
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING DIFFUSION LANGUAGE MODEL REASON-
ING THROUGH JOINT SEARCH IN GENERATION ORDER
AND TOKEN SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

The order-agnostic generation of Diffusion Language Models (DLMs) presents a
promising alternative to autoregressive models for complex reasoning. We model
reasoning as traversals of a problem-specific graph of logical dependencies, and
view DLM decoding as sampling trajectories from a joint space over generation
orders and token values. We show that standard decoding heuristics such as
low-confidence remasking collapse this reasoning space. To address this, we
introduce Order-Token Search, an algorithm that jointly searches over token
content and generation order. Its core is a likelihood estimation function that
scores block-level denoising actions, enabling stable path pruning. This allows
for efficient exploration of diverse reasoning trajectories. Extensive experiments
on mathematical reasoning and planning benchmarks show that our method
consistently outperforms baselines, matching or surpassing the gains of fully post-
trained d1-LLaDA with diffu-GRPO on Countdown, GSM8K, and MATH500
(e.g. achieving a 13.7% absolute gain on Countdown). Our work establishes
structured search as a key missing component for advancing reasoning in DLMs.

1 INTRODUCTION

Recently, Diffusion Language Models (DLMs) have emerged as a powerful alternative to autore-
gressive (AR) models for sequence generation. A prominent approach, Masked Diffusion Models
(MDMs) (Sahoo et al., 2024; Shi et al., 2024), trains on a core objective: learning to reconstruct
original text by iteratively denoising sequences where tokens have been randomly masked. At
inference, generation begins from a completely masked sequence and proceeds iteratively; the model
predicts a full draft, which is then partially randomly remasked to form the input for the next
denoising step. This training paradigm provides an exploratory objective that fosters order-agnostic
generation, contrasting with fixed left-to-right generation, and holds promise for solving complex
reasoning tasks that require non-linear thought processes.

The iterative denoising process of MDMs presents a unique opportunity: the choice of which tokens
to remask at each step is a free parameter that can be optimized. Rather than relying on random
remasking used in training, we can guide generation through learned or heuristic remasking
strategies. One such strategy, low-confidence remasking, leverages the model’s uncertainty
estimate by locking in high-confidence token predictions as fixed context while remasking low-
confidence ones for reconsideration (Nie et al., 2025; Kim et al., 2025a). This prioritizes refinement
of uncertain tokens by providing increasingly reliable surrounding context, aiming to improve the
model’s self-confidence and often leading to higher single-sample performance.

To understand what is gained or lost by fixing a particular remasking strategy, we adopt a task-
level view of reasoning. Each problem induces a latent graph of logical dependencies, and any
valid solution corresponds to a sequence of intermediate statements that respects this graph. A
DLM decoding trace—the sequence of “which position to update” and “which token to place
there” across denoising steps—is then one concrete trajectory through this graph. Standard MDM
training, however, only directly supervises token predictions under random remasking, leaving the
distribution over such trajectories to be determined implicitly by the inference-time remasking rule.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

✔

✘

✔

✘

✘

✘

✘

✘

✔

Step 3 Candidates

Denoise

Denoise

Denoise

Step 4, perform search

Step 1&2

(Prompt + Mask Tokens)3 ✖

Denoise
& Search

Denoise
& Search

Denoise
& Search

Replace and continue to next step

Top-k

Generated token
within a forward
Selected token

to unmask
Generated token in

previous steps

Figure 1: Example of running Order-Token Search algorithm for Diffusion Language Models.
Starting from 3 identical fully masked sequences, the reverse diffusion runs for 6 steps to fill in 6
token positions. Every 2 steps (a customizable search interval), the standard denoising is paused,
each candidate is expanded into 3 candidates, and a sequence-level scoring function is used to
prune back to top-3. This process continues to an end where we perform scoring on the top-3
fully denoised sequences to return the optimal one.

While low-confidence remasking improves single-sample accuracy (pass@1), we find it inherently
limits exploration of potential solutions. We quantify this effect using pass@k, the probability that
at least one of k samples is correct. Empirically, low-confidence remasking yields superior pass@1,
but more diverse decoders—such as random remasking or a fixed AR order—obtain much higher
pass@k as k increases by exploring different orders and token choices. This pattern reveals that low-
confidence remasking behaves like a greedy search that commits to a narrower set of trajectories in
the joint order–token space, whereas diverse strategies expose broader reasoning paths that could
reach more correct solutions. Our goal is to search for generation orders that are better aligned with
the underlying dependency graph and therefore make the solution logically easy to construct.

We propose Order-Token Search, a new decoding algorithm designed to search in the joint
space of generation orders and token choices. Our approach keeps track of multiple candidate
sequences (beams) throughout decoding, ultimately returning the one with highest overall generation
likelihood. Order-Token Search leverages MDMs’ parallel decoding capability—predicting all
masked tokens at once. As shown in Figure 1, for each beam, it generates multiple candidate
completions for the entire set of remaining masked tokens. These candidates are scored based on
sequence likelihood, allowing informed decisions about which paths to pursue.

