TABLE I: Average solution time and stderr of 10 trials, All methods have a 10 mins timeout. See also Appendix I.

success of generated samples in achieving the goal. In each
iteration, we randomly sample an initial configuration from the
simulator and attempt to execute the mechanism on objects
present in the environment. Notably, instead of searching
for a plan to accomplish the mechanism’s goal with all
available basis operators, we require the search algorithm to
adhere to the sequence of basis operations derived from the
demonstration. All continuous parameters sampled during the
search will be labeled as “1” or “0” based on whether they
present in the successful plan. Leveraging this labeled dataset
of samples, we can train an additional sampler that generates
mechanism-specific samples of continuous parameters. We
do this by training a score function to rank samples produced
by the generic samplers. In essence, for each continuous
parameter in the mechanism (grasping poses, contact surfaces,
and trajectories), given a dataset of samples and their success
labels D = (0, label), we train a classifier f that estimates a
scalar value in [0, 1] representing the probability that 6 can
result in a successful application of the mechanism, using a
binary cross-entropy loss.

V. EXPERIMENTS

We first conducted experiments in PyBullet simulation, to
evaluate our system on learning and composing mechanisms.
The system is deployed on a physical robot (Appendix J).

A. Learning Mechanisms from Single Demonstrations

Setup. Our evaluation encompasses six distinct mechanisms,
grouped into two categories: the first four tasks assess “tool-
use,” including (Edge) pushing objects to the edge of a table
for pickup, (Hook) using tools to reach for distant objects,
(Lever) flipping objects using heavy objects as levers, and
(Poking) using tools to poke objects out of a tunnel. The
remaining two tasks fall under the “reasoning about stability”
category, including (Center-of-Mass) achieving stable object
placement on another object, (Slope-and-Blocker) using
objects as blockers to prevent objects from falling off inclined
surfaces. The object models are blocks, bricks, bowls, plates,
documents, spoons, forks, soup ladles, hairbrushes, hammers,
and calipers. The demonstrations are created by executing a
manually written script in one specific initial configuration.
During training and testing, each method has access to a
distribution of initial configurations and goals. Each task
consists of a randomly sampled initial configuration that
includes target objects placed on the table and a specific goal
to be achieved. See Appendix H for details.

Results. Table I summarizes the results of our experiments
comparing our method to planning with the basis operators
only, as well as to an ablation of our method in which we
learn the basis operation sequence for the mechanism but
do not learn specialized samplers. Due to the inclusion of

\\'1-. ——

Task 1: hold(Block) Task 2: support(Block, Slope)
Fig. 4: Tllustration of compositional tasks.

Method Task 1 Task 2
Basis Ops Only 0% 0%
Ours (Macro) 20% 0%
Ours (Macro + Sampler) 100% 90%

TABLE II: Average success rate on novel compositional tasks
in 10 runs. Timeout is 10 minutes.

novel object instances and categories in the test environments,
simpler baselines, such as replay of the demonstration
trajectory, have zero success rate, and are not included.

B. Planning with Learned Mechanisms

Setup. We evaluate different algorithms on two novel complex
tasks, illustrated in Fig. 4. (Push-then-Pick-then-Hook) the
agent needs to utilize a thin caliper, placed on the table to
reach for a distant block. However, the caliper must first be
pushed to the table side to enable a successful grasp. (Hook-
then-Place-on-Slope) the agent needs to use a soup ladle as a
tool to reach for a distant object. Subsequently, the agent must
use either the soup ladle or a brown brick to act as a blocker,
preventing the object from falling off a slope. There is no
additional training—we used mechanisms learned during the
previous experiment. We design the test distribution of object
placements to ensure tasks being feasible.

Results. Table II presents the planning time for all the evalu-
ated methods. In scenarios with numerous objects available
for interaction, searching directly for low-level manipulation
primitives without the guidance of useful mechanisms can
be extremely slow. However, using mechanisms as “macros’
in the search process significantly enhances efficiency. The
learned samplers further improve the overall efficiency.

