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ABSTRACT

The order-agnostic generation of Diffusion Language Models (DLMs) presents a
promising alternative to autoregressive models for complex reasoning. We model
reasoning as traversals of a problem-specific graph of logical dependencies, and
view DLM decoding as sampling trajectories from a joint space over generation
orders and token values. We show that standard decoding heuristics such as
low-confidence remasking collapse this reasoning space. To address this, we
introduce Order-Token Search, an algorithm that jointly searches over token
content and generation order. Its core is a likelihood estimation function that
scores block-level denoising actions, enabling stable path pruning. This allows
for efficient exploration of diverse reasoning trajectories. Extensive experiments
on mathematical reasoning and planning benchmarks show that our method
consistently outperforms baselines, matching or surpassing the gains of fully post-
trained d1-LLaDA with diffu-GRPO on Countdown, GSMS8K, and MATH500
(e.g. achieving a 13.7% absolute gain on Countdown). Our work establishes
structured search as a key missing component for advancing reasoning in DLMs.

1 INTRODUCTION

Recently, Diffusion Language Models (DLMs) have emerged as a powerful alternative to autore-
gressive (AR) models for sequence generation. A prominent approach, Masked Diffusion Models
(MDMs) (Sahoo et al., 2024; Shi et al., 2024), trains on a core objective: learning to reconstruct
original text by iteratively denoising sequences where tokens have been randomly masked. At
inference, generation begins from a completely masked sequence and proceeds iteratively; the model
predicts a full draft, which is then partially randomly remasked to form the input for the next
denoising step. This training paradigm provides an exploratory objective that fosters order-agnostic
generation, contrasting with fixed left-to-right generation, and holds promise for solving complex
reasoning tasks that require non-linear thought processes.

The iterative denoising process of MDMs presents a unique opportunity: the choice of which tokens
to remask at each step is a free parameter that can be optimized. Rather than relying on random
remasking used in training, we can guide generation through learned or heuristic remasking
strategies. One such strategy, low-confidence remasking, leverages the model’s uncertainty
estimate by locking in high-confidence token predictions as fixed context while remasking low-
confidence ones for reconsideration (Nie et al., 2025; Kim et al., 2025a). This prioritizes refinement
of uncertain tokens by providing increasingly reliable surrounding context, aiming to improve the
model’s self-confidence and often leading to higher single-sample performance.

To understand what is gained or lost by fixing a particular remasking strategy, we adopt a task-
level view of reasoning. Each problem induces a latent graph of logical dependencies, and any
valid solution corresponds to a sequence of intermediate statements that respects this graph. A
DLM decoding trace—the sequence of “which position to update” and “which token to place
there” across denoising steps—is then one concrete trajectory through this graph. Standard MDM
training, however, only directly supervises token predictions under random remasking, leaving the
distribution over such trajectories to be determined implicitly by the inference-time remasking rule.
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Figure 1: Example of running Order-Token Search algorithm for Diffusion Language Models.
Starting from 3 identical fully masked sequences, the reverse diffusion runs for 6 steps to fill in 6
token positions. Every 2 steps (a customizable search interval), the standard denoising is paused,
each candidate is expanded into 3 candidates, and a sequence-level scoring function is used to
prune back to top-3. This process continues to an end where we perform scoring on the top-3
fully denoised sequences to return the optimal one.

While low-confidence remasking improves single-sample accuracy (pass@1), we find it inherently
limits exploration of potential solutions. We quantify this effect using pass@Fk, the probability that
at least one of k samples is correct. Empirically, low-confidence remasking yields superior pass@1,
but more diverse decoders—such as random remasking or a fixed AR order—obtain much higher
pass@Fk as k increases by exploring different orders and token choices. This pattern reveals that low-
confidence remasking behaves like a greedy search that commits to a narrower set of trajectories in
the joint order—token space, whereas diverse strategies expose broader reasoning paths that could
reach more correct solutions. Our goal is to search for generation orders that are better aligned with
the underlying dependency graph and therefore make the solution logically easy to construct.

We propose Order-Token Search, a new decoding algorithm designed to search in the joint
space of generation orders and token choices. Our approach keeps track of multiple candidate
sequences (beams) throughout decoding, ultimately returning the one with highest overall generation
likelihood. Order-Token Search leverages MDMs’ parallel decoding capability—predicting all
masked tokens at once. As shown in Figure 1, for each beam, it generates multiple candidate
completions for the entire set of remaining masked tokens. These candidates are scored based on
sequence likelihood, allowing informed decisions about which paths to pursue.

Through experiments on mathematical reasoning and planning tasks, our method consistently
outperforms previous best single-sample decoding (low-confidence remasking). Across Countdown,
GSMB8K, and MATHS500, our test-time search matches or surpasses the gains of fully post-trained
d1-LLaDA with diffu-GRPO (Zhao et al., 2025); for example, on Countdown it achieves a 13.7%
absolute accuracy improvement over the low-confidence baseline. These results demonstrate that
explicitly guiding exploration of generation orders and token choices is key to unlocking higher
reasoning performance in DLMs.

Contributions. We conceptualize reasoning as navigating a graph of logical dependencies, where
each problem induces a partial order over intermediate facts and subgoals. This partial order defines
a space of valid traversals, while an MDM'’s denoising trajectory is one particular traversal that may
or may not respect these constraints. Low-confidence remasking effectively collapses this space
to a single heuristic trajectory, which empirically boosts pass@ 1but limits pass @k by restricting
exploration of alternative orders that can solve more problems (Section 3). In contrast, random
remasking explores a much larger portion of the order space, often improving pass@k but at the
cost of weaker pass@1. To reconcile this trade-off, we introduce Order—Token Search (Section
4), a decoding algorithm that performs structured search over generation orders and token choices,
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allowing the model to discover and select trajectories whose generation order better aligns with
the underlying logical dependencies. A core technical contribution is a stable likelihood estimation
function (Section 4.2) enabling reliable scoring of partial sequences for effective search. Extensive
experiments (Section 5) show that this structured exploration yields systematic pass@ 1gains across
mathematical and planning benchmarks, matching improvements typically obtained from post-
training.

