© ® N O o A~ W N =

Federated Learning is Needed to Overcome Key
Challenges Arising from the European Union AI Act

Anonymous Author(s)
Affiliation
Address

email

Abstract

The European Union AI Act (Al Act) introduces comprehensive requirements for
Al systems regarding data governance, safety and security, and energy efficiency
and sustainability, among others. High-risk AI applications, such as Al systems for
medical data processing, face particularly stringent compliance requirements. We
argue that Federated Learning (FL) is needed to overcome key challenges arising
from the Al Act, especially with regard to data governance. Through careful analysis
of the Al Act from a technical perspective, we show that the distributed architecture
of FL inherently addresses regulatory requirements around data privacy, consent-
based processing, and computational resource allocation. We critically examine
the current shortcomings of FL in the context of the Al Act and map out research
priorities that are needed to on the path towards full regulatory compliance.

1 Introduction

The rapid advancement of Al has prompted increased regulatory scrutiny, particularly in the European
Union (EU). The EU AI Act (hereafter referred to as Al Act) represents a landmark piece of legislation
establishing comprehensive requirements for Al systems, emphasizing high-risk applications and
general-purpose Al models [[15]. This regulatory framework aims to ensure that Al systems are
developed and deployed with transparency, accountability, and societal values in mind.

The AI Act is the first comprehensive legislation among many others that are already underway
in other regions like Canada [41] or China [11]. While the US Presidential Executive Order on
Trustworthy Al has been rescinded [74]], there are several bills planned on the US state-level, e.g., in
New York State [64] or Texas [[73]. These planned bills and regulatory frameworks adopt requirements
closely related to the AI Act.

Thus, we focus on the Al Act as it currently is the only comprehensive Al legislation that has been
passed into law. The AI Act introduces stringent requirements across three key dimensions of data
governance, safety, and security, as well as energy efficiency and sustainability. In this context, the
Al Act distinguishes between low/medium-risk and high-risk applications, where the latter is subject
to extensive monitoring and documentation requirements. An example of a high-risk application is a
system that handles financial transactions or even a job application screening tool, i.e., any system
that can have a fundamental impact on an individual’s life. Furthermore, the Al Act also defines a
notion of general-purpose Al (GPAI) systems, which host capable models that can serve multiple
tasks at a time.

Traditional centralized learning approaches, which dominate today’s Al development, face substantial
challenges under this new regulatory regime. These approaches typically rely on large-scale data
collection through web crawling [75] and centralized data storage [34]], raising significant concerns
regarding data privacy, copyright compliance, and regulatory adherence [67]. Additionally, centralized
systems create resource bottlenecks due to their high energy demand in concentrated locations.
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In the EU, power grids are operating at capacity, and initiatives to significantly grow the electricity
transmission capacities often take several years [21]. This makes the installation of new large-scale
Al data centers within the EU in the short- and mid-term difficult, requiring solutions to bridge the
resource gap.

We take the position that Federated Learning (FL) is needed to overcome key challenges arising
from the AI Act, especially for high-risk applications.

Such high-risk applications are typically characterized by extensive process integrity and safety
requirements. The localized learning architecture of FL ensures that training data stays on the
owners’ premises, making FL particularly attractive for scenarios where sensitive personal data or
process information is handled [39]]. Normally, it takes time to obtain data processing clearance
for applications that touch upon trade secrets or export-controlled goods. One such example is
automotive semiconductor chip production processes. FL enables learning on such data without
ever transferring the raw data outside a production facility but rather leverages on-premise resources
to learn a model with relevant information. Such high-risk systems are typically found in already
highly regulated environments and typically involve formal agreements between clients and with the
server operator. Since there is often only a limited number of clients that contribute relevant data for
high-risk applications, it is highly likely that systems will be built with a cross-silo architecture. On
a more general note, the owner can decide what data can be used in training, remaining in control of
their data at all times. This positively impacts copyright compliance since learning is only conducted
on consent-provided data [67]].

At the same time, localized learning benefits the reduction of data-induced biases in models. End
users can contribute their data to the training process, improving the service quality not only for
themselves but also for peers who have similar requirements and interests. The greater flexibility
of FL compared to centralized learning when it comes to personalized models boasts the utility of
models for downstream tasks and helps users increase the effectiveness of models beyond what is
possible with off-the-shelf models [86]. This contributes to meeting the data governance requirements
of the AT Act.

Since EU power grids are operating at their limits, |G UL ]
especially concerning transmission capacities [21]],

there is a stark need for methods that can balance Datalcaieianee
loads based on resource availability and train models " Data bias reduction by using broader domain-
. . . . . Specific data bases
across wide-area networks, POtentlaHy with Slgnlﬁ' = Data relevance maintenance by continuous learning
cantly lower communication bandwidths than what &l mprevedidaralineagelbyleaving]datalatitslongin

is available in data centers. This improves the overall

. .. Privacy & Security
resource efficiency as capacities are used where they

Lawful data processing guarantees by leaving data

are available, and hardware is utilized more effec- owners in control
tively’ which aligns with the AI Act’s energy mon- = Technical safeguards by inherently including secure
. . . . . computing techniques when needed
itoring and efficiency requirements. Despite these
critical benefits of FL that enable the development
of Al models for sensitive processes, there is a set T T R e e
of open challenges that currently hinder the broad intensive workloads )
. . = Holistic energy monitoring of the entire model
adoption of FL. The FL research community needs lifecycle (including data, training, and deployment)

to address training efficiency, improve the regulatory

compliance of secure computing techniques, and fur- Figure 1: Overview of FL properties that in-
ther enhance federated monitoring of training and herently improve regulatory compliance with
deployment processes. the Al Act.

In Section 2] we begin by introducing the AI Act cornerstones. We then discuss data governance
specifics in Section [3] followed by privacy and security in Sectiond] Section [5|introduces energy
efficiency considerations. For a broader perspective, we offer an alternative position based on open
FL challenges in Section[6] We advocate for future research priorities in Section[7]and conclude in
Section[§]

2 The EU AI Act

The Al Act comes into effect in multiple stages, with the rules on prohibited applications (e.g., Al for
biometrics) applying from February 2025. In August 2025, the provisions on GPAI systems will take
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effect. The rules for high-risk applications will enter into force in August 2026. The final part of the
Al Act, ArtE] 6(1), provisions for systems where Al is used for safety features will come into effect in
2027. The detailed timeline is available in Art. 113.

2.1 Regulatory Risks for Technical Innovation

The inherent tension between regulatory frameworks and technical implementation presents a sig-
nificant challenge in emerging technologies. While regulations deliberately employ broad, abstract
requirements to prevent circumvention and maintain adaptability across different contexts, this
approach often creates a fundamental disconnect with technical research priorities, which require
concrete, measurable specifications for effective development and validation.

The insufficient alignment between technical priorities and legal requirements has led to a significant
implementation gap that demands attention and rapid action. In the first step, it is necessary to
understand the current compliance shortcomings from a technical perspective, identify techniques
that have the smallest gaps, and map out a path towards full compliance. Second, progressing
frameworks like the AT Act must be a joint effort between technical communities and regulators to
balance control and the ability to innovate.

For instance, current systems often face competing demands between privacy protection and energy
efficiency (see Section[6.2), where strengthening one aspect necessarily compromises the other. This
complex interplay of requirements necessitates a pragmatic framework that can guide technical teams
in making informed decisions while maintaining regulatory compliance. Depending on the field of
application and the computational resources required for a model, the Al Act sets forth different
compliance criteria.

2.2 System Assessment Criteria

The AI Act focuses on the real-world impact of AI models on the daily lives of people inside the EU
via a risk-based assessment and a more specific, yet still broadly defined, notion of GPAI.

(I) GPAL Currently, an Al model is classified as GPAI once it meets one of the following three
criteria (Art. 51): (i) high impact capabilities, (ii) by decision of the EU regulator, or (iii) whenever a
model surpasses a total training compute budget of 102> floating point operations (FLOP). Yet, the
regulation has yet to precisely describe what systemic risk is and how to measure impact capability.
The legal text only contains a general notion to measure the risk by means of “appropriate technical
tools and methodologies, including indicators and benchmarks” (Art. 51). It is unclear whether
current benchmarks address any of the high-level Al Act requirements. As there is a lack of specific
legal criteria for GPAI, this paper focuses on the analysis of domain- and task-specific high-risk
applications.

(II) Risk-based assessment. We expect FL to excel in high-risk applications due to the inherent
need for strict data governance and process integrity. The Al Act distinguishes Al systems into
risk categories that require service providers to adhere to different compliance criteria. High-risk
systems are characterized by having the potential to have a major impact on essential services (Art.
6; e.g., CV-sorting software for job application websites or Al-supported medical products). These
systems have the largest number of compliance items regarding transparency, data governance, results
traceability, data security, privacy, and possibly energy reporting (Art. 40). Furthermore, the AT Act
requires high-risk application providers to register their systems in the EU Database for High-Risk Al
Systems (Art. 71). For a full picture, limited risk systems are subject to transparency regulation only,
i.e., Al-generated results must be labeled as such. Minimal and no-risk systems are not subject to
regulation but can voluntarily adopt the Al Act requirements.

The following analysis in Sections [3]to[5]discusses several Al Act requirements and how FL can help
achieve full compliance, especially for high-risk applications. See Figure[I]for a summary of key
benefits of FL under the Al Act.