[l

VI. CONCLUSIONS

In conclusion, this paper has introduced a novel framework
that enables machines to learn, reuse, and generalize ma-
nipulation strategies (i.e., the mechanisms) from a single
demonstration and subsequent self-play in a distribution
of tasks. By characterizing each mechanism as a sequence
of contact mode changes, the framework achieves notable
generalization to both novel object instances and categories,
and generalization to novel tasks in a briefly-dynamic setting.
Our framework can also be flexibly extended by incorporating
other basis operations such as compliance and forceful motion.

APPENDIX

The appendix is organized as follows. In Appendix A and B,
we present the details of our basis operations and the samplers
associated with the basis operations. Next, in Appendix C we
present details of our task and motion planner. In Appendix D
we discuss our usage of physical simulators to handle briefly-
dynamic manipulation tasks. In Appendix E, F, and G we
discuss details of our mechanism learning algorithm, including
the contact graph extraction algorithm, sampler learning, and
specialized sampler implementations. In Appendix H and
I we present details of experiment setups and analyses of
the learned samplers. Finally, in Appendix J we discuss the
deployment of the system on physical robots.

A. Basis Operations

In our manipulation context, each schema represents either
a robot action that does not change the contact mode graph
(e.g., moving the arm without object collisions) or a primitive
action that modifies the contact mode (e.g., grasping an
object). Table III shows the complete list of basis operators
used in this paper.

The precondition and the effect of an action schema
describe the contact relationships between objects before
and after the execution. Fig. 5 showcases a concrete example.
The action schema involves three objects: the object being
held ?tool, the target object that is in contact with the tool
object ?target, and the object that is currently supporting the
target object ?support. Additionally, there are two continuous
parameters: ?param specifies the contact between ’target and
?tool, including the contact surface and contact normal; ?gt
specifies the robot arm trajectory as a sequence of joint-space
waypoints. This action updates the robot joint angles, and the
poses of ?tool and ?target. Given the discrete and continuous
parameters, we use a joint-space position controller to execute
the actions and use the execution results to update the state
variables.

We will present the implementation details for the samplers
associated with each operator in the next section (Appendix B).
At a high level, these samplers are designed to be very generic:
for grasping, it randomly samples two parallel surfaces on
objects; for object-object contact, it randomly samples two
surfaces on the object and then transforms the object held by
the robot so that two surface normals point to each other.

B. Samplers for Basis Operations

Recall that there are three types of continuous variables
to be sampled for the basis operators described in Table III:
grasping poses relative to an object (represented as SE(3)
poses of the end-effector relative to the object), placement
poses (represented as SE(3) poses in the support object
frame), contacts between two objects (represented as the
SE(3) pose of object 1 in the frame of object 2), and robot
arm trajectories (represented as a sequence of arm trajectories).
Here, we supplement the list of samplers we use to generate
these continuous parameters. They are designed to be generic,
relying solely on geometry and not specific object semantics
(e.g., soup ladle grasping).

Grasp (G). The grasp sampler, G(O,T,), accepts the
object’s shape and current pose, O and T, respectively,
and identifies two “parallel” surfaces on the object mesh,
represented as (p1,n1) and (p2,ns), where p; and py are
two points and n; and no are surface normals. The definition
of being parallel is that: (p1 —p2)-n1 =1 and nq -1y = —1.
It then computes a corresponding robot end-effector pose 7.
such that T,e centered at the midpoint between p; and po,
and T,, is perpendicular to nj. It then checks the distance
between two surfaces so that the parallel gripper can hold
the object at T,,. Finally, it checks the reachability of T,
using an inverse-kinematics solver.

Placement (P). The placement position sampler,
P(01,05,T,2), considers the shapes of both the holding
object, 01, and the target support object, O, and the pose of
Q. It randomly samples two surfaces, represented as (p1, 1)
and (pa, na), one on each object such that ny-(0,0,1)T > 0.9
(i.e., ny is close to the +z direction). Next, it solves for a
transform 7" on Op such that Tp; = Tpeps and Tn, =
—T,ons (essentially place p; on O; at ps and pointing
towards ns).