2 BACKGROUND

This section establishes the technical foundation for our work. We review the fundamentals of
MDMs, formalize key concepts for remasking strategies, and define our evaluation metrics.

2.1 DISCRETE DIFFUSION MODELS

Discrete diffusion models adapt the forward diffusion process and the reverse denoising process
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021) to discrete
data by establishing the diffusion process over a discrete domain x € X, where x is a one-hot vector
denoting tokens from a vocabulary of size |X| (Austin et al., 2021). Given a prior 7, the forward
process ¢ incrementally corrupts the original data x, into a target prior distribution Cat(-; 7). Over
continous time ¢ € [0, 1], it forms a sequence of increasingly noisy latent variables x;, through
the conditional marginal distribution g(x: | xg) = Cat(x¢; a:Xg + (1 — ay)m). Here, oy is a
monotonically decreasing noise schedule that satisfies boundary conditions g = 1 and a3 = 0.
Furthermore, we can achieve the transition probability between any two intermediate time points
0 < s <t < 1through g(x: | Xs,X0) = Cat (x¢; o /asXs + (1 — o /as) ™).

MDM, a specific instance of this framework, utilizes the prior 77 = m to achieve absorbing-state
diffusion, a particularly suitable setting for language modeling (Sahoo et al., 2024; Shi et al., 2024;
Lou et al., 2024). Here, m is a one-hot vector corresponding to a special MASK token. Defining s
as the time step immediately preceding ¢, the posterior distribution simplifies to:

Cat (x4;X¢) , X, #m {
X, | X¢,%0) = _ _
Q( s | € 0) Cat (Xs; aliao;t xo + }73: m) , Xt 7& m (1

The reverse (denoising) process is modeled by pg(xs | x:) = q(xs | xt,%0(x¢)), where py is a
parameterized distribution that reverses ¢, and xy(x;) denotes a neural network trained to predict
the original clean data x( from its noisy version x;. This network is optimized by minimizing the
negative evidence lower bound, thereby learning to approximate the true posterior distribution.

2.2 REMASKING STRATEGIES IN MDM SAMPLING

In masked generative models, sampling starts from a fully masked sequence, x; =
(MASK, ...,MASK). The model then iteratively refines this sequence over a series of steps. At
each step, the model predicts logits for all currently masked tokens. The critical action in this reverse
process is the transfer of a prediction—that is, the act of replacing a selected MASK token with its
predicted value, thereby committing to that prediction for subsequent steps. The rule that determines
which masked token to transfer next is known as the remasking strategy, and it defines the decoding
order. We focus on three primary strategies:

Random Remasking. The strategy used during training. The next token to unmask is chosen
uniformly at random from the set of all remaining masked tokens. This is a baseline that ensures
unbiased, order-agnostic generation. Autoregressive (AR). We force the DLM to keep the leftmost
predicted token and remask all following tokens. This baseline decouples the effect of generation
order and solely examines the effect of diverse token selection. Low-Confidence Remasking. A
common inference-time strategy. The token with the highest predicted probability is unmasked
next; the tokens with lower probability are remasked. Formally, at each step, the model computes a
confidence score for each masked token 7 as its maximum logit, s; = max(pg(- | x¢);). The token
with the maximum score s; is transferred. The intuition is to resolve the token position where the
model has the greatest certainty first, potentially mitigating error propagation (Nie et al., 2025; Kim
et al., 2025a).
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Figure 2: Empirical pass@k curves for LLaDA-8B-Instruct and LLaDA-1.5 on reasoning and
coding benchmarks. While low-confidence remasking often achieves higher accuracy (pass@1),
both random remasking and autoregressive (AR) decoding yield superior pass@Fk for large
k (=256), revealing a higher performance potential. This indicates that strategies exploring more
diverse paths solve more unique problems overall.

2.3 EVALUATION METRICS FOR REASONING PERFORMANCE

Evaluating generative models on reasoning tasks requires metrics that capture both deterministic
performance and the model’s inherent capability. We use the following standard metrics established
in prior work (Yue et al., 2025): Accuracy (pass@1). The probability that a single generated
sample is correct. This is the primary metric for evaluating one-trial performance and represents the
expected accuracy when using the model in a deterministic setting. pass@k. The probability that at
least one sample out of k£ independent generations is correct. This metric estimates the model’s
inherent ability to solve a problem given sufficient sampling. For a problem with n generated

samples of which ¢ are correct, it is estimated as: pass@k ~ 1 — (";C) / (2)

The relationship between these metrics reveals important characteristics of a decoding strategy. A
strategy with high accuracy but low pass@Fk for large k indicates that while effective for single
samples, it under-utilizes the model’s true potential by failing to explore diverse solution paths. A
core goal of our work is to develop a decoding algorithm that achieves higher accuracy by better
exploring the joint space of generation orders and token selections.

3 REASONING PERFORMANCE OF STANDARD DECODING STRATEGIES

Decoding Strategy Trade-offs. To understand the fundamental trade-offs in DLM decoding
strategies, we systematically investigate how different approaches affect reasoning performance
by addressing a critical question: How does the diversity of generation paths explored by
a decoding strategy relate to its ability to solve complex problems? We analyze three core
strategies representing distinct exploration-exploitation trade-offs: random remasking (maximizing
generation order diversity), low-confidence remasking (greedily exploiting local confidence), and
fixed autoregressive order (enforcing generation order while enabling diverse token selection).
This comparison is particularly valuable because DLMs offer unique flexibility in generation order
compared to autoregressive models, yet optimal strategies for leveraging this flexibility in reasoning
tasks remain unclear.

Low-confidence remasking: high single-sample accuracy but rapid performance plateau.
Figure 2 presents the key findings from our analysis. Using LLaDA models (Nie et al., 2025;
Zhu et al., 2025) trained for flexible-order generation, we evaluate each strategy’s single-sample
accuracy (pass@1) and multi-sample coverage (pass@k) across mathematical reasoning (GSM8K,
MATHS500) and coding (HumanEval, MBPP) benchmarks to study the effects of generation order
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and token selection diversity on reasoning performance. As expected, the low-confidence remasking
strategy achieves the highest pass @1 in most cases, with advantages of 0.2-0.3 on MBPP. This aligns
with the intuition that resolving the most certain tokens first helps guide the generation and reduces
error propagation in a single sample. However, as we increase the sample budget &, the performance
of low-confidence remasking plateaus relatively quickly.

