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Abstract

The European Union AI Act (AI Act) introduces comprehensive requirements for1

AI systems regarding data governance, safety and security, and energy efficiency2

and sustainability, among others. High-risk AI applications, such as AI systems for3

medical data processing, face particularly stringent compliance requirements. We4

argue that Federated Learning (FL) is needed to overcome key challenges arising5

from the AI Act, especially with regard to data governance. Through careful analysis6

of the AI Act from a technical perspective, we show that the distributed architecture7

of FL inherently addresses regulatory requirements around data privacy, consent-8

based processing, and computational resource allocation. We critically examine9

the current shortcomings of FL in the context of the AI Act and map out research10

priorities that are needed to on the path towards full regulatory compliance.11

1 Introduction12

The rapid advancement of AI has prompted increased regulatory scrutiny, particularly in the European13

Union (EU). The EU AI Act (hereafter referred to as AI Act) represents a landmark piece of legislation14

establishing comprehensive requirements for AI systems, emphasizing high-risk applications and15

general-purpose AI models [15]. This regulatory framework aims to ensure that AI systems are16

developed and deployed with transparency, accountability, and societal values in mind.17

The AI Act is the first comprehensive legislation among many others that are already underway18

in other regions like Canada [41] or China [11]. While the US Presidential Executive Order on19

Trustworthy AI has been rescinded [74], there are several bills planned on the US state-level, e.g., in20

New York State [64] or Texas [73]. These planned bills and regulatory frameworks adopt requirements21

closely related to the AI Act.22

Thus, we focus on the AI Act as it currently is the only comprehensive AI legislation that has been23

passed into law. The AI Act introduces stringent requirements across three key dimensions of data24

governance, safety, and security, as well as energy efficiency and sustainability. In this context, the25

AI Act distinguishes between low/medium-risk and high-risk applications, where the latter is subject26

to extensive monitoring and documentation requirements. An example of a high-risk application is a27

system that handles financial transactions or even a job application screening tool, i.e., any system28

that can have a fundamental impact on an individual’s life. Furthermore, the AI Act also defines a29

notion of general-purpose AI (GPAI) systems, which host capable models that can serve multiple30

tasks at a time.31

Traditional centralized learning approaches, which dominate today’s AI development, face substantial32

challenges under this new regulatory regime. These approaches typically rely on large-scale data33

collection through web crawling [75] and centralized data storage [34], raising significant concerns34

regarding data privacy, copyright compliance, and regulatory adherence [67]. Additionally, centralized35

systems create resource bottlenecks due to their high energy demand in concentrated locations.36
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In the EU, power grids are operating at capacity, and initiatives to significantly grow the electricity37

transmission capacities often take several years [21]. This makes the installation of new large-scale38

AI data centers within the EU in the short- and mid-term difficult, requiring solutions to bridge the39

resource gap.40

We take the position that Federated Learning (FL) is needed to overcome key challenges arising41

from the AI Act, especially for high-risk applications.42

Such high-risk applications are typically characterized by extensive process integrity and safety43

requirements. The localized learning architecture of FL ensures that training data stays on the44

owners’ premises, making FL particularly attractive for scenarios where sensitive personal data or45

process information is handled [39]. Normally, it takes time to obtain data processing clearance46

for applications that touch upon trade secrets or export-controlled goods. One such example is47

automotive semiconductor chip production processes. FL enables learning on such data without48

ever transferring the raw data outside a production facility but rather leverages on-premise resources49

to learn a model with relevant information. Such high-risk systems are typically found in already50

highly regulated environments and typically involve formal agreements between clients and with the51

server operator. Since there is often only a limited number of clients that contribute relevant data for52

high-risk applications, it is highly likely that systems will be built with a cross-silo architecture. On53

a more general note, the owner can decide what data can be used in training, remaining in control of54

their data at all times. This positively impacts copyright compliance since learning is only conducted55

on consent-provided data [67].56

At the same time, localized learning benefits the reduction of data-induced biases in models. End57

users can contribute their data to the training process, improving the service quality not only for58

themselves but also for peers who have similar requirements and interests. The greater flexibility59

of FL compared to centralized learning when it comes to personalized models boasts the utility of60

models for downstream tasks and helps users increase the effectiveness of models beyond what is61

possible with off-the-shelf models [86]. This contributes to meeting the data governance requirements62

of the AI Act.63

Data Governance

§ Data bias reduction by using broader domain-
specific data bases   

§ Data relevance maintenance by continuous learning
§ Improved data lineage by leaving data at its origin

Privacy & Security

§ Lawful data processing guarantees by leaving data 
owners in control

§ Technical safeguards by inherently including secure 
computing techniques when needed

Energy Efficiency & Sustainability

§ Improved hardware accessibility for resource 
intensive workloads 

§ Holistic energy monitoring of the entire model 
lifecycle (including data, training, and deployment)

EUROPEAN UNION AI ACT

Figure 1: Overview of FL properties that in-
herently improve regulatory compliance with
the AI Act.

Since EU power grids are operating at their limits,64

especially concerning transmission capacities [21],65

there is a stark need for methods that can balance66

loads based on resource availability and train models67

across wide-area networks, potentially with signifi-68

cantly lower communication bandwidths than what69

is available in data centers. This improves the overall70

resource efficiency as capacities are used where they71

are available, and hardware is utilized more effec-72

tively, which aligns with the AI Act’s energy mon-73

itoring and efficiency requirements. Despite these74

critical benefits of FL that enable the development75

of AI models for sensitive processes, there is a set76

of open challenges that currently hinder the broad77

adoption of FL. The FL research community needs78

to address training efficiency, improve the regulatory79

compliance of secure computing techniques, and fur-80

ther enhance federated monitoring of training and81

deployment processes.82

In Section 2, we begin by introducing the AI Act cornerstones. We then discuss data governance83

specifics in Section 3, followed by privacy and security in Section 4. Section 5 introduces energy84

efficiency considerations. For a broader perspective, we offer an alternative position based on open85