Object Contact (C'). For both robot-object and object-object
contact, the object contact sampler, C(O1, Oz, Ty2, O, Ts)
takes five arguments, including the current holding object
O1 (or the robot gripper itself when not holding anything),
the object to contact O, and its current pose 7,2, and the
object that supports Oy: Oy and its pose T. It first randomly
samples two surfaces, represented as (p1,n1) and (pa,ng) on
01 and O, respectively. Since we do not consider pushing Oq
“towards” the supporting object O;, we additionally require
that ny is perpendicular to ng, which is the direction of the
support force from Oy to Os. Next, it solves for a transform
T on Op such that Tp; = Tyopy and Tny = —Tyoneg
(essentially place p; on O; at py and pointing towards no to
excert force).

Trajectory (T). For grasping and placement trajectories,
the trajectory sampler, T'(Tjui, Tiarger), considers the initial
and target end-effector pose of the robot gripper. It first
uses an inverse kinematic solver to solve for two robot
configurations at the designated end-effector pose g;,;; and
Grarger- Next, we compute a collision-free trajectory (except
for collisions with the object being held and the object to
contact) using a Bidirectional Rapidly-exploring Random
Tree (BiRRT) algorithm.

For move-with-contact trajectories, the trajectory sampler,
T (Tinit, p1, 11, P2, N2), accepts the initial configuration of
the robot, ginit, and the contact surfaces on the two objects
sampled using the object contact sampler C: (p1,n1) and
(p2,n2). It proceeds to randomly sample a “push” distance,
d, along the contact normal direction, ni, from a uniform
distribution in the range [0.05, 0.25] meters. Subsequently, the
sampler generates the arm trajectory by invoking the BiRRT
algorithm to follow a set of waypoints corresponding to a
linear Cartesian-space motion along n, by distance d.

Name Args. Description

transit (empty) Move the robot without object collisions.

transit-cont ?x, 7s Move without holding anything, but have a contact with ?x. ?x is supported by ?s.
grasp ?x, 7s Grasp the object ?x that is currently supported by ?s.

place ?x, 7s Place object ?x onto ?s. ?x should be currently held by the robot.

move ?x Move while holding ?x.

move-cont ’x, 2y, Zs Move while holding ?x and ?x have contact with ?y. ?y is supported by ?s.

TABLE III: The list of basis operations. Continuous parameters are omitted. “cont” refers to “contact.”

(:action move-with-contact

:parameters (?tool - item ?target - item ?support - item
?param - contact-move-param ?qt - trajectory)
:precondition (and
(holding ?tool)
(support ?target ?support)
(valid-contact-move-param . ?param)
(valid-contact-move-trajectory ...

;5 points, normal
?param ?qt)) ;; robot trajectory

:effect (and

Floor

Support: (p,n)

push(L, 6,)

(a) Search in the large hybrid space of discrete mode families
and continuous motion parameters.

(assign (robot-config) ...)
(assign (pose ?tool) cel)
(assign (pose ?target) ...)

;5 update robot position
;5 update tool position
;5 update target position

(b) Search in the hybrid space guided by the mechanism. Only
continuous parameters needs to be searched.

Fig. 6: (a) Planning with basis manipulation operations usually involves a search in the hybrid space of discrete contact
mode families (free, holding, pushing, etc.) and continuous parameters (grasping pose, moving trajectories, etc.). (b) Learning
mechanisms can help reduce the search space by specifying a sequence of discrete transitions between contact mode families.

C. Planning with Basis Operators and Mechanisms

To plan using the basis operations, mechanisms, and
samplers, we employ a simple bilevel search approach, similar
to the adaptive algorithm in PDDLStream [8]. Illustrated
in Algorithm 1, we first apply symbolic STRIPS search
algorithms with the fast-forward heuristic [34] to explore
discrete action plans (i.e., candidate sequences of basis
operations and objects to move). Subsequently, we use
samplers to find suitable continuous parameters. We iteratively
call the samplers associated with each operation to generate
continuous parameters, such as grasps, contact surfaces, and
trajectories. We simulate the grounded operators to verify their
effects, and backtrack to a new discrete plan if continuous
parameters cannot be found. Mechanisms can be directly
integrated into the bi-level search-based planner as additional
operators, with their own specialized samplers. Intuitively,
as illustrated in Fig. 6b, incorporating mechanisms in search
prunes out the branching factor of possible contact modes and
also improve efficiency in sampling continuous parameters.