Diverse strategies: lower initial accuracy but superior multi-sample coverage. In contrast,
both random remasking and fixed AR order strategies, while starting at lower pass@1, continue
to improve with more samples, eventually achieving significantly higher pass@¥k (e.g., random/AR
strategies reach ~0.8 while low-confidence plateaus at ~0.4 at pass@256 on MATHS500). This
demonstrates that diverse generation orders (from random remasking) and token selections (from
AR decoding with temperature) can enable the model to solve more unique problems. We also
conducted an experiment (Appendix A.2) showing that AR is not fundamentally superior than other
generation orders. This implies that exploration in the generation order and token space, rather than
the specific left-to-right order, is what improves the model’s reasoning performance. The sets of
solutions generated through these diverse paths have greater coverage of the solution space, even
though each individual sample is less reliable.

This consistent phenomenon reveals a fundamental limitation of greedy decoding strategies: by
committing early to specific token choices based on local confidence, low-confidence remasking
restricts exploration of the joint space of generation orders and token selections. While effective for
optimizing a single sample, this approach fails to utilize the model’s full reasoning potential. The
model’s inherent capability, as measured by pass @k with large k, is better realized by strategies that
introduce more stochasticity.

Our analysis reveals the core opportunity in DLM decoding: achieving higher accuracy than low-
confidence remasking requires strategic exploration of both generation order and token space. To
this end, we introduce Order-Token Search, an algorithm that actively searches this joint space
within a single decoding process to locate correct answers that greedy strategies miss.

4 METHOD: ORDER-TOKEN SEARCH FOR DIFFUSION LANGUAGE MODELS

The empirical results in Section 3 establish the need for a decoding algorithm that explores multiple
potential generation paths. Standard one-trial sampling is insufficient as it commits to a single
greedy sequence. To address this, we develop Order-Token Search, a novel algorithm inspired by
beam search but tailored for the parallel, iterative nature of DLMs. The key innovation is a joint
search over both the token selections and the order in which they are generated, guided by the
model’s own likelihood predictions to score and prune candidate paths. This section details its two
key components—search and prune. The complete algorithm is provided in Appendix A.1.

4.1 SEARCH PROCESS

We begin with K identical copies (beams) of the initial sequence x; = [c;MASKL], where ¢
is the prompt and MASK” denotes L mask tokens. Over continuous denoising time ¢ € [0,1], we
independently apply the MDM to each candidate, generating new hypotheses that represent different
choices in the joint space of tokens and generation orders. Between any two user-specified time
(s,t), our algorithm can perform search and expand each candidate to become multiple candidates
independently with additional denoise steps. This expansion explores the joint space of tokens and
generation orders, creating a diverse set of candidate sequences which are then evaluated and pruned
to retain the top-K paths with the highest model likelihood (see Section 4.2).

To manage computational complexity, we structure the search using block diffusion (Arriola et al.,
2025; Nie et al., 2025). Instead of searching at every denoising step—which would incur an
O(K - |t]) overhead for |¢| steps—we perform the search expansion only at the boundaries between
contiguous blocks of tokens. This reduces the overhead to O(K - |b|), where || is the total number of
blocks, making the search tractable. After processing all blocks, the single best sequence is selected
from the final K candidates based on the highest likelihood. Details on computational complexity
are provided in Appendix A.5.
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Figure 3: Illustration of a pruning stage in Order-Token Search for DLMs. At a search step, we have
2 fully denoised sequences (on the leftmost), with yellow tokens unmasked in previous steps. We
then mask the current block (the middle 3 tokens) and measure its likelihood through feeding
each masked candidate into the DLM to obtain each token’s probability. The score function
computes the chain-rule product of token probabilities and prunes the lower-likelihood candidate.

4.2 PRUNING PROCESS

The effectiveness of Order-Token Search hinges on a pruning criterion that can accurately score
candidate sequences with diverse tokens and generation orders. Our key insight is that the
standard MDM objective can be an unreliable scorer, as the model is trained on—and often
fails at—extremely difficult infilling tasks where a large number of tokens must be predicted
simultaneously (Kim et al., 2025a). To obtain a more stable and accurate likelihood estimate, we
instead score a candidate based on the incremental denoising actions that created it.

We propose a scoring function s that evaluates the model’s confidence for each discrete denoising
step. For a step from a more corrupted state x; to a less corrupted state x (where 0 < s <t < 1),
the score is calculated as:

S(Xt; Xs) = Exompg(xo\xt) lng(X0|b(Xs, Xt, XO))a (2)

where p(+|-) is the parametrized posterior from Section 2.1. The function b identifies the specific
blocks of token positions {i | x;; = MASK N xs; # MASK} that were denoised between time ¢
and s, masks these blocks in xg, and returns the masked sequence. The score s(x;; X;) is the log-
likelihood of only these newly-revealed blocks, conditioned on the surrounding context provided by
the model’s full-sequence prediction Xx.

This approach provides a better likelihood estimation with lower variance. By focusing on smaller,
incremental predictions, we assess the model on tasks similar to its well-learned training distribution,
where it denoises a limited number of masks at a time. The total score for a candidate sequence is
the sum of scores over all its search-guided denoising steps: 3 ;5 s(xu; %), where J is the set
of intervals where a search was performed. This sum captures the entire history of the candidate’s
generation path. Figure 3 illustrates this process for a single step.