"Art." and "Rec." are the abbreviations for Articles and Recitals in the AI Act, respectively.
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3 Improved Data Accessibility Addresses the Key Data Governance Concerns

The AI Act establishes comprehensive requirements for training, validation, and testing datasets as
outlined in Art. 10 and further elaborated in Rec. 44-47. The regulation mandates that these datasets
meet specific quality criteria: they must be relevant to the intended purpose, representative of the use
case, demonstrably free of errors, and complete in their coverage of relevant scenarios. A distinctive
feature of these requirements is the explicit consideration of geographical, behavioral, and functional
settings specific to the system’s intended purpose, ensuring that the Al system performs consistently
across diverse operational contexts. This naturally favors paradigms that can tap into diverse data
sources. The Al Act emphasizes anti-discrimination safeguards, requiring providers to thoroughly
examine datasets for potential biases that could lead to discriminatory outcomes. This examination
process must be systematic and documented, specifically identifying and mitigating potential sources
of unfair bias that could affect protected characteristics or vulnerable populations. Taken together,
the data collection requirements and safeguards constitute the definition of high-quality data.

3.1 FL Simplifies Access to Domain Data for High-Risk AI Applications

As data owners remain in control over their data with FL, the barriers to making (subsets of) data
available for training domain-specific models can be reduced. For instance, the high-tech and biotech
industries, with their sensitive workloads, have many untapped valuable data sources for domain-
specific foundation models [22} [36]]. Data from these domains is often considered high-risk as
misuse could create significant threats, e.g., in the context of material or drug discovery. With FL,
foundation models for drug or material discovery can be trained on a greater variety of data points.
The importance of data variety has proven invaluable for material and biosciences as it significantly
improves the model quality [28, 155} 72, [77]].

Taken together, the sensitivity of workloads, the increasing demand for data, and the fragmentation of
data across institutions can be a limiting factor for advancing material sciences and drug discovery
initiatives. FL enables data owners to retain control over their data and decide what data to share
for training. This provides a strict data lineage as required under the Al Act and a much broader
data basis for high-risk, domain-specific models. FL offers several optimization and aggregation
techniques that, paired with a more diverse data basis, address quality and relevance bias [42], as
required by Art. 11.

3.2 Training at the User Base Directly Addresses the AI Act Data Relevancy Requirement

FL inherently enables continuous learning [84], keeping models up-to-date with the latest data. This
improves overall data relevancy [8, 53] and model performance notably [27, 83], as required by the
Al Act under Art. 10.

In practice, the Al Act requires organizations developing high-risk Al systems to establish clear
criteria for determining data relevance, document their assessment processes for data quality and
relevance, maintain records of how they ensure ongoing data appropriateness, and regularly review and
update datasets to maintain relevance. Frequent progress leading to quickly evolving databases and
changing user requirements necessitates quick and intuitive update processes. For Al applications,
this typically involves training data updates, re-training of models, and re-deployment. FL can
mitigate the overhead that comes along with these additional steps.

3.3 FL Simplifies Data Lineage as Required by the AI Act

At the same time, FL offers an intuitive approach to simplifying the data lineage when training Al
models compared to centralized learning. High-risk applications require thorough documentation of
data processing steps, i.e., which data points have been processed at which location and what process
steps have been applied. FL can address the first part of the data lineage requirements since data
is always left at the client and never moved, which notably simplifies the record keeping processE]
Regarding processing steps, trusted execution environments offer a viable solution to ensuring process
integrity even in distributed environments, rendering FL on par with centralized learning. Similarly,
communicating sensitive raw data creates a risk for man-in-the-middle attacks [[13[]; centralized data
storage and humans in the loop open vulnerabilities for unauthorized data access and processing [26]].
In fact, data breaches are the main reason for substantial data-related fines in the EU [12]]. FL
substantially reduces the risk of unlawful data processing in this context.

We note that, contrary to cross-silo FL, cross-device settings can create additional complexities for data
lineage when client contributions have to be tracked across a large number of clients (n > 1000).
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4 FL Enacts Privacy & Security by Design

As privacy violations are the main cause of data-related fines, it is imperative to understand the
notions of regulatory and technical privacy. From a legal perspective, privacy is defined as lawful
and consent-based data processing, i.e., private data must only be processed for a specific intent with
the prior consent of the data owner [14]. More specifically, the Al Act establishes privacy guardrails
by installing extensive documentation, monitoring, and reporting requirements that help prevent
unauthorized data processing (Art. 10). Technical privacy, typically enacted by secure computing
techniques (e.g., differential privacy), specifically addresses data breach risks and is considered a
technical safeguard supporting regulatory privacy (Art. 15). That said, the AI Act complements
GDPR and its key requirements [[14].

4.1 FL Reinforces Lawful Data Processing in High-Risk Applications

The design of FL applications removes the requirement to collect data in a central location for training
and, therefore, enables data owners to share insights about their data without exposing the actual raw
data that can be of a sensitive nature. Keeping data owners in control also puts a stronger focus on
consent-based data processing, further improving regulatory compliance as required by the Al Act
under Art. 10.

From a regulatory perspective, this also creates stricter boundaries of how data is being processed.
Since FL applications typically have a specific use case, they use training data only in this context.
Also, clients can disconnect (opt-out) from an FL application at any time, a very important character-
istic needed for compliance with privacy regulation. This removes regulatory exposure for one of the
major origins of significant fines: consent-based processing [[12].

On a more general note, under the Al Act, access control mechanisms require strict authentication
protocols and a clear allocation of responsibilities for data handling while ensuring appropriate
human oversight of the system (Art. 29). The AI Act further strengthens data safety through
logging requirements (Art. 12), mandating the automatic recording of critical events, including
data modifications, access attempts, system changes affecting data integrity, and security anomalies.
Art. 62 and 64 establish a comprehensive incident management framework, requiring providers
to report serious security incidents, maintain robust incident response procedures, and implement
corrective measures based on a systematic analysis of security breaches. Thus, the emphasis of FL on
keeping data at its origin constitutes an inherent advantage over centralized learning since there are
fewer data leakage risks in the data flow.

4.2 Secure Computing Is an Inherent Component of FL. When Needed

Private computing methods that have been integrated with FL are a technical safeguard against data
breaches that may occur whenever a model or client model updates are leaked to unauthorized third
parties, as required by Art. 10 and 15. In FL environments, model updates transmitted by clients are
inherently susceptible to gradient inversion and membership inference attacks, potentially exposing
sensitive training data [43]]. However, extensive research efforts have successfully addressed these
vulnerabilities through two primary approaches: perturbation-based techniques implementing (e, §)-
Differential Privacy ((¢, §)-DP) guarantees [20,(57] and cryptographic methods such as homomorphic
encryption (HE) [38]] and secure multi-party computation (SMPC) [7]. While these technical solutions
may not directly address privacy in a regulatory context, they establish a robust technical foundation
that substantially reduces potential attack vectors and mitigates the risk of financial liability under
Art. 101, which outlines penalties for non-compliance with the AI Act. It is important to note that
anonymization techniques are particularly effective in large-scale databases, which conceal sensitive
information at a much lower cost than perturbation or cryptographic methods [5} 31,133]. Overall,
this can provide a stronger compliance basis compared to centralizing learning as data is encrypted,
anonymized, or made private directly at the client side and processed in a distributed fashion.

4.3 Cross-Silo FL for High-Risk AI Applications Removes Many Attack Vectors Compared to
Cross-Device FL

High-risk FL systems under the Al Act will most likely be designed as cross-silo applications, given
the already highly regulated nature of high-risk domains. Thus, there will be a small number of
clients (typically < 100), each with a considerable amount of data. This setup allows for contractual
agreements between all participating clients and the server operator, which can increase the trust
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Table 1: The algorithmic costs estimate how well the privacy mechanisms scale. Especially, the
server-side communication provides evidence that the cryptographic methods are significantly more
expensive than (e, §)-DP. Further details on each technique are available in Appendix [D] Key: N =
number of model parameters, K = total number of clients in system.

Privacy Pot. AT Act Client Server

Technique | compliant* Computation Communication Space Computation Communication Space Algorithm
(e,0)-DP v’ O(N)** o(1) O(N) O(IK|) O(|K|) O(|K]) Andrew et al. {1
SMPC v’ O(IK>+|K| x N) O(|K|+ N) O(IK|+ N) | O(|K|> x N) O(|K[*+|K|x N) O(|K[|>+ N) | Bonawitz etal. {7
HE Limited O(N) O(N) O(N) O(|K| x N) O(|K| x N) O(N) Jin et al. [46

* Potential evaluation for future Al Act compliance ** O(N) for computation originates from clipping a model update. When the FL aggregator is running in a secure enclave, we can
also clip updates on the server at cost O(| K| x N)

between parties and formalize contribution requirements per client. Such contribution requirements
can include a minimum amount of training data points per client. Given the regulated nature, there
are already standards in place the act as data quality gates and help standardize the data format across
organizations. Also, contractc can be used to negotiate minimum infrastructure requirements. As such,
tools like Trusted Execution Environments (TEESs) can be used across all clients [60]. Furthermore,
key security concerns such as Byzantine attacks (e.g., data and model poisoning) [54}82], membership
inference attacks client model updates [62], or freerider attacks [30] can be mitigated largely through
formal agreements.

S Energy & Sustainability Considerations Are Central Components of
Regulation

Aside from data governance-related requirements, the Al Act integrates fundamental environmental
and sustainability considerations. Rec. 69 and 76 provide the foundational context, emphasizing
lifecycle environmental assessment and acknowledging the growing ecological footprint of Al
These principles are operationalized through several key articles: Art. 17 mandates systematic
documentation of resource consumption within quality management systems. It requires detailed
environmental impact assessments for high-risk Al systems, and Art. 61, in connection with Rec. 142,
promotes voluntary sustainability initiatives through codes of practice. Together, these provisions
create a regulatory architecture that combines mandatory environmental reporting with voluntary
industry initiatives, reflecting the EU’s broader commitment to technological advancement within
ecological constraints.