FL challenges in Section 6. We advocate for future research priorities in Section 7 and conclude in86

Section 8.87

2 The EU AI Act88

The AI Act comes into effect in multiple stages, with the rules on prohibited applications (e.g., AI for89

biometrics) applying from February 2025. In August 2025, the provisions on GPAI systems will take90
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effect. The rules for high-risk applications will enter into force in August 2026. The final part of the91

AI Act, Art.1 6(1), provisions for systems where AI is used for safety features will come into effect in92

2027. The detailed timeline is available in Art. 113.93

2.1 Regulatory Risks for Technical Innovation94

The inherent tension between regulatory frameworks and technical implementation presents a sig-95

nificant challenge in emerging technologies. While regulations deliberately employ broad, abstract96

requirements to prevent circumvention and maintain adaptability across different contexts, this97

approach often creates a fundamental disconnect with technical research priorities, which require98

concrete, measurable specifications for effective development and validation.99

The insufficient alignment between technical priorities and legal requirements has led to a significant100

implementation gap that demands attention and rapid action. In the first step, it is necessary to101

understand the current compliance shortcomings from a technical perspective, identify techniques102

that have the smallest gaps, and map out a path towards full compliance. Second, progressing103

frameworks like the AI Act must be a joint effort between technical communities and regulators to104

balance control and the ability to innovate.105

For instance, current systems often face competing demands between privacy protection and energy106

efficiency (see Section 6.2), where strengthening one aspect necessarily compromises the other. This107

complex interplay of requirements necessitates a pragmatic framework that can guide technical teams108

in making informed decisions while maintaining regulatory compliance. Depending on the field of109

application and the computational resources required for a model, the AI Act sets forth different110

compliance criteria.111

2.2 System Assessment Criteria112

The AI Act focuses on the real-world impact of AI models on the daily lives of people inside the EU113

via a risk-based assessment and a more specific, yet still broadly defined, notion of GPAI.114

(I) GPAI. Currently, an AI model is classified as GPAI once it meets one of the following three115

criteria (Art. 51): (i) high impact capabilities, (ii) by decision of the EU regulator, or (iii) whenever a116

model surpasses a total training compute budget of 1025 floating point operations (FLOP). Yet, the117

regulation has yet to precisely describe what systemic risk is and how to measure impact capability.118

The legal text only contains a general notion to measure the risk by means of “appropriate technical119

tools and methodologies, including indicators and benchmarks” (Art. 51). It is unclear whether120

current benchmarks address any of the high-level AI Act requirements. As there is a lack of specific121

legal criteria for GPAI, this paper focuses on the analysis of domain- and task-specific high-risk122

applications.123

(II) Risk-based assessment. We expect FL to excel in high-risk applications due to the inherent124

need for strict data governance and process integrity. The AI Act distinguishes AI systems into125

risk categories that require service providers to adhere to different compliance criteria. High-risk126

systems are characterized by having the potential to have a major impact on essential services (Art.127

6; e.g., CV-sorting software for job application websites or AI-supported medical products). These128

systems have the largest number of compliance items regarding transparency, data governance, results129

traceability, data security, privacy, and possibly energy reporting (Art. 40). Furthermore, the AI Act130

requires high-risk application providers to register their systems in the EU Database for High-Risk AI131

Systems (Art. 71). For a full picture, limited risk systems are subject to transparency regulation only,132

i.e., AI-generated results must be labeled as such. Minimal and no-risk systems are not subject to133

regulation but can voluntarily adopt the AI Act requirements.134

The following analysis in Sections 3 to 5 discusses several AI Act requirements and how FL can help135

achieve full compliance, especially for high-risk applications. See Figure 1 for a summary of key136

benefits of FL under the AI Act.137

1"Art." and "Rec." are the abbreviations for Articles and Recitals in the AI Act, respectively.
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3 Improved Data Accessibility Addresses the Key Data Governance Concerns138

The AI Act establishes comprehensive requirements for training, validation, and testing datasets as139

outlined in Art. 10 and further elaborated in Rec. 44-47. The regulation mandates that these datasets140

meet specific quality criteria: they must be relevant to the intended purpose, representative of the use141

case, demonstrably free of errors, and complete in their coverage of relevant scenarios. A distinctive142

feature of these requirements is the explicit consideration of geographical, behavioral, and functional143

settings specific to the system’s intended purpose, ensuring that the AI system performs consistently144

across diverse operational contexts. This naturally favors paradigms that can tap into diverse data145

sources. The AI Act emphasizes anti-discrimination safeguards, requiring providers to thoroughly146

examine datasets for potential biases that could lead to discriminatory outcomes. This examination147

process must be systematic and documented, specifically identifying and mitigating potential sources148

of unfair bias that could affect protected characteristics or vulnerable populations. Taken together,149

the data collection requirements and safeguards constitute the definition of high-quality data.150

3.1 FL Simplifies Access to Domain Data for High-Risk AI Applications151

As data owners remain in control over their data with FL, the barriers to making (subsets of) data152

available for training domain-specific models can be reduced. For instance, the high-tech and biotech153

industries, with their sensitive workloads, have many untapped valuable data sources for domain-154

specific foundation models [22, 36]. Data from these domains is often considered high-risk as155

misuse could create significant threats, e.g., in the context of material or drug discovery. With FL,156

foundation models for drug or material discovery can be trained on a greater variety of data points.157

The importance of data variety has proven invaluable for material and biosciences as it significantly158

improves the model quality [28, 55, 72, 77].159

Taken together, the sensitivity of workloads, the increasing demand for data, and the fragmentation of160

data across institutions can be a limiting factor for advancing material sciences and drug discovery161

initiatives. FL enables data owners to retain control over their data and decide what data to share162

for training. This provides a strict data lineage as required under the AI Act and a much broader163

data basis for high-risk, domain-specific models. FL offers several optimization and aggregation164

techniques that, paired with a more diverse data basis, address quality and relevance bias [42], as165

required by Art. 11.166

3.2 Training at the User Base Directly Addresses the AI Act Data Relevancy Requirement167

FL inherently enables continuous learning [84], keeping models up-to-date with the latest data. This168

improves overall data relevancy [8, 53] and model performance notably [27, 83], as required by the169