In summary, Order-Token Search performs a joint search over tokens and generation orders, guided
by the MDM’s own likelihood. By allowing candidates to explore denoising paths independently,
Order-Token Search achieves diverse and effective exploration of the joint output space. The
algorithm evaluates this exploration by scoring a candidate’s entire generation history through
incremental block-level likelihoods, providing a comprehensive measure of global coherence. This
approach efficiently leverages the iterative, parallel nature of MDMs: block diffusion minimizes
computational overhead, while the full-sequence prediction xo supplies rich context for stable
likelihood estimation. Consequently, Order-Token Search enables effective pruning of low-
likelihood paths, steering the search toward high-quality, coherent outputs.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of Order-Token Search in improving
the reasoning performance of MDMs. Our investigation centers on the following research questions:
(1) Does Order-Token Search yield consistent improvements in reasoning accuracy over competitive
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Table 1: Model performance on Mathematics and Planning Benchmarks. We report accuracy
across four benchmarks and multiple generation lengths for two base models (LLaDA and LLaDA-
1.5). Bolded values indicate the best performance. With the stronger AR- and majority-voting-
based baselines, no single method dominates every setting; however, Order-Token Search (Order-
Token Search) achieves the highest overall accuracy (All) for both base models and attains the
best dataset-level averages on MATHS500 and Countdown, while remaining competitive with the
strongest baselines on GSM8K and Sudoku.

| Al GSMSK MATHS500 Countdown Sudoku
Method /SeqLen | All 64 128 256 512 Avg 64 128 256 512 Avg 64 128 256 512 Avg 64 128 256 512 Avg
LLaDA Low-confidence 31.1 443 687 767 782 670 212 260 324 362 29.0 258 207 195 160 205 85 117 65 55 81
Low-conf + MV 325 464 725 809 831 707 202 274 350 362 297 227 238 184 180 207 89 103 85 72 87
Random + MV 288 43.1 707 802 803 686 172 262 31.8 31.8 268 63 152 141 152 127 64 65 84 69 71
Order-Token Search | 352 456 71.6 79.8 833 70.1 224 304 360 424 328 277 344 262 254 284 101 117 85 74 94
AR 28.8 340 627 757 769 623 188 234 274 344 260 106 129 133 141 127 147 159 136 120 141
AR + MV 31.0 41.0 69.1 81.7 864 69.6 174 230 322 399 281 102 133 113 137 121 144 159 121 143 142
AR + beam-search 333 403 704 81.1 829 687 222 266 354 398 31.0 184 231 215 219 212 132 177 106 82 124
LLaDA-1.5 Low-confidence 323 442 696 775 794 677 202 264 325 362 288 198 197 179 21.8 198 135 156 114 103 127
Low-conf + MV 350 49.1 744 841 842 730 212 300 348 393 313 207 238 203 254 225 137 149 108 126 13.0
Random + MV 302 477 748 812 828 71.6 224 262 310 304 275 55 164 90 145 114 111 113 93 92 102
Order-Token Search | 36.7 484 745 817 840 722 244 308 374 424 338 277 313 238 293 280 138 161 112 99 128
AR 303 375 677 773 79.1 654 172 235 312 350 267 123 152 145 157 144 145 158 145 13.6 146
AR + MV 322 407 729 838 842 704 184 264 336 379 291 125 172 148 160 151 146 166 132 13.1 144
AR + beam-search 335 451 732 820 849 713 190 264 352 388 299 148 21.1 160 203 181 175 168 135 11.0 147

baselines—such as low-confidence remasking and majority-voting—across a variety of tasks? (2)
How does the likelihood estimation of Order-Token Search compare to a naive autoregressive-like
approximation? (3) How does performance scale with beam size K, and at what point do we observe
diminishing returns? Finally, we provide a case study where Order-Token Search successfully solves
a problem that other baseline methods fail to resolve.

5.1 EXPERIMENTAL SETUP

We compare Order-Token Search against several strong baselines: Low-confidence remasking, a
greedy decoding method adopted as an optimal base model configuration in Zhao et al. (2025).
Random remasking with majority voting, which generates a compute-equivalent set of diverse
samples via random remasking and selects answers using a consistency heuristic (Wang et al.,
2022). Low-confidence with majority voting, which combines the greedy decoding with the
consistency heuristic mentioned above. AR, which follows the left-to-righ autoregressive order
in generation. AR with majority voting and AR with beam search, which strengthen the AR
baseline with, respectively, a consistency heuristic and a likelihood-based search. Order Search,
a computationally expensive algorithm that uses AR-like likelihood to search for the optimal
generation order. Token Search, an equally expensive algorithm that uses AR-like likelihood to
search through the top-K likely tokens for each position.

Model and Tasks. Our primary testbed is LLaDA-8B-Instruct (Nie et al., 2025), a state-of-the-art
open-source diffusion language model. Since it has not undergone post-training with methods like
diffu-GRPO (Zhao et al., 2025), it offers a clean baseline for isolating the performance improvements
attributable to our inference-time algorithm. We additionally evaluate LLaDA-1.5 (Zhu et al., 2025),
an RL post-trained variant of LLaDA, to verify that our conclusions hold even after reinforcement-
learning-based post-training. For tasks, we evaluate on two mathematical reasoning and two
planning benchmarks. GSM8K (Cobbe et al., 2021) contains ~1.32k grade school math problems
requiring multi-step reasoning. MATHS00 (Lightman et al., 2023) is a challenging subset of
500 high-school competition-level problems from the MATH (Hendrycks et al., 2021) dataset.
Countdown (Pan et al., 2025) is a combinatorial arithmetic game where the goal is to reach a target
number using basic operations on a given set. Sudoku requires logical reasoning and constraint
satisfaction to solve a puzzle grid (Zhao et al., 2025).

5.2 ORDER-TOKEN SEARCH IMPROVES REASONING ACCURACY

Overall performance: Order-Token Search is the strongest decoding across benchmarks. As
shown in Table 1, after adding majority-voting and autoregressive baselines, no single decoding
method dominates every dataset or sequence length, but Order-Token Search remains the strongest
overall. For both LLaDA and LLaDA-1.5, it attains the highest All accuracy (35.2% vs. 33.3% for the
best baseline on LLaDA, and 36.7% vs. 35.0% on LLaDA-1.5) and the best dataset-level averages
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Table 2: Accuracy of search algorithms with different likelihood Typhle 3: On the Countdown
estimate. Bolded values indicate best performance. Order-Token a5k Larger beam size re-
Search consistently outperforms both Order Search and Token Search - gy]¢s in higher accuracy.

that adopt an AR-like likelihood estimate. Beam Size(K) Accuracy (%)
Decoding Method (Compute) GSM8K MATHS500 Countdown Sudoku K=1 16.0
Token Search (3x) 8.5 38 0.0 6.1 K=3 19.1
Order Search (3x) 79.2 35.8 15.2 5.9 K=5 20.3
Order-Token Search (1x) 79.8 36.0 26.2 8.5 K=8 211

on MATHS00 and Countdown. On GSM8K, diffusion-style decoding (Low-confidence, Low-conf
+ MV, Random + MV) and autoregressive decoding (AR, AR + MV, AR + beam-search) trade wins
with Order-Token Search at different sequence lengths while Order-Token Search remains close in
performance, whereas on Sudoku the AR variants are typically strongest, as discussed below.