Environmental provisions of the Al Act represent an important step toward sustainable Al de-
velopment, though their practical effectiveness will depend on implementation and enforcement
mechanisms. Generally, this creates an inevitable trade-off between the need for privacy (Art. 10)
and energy efficiency (see Section[6.2)). The trade-off is particularly relevant in light of the EU power
grid condition. The grids of member states operate at capacity, limiting the deployment of large-scale
computational facilities, particularly data centers required for advanced machine learning operations.

5.1 FL Can Improve the Accessibility to Distributed Training Hardware

With FL, we improve the accessibility of scattered resources by leveraging hardware within the
trusted perimeters of data owners and decentralizing energy requirements. A frequent use case for FL
is medical data processing. For example, Germany, the EU’s largest economy, has 1,872 hospitals
with 17.6M patient admissions in 2023 [29]. Each hospitalization produces a separate record. When
assuming the average length on a single record is similar to those found in the MIMIC-IV dataset [47],
German hospitals have generated roughly 39.9B tokens in 2023 that can be used for model training.
Typically, domain-specific language models are based on pre-trained models such as Llama 3.1
8B [28 134]] and fine-tuned on domain knowledge. Facilitating the fine-tuning process on 2023
German patient records requires approx. 57 GPU days on Nvidia H100 GPUs (see Appendix
for a full calculation), an amount of compute that either requires the use of cloud services or a
sophisticated and fault-tolerant distributed processing architecture. For sensitive workloads, cloud
outsourcing is typically challenging as numerous regulatory clearance processes are involved when
moving data [50]. In fact, the European Health Data Space (EHDS), a new regulation adopted by
the EU Council in January 2025, aims to provide controlled access to patient data of EU residents
in a secure, anonymous, and intuitive way [[L6]. Taken together, the EHDS and AI Act draw a path
to federated data processing for high-risk systems in the field of medical dataﬂ The same is true

3We note that there are several practical Al deployment challenges mainly originating from budgeting
constraints, bureaucracy, and resource availability that have to be solved before Al can be used in hospitals at
scale.
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for other domains where applications are likely falling into the high-risk category, such as financial
transactions or biotech.

5.2 FL Can Improve Energy Consumption Transparency

In FL systems, data processing occurs at the point of origin, providing direct insights into the
actual computational and communication costs associated with data collection and processing. This
transparency becomes particularly relevant when considering the AI Act’s emphasis on environmental
impact documentation and resource efficiency. The stark contrast in energy requirements becomes
evident when comparing different data collection scenarios: collecting data from remote sensing
devices via wireless wide-area networks incurs energy costs that can be orders of magnitude higher
than data collection within centralized data centers. This granular visibility of energy consumption
patterns aligns with the Al Act’s requirements for the systematic recording of energy metrics and
environmental impact assessment, potentially facilitating compliance with regulatory frameworks
while enabling more accurate optimization of system-wide energy efficiency. To fully capture energy
consumption in FL systems, we can use the client energy consumption, the per-bit communication
cost model [45]76] and pair it with trusted computing techniques [61] on the client side such that the
data lineage also covers the energy footprint of a data point. While monitoring of distributed systems
is more complex compared to centralized systems, the inherent transparency of resource utilization in
FL systems not only aids in regulatory compliance but also provides a starting point for energy-based
optimization of Al systems.

6 Alternative View: Centralized Learning Is Overall More Efficient and
Offers Fewer Attack Vectors

70%

Despite the beneficial properties of FL in light of 60% PRI

the Al Act, there are several practical challenges that 500 TTASO T 45x

currently limit the wider adoption of FL. Centralized

learning is currently the primary approach for training ~ £** /
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6.1 Energy Efficiency in FL Systems Is Worse than in Centralized Learning

FL exhibits an inevitable tradeoff between learning and communication efficiency. More local training
steps in between client-server communication rounds yield better communication efficiency but can
also lead to divergent models. Such a divergence significantly reduces training efficiency. Such
a trade-off is challenging to control and optimize [10]. In Figure 2] we showcase the impact of
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federated communication over a wide-area network. Even in such small-scale experiments with
communication after every two local training steps, the FL. performance disadvantage compared
to centralized learning is notable. Note, communication frequency in real-world systems is often
significantly lower than in our experiment, leading to stronger non-i.i.d. effects, longer training times,
and overall higher energy consumption [44}|65].

6.2 Private Computing Techniques Create Significant Overheads

Our theoretical analysis shows that secure computing techniques such as (e, ) Differential Privacy
((e, 6)-DP), Secure Multi-Party Communication (SMPC), and Homomorphic Encryption (HE) come
at notable cost overheads, creating a trade-off between data security and energy efficiency (Table[T).
While (e, )-DP shows favorable properties in scaled systems, smaller-sized applications require high
perturbation levels to ensure no individual data points can be revealed, which can be impractical.
Generally, this leads to significantly increased computational requirements as more training steps
are required to reach the same model performance as without (e, §)-DP. Strong (e, §)-DP guarantees
(e < 1) can lead to prohibitively long training times as the utility of training samples degrades with
increased noise. This creates two challenges for FL applications. First, in systems with clients that
participate infrequently or only once, the learning effect from individual clients can be minimal. This
may remove some of the benefits FL can have by opening data siloes for higher data variety and
deny building more representative models. Second, the energy efficiency of FL systems decreases.
Given the already worse efficiency compared to centralized learning, this increases the performance
gap to potentially impractical levels. Similarly, Secure Multi-Party Communication and Homomor-
phic Encryption can also introduce notable cost overheads through extensive communication and
computation requirements that depend on the number of model parameters and the number of FL
clients. When used with billion-parameter-scale models, both cryptographic methods can reduce the
utility of an FL application significantly. In addition, HE also denies the FL server operator from
inspecting the model, which can violate data governance requirements of the Al Act, as Art. 72
requires model/service quality monitoring.

6.3 The Right to Be Forgotten Requires Sharing Gradients with Specific Information

Compared to centralized training regimes, the distributed and aggregate nature of federated learning
makes it difficult to isolate and remove the influence of specific training data since model updates are
intertwined across multiple clients and training rounds. Work towards solving federated unlearning
under consideration of communication efficiency has shown promising progress [37]. Yet, a key
concern remains. If a server stores the global model over multiple FL rounds and a client requests to
be forgotten, the client submits an update that has been updated so that the client data is removed
exactly as the client had requested. However, applylng such updates that remove certain data points or
patterns bears the risk of gradient inversion, a major security vulnerability of FL that is mamly treated
with secure computing. At scale, the only viable option to tackle gradient inversion is (¢, §)-DP,
and it is unclear whether unlearning is effective in combination with perturbation-based methods.
This constitutes a privacy risk. More generally, there is notable progress in pattern unlearning for
centralized systems [66,[71]]. Yet, unlearning implicitly learned and more complex concepts is still
overall challenging and, in wide areas, unsolved [87]].

7 Future Federated Learning Research Agenda

Taking the benefits and challenges of FL together, we find that especially data governance calls for
methods to increase the data variety when training high-risk applications under the AI Act and for
moving training closer to the end user, i.e., becoming more adaptive towards changing environments.
In this context, the design of FL offers notable benefits over centralized learning. Yet, our analysis
and the alternative view reveals fundamental trade-offs that currently hinder the broader adoption of
FL. To address these shortcomings and enhance regulatory compliance of FL with the AI Act and
other emerging global regulations, we formulate a non-exhaustive set of research priorities for the FL.
community (Figure[3).

Data governance. A central component that bears significant risks for legal fines is the right to
be forgotten. Generally, but especially in federated settings, unlearning techniques need further
attention, particularly when it comes to implicit concepts, e.g., a hidden relationship between two
individuals discovered from message threads. Such concepts typically have a deep interconnect that
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Federated Learning Research Gaps under the EU Al Act

We formulate the EU Al Act's key requirements as guiding questions for technical research

Dat The right of being forgotten Notion of regulatory compliant privacy Data Bias Control
Ga &) = How can a model forget implicit concepts = Do private computing techniques as used in = What are meaningful metrics to assess data
overnance that are specific to an FL client? FL fully satisfy Al Act requirements? quality rather than client similarity only?
= How can the right to be forgotten be = When do we really need private computing = How can FL algorithms account for data
implemented effectively in FL systems? techniques in FL applications? variance to fairly represent all clients?
Quali Adaptive Model Quality Control Over Time F D Are C ing to Inspect Directly
Mua ity t = How can we control model quality in an FL setting with private = How can we transfer established techniques for data inspection into
anagemen computing techniques in place? federated settings?
= How do regulatory compliant FL model evaluations strategies look like = How can we make sure that training is robust against adversarial
under the provision of a model provider’s accountability? participants?
E Energy Measurement Standards Privacy-Energy Tradeoff
E?f(iecri%ync = How do we define sustainable computing best practices for FL? = How do we cope with the privacy-energy trade-off in FL?
4 = How do establish homogenous measurement standards / benchmarks = Which dimension is to prioritize in situations with a direct conflict?
for FL applications? = How can we improve private and secure computing techniques to also

work on the network edge where energy is scarce?

Figure 3: For each analysis section in this position paper (Sections|3|to , we formulate a set of open
technical research questions based on the Al Act requirements. The FL. community must address
these questions to enhance regulatory compliance.

is challenging to separate [[/0]]. Additionally, there is a notable gap between the perception of privacy
in technical communities and the regulatory definition. While user consent constitutes privacy-
conforming data processing, technical privacy can establish strong safeguards against unauthorized
data access. However, in the case of (¢, §)-DP, it is unclear what privacy budget is sufficient to comply
with the Al Act. Lastly, FL improves data accessibility, but at the same time, data audits become
more challenging since accounting for a broad range of bias sources can be difficult at scale [59]]. It
is also an open question of how to capture the various biases and balance them.