AI Act under Art. 10.170

In practice, the AI Act requires organizations developing high-risk AI systems to establish clear171

criteria for determining data relevance, document their assessment processes for data quality and172

relevance, maintain records of how they ensure ongoing data appropriateness, and regularly review and173

update datasets to maintain relevance. Frequent progress leading to quickly evolving databases and174

changing user requirements necessitates quick and intuitive update processes. For AI applications,175

this typically involves training data updates, re-training of models, and re-deployment. FL can176

mitigate the overhead that comes along with these additional steps.177

3.3 FL Simplifies Data Lineage as Required by the AI Act178

At the same time, FL offers an intuitive approach to simplifying the data lineage when training AI179

models compared to centralized learning. High-risk applications require thorough documentation of180

data processing steps, i.e., which data points have been processed at which location and what process181

steps have been applied. FL can address the first part of the data lineage requirements since data182

is always left at the client and never moved, which notably simplifies the record keeping process.2183

Regarding processing steps, trusted execution environments offer a viable solution to ensuring process184

integrity even in distributed environments, rendering FL on par with centralized learning. Similarly,185

communicating sensitive raw data creates a risk for man-in-the-middle attacks [13]; centralized data186

storage and humans in the loop open vulnerabilities for unauthorized data access and processing [26].187

In fact, data breaches are the main reason for substantial data-related fines in the EU [12]. FL188

substantially reduces the risk of unlawful data processing in this context.189

2We note that, contrary to cross-silo FL, cross-device settings can create additional complexities for data
lineage when client contributions have to be tracked across a large number of clients (n > 1000).
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4 FL Enacts Privacy & Security by Design190

As privacy violations are the main cause of data-related fines, it is imperative to understand the191

notions of regulatory and technical privacy. From a legal perspective, privacy is defined as lawful192

and consent-based data processing, i.e., private data must only be processed for a specific intent with193

the prior consent of the data owner [14]. More specifically, the AI Act establishes privacy guardrails194

by installing extensive documentation, monitoring, and reporting requirements that help prevent195

unauthorized data processing (Art. 10). Technical privacy, typically enacted by secure computing196

techniques (e.g., differential privacy), specifically addresses data breach risks and is considered a197

technical safeguard supporting regulatory privacy (Art. 15). That said, the AI Act complements198

GDPR and its key requirements [14].199

4.1 FL Reinforces Lawful Data Processing in High-Risk Applications200

The design of FL applications removes the requirement to collect data in a central location for training201

and, therefore, enables data owners to share insights about their data without exposing the actual raw202

data that can be of a sensitive nature. Keeping data owners in control also puts a stronger focus on203

consent-based data processing, further improving regulatory compliance as required by the AI Act204

under Art. 10.205

From a regulatory perspective, this also creates stricter boundaries of how data is being processed.206

Since FL applications typically have a specific use case, they use training data only in this context.207

Also, clients can disconnect (opt-out) from an FL application at any time, a very important character-208

istic needed for compliance with privacy regulation. This removes regulatory exposure for one of the209

major origins of significant fines: consent-based processing [12].210

On a more general note, under the AI Act, access control mechanisms require strict authentication211

protocols and a clear allocation of responsibilities for data handling while ensuring appropriate212

human oversight of the system (Art. 29). The AI Act further strengthens data safety through213

logging requirements (Art. 12), mandating the automatic recording of critical events, including214

data modifications, access attempts, system changes affecting data integrity, and security anomalies.215

Art. 62 and 64 establish a comprehensive incident management framework, requiring providers216

to report serious security incidents, maintain robust incident response procedures, and implement217

corrective measures based on a systematic analysis of security breaches. Thus, the emphasis of FL on218

keeping data at its origin constitutes an inherent advantage over centralized learning since there are219

fewer data leakage risks in the data flow.220

4.2 Secure Computing Is an Inherent Component of FL When Needed221

Private computing methods that have been integrated with FL are a technical safeguard against data222

breaches that may occur whenever a model or client model updates are leaked to unauthorized third223

parties, as required by Art. 10 and 15. In FL environments, model updates transmitted by clients are224

inherently susceptible to gradient inversion and membership inference attacks, potentially exposing225

sensitive training data [43]. However, extensive research efforts have successfully addressed these226

vulnerabilities through two primary approaches: perturbation-based techniques implementing (ϵ, δ)-227

Differential Privacy ((ϵ, δ)-DP) guarantees [20, 57] and cryptographic methods such as homomorphic228

encryption (HE) [38] and secure multi-party computation (SMPC) [7]. While these technical solutions229

may not directly address privacy in a regulatory context, they establish a robust technical foundation230

that substantially reduces potential attack vectors and mitigates the risk of financial liability under231

Art. 101, which outlines penalties for non-compliance with the AI Act. It is important to note that232

anonymization techniques are particularly effective in large-scale databases, which conceal sensitive233

information at a much lower cost than perturbation or cryptographic methods [5, 31, 33]. Overall,234

this can provide a stronger compliance basis compared to centralizing learning as data is encrypted,235

anonymized, or made private directly at the client side and processed in a distributed fashion.236

4.3 Cross-Silo FL for High-Risk AI Applications Removes Many Attack Vectors Compared to237

Cross-Device FL238

High-risk FL systems under the AI Act will most likely be designed as cross-silo applications, given239

the already highly regulated nature of high-risk domains. Thus, there will be a small number of240

clients (typically < 100), each with a considerable amount of data. This setup allows for contractual241

agreements between all participating clients and the server operator, which can increase the trust242
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Table 1: The algorithmic costs estimate how well the privacy mechanisms scale. Especially, the
server-side communication provides evidence that the cryptographic methods are significantly more
expensive than (ϵ, δ)-DP. Further details on each technique are available in Appendix D. Key: N =
number of model parameters, K = total number of clients in system.