Diffusion baselines: Order-Token Search improves over remasking and voting on hard
reasoning tasks. Within diffusion-style decoding, the greedy Low-confidence baseline already
provides solid performance, and adding majority voting reliably improves GSMS8K averages for
both models. Random + MV, which replaces confidence-based remasking with random remasking,
can be competitive on GSM8K but substantially degrades the tasks that requires more structured
reasoning: its Countdown averages fall to 12.7% and 11.4% for LLaDA and LLaDA-1.5, compared
with 20.7% and 22.5% for Low-conf + MV. In contrast, Order-Token Search consistently improves
over these diffusion baselines on MATHS500 and Countdown: its MATHS500 averages reach 32.8%
and 33.8% (vs. 29.7% and 31.3% for Low-conf + MV), and its Countdown averages increase to
28.4% and 28.0%. For example, on Countdown with LLaDA at length 128, Order-Token Search
attains 34.4% accuracy, versus 23.8% for Low-conf + MV and 15.2% for Random + MV.

Autoregressive baselines: Order-Token Search outperforms AR on reasoning, while Sudoku
is a backbone failure case. Comparing to autoregressive decoders, AR, AR + MV, and AR
+ beam-search are strong baselines on GSM8K and Sudoku, with AR + MV and AR + beam-
search often achieving the best GSM8K scores at longer sequence lengths and the best Sudoku
performance for both backbones. Nevertheless, Order-Token Search still provides clear advantages
on the harder reasoning tasks: averaging the dataset-level averages over both LLaDA variants, its
GSM8K/MATHS500/Countdown scores are 71.2%/33.3%/28.2%, compared to 70.0%/28.6%/13.6%
for AR + MV and 70.0%/30.5%/19.7% for AR + beam-search (a block_size=1 special case
of our search). Finally, all Sudoku performance remain far below the 25% accuracy of uniform
guessing on a 4 x 4 grid (e.g., Order-Token Search at 9.4%/12.8% and AR + beam-search at
12.4%/14.7%), so we view Sudoku as a failure case of this backbone rather than evidence against
the value of searching jointly over orders and tokens.

5.3 THE NECESSITY OF DEDICATED LIKELIHOOD ESTIMATION FOR MDMS

The efficacy of any search-based decoding algorithm is contingent upon its capacity to accurately
estimate the likelihood of candidate sequences for effective pruning. As established in Section
4.2, employing a naive or autoregressive (AR)-style likelihood estimation is suboptimal for MDMs,
which inherently model tokens at multiple positions in parallel. Our baseline search algorithms,
Order Search and Token Search, utilize an AR-style likelihood estimation by computing the logits of
revealed tokens in a forward pass. The inferior performance of these baselines in Table 2, compared
to Order-Token Search, provides initial evidence that this scoring method is misaligned with the
MDM paradigm.

On the Countdown task, Order-Token Search surpasses Order Search by 11%, while Token Search
degrades the base model’s performance to 0%. This result substantiates that performing a naive
beam search over token values, guided by a sequence of greedily-decided positions (selected via
low-confidence remasking), is ineffective for MDMs. Furthermore, searching the generation orders
in isolation is insufficient, as Order Search requires triple the computational cost to approach the
performance of Order-Token Search. The superior and efficient performance of Order-Token Search
is directly attributable to its dedicated likelihood estimation and its joint exploration of the generation
order and token space.
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Figure 4: Case study of search trajectories for a sampled Countdown problem. Each box depicts a
independently generated candidate sequence with arrows denoting the parent-child relationship in
block diffusion. Order-Token Search evaluates each candidate and decides whether to move forward
with its prefix sequence. Its likelihood criterion successfully pruned out inferior candidates that
contains incorrect reasoning or syntactical errors, ultimately retaining only high-scoring candidates
that lead to the correct solution.

5.4 SCALING WITH BEAM SIZE

We evaluate the scalability of Order-Token Search by analyzing the trade-off between reasoning
accuracy and computational cost as the beam size K increases. Results on the Countdown task
(Table 3) show that performance improves consistently with beam size, rising from 16.0% at K = 1
(equivalent to greedy decoding) to 21.1% at K = 8. The marked gain from K = 1to K = 3
(+3.1%) confirms that even modest beam expansion helps escape suboptimal greedy paths.

Beyond K = 3, however, we observe diminishing returns: accuracy increases by only 1.2% from
K =3to K =5, and 0.8% from K = 5to K = 8. These results indicate that while larger beams
enable more thorough exploration and higher accuracy, the marginal improvement decreases as K
grows. This establishes a practical guideline for setting K to maximize accuracy within a given
computational budget.

5.5 CASE STUDY: A SEARCH INSTANCE

Figure 4 provides a qualitative analysis of Order-Token Search’s search trajectory on a Countdown
task requiring the combination of numbers (87, 28, 35) to reach a target value of 94. This particular
problem exemplifies a case where the low-confidence remasking baseline fails, as it greedily
commits to the locally plausible but ultimately incorrect path beginning with 87 4+ 28 = 115.
However, this path cannot yield the target 94 using the remaining number 35, since 115 = 35 results
in values (80 or 150) distant from the solution.