Quality management. Ensuring data quality and integrity across decentralized participants requires
robust monitoring processes. Providing meaningful human oversight as required by the Al Act,
thorough testing and validation, and detailed technical documentation necessitates coordination and
standardized practices among entities. While there are some works providing guidance on how Al
service providers can steer the FL training process and take ownership [80], there are still many
open research questions, such as the technical implementation of federated data inspection. Often,
data inspection can be realized when obtaining user consent and applying anonymization to remove
personal data. Further, without a strong understanding of the data basis, it is challenging to generate
explanations for federated learning model outputs [4]. Designing systems with data protection
safeguards while maintaining model performance is complex and involves numerous trade-offs. For
instance, data security is a key concern to providing high service quality, and, to date, it is unclear
what a regulatory-compliant secure computing strategy could look like, especially considering the
privacy-energy trade-off.

Energy efficiency. While we see that learning efficiency on clients is on par with data center
clients [[79], the effectiveness of FL systems needs to improve overall, especially when it comes to
the combination of federated and private computing techniques. However, we also need a common
understanding of contributes to even better energy transparency, i.e., what aspects are relevant, only
the training compute or also the way we collect and preprocess data? With their per-bit energy cost
model, Jalali et al. [45] have proposed a good starting point, but its practical applicability with many
stakeholders involved (e.g., ISP or data center operators) is limited.

8 Conclusions

In this position paper, we evaluate the key requirements of the Al Act from a technical perspective
and discuss how FL can help build legally compliant high-risk AI applications. Despite the notable
benefits, we also highlight the current shortcomings of FL in light of Al regulation, outlining relevant
research challenges going forward. Now is the time to act by assessing operational systems and
re-considering the fundamental design of future high-risk Al applications. Furthermore, the EU Al
Office has released a call to co-create regulatory and technical implementations of the Al Act [63]].
This creates a great opportunity for researchers, lawmakers, and both technical and legal practitioners
to work together to shape the future of Al



427

428
429

430
431
432
433

434
435
436

437
438
439

440
441
442

443
444
445

446
447
448
449

451
452
453
454

455

456
457

458
459

460
461

462
463

464
465
466

467
468
469
470
471
472

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

G. Andrew, O. Thakkar, B. McMahan, and S. Ramaswamy. Differentially private learning with
adaptive clipping. Advances in Neural Information Processing Systems, 34:17455-17466, 2021.

D. Appelhans and B. Walkup. Leveraging NVLINK and asynchronous data transfer to scale
beyond the memory capacity of GPUs. In Proceedings of the 8th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, SC *17. ACM, Nov. 2017. doi: 10.1145/
3148226.3148232. URL http://dx.doi.org/10.1145/3148226.3148232,

S. Babakniya, A. R. Elkordy, Y. H. Ezzeldin, Q. Liu, K.-B. Song, M. El-Khamy, and S. Aves-
timehr. SLoRA: Federated parameter efficient fine-tuning of language models, 2023. URL
https://arxiv.org/abs/2308.06522.

J. L. C. Barcena, M. Daole, P. Ducange, F. Marcelloni, A. Renda, F. Ruffini, and A. Schiavo.
Fed-xai: Federated learning of explainable artificial intelligence models. In CEUR Workshop
Proceedings, 2022. URL https://ceur-ws.org/Vol-3277/paper8.pdfl

R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In 2/st
International Conference on Data Engineering (ICDE’0S5), pages 217-228, 2005. doi:
10.1109/ICDE.2005.42.

D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, K. H. Li,
T. Parcollet, P. P. B. de Gusmao, and N. D. Lane. Flower: A Friendly Federated Learning
Research Framework, 2020. URL https://arxiv.org/abs/2007.14390.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ram-
age, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy-Preserving Machine
Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS *17. ACM, Oct. 2017. doi: 10.1145/3133956.3133982. URL
http://dx.doi.org/10.1145/3133956.3133982,

K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. M. Kid-
don, J. Kone¢ny, S. Mazzocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage, and
J. Roselander. Towards federated learning at scale: System design. In SysML 2019, 2019. URL
https://arxiv.org/abs/1902.01046.

D. Butskoy. Linux Traceroute, 12 2023. URL http://traceroute.sourceforge.net/.

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan, V. Smith, and A. Talwalkar.
Leaf: A benchmark for federated settings, 2018. URL https://arxiv.org/abs/1812.01097.

China Law Translate. Interim measures for the management of generative artificial intelligence
services, jul 2023.

CMS Law. GDPR Enforcement Tracker, 01 2024. URL https://
www.enforcementtracker.com/\

M. Conti, N. Dragoni, and V. Lesyk. A Survey of Man In The Middle Attacks. IEEE Communi-
cations Surveys & Tutorials, 18(3):2027-2051, 2016. doi: 10.1109/COMST.2016.2548426.

Council of the FEuropean Union. General data protection regulation (GDPR),
apr 2016. URL https://eur-lex.europa.eu/legal-content/EN/TXT/7uri=celex},
3A32016R0679. Document 32016R0679.

Council of the European Union. Regulation (EU) 2024/1689 of the European Parliament
and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence
and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU)
2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797
and (EU) 2020/1828 (Artificial Intelligence Act)Text with EEA relevance., jul 2024. URL
https://eur-lex.europa.eu/eli/reg/2024/1689/0j. Document 32024R1689.

10


http://dx.doi.org/10.1145/3148226.3148232
https://arxiv.org/abs/2308.06522
https://ceur-ws.org/Vol-3277/paper8.pdf
https://arxiv.org/abs/2007.14390
http://dx.doi.org/10.1145/3133956.3133982
https://arxiv.org/abs/1902.01046
http://traceroute.sourceforge.net/
https://arxiv.org/abs/1812.01097
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/eli/reg/2024/1689/oj

473
474
475
476
477

478
479

480
481
482

484
485
486

487
488
489

490
491
492

494
495
496

497
498

499
500
501

502
503
504

505
506

507
508
509
510
511

512
513
514
515

516
517
518

519
520
521
522
523

[16] Council of the European Union. European health data space: Council adopts
new regulation improving cross-border access to eu health data, 2025. URL
https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/
european-health-data-space-council-adopts-new-regulation-improving-
cross-border-access-to-eu-health-data/.

[17] DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948|

[18] R. Desislavov, F. Martinez-Plumed, and J. Hernandez-Orallo. Trends in Al inference energy
consumption: Beyond the performance-vs-parameter laws of deep learning. Sustainable
Computing: Informatics and Systems, 38:100857, Apr. 2023. ISSN 2210-5379. doi: 10.1016/
j-suscom.2023.100857. URL http://dx.doi.org/10.1016/j.suscom.2023.100857,

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding, 2018. URL https://arxiv.org/abs/
1810.04805.

[20] C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—4):211-407, 2013. ISSN 1551-3068. doi:
10.1561/0400000042. URL http://dx.doi.org/10.1561/0400000042.

[21] EU Agency for the Cooperation of Energy Regulations. Transmission ca-
pacities for cross-zonal trade of electricity and congestion management in
the eu, jul 2024. URL |https://www.acer.europa.eu/monitoring/MMR/

crosszonal_electricity_trade_capacities_2024.

[22] European Centre for the Development of Vocational Training. Employment growth in
high-tech economy, 2022. URL https://www.cedefop.europa.eu/en/tools/skills-
intelligence/employment-growth-high-tech-economy,

[23] European Commission. Market analysis - Electricity market - recent developments, 07 2023.
URL https://energy.ec.europa.eu/data-and-analysis/market-analysis_en,

[24] European Environment Agency. Greenhouse gas emission intensity of electricity generation,
Oct 2023. URL https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-
intensity-14#tab-chart_7.

[25] Eurostat. Electricity prices for household consumers, Oct 2023. URL
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=
Electricity_price_statistics!

[26] M. Evans, L. A. Maglaras, Y. He, and H. Janicke. Human behaviour as an aspect of cybersecurity
assurance. Security and Communication Networks, 9(17):4667-4679, 2016.

[27] A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized federated learning with theoretical
guarantees: A model-agnostic meta-learning approach. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 3557-3568. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper_files/paper/2020/file/24389bfe4fe2eba8bf9aa9203ad44cdad-Paper.pdf.

[28] Y. Fang, X. Liang, N. Zhang, K. Liu, R. Huang, Z. Chen, X. Fan, and H. Chen. Mol-
instructions: A large-scale biomolecular instruction dataset for large language models. In
The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=T1sdsb619n.

[29] Federal Statistical Office of Germany. Medical facilities, hospital beds and movement
of patient, 2024. URL https://www.destatis.de/EN/Themes/Society-Environment/
Health/Hospitals/Tables/gd-hospitals-years.html.