Privacy Pot. AI Act Client Server
Technique compliant* Computation Communication Space Computation Communication Space Algorithm

(ϵ, δ)-DP O(N)** O(1) O(N) O(|K|) O(|K|) O(|K|) Andrew et al. [1]
SMPC O(|K|2 + |K| ×N) O(|K|+N) O(|K|+N) O(|K|2 ×N) O(|K|2 + |K| ×N) O(|K|2 +N) Bonawitz et al. [7]
HE Limited O(N) O(N) O(N) O(|K| ×N) O(|K| ×N) O(N) Jin et al. [46]

* Potential evaluation for future AI Act compliance ** O(N) for computation originates from clipping a model update. When the FL aggregator is running in a secure enclave, we can
also clip updates on the server at cost O(|K| ×N)

between parties and formalize contribution requirements per client. Such contribution requirements243

can include a minimum amount of training data points per client. Given the regulated nature, there244

are already standards in place the act as data quality gates and help standardize the data format across245

organizations. Also, contractc can be used to negotiate minimum infrastructure requirements. As such,246

tools like Trusted Execution Environments (TEEs) can be used across all clients [60]. Furthermore,247

key security concerns such as Byzantine attacks (e.g., data and model poisoning) [54, 82], membership248

inference attacks client model updates [62], or freerider attacks [30] can be mitigated largely through249

formal agreements.250

5 Energy & Sustainability Considerations Are Central Components of251

Regulation252

Aside from data governance-related requirements, the AI Act integrates fundamental environmental253

and sustainability considerations. Rec. 69 and 76 provide the foundational context, emphasizing254

lifecycle environmental assessment and acknowledging the growing ecological footprint of AI.255

These principles are operationalized through several key articles: Art. 17 mandates systematic256

documentation of resource consumption within quality management systems. It requires detailed257

environmental impact assessments for high-risk AI systems, and Art. 61, in connection with Rec. 142,258

promotes voluntary sustainability initiatives through codes of practice. Together, these provisions259

create a regulatory architecture that combines mandatory environmental reporting with voluntary260

industry initiatives, reflecting the EU’s broader commitment to technological advancement within261

ecological constraints.262

Environmental provisions of the AI Act represent an important step toward sustainable AI de-263

velopment, though their practical effectiveness will depend on implementation and enforcement264

mechanisms. Generally, this creates an inevitable trade-off between the need for privacy (Art. 10)265

and energy efficiency (see Section 6.2). The trade-off is particularly relevant in light of the EU power266

grid condition. The grids of member states operate at capacity, limiting the deployment of large-scale267

computational facilities, particularly data centers required for advanced machine learning operations.268

5.1 FL Can Improve the Accessibility to Distributed Training Hardware269

With FL, we improve the accessibility of scattered resources by leveraging hardware within the270

trusted perimeters of data owners and decentralizing energy requirements. A frequent use case for FL271

is medical data processing. For example, Germany, the EU’s largest economy, has 1,872 hospitals272

with 17.6M patient admissions in 2023 [29]. Each hospitalization produces a separate record. When273

assuming the average length on a single record is similar to those found in the MIMIC-IV dataset [47],274

German hospitals have generated roughly 39.9B tokens in 2023 that can be used for model training.275

Typically, domain-specific language models are based on pre-trained models such as Llama 3.1276

8B [28, 34] and fine-tuned on domain knowledge. Facilitating the fine-tuning process on 2023277

German patient records requires approx. 57 GPU days on Nvidia H100 GPUs (see Appendix A278

for a full calculation), an amount of compute that either requires the use of cloud services or a279

sophisticated and fault-tolerant distributed processing architecture. For sensitive workloads, cloud280

outsourcing is typically challenging as numerous regulatory clearance processes are involved when281

moving data [50]. In fact, the European Health Data Space (EHDS), a new regulation adopted by282

the EU Council in January 2025, aims to provide controlled access to patient data of EU residents283

in a secure, anonymous, and intuitive way [16]. Taken together, the EHDS and AI Act draw a path284

to federated data processing for high-risk systems in the field of medical data3. The same is true285

3We note that there are several practical AI deployment challenges mainly originating from budgeting
constraints, bureaucracy, and resource availability that have to be solved before AI can be used in hospitals at
scale.
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for other domains where applications are likely falling into the high-risk category, such as financial286

transactions or biotech.287

5.2 FL Can Improve Energy Consumption Transparency288

In FL systems, data processing occurs at the point of origin, providing direct insights into the289

actual computational and communication costs associated with data collection and processing. This290

transparency becomes particularly relevant when considering the AI Act’s emphasis on environmental291

impact documentation and resource efficiency. The stark contrast in energy requirements becomes292

evident when comparing different data collection scenarios: collecting data from remote sensing293

devices via wireless wide-area networks incurs energy costs that can be orders of magnitude higher294

than data collection within centralized data centers. This granular visibility of energy consumption295

patterns aligns with the AI Act’s requirements for the systematic recording of energy metrics and296

environmental impact assessment, potentially facilitating compliance with regulatory frameworks297

while enabling more accurate optimization of system-wide energy efficiency. To fully capture energy298

consumption in FL systems, we can use the client energy consumption, the per-bit communication299

cost model [45, 76] and pair it with trusted computing techniques [61] on the client side such that the300

data lineage also covers the energy footprint of a data point. While monitoring of distributed systems301

is more complex compared to centralized systems, the inherent transparency of resource utilization in302

FL systems not only aids in regulatory compliance but also provides a starting point for energy-based303

optimization of AI systems.304

6 Alternative View: Centralized Learning Is Overall More Efficient and305

Offers Fewer Attack Vectors306
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Figure 2: Energy-efficiency experiments.
Quantification of energy sinks in FL appli-
cations compared to centralized learning. We
use a target accuracy of 50% (TTA50) and
train over 4000 mini-batches in each scenario.