Algorithm 1 shows the bi-level search algorithm we use. In
the discrete search level, we enumerate both basis operations
as well as mechanism operations. During the continuous
parameter search phase, for basis operations instantiated from
mechanisms, we use the mechanism-specific sampler rather
than the generic sampler for continuous parameters.

The use of a physical simulator to verify action effects
enables us to handle briefly-dynamic tasks, in which the robot
controllers are position-based, but may initiate situations in
which the objects experience acceleration and velocity before
they reach a stable configuration. Examples include objects
sliding down inclines, or tipping upward when weights are
placed on them.

D. Briefly Dynamic Manipulation

The system can handle robot-object and object-object
contact without assuming quasi-static motion. For example,
when placing objects on surfaces, we consider subsequent
pose changes: objects placed on inclined surfaces may slide

Algorithm 1 Bilevel Search Algorithm

1: procedure BILEVELSEARCH(Sg, g, operator_schemas)

2 plan_gen < SymbolicSearch(sg, g, operator_schemas)
3 for all plan € plan_gen do

4 CONTINUOUSSEARCH(S, g, plan)

5. procedure CONTINUOUSSEARCH(Sg, g, plan)

6 grounded_plan <+ 0; s + sg

7 for all op € plan do

8 for all arg € op.args do

9 arg <+ InvokeSampler(op.sampler)

10: if CheckPrecondition(op, s) then

> Explore discrete plans
> For all candidate sequences of basis operations

> Generate continuous parameters

11: s+ T(s,0p) > Simulate the operator with sampled parameters.
12: grounded_plan < grounded_plan U {op}

13: else break

14: if IsGoalAchieved(grounded _plan, g) then

15: return grounded_plan > Return the first plan that achieves the goal
16: return empty

[—

Case 1: non-rigid attachments
between objects while moving.

Case 2: object pose change after
placement due to physics.

Case 3: support object pose change
after new objects being placed.

Fig. 7: Tllustration of three briefly-dynamic manipulation scenarios in the paper.

down, and heavy objects placed on levers can alter the pose of
the lever. Formally, we assume a briefly-dynamic manipulation
setting, where the robot controller is position control-based,
and manipulated objects may experience acceleration and
velocity until they reach a stable configuration. Figure 7
illustrates a few examples of briefly-dynamic manipulation
tasks handled by our sampler and planner.

E. Extraction of Preconditions and Operation Sequence

We first segment the demonstration trajectory based on
robot-object contacts: free, holding, and push motion. Each
segment will correspond to one step in the mechanism macro.
Next, for each segment, we build a contact graph between
the robot hand, the object that is in contact with the robot
(including holding or pushing, if any), and the object that is in
contact with the held object (“indirect contact”). Finally, we
add all the objects that support the objects (exerting forces that
point in the +z direction). By completing the relationships
among objects, we obtain the sequence of basis operations.
The precondition of the mechanism operator corresponds to
the initial contact modes. After extracting the initial contact
modes and the basis operation sequence that are grounded

on concrete objects in the demonstration (the soup ladle, the
spoon, and the floor), we lift them into an abstract mechanism
definition by replacing concrete object names with variables.

F. Sampler Learning

The sampler learning process is an iterative exploration
within a simulated environment. Algorithm 2 describes
the high-level process of learning a sampler based on the
success of generated samples in achieving the goal. In each
iteration, we randomly sample an initial configuration from the
simulator and attempt to execute the mechanism on objects
present in the environment. Notably, instead of searching
for a plan to accomplish the mechanism’s goal with all
available basis operators, we require the search algorithm to
adhere to the sequence of basis operations derived from the
demonstration. Specifically, we fix the discrete-level plan and
employ generic samplers for grasping, contact, and trajectory
generation to locate plans that satisfy the goal. All continuous
parameters sampled during the search will be labeled as “1”
or “0” based on whether they present in the successful plan.
Note that even if the environment does not contain distractors
and the mechanism is always applicable, we still need to