[30] Y. Fraboni, R. Vidal, and M. Lorenzi. Free-rider attacks on model aggregation in fed-
erated learning. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and Statistics, volume 130 of Proceed-
ings of Machine Learning Research, pages 1846—1854. PMLR, 13-15 Apr 2021. URL
https://proceedings.mlr.press/v130/fraboni2la.html,

11


https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/european-health-data-space-council-adopts-new-regulation-improving-cross-border-access-to-eu-health-data/
https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/european-health-data-space-council-adopts-new-regulation-improving-cross-border-access-to-eu-health-data/
https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/european-health-data-space-council-adopts-new-regulation-improving-cross-border-access-to-eu-health-data/
https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/european-health-data-space-council-adopts-new-regulation-improving-cross-border-access-to-eu-health-data/
https://www.consilium.europa.eu/en/press/press-releases/2025/01/21/european-health-data-space-council-adopts-new-regulation-improving-cross-border-access-to-eu-health-data/
https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.1016/j.suscom.2023.100857
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1561/0400000042
https://www.acer.europa.eu/monitoring/MMR/crosszonal_electricity_trade_capacities_2024
https://www.acer.europa.eu/monitoring/MMR/crosszonal_electricity_trade_capacities_2024
https://www.acer.europa.eu/monitoring/MMR/crosszonal_electricity_trade_capacities_2024
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://energy.ec.europa.eu/data-and-analysis/market-analysis_en
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-14#tab-chart_7
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-14#tab-chart_7
https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-14#tab-chart_7
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics
https://proceedings.neurips.cc/paper_files/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://openreview.net/forum?id=Tlsdsb6l9n
https://openreview.net/forum?id=Tlsdsb6l9n
https://openreview.net/forum?id=Tlsdsb6l9n
https://www.destatis.de/EN/Themes/Society-Environment/Health/Hospitals/Tables/gd-hospitals-years.html
https://www.destatis.de/EN/Themes/Society-Environment/Health/Hospitals/Tables/gd-hospitals-years.html
https://www.destatis.de/EN/Themes/Society-Environment/Health/Hospitals/Tables/gd-hospitals-years.html
https://proceedings.mlr.press/v130/fraboni21a.html

524
525
526
527

528
529
530
531
532
533

535
536
537
538
539

541
542

543
544
545

546
547

548
549
550
551
552

553
554
555
556

557
558

559
560
561

562
563
564
565

566

568
569

570
571
572
573

[31] A. Gadotti, L. Rocher, F. Houssiau, A.-M. Cretu, and Y.-A. de Montjoye. Anonymization: The
imperfect science of using data while preserving privacy. Science Advances, 10(29):eadn7053,
2024. doi: 10.1126/sciadv.adn7053. URL https://www.science.org/doi/abs/10.1126/
sciadv.adn7053.

[32] Gemma Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre, M. Riv-
iere, M. S. Kale, J. Love, P. Tafti, L. Hussenot, P. G. Sessa, A. Chowdhery, A. Roberts,
A. Barua, A. Botev, A. Castro-Ros, A. Slone, A. Héliou, A. Tacchetti, A. Bulanova, A. Paterson,
B. Tsai, B. Shahriari, C. L. Lan, C. A. Choquette-Choo, C. Crepy, D. Cer, D. Ippolito, D. Reid,
E. Buchatskaya, E. Ni, E. Noland, G. Yan, G. Tucker, G.-C. Muraru, G. Rozhdestvenskiy,
H. Michalewski, I. Tenney, I. Grishchenko, J. Austin, J. Keeling, J. Labanowski, J.-B. Lespiau,
J. Stanway, J. Brennan, J. Chen, J. Ferret, J. Chiu, J. Mao-Jones, K. Lee, K. Yu, K. Millican,
L. L. Sjoesund, L. Lee, L. Dixon, M. Reid, M. Mikuta, M. Wirth, M. Sharman, N. Chinaeyv,
N. Thain, O. Bachem, O. Chang, O. Wahltinez, P. Bailey, P. Michel, P. Yotov, R. Chaabouni,
R. Comanescu, R. Jana, R. Anil, R. Mcllroy, R. Liu, R. Mullins, S. L. Smith, S. Borgeaud,
S. Girgin, S. Douglas, S. Pandya, S. Shakeri, S. De, T. Klimenko, T. Hennigan, V. Feinberg,
W. Stokowiec, Y.-h. Chen, Z. Ahmed, Z. Gong, T. Warkentin, L. Peran, M. Giang, C. Farabet,
O. Vinyals, J. Dean, K. Kavukcuoglu, D. Hassabis, Z. Ghahramani, D. Eck, J. Barral, F. Pereira,
E. Collins, A. Joulin, N. Fiedel, E. Senter, A. Andreev, and K. Kenealy. Gemma: Open models
based on gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

[33] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data anonymization with low information
loss. In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB
’07, page 758-769. VLDB Endowment, 2007. ISBN 9781595936493.

[34] A. Grattafiori, A. Dubey, et al. The 1lama 3 herd of models, 2024. URL https://arxiv.org/
abs/2407.21783.

[35] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep Learning with Limited
Numerical Precision. In F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 1737-1746. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/guptalb.html.

[36] A. Haaf, S. Hofmann, and J. Schiiler. Measuring the economic footprint
of the biotechnology industry in europe. Technical report, WifOR Institute,
2020. URL https://www.cedefop.europa.eu/en/tools/skills-intelligence/

employment-growth-high-tech-economy.

[37] A.Halimi, S. Kadhe, A. Rawat, and N. Baracaldo. Federated Unlearning: How to Efficiently
Erase a Client in FL.?, 2022. URL https://arxiv.org/abs/2207.05521.

[38] S. Han, B. Buyukates, Z. Hu, H. Jin, W. Jin, L. Sun, X. Wang, W. Wu, C. Xie, Y. Yao, K. Zhang,
Q. Zhang, Y. Zhang, S. Avestimehr, and C. He. FedMLSecurity: A Benchmark for Attacks and
Defenses in Federated Learning and Federated LLMs, 2023.

[39] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu. Efficient and privacy-enhanced federated
learning for industrial artificial intelligence. IEEE Transactions on Industrial Informatics, 16
(10):6532-6542, Oct. 2020. ISSN 1941-0050. doi: 10.1109/tii.2019.2945367. URL http:
//dx.doi.org/10.1109/TII1.2019.2945367.

[40] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu,
X. Zhu, J. Wang, L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram, and
S. Avestimehr. FedML: A Research Library and Benchmark for Federated Machine Learning,
2020. URL https://arxiv.org/abs/2007.13518|

[41] House Of Commons of Canada. An Act to enact the Consumer Privacy Protection Act, the
Personal Information and Data Protection Tribunal Act and the Artificial Intelligence and
Data Act and to make consequential and related amendments to other Acts, 6 2022. URL
https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading.

12


https://www.science.org/doi/abs/10.1126/sciadv.adn7053
https://www.science.org/doi/abs/10.1126/sciadv.adn7053
https://www.science.org/doi/abs/10.1126/sciadv.adn7053
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://proceedings.mlr.press/v37/gupta15.html
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://www.cedefop.europa.eu/en/tools/skills-intelligence/employment-growth-high-tech-economy
https://arxiv.org/abs/2207.05521
http://dx.doi.org/10.1109/TII.2019.2945367
http://dx.doi.org/10.1109/TII.2019.2945367
http://dx.doi.org/10.1109/TII.2019.2945367
https://arxiv.org/abs/2007.13518
https://www.parl.ca/DocumentViewer/en/44-1/bill/C-27/first-reading

574
575
576
577

578
579
580
581

582
583
584
585
586
587

588
589
590
591

592
593
594
595

596
597

598
599
600

601
602
603
604
605

606

608
609

610
611
612
613
614

615
616
617
618

619
620
621

622
623

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya. An efficiency-boosting client
selection scheme for federated learning with fairness guarantee. IEEE Transactions on Parallel
and Distributed Systems, 32(7):1552-1564, July 2021. ISSN 2161-9883. doi: 10.1109/
tpds.2020.3040887. URL http://dx.doi.org/10.1109/TPDS.2020.3040887.

Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora. Evaluating Gradient Inversion Attacks
and Defenses in Federated Learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=0CDKgyYaxC8.

D. Huba, J. Nguyen, K. Malik, R. Zhu, M. Rabbat, A. Yousefpour, C.-J. Wu, H. Zhan,
P. Ustinov, H. Srinivas, K. Wang, A. Shoumikhin, J. Min, and M. Malek. Papaya:
Practical, private, and scalable federated learning. In D. Marculescu, Y. Chi, and
C. Wu, editors, Proceedings of Machine Learning and Systems, volume 4, pages 814—
832, 2022. URL https://proceedings.mlsys.org/paper_files/paper/2022/file/
a8bc4cb14a20£20d41£96188bd61eec87-Paper.pdfl

F. Jalali, R. Ayre, A. Vishwanath, K. Hinton, T. Alpcan, and R. Tucker. Energy Consumption
of Content Distribution from Nano Data Centers versus Centralized Data Centers. ACM
SIGMETRICS Performance Evaluation Review, 42(3):49-54, Dec. 2014. ISSN 0163-5999. doi:
10.1145/2695533.2695555. URL http://dx.doi.org/10.1145/2695533.2695555,

W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr, and C. He. FedML-HE: An
efficient homomorphic-encryption-based privacy-preserving federated learning system. In
International Workshop on Federated Learning in the Age of Foundation Models in Conjunction
with NeurIPS 2023, 2023. URL https://openreview.net/forum?id=PuYDOfhbaq.

A. Johnson, L. Bulgarelli, T. Pollard, B. Gow, B. Moody, S. Horng, L. A. Celi, and R. Mark.
Mimic-iv, 2024. URL https://physionet.org/content/mimiciv/3.1/|

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models, 2020. URL https://
arxiv.org/abs/2001.08361.

V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro.
Reducing activation recomputation in large transformer models. In D. Song, M. Carbin, and
T. Chen, editors, Proceedings of Machine Learning and Systems, volume 5, pages 341-353.
Curan, 2023. URL https://proceedings.mlsys.org/paper_files/paper/2023/file/
80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdfl

J. Lane and C. Schur. Balancing access to health data and privacy: A review of the issues and
approaches for the future. Health Services Research, 45(5p2):1456-1467, Aug. 2010. ISSN
1475-6773. doi: 10.1111/.1475-6773.2010.01141.x. URL http://dx.doi.org/10.1111/
j.1475-6773.2010.01141 x.