Despite the beneficial properties of FL in light of307

the AI Act, there are several practical challenges that308

currently limit the wider adoption of FL. Centralized309

learning is currently the primary approach for training310

ML models, mainly because the operator (e.g., Meta311

or DeepSeek) remains in full control of the entire312

training pipeline [17, 34]. This provides the operator313

with fine-grain control over the data that is being314

used for training. Similarly, it is easier to integrate315

training optimizations (e.g., via hardware-software316

co-design) when all training hardware is owned by317

the operator [32].318

In the following, we use theoretical analysis and ex-319

perimental results to outline a set of key challenges320

where centralized learning is favorable over FL. Our321

experimental results are based on a federated train-322

ing pipeline as it is frequently used in FL litera-323

ture [3, 40, 69] but with dedicated hardware. We324

train a BERT-based transformer model [19] for email325

classification on the 20 News Group Dataset [51]326

that is already sufficient to outline the current short-327

comings of FL. From a practical perspective, such328

a training pipeline can also be employed for job ap-329

plication screening applications that fall under the330

AI Act definition of high-risk systems. Experimental331

details are available in Appendix B.332

6.1 Energy Efficiency in FL Systems Is Worse than in Centralized Learning333

FL exhibits an inevitable tradeoff between learning and communication efficiency. More local training334

steps in between client-server communication rounds yield better communication efficiency but can335

also lead to divergent models. Such a divergence significantly reduces training efficiency. Such336

a trade-off is challenging to control and optimize [10]. In Figure 2, we showcase the impact of337
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federated communication over a wide-area network. Even in such small-scale experiments with338

communication after every two local training steps, the FL performance disadvantage compared339

to centralized learning is notable. Note, communication frequency in real-world systems is often340

significantly lower than in our experiment, leading to stronger non-i.i.d. effects, longer training times,341

and overall higher energy consumption [44, 65].342

6.2 Private Computing Techniques Create Significant Overheads343

Our theoretical analysis shows that secure computing techniques such as (ϵ, δ) Differential Privacy344

((ϵ, δ)-DP), Secure Multi-Party Communication (SMPC), and Homomorphic Encryption (HE) come345

at notable cost overheads, creating a trade-off between data security and energy efficiency (Table 1).346

While (ϵ, δ)-DP shows favorable properties in scaled systems, smaller-sized applications require high347

perturbation levels to ensure no individual data points can be revealed, which can be impractical.348

Generally, this leads to significantly increased computational requirements as more training steps349

are required to reach the same model performance as without (ϵ, δ)-DP. Strong (ϵ, δ)-DP guarantees350

(ϵ < 1) can lead to prohibitively long training times as the utility of training samples degrades with351

increased noise. This creates two challenges for FL applications. First, in systems with clients that352

participate infrequently or only once, the learning effect from individual clients can be minimal. This353

may remove some of the benefits FL can have by opening data siloes for higher data variety and354

deny building more representative models. Second, the energy efficiency of FL systems decreases.355

Given the already worse efficiency compared to centralized learning, this increases the performance356

gap to potentially impractical levels. Similarly, Secure Multi-Party Communication and Homomor-357

phic Encryption can also introduce notable cost overheads through extensive communication and358

computation requirements that depend on the number of model parameters and the number of FL359

clients. When used with billion-parameter-scale models, both cryptographic methods can reduce the360

utility of an FL application significantly. In addition, HE also denies the FL server operator from361

inspecting the model, which can violate data governance requirements of the AI Act, as Art. 72362

requires model/service quality monitoring.363

6.3 The Right to Be Forgotten Requires Sharing Gradients with Specific Information364

Compared to centralized training regimes, the distributed and aggregate nature of federated learning365

makes it difficult to isolate and remove the influence of specific training data since model updates are366

intertwined across multiple clients and training rounds. Work towards solving federated unlearning367

under consideration of communication efficiency has shown promising progress [37]. Yet, a key368

concern remains. If a server stores the global model over multiple FL rounds and a client requests to369

be forgotten, the client submits an update that has been updated so that the client data is removed370

exactly as the client had requested. However, applying such updates that remove certain data points or371

patterns bears the risk of gradient inversion, a major security vulnerability of FL that is mainly treated372

with secure computing. At scale, the only viable option to tackle gradient inversion is (ϵ, δ)-DP,373

and it is unclear whether unlearning is effective in combination with perturbation-based methods.374

This constitutes a privacy risk. More generally, there is notable progress in pattern unlearning for375

centralized systems [66, 71]. Yet, unlearning implicitly learned and more complex concepts is still376

overall challenging and, in wide areas, unsolved [87].377

7 Future Federated Learning Research Agenda378

Taking the benefits and challenges of FL together, we find that especially data governance calls for379

methods to increase the data variety when training high-risk applications under the AI Act and for380

moving training closer to the end user, i.e., becoming more adaptive towards changing environments.381

In this context, the design of FL offers notable benefits over centralized learning. Yet, our analysis382

and the alternative view reveals fundamental trade-offs that currently hinder the broader adoption of383

FL. To address these shortcomings and enhance regulatory compliance of FL with the AI Act and384

other emerging global regulations, we formulate a non-exhaustive set of research priorities for the FL385

community (Figure 3).386

Data governance. A central component that bears significant risks for legal fines is the right to387

be forgotten. Generally, but especially in federated settings, unlearning techniques need further388

attention, particularly when it comes to implicit concepts, e.g., a hidden relationship between two389

individuals discovered from message threads. Such concepts typically have a deep interconnect that390
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Federated Learning Research Gaps under the EU AI Act
We formulate the EU AI Act’s key requirements as guiding questions for technical research

Data 
Governance

The right of being forgotten
§ How can a model forget implicit concepts 

that are specific to an FL client?
§ How can the right to be forgotten be 

implemented effectively in FL systems?

Notion of regulatory compliant privacy
§ Do private computing techniques as used in 

FL fully satisfy AI Act requirements?
§ When do we really need private computing 

techniques in FL applications?