Algorithm 2 Sampler Learning Algorithm

procedure SAMPLERLEARNING(env, m)

Initialize classifiers f; and dataset D; <) for each continuous parameters in m.

for each iteration do
8o ~ env.reset()

> Sample an initial configuration
> Apply the mechanism on a random set of objects

plan <— CONTINUOUSSEARCH(sq, gm.certified, gm.actions)

for each continuous parameter ¢ do

for all 6 sampled in CONTINUOUSSEARCH for parameter i do

1:
2
3
4:
5: gm < RandomGrounding(m)
6
7
8
9

: if 0 is in plan then Add (0, 1) to D;
10: else Add (6,0) to D;
11: Update classifier f; using L and D;

> Successful samples
> Failed samples

explore different choices of arguments (e.g., use which object
to reach for the other one).

Leveraging this labeled dataset of samples, we can train an
additional sampler that generates mechanism-specific samples
of continuous parameters. For example, in a scenario where
a soup ladle is used to reach distant objects, it is favorable to
grasp the handle—a more mechanism-specific action, rather
than generic grasps. This can be formalized as learning a
distribution of “successful” continuous parameters for actions
within a mechanism. We do this by training a score function to
rank samples produced by the generic samplers’. In essence,
for each continuous parameter in the mechanism (grasping
poses, contact surfaces, and trajectories), given a dataset of
samples and their success labels D = (0, label), we train a
classifier f that estimates a scalar value in [0, 1] representing
the probability that § can result in a successful application
of the mechanism, using binary cross-entropy loss: During
deployment, we use the generic sampler to generate a batch
of samples, which we sort based on the predicted likelihood
of success.

Note that although we train classifiers for individual
parameters, these classifiers are designed to be conditioned
on previously generated parameters as defined in the basis
operation schema. Hence, their sequential application is
capable of generating a joint distribution of successful
parameters for mechanism applications in an “auto-regressive’
manner. The benefit of this factorized approach, as opposed
to learning a single classifier over the concatenation of
all parameters, is its efficiency during the search process.
If the execution of one step in the mechanism fails, the
search algorithm can immediately backtrack, thereby averting
wasteful continuation into subsequent steps.

bl

G. Implementation of Specialized Samplers

Each mechanism has specialized samplers for all of its
continuous parameter, organized into a DAG, in which each
parameter is sampled conditioned on its parents in the graph
(a.k.a. previously sampled parameters). Each sampler has a
scoring classifier that processes the target parameter along
with any values it is conditioned on and predicts a success

"More sophisticated generative models will work, especially when the
samples are hard to generate.

likelihood in [0, 1]. We employ various encoders for different
parameter types. For object shapes, we use a PointNet++
encoder [35] to process the point clouds. For poses, including
a 3D translation and a 4D quaternion, we utilize Multi-Layer
Perceptrons (MLPs). For contact information, we encode the
contact points and normals using MLPs as well. Each of these
encoders processes their corresponding inputs into a fixed-
length embedding, and the embeddings are then concatenated
into a single vector. Finally, we apply a linear transformation
followed by a sigmoid activation to output the classification
result. We train each classifier on 100 samples. For trajectory-
typed parameters, we only apply classifiers to object-object
contact trajectories encoded as the contact normal direction
and the distance. We do not consider encoding and classifying
the actual robot arm trajectory for grasping and placement
motions, although it is, in principle, possible to encode them
using appropriate encoders.

H. Mechanism Learning Setup

Our evaluation encompasses six distinct mechanisms (il-
lustrated in Fig. 8), grouped into two categories: the first
four tasks assess “tool-use.” During training and testing, each
method has access to a distribution of initial configurations
and goals. Each task consists of a randomly sampled initial
configuration that includes target objects placed on the table
and a specific goal to be achieved (e.g., holding one of the
target objects). We design the distribution of initial object
placements to ensure the feasibility of the corresponding
mechanism. For example, in the “hook-use” mechanism, we
randomly place two objects on the table. Object 1, which
is within the robot’s reach, is selected from the following
categories: soup ladle, hammer, spoon, and hairbrush. Object
2 is a box that is initially placed outside of the robot’s reach.