Order-Token Search overcomes this limitation by maintaining multiple candidate paths simulta-
neously. While the addition-based path is explored, the algorithm also evaluates the alternative
87 —28 = H9 trajectory. The dedicated likelihood estimation correctly identifies the subtraction path
as superior when 59 + 35 precisely yields the target 94. This case demonstrates how Order-Token
Search’s joint exploration of generation orders and token space enables escape from local optima
that trap greedy methods, systematically identifying globally correct solutions through parallel
hypothesis testing.
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6 RELATED WORK

Diffusion Language Models. Initial developments in discrete diffusion models were established
by D3PM (Austin et al., 2021) and further progressed using masked token approaches (Sahoo
et al., 2024; Nie et al., 2024). Efficient versions such as Plaid (Gulrajani & Hashimoto, 2023)
and SEDD (Lou et al., 2024) achieve performance comparable to GPT-2 (Radford et al., 2019), but
their scalability still falls short of autoregressive models. The most recent scaling efforts include
Dream (Ye et al., 2025), which adapts pre-trained autoregressive models into diffusion models, and
LLaDA (Nie et al., 2025), which trains powerful diffusion language models from scratch.

Test-Time Strategies. A primary method to enhance diffusion models is to increase test-time
compute, often by using more denoising steps. Recent work has shown that expanding the inference-
time sample space can guide generation toward high-reward outputs (Singhal et al., 2025; Kim et al.,
2025b), with techniques like re-masking being introduced to scale the denoising process for masked
diffusion models specifically (Wang et al., 2025). In the broader context of language models, search
algorithms like beam search, speculative decoding (Leviathan et al., 2023; Xia et al., 2023), and
contrastive decoding (Li et al., 2022) have been developed to improve decoding beyond greedy
selection. However, these algorithms are tailored for the autoregressive paradigm, where the search
space is confined to token values given a fixed generation order.

Our work addresses this limitation. The iterative denoising of MDMs creates a joint search space
over both token values and their generation order, which is inaccessible to autoregressive methods.
Our algorithm, Order-Token Search, is designed for this new paradigm, leveraging parallel decoding
to explore multiple generation paths and select outputs based on overall likelihood.

7 CONCLUSION

In this work, we revisited decoding for Diffusion Language Models through the lens of reasoning.
We modeled each problem as inducing a graph of logical dependencies, with any DLM decoding
trace corresponding to a particular trajectory through this graph. Our analysis of pass@F revealed
that standard low-confidence remasking effectively collapses the rich space of possible trajectories
to a narrow set of greedy paths: it improves single-sample accuracy but restricts exploration of
alternative generation orders that would solve more problems, whereas more diverse remasking
strategies broaden this space at the expense of pass@1.

To reconcile this trade-off, we introduced Order-Token Search, a decoding algorithm that performs
structured search in the joint space of generation orders and token values while leveraging the
parallel denoising nature of MDMs. By maintaining multiple candidate hypotheses and guiding the
search with a novel, block-based likelihood estimation, Order-Token Search discovers trajectories
whose generation orders better align with the underlying dependency graph. Experiments on
mathematical reasoning and planning benchmarks show that this inference-time search yields
systematic gains in accuracy (pass@1), matching or surpassing the improvements of expensive
post-training methods such as diffu-GRPO. These findings highlight that decoding-time search over
orders is not merely a heuristic refinement, but a central ingredient for unlocking the reasoning
capabilities latent in DLMs.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All experiments are conducted using publicly
available benchmark datasets (GSM8K, MATHS500, Countdown, and Sudoku) and pretrained
models (LLaDA-8B-Instruct, LLaDA-1.5), with our contributions centered on methodological and
algorithmic advancements, in particular the development of the Order-Token Search method which
explores the joint space of generation order and token selection. The study does not involve human
subjects, personal data, or other sensitive information, and no applications with a high likelihood
of causing harm are considered. We have carefully examined potential risks and broader societal
impacts of this research and did not identify significant ethical concerns.

REPRODUCIBILITY

We have taken deliberate steps to ensure that our work can be reliably reproduced. Detailed
descriptions of the datasets and model employed are provided in Section 5.1, while Appendix
A.4 outlines the inference setups and hyperparameter configurations. The details of Order-
Token Search are documented in Appendix A.1. Upon acceptance, we will make our algorithm
implementation publicly available to support reproducibility and enable subsequent research.
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USE OF LLMS

Large language models (LLMs) were used solely to assist with grammar refinement and writing
clarity during the manuscript preparation stage. All technical ideas, experimental designs, model
implementations, and analyses were conceived and executed by the authors without reliance on
LLMs. The use of LLMs did not influence research outcomes, data interpretation, or reported results.
We carefully reviewed and edited all text to ensure accuracy, originality, and compliance with ethical
and academic standards.

A APPENDIX

A.1 ORDER-TOKEN SEARCH ALGORITHM

To make our proposed decoding strategy more concrete, we present the pseudocode of our Order-
Token Search, which illustrates how partially masked sequences are expanded, scored and pruned,
exploring both the token space and order space.

Algorithm 1 Order-Token Search for Diffusion Language Models
1: Input: Prompt p, model py, beam size K, generation length L, total steps .S, search interval N,
temperature 7, number of blocks b.
2: Initialize beam set B < {(x;,s[b],score)}, where x; = [p; MASK”], s[0 : b — 1] = 0,

score = 0 > K identical beams
3: for step s < 1to .S do
4 1 + pp(B.x) > Get logits for all beams, shape: (K, L, V)
5 if s mod N == 0 then > Search step
6: B andidates 0
7 for (x,s, score) € B do
8 block_idx < get_current_block_index(x) > Compatible with semi-AR generation
9 for i < 1to K do > Expand each beam into K candidates
10: 1 + add_gumbel_noise(ly, 7) > Perturb logits for exploration
11: xq ¢ argmax(l,dim = —1) > Sample a candidate completion
12: Xeandidate <— transfer_tokens(x, xg, lx) > Only apply % predicted tokens
13: Xfullseq < transfer_all_tokens(x, x) > Apply all predicted tokens
14: Xmasked <— Mask_tokens (X seq, block_idx) > Mask the current block
15: block_score < score_block(Xmasked, block_idx) > Score the sequence
16: s[block_idx] = block_score
17: score = sum(s[0:block_idx])
18: Bandidates < Beandidates U {(Xcandidatea S, SCOI’G)}
19: end for
20: end for
21: B < top k- (Beandidates) > Prune to the K best candidates
22: else > Standard sampling step
23: for (x,_,_) € Bdo > Update each beam independently
24: 1 + add_gumbel_noise(ly, 7)
25: xo < argmax(l,dim = —1)
26: x < transfer_tokens(x, xg, Lx) > No scoring/pruning
27: end for
28: end if
29: end for

30: Return: The sequence from B with the highest final score.