Data Bias Control 
§ What are meaningful metrics to assess data 

quality rather than client similarity only?
§ How can FL algorithms account for data 

variance to fairly represent all clients?

Quality 
Management

Adaptive Model Quality Control Over Time
§ How can we control model quality in an FL setting with private 

computing techniques in place? 
§ How do regulatory compliant FL model evaluations strategies look like 

under the provision of a model provider’s accountability? 

Federated Datasets Are Challenging to Inspect Directly
§ How can we transfer established techniques for data inspection into 

federated settings?
§ How can we make sure that training is robust against adversarial 

participants? 

Energy 
Efficiency

Energy Measurement Standards
§ How do we define sustainable computing best practices for FL? 
§ How do establish homogenous measurement standards / benchmarks 

for FL applications?

Privacy-Energy Tradeoff
§ How do we cope with the privacy-energy trade-off in FL?
§ Which dimension is to prioritize in situations with a direct conflict? 
§ How can we improve private and secure computing techniques to also 

work on the network edge where energy is scarce? 

Figure 3: For each analysis section in this position paper (Sections 3 to 5), we formulate a set of open
technical research questions based on the AI Act requirements. The FL community must address
these questions to enhance regulatory compliance.

is challenging to separate [70]. Additionally, there is a notable gap between the perception of privacy391

in technical communities and the regulatory definition. While user consent constitutes privacy-392

conforming data processing, technical privacy can establish strong safeguards against unauthorized393

data access. However, in the case of (ϵ, δ)-DP, it is unclear what privacy budget is sufficient to comply394

with the AI Act. Lastly, FL improves data accessibility, but at the same time, data audits become395

more challenging since accounting for a broad range of bias sources can be difficult at scale [59]. It396

is also an open question of how to capture the various biases and balance them.397

Quality management. Ensuring data quality and integrity across decentralized participants requires398

robust monitoring processes. Providing meaningful human oversight as required by the AI Act,399

thorough testing and validation, and detailed technical documentation necessitates coordination and400

standardized practices among entities. While there are some works providing guidance on how AI401

service providers can steer the FL training process and take ownership [80], there are still many402

open research questions, such as the technical implementation of federated data inspection. Often,403

data inspection can be realized when obtaining user consent and applying anonymization to remove404

personal data. Further, without a strong understanding of the data basis, it is challenging to generate405

explanations for federated learning model outputs [4]. Designing systems with data protection406

safeguards while maintaining model performance is complex and involves numerous trade-offs. For407

instance, data security is a key concern to providing high service quality, and, to date, it is unclear408

what a regulatory-compliant secure computing strategy could look like, especially considering the409

privacy-energy trade-off.410

Energy efficiency. While we see that learning efficiency on clients is on par with data center411

clients [79], the effectiveness of FL systems needs to improve overall, especially when it comes to412

the combination of federated and private computing techniques. However, we also need a common413

understanding of contributes to even better energy transparency, i.e., what aspects are relevant, only414

the training compute or also the way we collect and preprocess data? With their per-bit energy cost415

model, Jalali et al. [45] have proposed a good starting point, but its practical applicability with many416

stakeholders involved (e.g., ISP or data center operators) is limited.417

8 Conclusions418

In this position paper, we evaluate the key requirements of the AI Act from a technical perspective419

and discuss how FL can help build legally compliant high-risk AI applications. Despite the notable420

benefits, we also highlight the current shortcomings of FL in light of AI regulation, outlining relevant421

research challenges going forward. Now is the time to act by assessing operational systems and422

re-considering the fundamental design of future high-risk AI applications. Furthermore, the EU AI423

Office has released a call to co-create regulatory and technical implementations of the AI Act [63].424

This creates a great opportunity for researchers, lawmakers, and both technical and legal practitioners425

to work together to shape the future of AI.426
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Appendix743

A Calculatory Details on the Medical Data Learning Example in Section 5.1744

We take the total of 39.9B tokens from 17.6M patient record documents [29] with an average length745

of 2267 tokens [47]. We use the parameter count of Llama 3.1 8B for our calculations, as it frequently746

forms the basis for domain-specific large language models [28]. It typically takes a total of 6 FLOP747

per token per model parameter to train a model [48]. Taken together, the total compute required to748

train a model at 100% hardware utilization is 1.9× 1021 FLOP. Accounting for a typical hardware749

efficiency – measured as model-FLOP-utilization (MFU) – between 30 and 40% [49], we need a750

total compute of 4.8 × 1021 FLOP. A single Nvidia H100 GPU has a total compute capacity of751

9.79× 1014 FLOP/s, so it takes about 57 GPU days to train an 8B parameter model on 39.9B tokens.752

For a comprehensive summary, see Table 2.753

Quantity Unit
Dataset size 39,899,200,000 tokens
Llama 3.1 8B 8,000,000,000 parameters
Compute requirement 6 FLOP / token / parameter
Required compute @ 100% efficiency 1.92× 1021 FLOP
Hardware efficiency (MFU) 40 %
Total required compute 4.79× 1021 FLOP
Nvidia H100 Compute Capacity 9.79× 1014 FLOP/s

Total Compute Time 56.6 days

Table 2: Overview of our compute effort calculation for a state-of-the-art medical text dataset.

B Experimental Details for Our Argumentation in Section 6754

Table 3: Training hyperparameters per training regime.
Training Data Tot. Samples Client Server
regime Dist. Seen MB Size Optimizer LR WD Mom. Damp. Loc. Iter. K k Strategy LR Mom.