(Edge) pushing objects to the edge of a table for pickup.
There are four object models used in this mechanism: plate,
calculator, caliper, and document.

(Hook) using tools to reach for distant objects. There are
five objects that can be used as the “hook:” wooden L-shape
stick, soup ladle, hammer, spoon, and caliper.

(Lever) flipping objects using heavy objects as levers. There
are four “heavy” objects that can be used to flip the plate:
box, spoon, dipper, and walnut.

Edge: hold(P)

Hook: hold(B) Lever: hold(P)

Poke: hold(B) CoM: support(P, B) Slope: support(B, S)

Fig. 8: Illustration of six mechanisms learned by our algorithm. Top row: initial configuration. Bottom row: solution found

by our sampling-based planner. P: Plate. B: Block. S: Slope.

(Poking) using tools to poke objects out of a tunnel. There
are three object models that can be used as the “poking” tool:
wooden stick, spatula, and spoon.

The remaining two tasks fall under the “reasoning about
stability” category.

(Center-of-Mass) achieving stable object placement on
another object. There are three object models to be placed
on the small block: plate, calculator, and document.

(Slope-and-Blocker) using objects as blockers to prevent
objects from falling off inclined surfaces. There are three
object models that can be used as the blocker: wooden stick,
wooden L-shape stick, and spoon.

For each environment, we first manually defined a canonical
pose for each object such that the mechanism is feasible.
Next, for each training and testing instance, we randomly
apply small translations (a uniform distribution within £
5 centimeters) and small rotations (uniform within + 15
degrees) to the canonical pose of each movable object.

1. Sampler Comparison

Taking a closer look at the importance of sampler learning,
Fig. 9 illustrates a breakdown of the number of samples
required for the “hook use” mechanism using our planning
algorithm, with the generic sampler and with the learned
sampler. Fig. 2b shows the inferred macro definition for
this mechanism, and here we count the number of samples
produced by each individual sampler. In this case, most of
the samplers are produced to generate candidate grasping
poses of the tool and possible contacts between the tool and
the target (i.e., how to reach the tool).

J. Physical Robot Deployment

Our real-world setup, shown in Fig. 10, contains a Franka
Emika Panda robot arm with a parallel gripper, mounted on a
table. We also have an Intel Realsense D435 camera mounted
on the table frame, pointing 45 degrees down. Our vision
pipeline contains six steps: first, based on the calibrated
camera intrinsics and extrinsics, we reconstruct a partial
point cloud for the scene. Second, we crop the scene to

Grasp of Tool I
Grasp Trajectory |G

of Tool

Tool-Target N—
Contact
Tool Moving I NE—
Trajectory
Placement [N

of Tool

Placement [l

Trajectory

mm Generic Smapler
Learned Sampler

Grasp of Target

Grasp Trajectory |
of Target

0 20 40 60 80 100 120
of Generated Samples

Fig. 9: Breakdown of samples produced by different samplers
for the hook-using task.

Franka Emika

Frame-
mounted
Camera

Panda Arm

A

Used objects in — SNy

&< N
the experiments S—

Fig. 10: Our real-world setup.

Task push-to-edge(plate) hook-use(banana, {ball, apple})

80% 70%

Succ. Rate

TABLE IV: Success rate of our physical robot setup on two
representative mechanisms.

exclude volumes outside the table (e.g., background drops,
etc.) Third, we use a RANSAC-based algorithm to estimate
the table plane, and extract all object point clouds on top of
the table. Fourth, we use Mask-RCNN to detect all objects in
the RGB space, and extract the corresponding point clouds.
For objects that are not detected by the MaskRCNN, we first
use DBScan to cluster their point clouds, and then run the
SegmentAnything model to extract their segmentations in 2D,
and subsequently the point clouds. Finally, we perform object
completion by projecting and extruding the bottom surface
for all detected objects down to the table.

Next, we import the reconstructed object models into our
physical simulator PyBullet, and directly deploy our planning
algorithm with the learned mechanisms to compute plans.
Since we use the same robot model in simulation, we can
directly execute the planned robot trajectories in the real
world. In practice, we execute in a closed-loop manner. If
the grasp fails (which can be detected by the gripper sensor),
we move to arm to its neutral position and replan. After
each placement action and pushing action, we use the vision
pipeline to obtain an updated world state and replan.