A.2 IS THE AUTOREGRESSIVE ORDER FUNDAMENTALLY SUPERIOR?

The parallel between random remasking and a fixed AR order in Figure 2 raises a natural hypothesis:
perhaps the samples that lead to the high pass@256 for random remasking are those that, by
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Figure S1: Correlation between generation order and accuracy. The x-axis shows how “chaotic” a
generated sample is measured in the Hamming distance of its decoding order from a strict left-to-
right (AR) order. The y-axis is the average accuracy of the generated samples with the same chaotic
value for a problem. The size of the point represents the number of samples. We find no correlation,
indicating that decoding in an AR-like order is not a predictor of success.

chance, follow an autoregressive-like order. If this were true, it would imply that the AR order
is a fundamentally superior decoding path for the model.

We test this hypothesis directly with a large-scale correlation study. For a given dataset, we generate
256 samples for each problem using random remasking. For each generated sample, we compute
two metrics:

Accuracy: A binary indicator of whether the final solution is correct.

AR Similarity: The Hamming distance between the sequence of positions unmasked in this sample
and a canonical left-to-right (AR) order. A low Hamming distance indicates a generation order that
is highly similar to AR.

If the hypothesis were correct, we would observe a strong negative correlation between the Hamming
distance (difference from AR order) and accuracy; samples that decode in an AR-like order would
be more likely to be correct.

Figure S1 plots these results, aggregating data across all samples of the same AR similarity for each
problem in a dataset. The result is clear: we find no evidence of a correlation. The coefficient of
the fitted lines for each dataset falls under the the order of magnitude of 1072, This result holds
consistently across all datasets and models we tested.

This null result is profound. It indicates that the autoregressive order is not a uniquely privileged
path to a correct solution. Instead, the DLM has learned a rich, multi-faceted solution space where
a correct answer can be reached through a vast plurality of different reasoning trajectories. The high
pass@k achieved by random remasking is not due to it occasionally stumbling upon an AR order;
it is due to the model’s inherent ability to solve problems correctly via many diverse sequences of
thought. The AR order’s high pass @£ is simply one manifestation of this general capability, not its
source.
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A.3 COMPARISON STUDY OF GREEDY DECODING AND ORDER-TOKEN SEARCH UNDER
IDENTICAL TEMPERATURE

To further validate the effectiveness of our approach, we compare greedy decoding with Order-
Token Search under identical temperature settings. This controlled setup rules out confounding
factors and highlights the contribution of the search strategy itself. As reported in Table S1, Order-
Token Search delivers a remarkable performance boost on the Countdown dataset, confirming that
the method provides tangible gains beyond simple greedy decoding.

Table S1: Countdown task performance under different configurations.
Seq Len(L), Diffusion Steps(S), Beam Size(/), Temperature(7) Accuracy (%)

L=128,5=64,K=1,T=0.0 20.7
L=128,5S=64,K=1,T=0.4 22.7
L=128,5S=64,K=5,T=0.4 344

A.4 ADDITIONAL EXPERIMENTAL DETAILS

We provide further details on the experimental settings that complement the main results.

A.4.1 BEAM SEARCH SETTINGS

Our Order-Token Search results (as shown in Table 1 and Table 2 is configured with beam sizes
of K € {3,5,8} and block size of 32 along with a small search for the Gumbel noise temperature
7 € [0.2,1.0], keeping in mind its role in balancing diversity and stability. As a general principle,
a higher temperature introduces more diversity among the beams, but it can also risk destabilizing
the token selection and decoding order. The settings used for our main experiments were chosen to
maintain a reasonable balance between these factors.

In the main paper, we adopt the low-confidence remasking strategy together with the setting
gen_len = 2 x diffusion_steps;block_size = 32 for our baseline experiments. This
configuration follows prior work (Zhao et al.,, 2025) and provides what can be regarded as a
form of optimality: while it does not guarantee strict global optimality, it has been shown to
yield a reasonably effective and competitive baseline under low-confidence conditions. Random-
remasking majority-voting and Order-Token Search both use the same configuration. And we
change block_size = gen_len = 1 to simulate AR decoding on AR, AR majority-voting
and AR Beam Search.

For the Order Search and Token Search experiments reported in Table 2, we use the configuration
with K = 3 and 7 = 0.0. For Table 3, we adopt a setting of gen_len = 512 and 7 = 0.7. The two
sets of Countdown accuracies are obtained under different configurations and are serving different
purposes. In the main results table, we report benchmark-level performance: we examine different
generation lengths and report with the optimal temperature. By contrast, Table 3 is a controlled
ablation where we fix the generation length to 512 and use a single temperature of 7 = 0.7, then vary
only the beam size K to study how performance scales with K.

A.4.2 PASS@K EVALUATION SETTINGS

For pass@Fk evaluation, we adopt the same configuration as in Yue et al. (2025). We set the
temperature to 0.8, which provides a balance between token diversity and plausibility. We use
gen_len = block_size = 256, since the models we adopt are trained to generate sequences in
a fully flexible order and we employ the same setup at inference time. For autoregressive decoding,
we implement it via block diffusion with block_size = 1.

A.4.3 COMPUTATIONAL COST ANALYSIS

Low-temp Order Search generally search only on the decoding order of sequences based on the
confidence of each position. This algorithm is designed based on the intuition that decoding order
might change the ultimate accuracy. Therefore, at every step, we keep K positions that have the
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highest probability from model logits independently unmasked. We then perform a look-ahead at
the next step to have K2 candidate sequences each with one more position unmasked. We calculate
the confidence score and keep the top- K candidates. In the experiment, we adopt the configuration
of K =3,T = 0.0,gen_len = 256 and the results also witness promising improvement.