Centralized IID 80K 20 SGD 0.01 0.001 0.9 0.9 5 – – – – –
Federated non-IID 80K 2 SGD 0.01 0.001 0.0 0.0 2 100 10 FedAvgM 1.0 0.9

Here, we provide additional details about our experimental results. For our empirical evaluations, we755

fine-tune the 110M parameter BERT transformer [19] over the 20 News Group Dataset [51] such756

that we can reliably classify emails into one of 20 categories. For example, such a classification757

application can be used in a company’s human resource processes to screen job applications. Under758

the AI Act, such a system is considered a high-risk application.759

B.1 Dataset760

In our empirical analysis, we use a state-of-the-art text classification task in FL research using the 20761

Newsgroup Dataset [51], which consists of 18,000 email bodies that each belong to one of 20 classes.762

The dataset has a total of 18, 000 samples, of which we use 16, 000 for training, 1, 000 for validation,763

and 1, 000 for testing. As our work aims to quantify the cost of FL and associated private computing764

methods in realistic systems in line with the EU AI Act requirements [15], we chose to sample 100765

non-IID client subsets via a Latent Dirichlet Allocation (LDA) with α = 1.0, which is widely used in766

FL research [3, 40, 69].767

B.2 Model768

We fine-tune the BERT model [19] with 110M parameters by using the parameter-efficient fine-tuning769

technique Low-Rank Adapters (LoRA). We use a LoRA configuration that has been well explored in770

FL settings [3], which results in 52K trainable parameters (0.05% of total model parameters). This771

reduces the computational intensity of the task at hand and minimizes the communication load for772

the FL setup, as we must only communicate the trainable parameters. The BERT model is used to773

classify the emails into the 20 distinct categories in the dataset. It resembles a realistic task as it is774
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frequently found in job application pre-screening applications, where the email bodies (input data)775

often contain sensitive and personal data.776

FL configuration. We use the Federated Averaging (FedAvg) algorithm to facilitate all FL experi-777

ments [56] and train for 2000 aggregation rounds. We choose a participation rate of 10% for each778

aggregation round, i.e., k = 10 out of K = 100.779

(ϵ, δ)-DP configuration. We employ sample-level (ϵ, δ)-DP for centralized learning, and for FL, we780

use user-level (ϵ, δ)-DP. Both methods provide the same privacy guarantees [20]. The parameteriza-781

tion for both is identical with z = [0.0, 0.03, 0.1, 0.3, 0.4, 0.5, 0.6] and δ = 1
16,000 , setting the data782

leakage risk to the inverse of the number of total training samples [1, 57]. For the experiment with783

z = [0.5; 0.6], we had to change the Learning Rate from 0.01 to 0.001.784

Energy monitoring. In centralized DL, we often fine-tune FMs on servers with multiple GPUs and,785

thus, require very high bandwidth interconnects (> 200GB/s) between the GPUs either via NVLink786

or Infiniband [2, 52]. FL only requires low bandwidth interconnects (< 1GB/s) since communication787

happens sparingly compared to multi-GPU centralized learning [81]. This creates significant design788

differences in the training process and an entirely different cost model. In the following, we point out789

essential components of the cost model for FL.790

The AI Act indicates that further guidelines around energy efficiency are forthcoming. When it comes791

to how those guidelines define and measure energy efficiency, we propose using a holistic methodol-792

ogy that accounts for computation and communication. Based on such conservative methodology, we793

can develop comprehensive baselines to compare against. The total energy consumption P consists794

of two major components, computational Pc and communication energy Pt, i.e., P = Pc + Pt.795

Pc can be measured directly on the clients via the real-time power draw with an on-board energy796

metering module [6] or deriving the energy consumption based on floating point operations and a797

client’s system specifications [18]. At the same time, Pt is generally more challenging to measure as798

multiple network hops are involved. Often, the network infrastructure components, such as switches799

and routers, are owned by multiple parties and are impossible for a service provider to monitor.800

However, the bit-wide energy consumption model is available to calculate the cost of transmitting801

data [76]. The costs are directly tied to the number of parameters of a client update in an FL system802

[85]. As such, we can calculate the total energy consumption of communication as803

Pt = Et · B = (nas · Eas + Ebng + ne · Ee + nc · Ec + nd · Ed) · B. (1)

From a client to a server, the communication network and its total energy consumption Et is organized804

as follows: Eas, Ebng, Ee, Ec, Ed are the per-bit energy consumption of edge ethernet switches, the805

broadband network gateway (BNG), one or more edge routers ne, one or more core routers nc, and806

one or more data center Ethernet switches nd, respectively. To get the total energy consumption for807

communication, we multiply Et with the size of a model update d in bits b, B = d · b. Usually, a808

model parameter has a precision of b = 32 bits but can vary based on the specific application [35].809

Jalali et al. [45] present the per-bit energy consumption for at least one device per network hop that810

can be used as a guideline. While it is possible to trace what route a network package takes [9], it is811

currently impossible to track the real energy consumption of a data package sent over the network. It812

specifically depends on what device has been used at what point in the communication chain. As813

such, if the AI Act requires us to track the total energy consumed by a service, we have to develop814

solutions to track the networking-related energy consumption. We already see promising progress815

towards holistically accounting for energy efficiency in FL applications [58, 68, 78].816

We monitor our dedicated clients - NVIDIA Jetson AGX Orin - with 2Hz and measure their total817

energy consumption while participating in our FL setup. We also use a single Orin device for818

the centralized experiments for a fair comparison. For our cost estimations, we use the average819

price per kWh in the EU, 0.29 e
kWh [25]. The EU Commission produces quarterly reports on the820

electricity price trends [23]. Directly proportional to the power consumption, we emit 252 gCO2e
kWh821

[24]. Regarding communication energy, we assume the average communication route from a private822

household to a data center with nas = 1, ne = 3, nc = 5, and nd = 2 (cf. Equation (1)) [45]. For823

the energy consumption per transmitted bit per network hop, we adopt the values from Jalali et al.824

[45], Vishwanath et al. [76] (Table 4).825
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Table 4: Energy consumption per bit network communication for our holistic energy monitoring
approach. Values are adopted from Jalali et al. [45], Vishwanath et al. [76].