K. Lang. NewsWeeder: Learning to Filter Netnews. In A. Prieditis and S. Russell,
editors, Machine Learning Proceedings 1995, pages 331-339. Morgan Kaufmann, San
Francisco (CA), 1995. ISBN 978-1-55860-377-6. doi: https://doi.org/10.1016/B978-1-
55860-377-6.50048-7. URL https://www.sciencedirect.com/science/article/pii/
B9781558603776500487.

A.Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker. Evaluating Modern
GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and GPUDirect. IEEE Transactions on
Parallel and Distributed Systems, 31(1):94—110, Jan. 2020. ISSN 2161-9883. doi: 10.1109/
tpds.2019.2928289. URL http://dx.doi.org/10.1109/TPDS.2019.2928289.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and
future directions. IEEE Signal Processing Magazine, 37(3):50-60, May 2020. ISSN 1558-0792.
doi: 10.1109/msp.2020.2975749. URL http://dx.doi.org/10.1109/MSP.2020.2975749,

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Feder-
ated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopoulos, and

13


http://dx.doi.org/10.1109/TPDS.2020.3040887
https://openreview.net/forum?id=0CDKgyYaxC8
https://openreview.net/forum?id=0CDKgyYaxC8
https://openreview.net/forum?id=0CDKgyYaxC8
https://proceedings.mlsys.org/paper_files/paper/2022/file/a8bc4cb14a20f20d1f96188bd61eec87-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/a8bc4cb14a20f20d1f96188bd61eec87-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/a8bc4cb14a20f20d1f96188bd61eec87-Paper.pdf
http://dx.doi.org/10.1145/2695533.2695555
https://openreview.net/forum?id=PuYD0fh5aq
https://physionet.org/content/mimiciv/3.1/
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://proceedings.mlsys.org/paper_files/paper/2023/file/80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/80083951326cf5b35e5100260d64ed81-Paper-mlsys2023.pdf
http://dx.doi.org/10.1111/j.1475-6773.2010.01141.x
http://dx.doi.org/10.1111/j.1475-6773.2010.01141.x
http://dx.doi.org/10.1111/j.1475-6773.2010.01141.x
https://www.sciencedirect.com/science/article/pii/B9781558603776500487
https://www.sciencedirect.com/science/article/pii/B9781558603776500487
https://www.sciencedirect.com/science/article/pii/B9781558603776500487
http://dx.doi.org/10.1109/TPDS.2019.2928289
http://dx.doi.org/10.1109/MSP.2020.2975749

624
625
626

627

629

630
631
632
633
634

635
636

637
638

639
640
641

642
643
644
645
646

647
648
649
650
651

652
653
654
655

656
657
658

659
660

661
662
663
664
665

666
667

668
669

670
671
672
673

V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages 429—
450, 2020. URL https://proceedings.mlsys.org/paper_files/paper/2020/file/
1£5£e83998a09396ebe6477d9475bal0c-Paper.pdf.

[55] O. Liu, S. Jaghouar, J. Hagemann, S. Wang, J. Wiemels, J. Kaufman, and W. Neiswanger.
Metagene-1: Metagenomic foundation model for pandemic monitoring, 2025. URL https:
//arxiv.org/abs/2501.02045.

[56] B. McMahan, E. Moore, et al. Communication-Efficient Learning of Deep Networks from
Decentralized Data. In A. Singh and J. Zhu, editors, Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pages 1273—1282. PMLR, 20-22 Apr 2017. URL https:
//proceedings.mlr.press/v54/mcmahanl7a.html.

[57] H.B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning Differentially Private Recurrent
Language Models, 2017. URL https://arxiv.org/abs/1710.06963.

[58] T. Mehboob, N. Bashir, J. O. Iglesias, M. Zink, and D. Irwin. Cefl: Carbon-efficient federated
learning, 2023. URL https://arxiv.org/abs/2310.17972,

[59] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and
fairness in machine learning. ACM Comput. Surv., 54(6), July 2021. ISSN 0360-0300. doi:
10.1145/3457607. URL https://doi.org/10.1145/3457607.

[60] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis. Ppfl: privacy-preserving
federated learning with trusted execution environments. In Proceedings of the 19th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, MobiSys *21, page 94—108,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384438. doi:
10.1145/3458864.3466628. URL https://doi.org/10.1145/3458864.3466628.

[61] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis. Ppfl: privacy-preserving
federated learning with trusted execution environments. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys’21, page
94-108. Association for Computing Machinery, 2021. doi: 10.1145/3458864.3466628. URL
https://doi.org/10.1145/3458864.3466628.

[62] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In
2019 IEEE Symposium on Security and Privacy (SP), page 739-753. IEEE, May 2019. doi:
10.1109/sp.2019.00065. URL http://dx.doi.org/10.1109/SP.2019.00065|

[63] Nature. There are holes in Europe’s Al Act — and researchers can help to fill them. Nature,
625(7994):216-216, Jan. 2024. ISSN 1476-4687. doi: 10.1038/d41586-024-00029-4. URL
http://dx.doi.org/10.1038/d41586-024-00029-4,

[64] New York State Senate. New york artificial intelligence consumer protection act, 2023. URL
https://www.nysenate.gov/legislation/bills/2023/38209.

[65] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, and D. Huba. Federated
Learning with Buffered Asynchronous Aggregation . In G. Camps-Valls, F. J. R. Ruiz, and
I. Valera, editors, Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 3581-3607.
PMLR, 28-30 Mar 2022. URL https://proceedings.mlr.press/v151/nguyen22b.html,

[66] T.T. Nguyen, T. T. Huynh, Z. Ren, P. L. Nguyen, A. W.-C. Liew, H. Yin, and Q. V. H. Nguyen.
A survey of machine unlearning, 2022. URL https://arxiv.org/abs/2209.02299.

[67] N. Oliver, A. Peukert, et al. First draft general-purpose ai code of practice, nov 2024. URL
https://ec.europa.eu/newsroom/dae/redirection/document/109946,

[68] X. Qiu, T. Parcollet, J. Fernandez-Marques, P. P. B. Gusmao, Y. Gao, D. J. Beutel, T. Topal,
A. Mathur, and N. D. Lane. A first look into the carbon footprint of federated learning. Journal
of Machine Learning Research, 24(129):1-23,2023. URL http://jmlr.org/papers/v24/
21-0445.html|

14


https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://arxiv.org/abs/2501.02045
https://arxiv.org/abs/2501.02045
https://arxiv.org/abs/2501.02045
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1710.06963
https://arxiv.org/abs/2310.17972
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3458864.3466628
https://doi.org/10.1145/3458864.3466628
http://dx.doi.org/10.1109/SP.2019.00065
http://dx.doi.org/10.1038/d41586-024-00029-4
https://www.nysenate.gov/legislation/bills/2023/S8209
https://proceedings.mlr.press/v151/nguyen22b.html
https://arxiv.org/abs/2209.02299
https://ec.europa.eu/newsroom/dae/redirection/document/109946
http://jmlr.org/papers/v24/21-0445.html
http://jmlr.org/papers/v24/21-0445.html
http://jmlr.org/papers/v24/21-0445.html

674
675

676
677

679
680
681
682

683
684
685

686

688
689
690

691
692
693

694
695
696
697

698
699
700
701

702
703
704
705

707
708
709
710
71

712
713
714

715
716
77
718

719
720
721
722

[69] S.Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Kone¢ny, S. Kumar, and H. B. McMahan.
Adaptive Federated Optimization, 2020. URL https://arxiv.org/abs/2003.00295.

[70] C. A. Seger. Implicit learning. Psychological Bulletin, 115(2):163-196, 1994. ISSN
0033-2909. doi: 10.1037/0033-2909.115.2.163. URL http://dx.doi.org/10.1037/0033+
2909.115.2.163l

[71] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want to forget:
algorithms for machine unlearning. In Proceedings of the 35th International Conference
on Neural Information Processing Systems, NIPS *21, Red Hook, NY, USA, 2024. Curran
Associates Inc. ISBN 9781713845393.

[72] M. Shirts and V. S. Pande. Screen savers of the world unite! Science, 290(5498):1903-1904,
Dec. 2000. ISSN 1095-9203. doi: 10.1126/science.290.5498.1903. URL http://dx.doi.org/
10.1126/science.290.5498.1903.

[73] Texas State Senate. Texas responsible artificial intelligence governance act, 2024. URL
https://capitol.texas.gov/tlodocs/89R/billtext/pdf/HB01709I.pdf.

[74] The White House. Initial rescissions of harmful executive orders and actions,
2025. URLhttps://www.whitehouse.gov/presidential-actions/2025/01/initial-
rescissions-of-harmful-executive-orders-and-actions/\

[75] P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. Will we run out of
data? limits of llm scaling based on human-generated data, 2022. URL https://arxiv.org/
abs/2211.04325.

[76] A. Vishwanath, F. Jalali, K. Hinton, T. Alpcan, R. W. A. Ayre, and R. S. Tucker. Energy
Consumption Comparison of Interactive Cloud-Based and Local Applications. /IEEE Journal
on Selected Areas in Communications, 33(4):616—626, Apr. 2015. ISSN 0733-8716. doi:
10.1109/jsac.2015.2393431. URL http://dx.doi.org/10.1109/JSAC.2015.2393431.