However, the algorithm is computationally expensive, for it requires K2 x gen_len forward passes
in total. With K = 3 and gen_len = 256, this amounts to 32 x 256 = 2304 forward evaluations.
In contrast, our Order-Token Search with K = 5 requires only (128 x 5) + (12) x 25 = 740
forward passes, where 128 /32 corresponds to the number of blocks and each block update involves
5 X b expansions.

Low-temp Token Search is closely related to Order Search, but instead of expanding K positions
at each step, it expands the top-K most confident tokens for a single position. Starting from
K sequences, this again produces K2 candidate sequences per step, leading to the same overall
complexity of K2 x gen_len forward passes. For instance, with K = 3 and gen_len = 256,
Token Search also requires 32 x 256 = 2304 forward evaluations. Although the search space differs
(token values vs. decoding order), the computational burden remains quadratic in K, making it
substantially more expensive than our Order-Token Search, which scales only linearly with K.

A.5 COMPUTATION COMPLEXITY

To manage computational complexity, we deliberately structure the search using block diffusion
(Arriola et al., 2025; Nie et al., 2025). This avoids the prohibitive cost of a naive search at every
step, which would incur a complexity of O(S - K2 - L), where S is the number of diffusion steps.
The overhead of our approach is far lower. Let L be the generation length, K the beam size, and
B the number of blocks. The total Number of Function Evaluations (NFE) for OTS is the sum of
K independent denoising trajectories (costing S - K - L) and the likelihood evaluations for search,
which are performed B times at block boundaries (costing B - K2 - L).

Thus, the total NFE is NFE(OTS) ~ S - K - L + B- K? - L. In our main experimental setting (where
S = L/2and B = L/32), with a typical beam size K ~ 4, this simplifies to NFE(OTS) ~ (L? -
K)/2+(K?-L*)/32 ~ 2.5-L?. This is critically important, as it is directly comparable to the NFE of
a standard majority-voting baseline with 5 samples: NFE(MV-5) = S-5-L = (L/2)-5-L = 2.5-L*.
Therefore, OTS provides a structured joint search over the (order x token) space at roughly the same
computational cost as a widely-used unstructured sampling baseline. After processing all blocks,
the single best sequence is selected from the final K candidates based on the highest likelihood.
To further validate our analysis, we measured wall-clock time on the Countdown dataset, averaging
over all problems and comparing low-confidence remasking, naive majority voting (5 samples), and
OTS with 4 beams. As shown in Table S2, our optimized implementation of OTS runs faster than
the majority-voting baseline.

Table S2: Wall-clock time (in seconds) comparison on the Countdown dataset, averaged over
all problems. This demonstrates that OTS (4 beams) is roughly 2-3x slower than a single low-
confidence run, but about 2x faster than majority voting with 5 samples.

Method / Generation length 64 128 256 512
Low-confidence remasking 1.55 3.19 6.60 14.52

+ Majority-voting (5 samples) 7.73 1594 3299 72.59
Order-Token Search (4 beams) 3.52 7.46 16.64 40.41

A.6 ORDER-TOKEN SEARCH SCALING WITH NFE

In this section, we analyze how OTS scales with test-time compute on the Countdown benchmark,
comparing it to majority-voting strategies under roughly matched FLOP budgets. Figure S2 plots
accuracy as a function of NFE by varying the beam size for OTS and the number of samples for
AR+MYV and Random+MV. At the matched-compute frontier, OTS with beam size 6 achieves 29.3%
accuracy, while AR+MV and Random+MYV peak at 19.9% and 18.4%, respectively. Moreover, OTS
continues to gain accuracy as beams are added (from 16.0% at beam 1 to 29.3% at beam 6), whereas
majority-voting baselines only exhibit marginal returns as more samples are drawn. This dominance
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Figure S2: Countdown accuracy versus test-time compute (NFE) for OTS and majority-voting
baselines. For each method, we vary beam size (OTS) or the number of samples (AR+MYV,
Random+MYV), and choose the largest configuration so that all right-most points have roughly
matched NFE. At this matched-compute point, OTS with beam size 6 attains 29.3% accuracy,
compared to 19.9% for AR+MV and 18.4% for Random+MYV, indicating more efficient use of
additional FLOPs than simply drawing more independent diffusion samples.

in the accuracy—NFE plane shows that jointly searching over orders and tokens turns extra compute
into substantially larger performance gains than standard multi-sample diffusion decoding.

A.7 SENSITIVITY OF ORDER-TOKEN SEARCH TO BLOCK SIZE

Our scoring function s(z; xs) is explicitly designed to be stable across a range of block sizes.
Conceptually, the block size controls a bias—variance trade-off in likelihood estimation. When
the block is larger, the model must jointly predict more tokens at once, making each scoring step
harder but fewer in number. When the block is smaller, each prediction is easier and closer to the
MDM training distribution—where the model typically denoises a limited number of masks at a
time—but search is invoked more frequently. In all cases, the score of a candidate is the sum of
these incremental block-level log-likelihoods over its full generation path (Eq. 2), so changing the
block size simply changes how finely this path-wise likelihood is decomposed, not the underlying
distribution being estimated. We therefore view the block size primarily as an efficiency and
granularity knob rather than a fragile hyperparameter for the scoring rule itself.

In practice, we find that Order-Token Search is not highly sensitive to the exact block size within
a reasonable range. On MATHS500 with generation length 128, sweeping the block size from 1 to
128 yields accuracies between 23.0% and 28.0%. Across block sizes 2-64, performance stays in a
narrow band around 26.5% (approximately 26.5+1.5), and all such settings significantly outperform
the degenerate cases of block size 1 and 128, where Order-Token Search either loses the order space
entirely (block size 1) or forces the model to effectively denoise the entire sequence in one shot
(block size 128). This empirical plateau for intermediate block sizes matches the bias—variance
trade-off discussed above and supports the view that block size primarily controls the efficiency and
granularity of search rather than acting as a delicate tuning parameter. The full sweep is visualized
in Figure S3.
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Order-Token Search Performance vs. Block Size on MATH500
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Figure S3: Effect of block size on OTS accuracy on MATH500 with generation length 128.
Accuracy remains stable for block sizes 2—64, while the degenerate settings of block size 1 and 128

significantly underperform, confirming that block size mainly acts as an efficiency and granularity
knob.
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