Network Location Device Name Upload Cost (nJ/bit) Download Cost (nJ/bit)

Edge Switch Fast Ethernet Gateway 352 352
BNG ADSL2+ Gateway (100 Mbit/s) 14809 2160
Edge Router – 37 37
Core Router – 12.6 12.6
Data Center Switch Ethernet Switch 19.6 19.6

B.3 Hardware826

We evaluate the training pipeline on a state-of-the-art embedded computing cluster with NVIDIA827

Jetson AGX Orin 64 GB devices (Orin), where each device has 12 ARMv8 CPU cores, an integrated828

GPU with 2048 CUDA cores, and 64 Tensor cores. The CPU and GPU share 64 GB of unified829

memory. The network interconnect is 10 GBit/s per client. We monitor the system metrics with a830

sampling rate of 2 Hz, including energy consumption in Watt (W). We use a data center server as831

an FL server. The server has 112 CPU cores, 384 GB of memory, an NVIDIA A40 GPU, and a 40832

GBit/s network interface.833

C Additional Experimental Results for Section 6834

We have conducted additional experiments with varying (ϵ, δ)-DP levels to outline the cost of835

perturbation-based privacy. Figure 4 shows that high privacy levels come at significant cost of up to836

4× compared to learning without DP, in our case.837
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Figure 4: Privacy study. (ϵ, δ)-DP with varying noise multiplier (z) levels. ϵ is calculated based on
δ = 1

16,000 .

D Algorithmic Cost Analysis in Section 6838

In this section, we outline how we identified the algorithmic costs of state-of-the-art secure and839

private computing techniques. We omit the algorithmic costs of FedAvg and focus only on the privacy840

overhead. We discuss (ϵ, δ)-DP as introduced by Andrew et al. [1], SMPC as introduced by Bonawitz841

et al. [7], and HEC as introduced by Jin et al. [46].842

D.1 (ϵ, δ)-Differential Privacy843

The following algorithm (Algorithm 1) is taken verbatim from Andrew et al. [1]. For the client, the844

computational complexity O(d) originates from adding ξ to each parameter of a model update as845

well as by computing ∆. The communication complexity is O(1) as we need to communicate the846

standard deviation to parameterize ξ as well as the clipping threshold. The space complexity O(d)847

originates from storing θ.848

The server computational complexity O(|K|) originates from computing b̃t and the communication849

complexity O(|K|) as we only communicate constants between clients and the server. The space850

complexity O(|K|) comes from storing bi.851
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Algorithm 1 DPFedAvg-M with adaptive clipping

function Train(m, γ, ηc, ηs, ηC , z, σb, β)
Initialize model θ0, clipping bound C0

z∆ ←
(
z−2 − (2σb)

−2
)− 1

2

for each round t = 0, 1, 2, . . . do
Qt ← (sample m users uniformly)
for each user i ∈ Qt in parallel do

(∆t
i, b

t
i)← FedAvg(i, θt, ηc, Ct)

end for
σ∆ ← z∆C

t

∆̃t = 1
m

(∑
i∈Qt ∆t

i +N (0, Iσ2
∆)

)
∆̄t = β∆̄t−1 + ∆̃t

θt+1 ← θt + ηs∆̄
t

b̃t = 1
m

(∑
i∈Qt bti +N (O, σ2

b )
)

Ct+1 ← Ct · exp
(
−ηC(b̃t − γ)

)
end for

end function

function FedAvg(i, θ0, η, C)
θ ← θ0

G ← (user i’s local data split into batches)
for batch g ∈ G do
θ ← θ − η∇ℓ(θ; g)

end for
∆← θ − θ0

b← I||∆||≤C

∆′ ← ∆ ·min
(
1, C

||∆||

)
return (∆′, b)

end function

D.2 Secure Multi-Party Computation852

Table 5: SecAgg costs

computation
User O(|K|2 + d · |K|)
Server O(d · |K|2)
communication
User O(|K|+ d)
Server O(|K|2 + d · |K|)
storage
User O(|K|+ d)
Server O(|K|2 + d)

The SecAgg algorithmic costs (Table 5) are taken from853

Bonawitz et al. [7] Table 1. The naming convention has been854

adapted to our paper.855

D.3 Homomorphic Encryption856

The following algorithm (Algorithm 2) is taken verbatim from857

Jin et al. [46]. For the client, computational complexity O(d)858

originates from encrypting and decrypting the model. The859

communication complexity O(d) comes from communicating860

the aggregation mask once. The space complexity O(d) is861

created by storing the aggregation mask.862

The server computational complexity O(|K| × d) originates863

from the server-side model aggregation while the communica-864

tion complexity O(|K|×d) comes from sending the encryption865

mask once. Storing the encryption mask on the server results in space complexity O(d).866
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Algorithm 2 HE-Based Federated Aggregation
• [[W]]: the fully encrypted model | [W]: the partially encrypted model;
• p: the ratio of parameters for selective encryption;
• b: (optional) differential privacy parameter.
// Key Authority Generate Key

1 (pk, sk)← HE.KeyGen(λ);
// Local Sensitivity Map Calculation

2 for each client i ∈ [N ] do in parallel
3 Wi ← Init(W);
4 Si ← Sensitivity(W,Di);
5 [[Si]]← Enc(pk,Si);
6 Send [[Si]] to server;

// Server Encryption Mask Aggregation
7 [[M]]← Select(

∑N
i=1 αi[[Si]], p);

// Training
8 for t = 1, 2, . . . , T do
9 for each client i ∈ [N ] do in parallel

10 if t = 1 then
11 Receive [[M]] from server;
12 M← HE.Dec(sk, [[M]]);

13 if t > 1 then
14 Receive [Wglob] from server;
15 Wi ← HE.Dec(sk,M⊙ [Wglob]) + (1−M)⊙ [Wglob];

16 Wi ← Train(Wi,Di);
// Additional Differential Privacy

17 if Add DP then
18 Wi ←Wi +Noise(b);

19 [Wi]← HE.Enc(pk,M⊙Wi) + (1−M)⊙Wi;
20 Send [Wi] to server S;

// Server Model Aggregation
21 [Wglob]←

∑N
i=1 αi[[M⊙Wi]] +

∑N
i=1 αi((1−M)⊙Wi);
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