We demonstrate and evaluate the system on two example
tasks: pushing plates to the edge and hook-using for distant
objects. We use the same set of objects on the table but with
different initial configurations. We repeat each experiment 10
times and report the success rate. Table IV summarizes the
result. The visualization of our vision pipeline and the robot
videos can be found on our website.

The push-to-edge task is relatively easier given the learned
mechanism. The only two failure cases in our experiment
were triggered by the robot pushing the plate too far and
the plate falling off the table. The hook-using task is
more challenging. There are two main failure modes we
observe in the experiments. First, the planner favors grasping
objects (e.g., the banana “hook™) at the tip, which is a very
unstable grasp—sometimes causing the executor to fail. Also,
sometimes the planner generates wrong object motion for the
objects because 3D of reconstruction errors: the planner is
using a “hallucinated” part of the object to push the distant
object—currently, we cannot recover from this type of failure.
Finally, sometimes the sampled grasp is invalid, again because
of the errors in object perception. In this case, our close-loop
execution improves the performance.

ACKNOWLEDGMENT

We thank anonymous reviewers for their valuable com-
ments. This work is in part supported by ONR MURI N00014-
16-1-2007, the Center for Brain, Minds, and Machines
(CBMM, funded by NSF STC award CCF-1231216), NSF
grant 2214177; AFOSR grant FA9550-22-1-0249; from ONR

MURI grant N00014-22-1-2740; ARO grant W911NF-23-
1-0034; the MIT-IBM Watson Al Lab; the MIT Quest for
Intelligence; and the Boston Dynamics Artificial Intelligence
Institute. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of our sponsors.

REFERENCES

[1] R. Baillargeon and G. F. DeJong, “Explanation-Based Learning in
Infancy,” Psychonomic Bulletin & Review, vol. 24, pp. 1511-1526,
2017.

[2] A. Segre and G. DeJong, “Explanation-Based Manipulator Learning:
Acquisition of Planning Ability Through Observation,” in /CRA, 1985.

[3] M. T. Mason, Mechanics of Robotic Manipulation. MIT press, 2001.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

[5] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“An Incremental Constraint-Based Framework for Task and Motion
Planning,” IJRR, vol. 37, no. 10, pp. 1134-1151, 2018.

[6] M. R. Dogar and S. S. Srinivasa, “A Planning Framework for Non-
Prehensile Manipulation under Clutter and Uncertainty,” Autonomous
Robots, vol. 33, pp. 217-236, 2012.

[7] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined Task and Motion Planning through an Extensible Planner-
Independent Interface Layer,” in ICRA, 2014.

[8] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “PDDLStream:
Integrating Symbolic Planners and Blackbox Samplers via Optimistic
Adaptive Planning,” in /CAPS, 2020.

[9]1 M. Toussaint, “Logic-Geometric Programming: An Optimization-Based
Approach to Combined Task and Motion Planning,” in IJCAI, 2015.

[10] T. Pang, H. Suh, L. Yang, and R. Tedrake, “Global Planning for
Contact-Rich Manipulation via Local Smoothing of Quasi-Dynamic
Contact Models,” arXiv:2206.10787, 2022.

[11] J. C. Trinkle and J. J. Hunter, “A Framework for Planning Dexterous
Manipulation,” in /CRA, 1991.

[12] X. Ji and J. Xiao, “Planning Motions Compliant to Complex Contact
States,” IJRR, vol. 20, no. 6, pp. 446465, 2001.

[13] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized Manipulation
Planning for a Multi-Fingered Hand by Switching Contact Modes,” in
ICRA, 2003.

[14] G. Lee, T. Lozano-Pérez, and L. P. Kaelbling, “Hierarchical Planning
for Multi-Contact Non-Prehensile Manipulation,” in /ROS, 2015.

[15] 1. Mordatch, E. Todorov, and Z. Popovié¢, “Discovery of Complex
Behaviors Through Contact-Invariant Optimization,” ACM Transactions
on Graphics (ToG), vol. 31, no. 4, pp. 1-8, 2012.