[77] M. D. Ward, M. I. Zimmerman, A. Meller, M. Chung, S. J. Swamidass, and G. R. Bowman. Deep
learning the structural determinants of protein biochemical properties by comparing structural
ensembles with diffnets. Nature Communications, 12(1), May 2021. ISSN 2041-1723. doi:
10.1038/s41467-021-23246-1. URL http://dx.doi.org/10.1038/s41467-021-23246-1.

[78] P. Wiesner, R. Khalili, D. Grinwald, P. Agrawal, L. Thamsen, and O. Kao. Fedzero: Leveraging
renewable excess energy in federated learning. In Proceedings of the 15th ACM International
Conference on Future and Sustainable Energy Systems, e-Energy ’24, page 373-385, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704802. doi:
10.1145/3632775.3639589. URL https://doi.org/10.1145/3632775.3639589.

[79] H. Woisetschlédger, A. Erben, R. Mayer, S. Wang, and H.-A. Jacobsen. Fledge: Benchmarking
federated learning applications in edge computing systems. In Proceedings of the 25th Inter-
national Middleware Conference, Middleware ’24, page 88—102, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400706233. doi: 10.1145/3652892.3700751.
URL https://doi.org/10.1145/3652892.3700751.

[80] H. Woisetschliger, S. Mertel, C. Kronke, R. Mayer, and H.-A. Jacobsen. Federated learning
and ai regulation in the european union: Who is responsible? — an interdisciplinary analysis,
2024. URL https://blog.genlaw.org/pdfs/genlaw_icml12024/16.pdfl

[81] J. Xu and H. Wang. Client Selection and Bandwidth Allocation in Wireless Federated Learning
Networks: A Long-Term Perspective. IEEE Transactions on Wireless Communications, 20
(2):1188-1200, Feb. 2021. ISSN 1558-2248. doi: 10.1109/twc.2020.3031503. URL http:
//dx.doi.org/10.1109/TWC.2020.3031503.

[82] A. Yazdinejad, A. Dehghantanha, H. Karimipour, G. Srivastava, and R. M. Parizi. A robust
privacy-preserving federated learning model against model poisoning attacks. IEEE Trans-
actions on Information Forensics and Security, 19:6693-6708, 2024. ISSN 1556-6021. doi:
10.1109/tifs.2024.3420126. URL http://dx.doi.org/10.1109/TIFS.2024.3420126.

15


https://arxiv.org/abs/2003.00295
http://dx.doi.org/10.1037/0033-2909.115.2.163
http://dx.doi.org/10.1037/0033-2909.115.2.163
http://dx.doi.org/10.1037/0033-2909.115.2.163
http://dx.doi.org/10.1126/science.290.5498.1903
http://dx.doi.org/10.1126/science.290.5498.1903
http://dx.doi.org/10.1126/science.290.5498.1903
https://capitol.texas.gov/tlodocs/89R/billtext/pdf/HB01709I.pdf
https://www.whitehouse.gov/presidential-actions/2025/01/initial-rescissions-of-harmful-executive-orders-and-actions/
https://www.whitehouse.gov/presidential-actions/2025/01/initial-rescissions-of-harmful-executive-orders-and-actions/
https://www.whitehouse.gov/presidential-actions/2025/01/initial-rescissions-of-harmful-executive-orders-and-actions/
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
http://dx.doi.org/10.1109/JSAC.2015.2393431
http://dx.doi.org/10.1038/s41467-021-23246-1
https://doi.org/10.1145/3632775.3639589
https://doi.org/10.1145/3652892.3700751
https://blog.genlaw.org/pdfs/genlaw_icml2024/16.pdf
http://dx.doi.org/10.1109/TWC.2020.3031503
http://dx.doi.org/10.1109/TWC.2020.3031503
http://dx.doi.org/10.1109/TWC.2020.3031503
http://dx.doi.org/10.1109/TIFS.2024.3420126

723
724
725
726

727
728
729
730
731

732
733
734

735
736
737
738
739
740

741
742

[83]

[84]

[85]

[86]

[87]

F. Yin, Z. Lin, Q. Kong, Y. Xu, D. Li, S. Theodoridis, and S. R. Cui. Fedloc: Federated
learning framework for data-driven cooperative localization and location data processing. IEEE
Open Journal of Signal Processing, 1:187-215, 2020. ISSN 2644-1322. doi: 10.1109/
0jsp.2020.3036276. URL http://dx.doi.org/10.1109/0JSP.2020.3036276.

J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang. Federated continual learning with weighted
inter-client transfer. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 12073-12086. PMLR, 18-24 Jul 2021. URL https://proceedings.mlr.press/
v139/yoon21b.html!

A. Yousefpour, S. Guo, A. Shenoy, S. Ghosh, P. Stock, K. Maeng, S.-W. Kriiger, M. Rabbat,
C.-J. Wu, and I. Mironov. Green Federated Learning, 2023. URL https://arxiv.org/abs/
2303.14604.

H. Zhang, C. Li, W. Dai, J. Zou, and H. Xiong. FedCR: Personalized federated learning based
on across-client common representation with conditional mutual information regularization. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings
of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 41314-41330. PMLR, 23-29 Jul 2023. URL https:
//proceedings.mlr.press/v202/zhang23w.html,

J. Zhu, B. Han, J. Yao, J. Xu, G. Niu, and M. Sugiyama. Decoupling the class label and the
target concept in machine unlearning, 2024. URL https://arxiv.org/abs/2406.08288,

16


http://dx.doi.org/10.1109/OJSP.2020.3036276
https://proceedings.mlr.press/v139/yoon21b.html
https://proceedings.mlr.press/v139/yoon21b.html
https://proceedings.mlr.press/v139/yoon21b.html
https://arxiv.org/abs/2303.14604
https://arxiv.org/abs/2303.14604
https://arxiv.org/abs/2303.14604
https://proceedings.mlr.press/v202/zhang23w.html
https://proceedings.mlr.press/v202/zhang23w.html
https://proceedings.mlr.press/v202/zhang23w.html
https://arxiv.org/abs/2406.08288

743

744

745
746
747
748
749
750
751
752
753

754

755
756
757
758
759

761
762
763
764
765

767

768

769
770
771
772
773
774

Appendix

A Calculatory Details on the Medical Data Learning Example in Section

We take the total of 39.9B tokens from 17.6M patient record documents [29]] with an average length
of 2267 tokens [47]. We use the parameter count of Llama 3.1 8B for our calculations, as it frequently
forms the basis for domain-specific large language models [28]]. It typically takes a total of 6 FLOP
per token per model parameter to train a model [48]]. Taken together, the total compute required to
train a model at 100% hardware utilization is 1.9 x 10%! FLOP. Accounting for a typical hardware
efficiency — measured as model-FLOP-utilization (MFU) — between 30 and 40% [49], we need a
total compute of 4.8 x 102" FLOP. A single Nvidia H100 GPU has a total compute capacity of
9.79 x 10'* FLOP/s, so it takes about 57 GPU days to train an 8B parameter model on 39.9B tokens.
For a comprehensive summary, see Table [2]

| Quantity | Unit

Dataset size 39,899,200,000 | tokens

Llama 3.1 8B 8,000,000,000 | parameters

Compute requirement 6 | FLOP / token / parameter
Required compute @ 100% efficiency 1.92 x 10! | FLOP

Hardware efficiency (MFU) 40 | %

Total required compute 4.79 x 10! | FLOP

Nvidia H100 Compute Capacity 9.79 x 10'* | FLOP/s

Total Compute Time | 56.6 | days

Table 2: Overview of our compute effort calculation for a state-of-the-art medical text dataset.

B Experimental Details for Our Argumentation in Section [6]

Table 3: Training hyperparameters per training regime.

Training Data Tot. Samples Client Server

regime Dist. Seen MB Size Optimizer LR WD Mom. Damp. Loc. Iter. K  k Strategy LR Mom.
Centralized | IID 80K 20 SGD 0.01 0.001 0.9 0.9 5 - - - - -
Federated non-IID | 80K 2 SGD 0.01 0.001 0.0 0.0 2| 100 10 FedAvgM 1.0 0.9

Here, we provide additional details about our experimental results. For our empirical evaluations, we
fine-tune the 110M parameter BERT transformer [[19] over the 20 News Group Dataset [S1] such
that we can reliably classify emails into one of 20 categories. For example, such a classification
application can be used in a company’s human resource processes to screen job applications. Under
the AI Act, such a system is considered a high-risk application.

B.1 Dataset

In our empirical analysis, we use a state-of-the-art text classification task in FL research using the 20
Newsgroup Dataset [51], which consists of 18,000 email bodies that each belong to one of 20 classes.
The dataset has a total of 18, 000 samples, of which we use 16, 000 for training, 1, 000 for validation,
and 1, 000 for testing. As our work aims to quantify the cost of FL and associated private computing
methods in realistic systems in line with the EU AI Act requirements [15], we chose to sample 100
non-IID client subsets via a Latent Dirichlet Allocation (LDA) with o = 1.0, which is widely used in
FL research [3} 40, 69].

B.2 Model

We fine-tune the BERT model [[19] with 110M parameters by using the parameter-efficient fine-tuning
technique Low-Rank Adapters (LoRA). We use a LoRA configuration that has been well explored in
FL settings [3]], which results in 52K trainable parameters (0.05% of total model parameters). This
reduces the computational intensity of the task at hand and minimizes the communication load for
the FL setup, as we must only communicate the trainable parameters. The BERT model is used to
classify the emails into the 20 distinct categories in the dataset. It resembles a realistic task as it is
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frequently found in job application pre-screening applications, where the email bodies (input data)
often contain sensitive and personal data.

FL configuration. We use the Federated Averaging (FedAvg) algorithm to facilitate all FL experi-
ments [56] and train for 2000 aggregation rounds. We choose a participation rate of 10% for each
aggregation round, i.e., k = 10 out of K = 100.