[16] K. Hauser and J.-C. Latombe, “Multi-Modal Motion Planning in Non-
Expansive Spaces,” IJRR, vol. 29, no. 7, pp. 897-915, 2010.

[17] J.-P. Sleiman, J. Carius, R. Grandia, M. Wermelinger, and M. Hut-
ter, “Contact-Implicit Trajectory Optimization for Dynamic Object
Manipulation,” in /ROS, 2019.

[18] B. Aceituno-Cabezas and A. Rodriguez, “A Global Quasi-Dynamic
Model for Contact-Trajectory Optimization in Manipulation,” in RSS,
2020.

[19] J. Xiao and X. Ji, “Automatic Generation of High-Level Contact State
Space,” IJRR, vol. 20, no. 7, pp. 584-606, 2001.

[20] X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact Mode Guided
Sampling-Based Planning for Quasistatic Dexterous Manipulation in
2D.” in ICRA, 2021.

, “Contact Mode Guided Motion Planning for Quasidynamic
Dexterous Manipulation in 3D,” in /CRA, 2022.

[22] E. Huang, X. Cheng, Y. Mao, A. Gupta, and M. T. Mason, “Autogen-
erated Manipulation Primitives,” IJRR, 2023.

[23] A. Stoytchev, “Behavior-Grounded Representation of Tool Affordances,”
in ICRA, 2005.

[24] B. Bril, R. Rein, T. Nonaka, F. Wenban-Smith, and G. Dietrich, “The
Role of Expertise in Tool Use: Skill Differences in Functional Action
Adaptations to Task Constraints,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 36, no. 4, p. 825, 2010.

[25] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, “Towards a Model
for Tool-Body Assimilation and Adaptive Tool-Use,” in ICDL, 2007.

[26] A. Gongalves, G. Saponaro, L. Jamone, and A. Bernardino, “Learning
Visual Affordances of Objects and Tools Through Autonomous Robot
Exploration,” in ICARSC, 2014.

[21]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Gupta and L. S. Davis, “Objects in Action: An Approach for
Combining Action Understanding and Object Perception,” in CVPR,
2007.

Y. Zhu, Y. Zhao, and S.-C. Zhu, “Understanding Tools: Task-Oriented
Object Modeling, Learning, and Recognition,” in CVPR, 2015.

K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and
S. Savarese, “Learning Task-Oriented Grasping for Tool Manipulation
from Simulated Self-Supervision,” IJRR, vol. 39, no. 2-3, pp. 202-216,
2020.

Q. Li, K. Mo, Y. Yang, H. Zhao, and L. Guibas, “IFR-Explore: Learning
Inter-Object Functional Relationships in 3D Indoor Scenes,” in ICLR,
2022.

Z. Lai, S. Purushwalkam, and A. Gupta, “The Functional Correspon-
dence Problem,” in CVPR, 2021.

K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani,
“Where2act: From Pixels to Actions for Articulated 3D Objects,” in
CVPR, 2021.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, L. P. Kaelbling, and
T. Lozano-Pérez, “Integrated Task and Motion Planning,” Annual
Review of Control, Robotics, & Autonomous Systems, vol. 4, pp. 265—
293, 2021.

J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan
Generation through Heuristic Search,” JAIR, vol. 14, pp. 253-302,
2001.

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” NeurIPS, 2017.

	Introduction
	Related Work
	Planning with Contacts and Mechanisms
	Basic Domain Representation
	Mechanisms
	Planning with Basis Operators and Mechanisms

	Learning New Mechanisms
	Extraction of Preconditions and Operation Sequence
	Sampler Learning

	Experiments
	Learning Mechanisms from Single Demonstrations
	Planning with Learned Mechanisms

	Conclusions
	Appendix
	Basis Operations
	Samplers for Basis Operations
	Planning with Basis Operators and Mechanisms
	Briefly Dynamic Manipulation
	Extraction of Preconditions and Operation Sequence
	Sampler Learning
	Implementation of Specialized Samplers
	Mechanism Learning Setup
	Sampler Comparison
	Physical Robot Deployment

	References