(¢, 9)-DP configuration. We employ sample-level (¢, §)-DP for centralized learning, and for FL, we
use user-level (¢, §)-DP. Both methods provide the same privacy guarantees [20]]. The parameteriza-
tion for both is identical with z = [0.0,0.03,0.1,0.3,0.4,0.5,0.6] and 6 = m, setting the data
leakage risk to the inverse of the number of total training samples [[1}57]]. For the experiment with
z = [0.5; 0.6], we had to change the Learning Rate from 0.01 to 0.001.

Energy monitoring. In centralized DL, we often fine-tune FMs on servers with multiple GPUs and,
thus, require very high bandwidth interconnects (> 200GB/s) between the GPUs either via NVLink
or Infiniband [2,52]]. FL only requires low bandwidth interconnects (< 1GB/s) since communication
happens sparingly compared to multi-GPU centralized learning [81]. This creates significant design
differences in the training process and an entirely different cost model. In the following, we point out
essential components of the cost model for FL.

The AI Act indicates that further guidelines around energy efficiency are forthcoming. When it comes
to how those guidelines define and measure energy efficiency, we propose using a holistic methodol-
ogy that accounts for computation and communication. Based on such conservative methodology, we
can develop comprehensive baselines to compare against. The total energy consumption P consists
of two major components, computational P, and communication energy P;, i.e., P = P, + P;.

P, can be measured directly on the clients via the real-time power draw with an on-board energy
metering module [6] or deriving the energy consumption based on floating point operations and a
client’s system specifications [18]]. At the same time, P, is generally more challenging to measure as
multiple network hops are involved. Often, the network infrastructure components, such as switches
and routers, are owned by multiple parties and are impossible for a service provider to monitor.
However, the bit-wide energy consumption model is available to calculate the cost of transmitting
data [76). The costs are directly tied to the number of parameters of a client update in an FL system
[85]. As such, we can calculate the total energy consumption of communication as

Pt:Et'B:(naS'Eas+Ebng+ne'Ee+nc'Ec+nd'Ed)'B~ (1)

From a client to a server, the communication network and its total energy consumption F; is organized
as follows: Eig, Fing, Ee, E., E, are the per-bit energy consumption of edge ethernet switches, the
broadband network gateway (BNG), one or more edge routers n., one or more core routers n., and
one or more data center Ethernet switches ng4, respectively. To get the total energy consumption for
communication, we multiply F; with the size of a model update d in bits b, B = d - b. Usually, a
model parameter has a precision of b = 32 bits but can vary based on the specific application [35]].
Jalali et al. [45] present the per-bit energy consumption for at least one device per network hop that
can be used as a guideline. While it is possible to trace what route a network package takes [9], it is
currently impossible to track the real energy consumption of a data package sent over the network. It
specifically depends on what device has been used at what point in the communication chain. As
such, if the Al Act requires us to track the rotal energy consumed by a service, we have to develop
solutions to track the networking-related energy consumption. We already see promising progress
towards holistically accounting for energy efficiency in FL applications [58, 68, [78]].

‘We monitor our dedicated clients - NVIDIA Jetson AGX Orin - with 2Hz and measure their total
energy consumption while participating in our FL setup. We also use a single Orin device for
the centralized experiments for a fair comparison. For our cost estimations, we use the average

price per kWh in the EU, 0.29 -& [25]. The EU Commission produces quarterly reports on the

kWh
.. . . . . . gCOse
electricity price trends [23]]. Directly proportional to the power consumption, we emit 252 £572=

[24]. Regarding communication energy, we assume the average communication route from a private
household to a data center with n,s = 1, n. = 3, n. = 5, and ng = 2 (cf. Equation ) [45]]. For
the energy consumption per transmitted bit per network hop, we adopt the values from Jalali et al.
[45]), Vishwanath et al. [[76] (Table [d).
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Table 4: Energy consumption per bit network communication for our holistic energy monitoring
approach. Values are adopted from Jalali et al. [45]], Vishwanath et al. [76]].

Network Location ‘ Device Name ‘ Upload Cost (nJ/bit) Download Cost (nJ/bit)
Edge Switch Fast Ethernet Gateway 352 352
BNG ADSL2+ Gateway (100 Mbit/s) 14809 2160
Edge Router - 37 37
Core Router - 12.6 12.6
Data Center Switch | Ethernet Switch 19.6 19.6

B.3 Hardware

We evaluate the training pipeline on a state-of-the-art embedded computing cluster with NVIDIA
Jetson AGX Orin 64 GB devices (Orin), where each device has 12 ARMv8 CPU cores, an integrated
GPU with 2048 CUDA cores, and 64 Tensor cores. The CPU and GPU share 64 GB of unified
memory. The network interconnect is 10 GBit/s per client. We monitor the system metrics with a
sampling rate of 2 Hz, including energy consumption in Watt (W). We use a data center server as
an FL server. The server has 112 CPU cores, 384 GB of memory, an NVIDIA A40 GPU, and a 40
GBit/s network interface.

C Additional Experimental Results for Section [6]

We have conducted additional experiments with varying (¢, §)-DP levels to outline the cost of
perturbation-based privacy. Figure ] shows that high privacy levels come at significant cost of up to
4x compared to learning without DP, in our case.
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—— FL(2=003) FL(2=05) E 105 / R 120739.3
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Figure 4: Privacy study. (e, §)-DP with varying noise multiplier (z) levels. € is calculated based on
1

= 16,000°

D Algorithmic Cost Analysis in Section [6]

In this section, we outline how we identified the algorithmic costs of state-of-the-art secure and
private computing techniques. We omit the algorithmic costs of FedAvg and focus only on the privacy
overhead. We discuss (€, §)-DP as introduced by Andrew et al. [1l], SMPC as introduced by Bonawitz
et al. [7], and HEC as introduced by Jin et al. [46].

D.1 (e, J)-Differential Privacy

The following algorithm (Algorithm|[T)) is taken verbatim from Andrew et al. [[1]]. For the client, the
computational complexity O(d) originates from adding £ to each parameter of a model update as
well as by computing A. The communication complexity is O(1) as we need to communicate the
standard deviation to parameterize £ as well as the clipping threshold. The space complexity O(d)
originates from storing 6.

The server computational complexity O(|K|) originates from computing b and the communication
complexity O(|K|) as we only communicate constants between clients and the server. The space
complexity O(|K|) comes from storing b;.
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Algorithm 1 DPFedAvg-M with adaptive clipping

function FedAvg(i, 0°, , C)
0+ 6°
G < (user i’s local data split into batches)

function Train(m, 7, 1., Ns, NC» 2, Op, 3)
Initialize model #°, clipping bound C°

852

853
854
855

856

857
858
859
860
861
862

863

865
866

1
ZA (2’2 - (20;,)72) 2
for eachroundt =0,1,2,...do

Q! + (sample m users uniformly)

for batch g € G do
0 0—nVe;g)

for each user i € Q' in parallel do end for o

(AL, b) < FedAvg(i, 0%, n., C") A+—0—-6
end for b<7H||A||§C
th%fACt . ) A’ <« A -min 1,ﬁ
é ~ Ef(EiGQiAi +N(0.193)) return (A’, )
Al = pATI+ A end function

Ot ! 4 A
b =5 (Lieg b + N(O, 7))

Ctl « Ct - exp (—nc(ét - 'y))

end for
end function

D.2 Secure Multi-Party Computation

The SecAgg algorithmic costs (Table [5) are taken from
Bonawitz et al. [7] Table 1. The naming convention has been
adapted to our paper.

D.3 Homomorphic Encryption

The following algorithm (Algorithm 2 is taken verbatim from
Jin et al. [46]. For the client, computational complexity O(d)
originates from encrypting and decrypting the model. The
communication complexity O(d) comes from communicating
the aggregation mask once. The space complexity O(d) is
created by storing the aggregation mask.

The server computational complexity O(|K| x d) originates
from the server-side model aggregation while the communica-
tion complexity O (]| K| x d) comes from sending the encryption

Table 5: SecAgg costs

computation

User O(K|*+d-|K|)
Server O(d- |K|?)
communication

User O(|K|+d)
Server O(|K|?+d-|K])
storage

User  O(|K|+d)
Server  O(|K|? +d)

mask once. Storing the encryption mask on the server results in space complexity O(d).
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Algorithm 2 HE-Based Federated Aggregation

o [W]: the fully encrypted model | [W]: the partially encrypted model;
* p: the ratio of parameters for selective encryption;

* b: (optional) differential privacy parameter.
// Key Authority Generate Key
(pk, sk) « HE.KeyGen(\);
// Local Sensitivity Map Calculation
for each client i € [N] do in parallel

W; « Init(W);

S + Sensitivity(W, D;);

[S:] « Enc(pk,S;);

Send [S;] to server;

// Server Encryption Mask Aggregation
[M] « Select(3S | a:[S:], p);
// Training
fort=1,2,...,Tdo
for each client i € [N] do in parallel
if t = 1 then
Receive [M] from server;
M < HE.Dec(sk, [M]);
if t > 1 then
Receive [Wob] from server;
W, «+ HE.DBC(Sk, Mo [ngob]) + (1 — M) O] [ngob];
W, « Train(W;, D;);
// Additional Differential Privacy
if Add DP then
L W, < W, + Noise(b);
(W] <~ HE.Enc(pk, M © W;) + (1 - M) © W;;
Send [W;] to server S;

/7 Server Model Aggregation
L [Waiob] = Zi\; oi[M o W;] + Zi\;l ai((1 = M) © Wi);
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