Through experiments on mathematical reasoning and planning tasks, our method consistently
outperforms previous best single-sample decoding (low-confidence remasking). Across Countdown,
GSM8K, and MATH500, our test-time search matches or surpasses the gains of fully post-trained
d1-LLaDA with diffu-GRPO (Zhao et al., 2025); for example, on Countdown it achieves a 13.7%
absolute accuracy improvement over the low-confidence baseline. These results demonstrate that
explicitly guiding exploration of generation orders and token choices is key to unlocking higher
reasoning performance in DLMs.

Contributions. We conceptualize reasoning as navigating a graph of logical dependencies, where
each problem induces a partial order over intermediate facts and subgoals. This partial order defines
a space of valid traversals, while an MDM’s denoising trajectory is one particular traversal that may
or may not respect these constraints. Low-confidence remasking effectively collapses this space
to a single heuristic trajectory, which empirically boosts pass@1but limits pass@k by restricting
exploration of alternative orders that can solve more problems (Section 3). In contrast, random
remasking explores a much larger portion of the order space, often improving pass@k but at the
cost of weaker pass@1. To reconcile this trade-off, we introduce Order–Token Search (Section
4), a decoding algorithm that performs structured search over generation orders and token choices,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

allowing the model to discover and select trajectories whose generation order better aligns with
the underlying logical dependencies. A core technical contribution is a stable likelihood estimation
function (Section 4.2) enabling reliable scoring of partial sequences for effective search. Extensive
experiments (Section 5) show that this structured exploration yields systematic pass@1gains across
mathematical and planning benchmarks, matching improvements typically obtained from post-
training.

2 BACKGROUND

This section establishes the technical foundation for our work. We review the fundamentals of
MDMs, formalize key concepts for remasking strategies, and define our evaluation metrics.

2.1 DISCRETE DIFFUSION MODELS

Discrete diffusion models adapt the forward diffusion process and the reverse denoising process
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021) to discrete
data by establishing the diffusion process over a discrete domain x ∈ X, where x is a one-hot vector
denoting tokens from a vocabulary of size |X| (Austin et al., 2021). Given a prior π, the forward
process q incrementally corrupts the original data x0 into a target prior distribution Cat(·;π). Over
continous time t ∈ [0, 1], it forms a sequence of increasingly noisy latent variables xt, through
the conditional marginal distribution q(xt | x0) = Cat (xt;αtx0 + (1− αt)π). Here, αt is a
monotonically decreasing noise schedule that satisfies boundary conditions α0 = 1 and α1 = 0.
Furthermore, we can achieve the transition probability between any two intermediate time points
0 < s < t < 1 through q(xt | xs,x0) = Cat (xt;αt/αsxs + (1− αt/αs)π).

MDM, a specific instance of this framework, utilizes the prior π = m to achieve absorbing-state
diffusion, a particularly suitable setting for language modeling (Sahoo et al., 2024; Shi et al., 2024;
Lou et al., 2024). Here, m is a one-hot vector corresponding to a special MASK token. Defining s
as the time step immediately preceding t, the posterior distribution simplifies to:

q(xs | xt,x0) =

{
Cat (xs;xt) , xt ̸= m

Cat
(
xs;

αs−αt

1−αt
x0 +

1−αs

1−αt
m

)
, xt ̸= m

(1)

The reverse (denoising) process is modeled by pθ(xs | xt) = q(xs | xt,xθ(xt)), where pθ is a
parameterized distribution that reverses q, and xθ(xt) denotes a neural network trained to predict
the original clean data x0 from its noisy version xt. This network is optimized by minimizing the
negative evidence lower bound, thereby learning to approximate the true posterior distribution.

2.2 REMASKING STRATEGIES IN MDM SAMPLING

In masked generative models, sampling starts from a fully masked sequence, x1 =
(MASK, . . . ,MASK). The model then iteratively refines this sequence over a series of steps. At
each step, the model predicts logits for all currently masked tokens. The critical action in this reverse
process is the transfer of a prediction—that is, the act of replacing a selected MASK token with its
predicted value, thereby committing to that prediction for subsequent steps. The rule that determines
which masked token to transfer next is known as the remasking strategy, and it defines the decoding
order. We focus on three primary strategies:

Random Remasking. The strategy used during training. The next token to unmask is chosen
uniformly at random from the set of all remaining masked tokens. This is a baseline that ensures
unbiased, order-agnostic generation. Autoregressive (AR). We force the DLM to keep the leftmost
predicted token and remask all following tokens. This baseline decouples the effect of generation
order and solely examines the effect of diverse token selection. Low-Confidence Remasking. A
common inference-time strategy. The token with the highest predicted probability is unmasked
next; the tokens with lower probability are remasked. Formally, at each step, the model computes a
confidence score for each masked token i as its maximum logit, si = max(pθ(· | xt)i). The token
with the maximum score si is transferred. The intuition is to resolve the token position where the
model has the greatest certainty first, potentially mitigating error propagation (Nie et al., 2025; Kim
et al., 2025a).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 2 4 8 16 32 64 128256
k

0.0

0.2

0.4

0.6
pa

ss
@

k
HumanEval

1 2 4 8 16 32 64 128256
k

0.0

0.1

0.2

0.3

0.4

0.5

pa
ss

@
k

MBPP

1 2 4 8 16 32 64 128256
k

0.0

0.2

0.4

0.6

pa
ss

@
k

HumanEval

1 2 4 8 16 32 64 128256
k

0.0

0.1

0.2

0.3

0.4

pa
ss

@
k

MBPP

1 2 4 8 16 32 64 128256
k

0.4

0.6

0.8

1.0

pa
ss

@
k

GSM8K

1 2 4 8 16 32 64 128256
k

0.2

0.4

0.6

0.8

pa
ss

@
k

MATH500

1 2 4 8 16 32 64 128256
k

0.4

0.6

0.8

1.0

pa
ss

@
k

GSM8K

1 2 4 8 16 32 64 128256
k

0.2

0.4

0.6

0.8

pa
ss

@
k

MATH500

LLaDA-instruct-low-confidence LLaDA-instruct-random

LLaDA-instruct-AR

LLaDA-1.5-low-confidence LLaDA-1.5-random

LLaDA-1.5-AR

Figure 2: Empirical pass@k curves for LLaDA-8B-Instruct and LLaDA-1.5 on reasoning and
coding benchmarks. While low-confidence remasking often achieves higher accuracy (pass@1),
both random remasking and autoregressive (AR) decoding yield superior pass@k for large
k (≈256), revealing a higher performance potential. This indicates that strategies exploring more
diverse paths solve more unique problems overall.

2.3 EVALUATION METRICS FOR REASONING PERFORMANCE

Evaluating generative models on reasoning tasks requires metrics that capture both deterministic
performance and the model’s inherent capability. We use the following standard metrics established
in prior work (Yue et al., 2025): Accuracy (pass@1). The probability that a single generated
sample is correct. This is the primary metric for evaluating one-trial performance and represents the
expected accuracy when using the model in a deterministic setting. pass@k. The probability that at
least one sample out of k independent generations is correct. This metric estimates the model’s
inherent ability to solve a problem given sufficient sampling. For a problem with n generated
samples of which c are correct, it is estimated as: pass@k ≈ 1−

(
n−c
k

)
/
(
n
k

)
.

The relationship between these metrics reveals important characteristics of a decoding strategy. A
strategy with high accuracy but low pass@k for large k indicates that while effective for single
samples, it under-utilizes the model’s true potential by failing to explore diverse solution paths. A
core goal of our work is to develop a decoding algorithm that achieves higher accuracy by better
exploring the joint space of generation orders and token selections.

3 REASONING PERFORMANCE OF STANDARD DECODING STRATEGIES

Decoding Strategy Trade-offs. To understand the fundamental trade-offs in DLM decoding
strategies, we systematically investigate how different approaches affect reasoning performance
by addressing a critical question: How does the diversity of generation paths explored by
a decoding strategy relate to its ability to solve complex problems? We analyze three core
strategies representing distinct exploration-exploitation trade-offs: random remasking (maximizing
generation order diversity), low-confidence remasking (greedily exploiting local confidence), and
fixed autoregressive order (enforcing generation order while enabling diverse token selection).
This comparison is particularly valuable because DLMs offer unique flexibility in generation order
compared to autoregressive models, yet optimal strategies for leveraging this flexibility in reasoning
tasks remain unclear.

Low-confidence remasking: high single-sample accuracy but rapid performance plateau.
Figure 2 presents the key findings from our analysis. Using LLaDA models (Nie et al., 2025;
Zhu et al., 2025) trained for flexible-order generation, we evaluate each strategy’s single-sample
accuracy (pass@1) and multi-sample coverage (pass@k) across mathematical reasoning (GSM8K,
MATH500) and coding (HumanEval, MBPP) benchmarks to study the effects of generation order

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and token selection diversity on reasoning performance. As expected, the low-confidence remasking
strategy achieves the highest pass@1 in most cases, with advantages of 0.2-0.3 on MBPP. This aligns
with the intuition that resolving the most certain tokens first helps guide the generation and reduces
error propagation in a single sample. However, as we increase the sample budget k, the performance
of low-confidence remasking plateaus relatively quickly.

Diverse strategies: lower initial accuracy but superior multi-sample coverage. In contrast,
both random remasking and fixed AR order strategies, while starting at lower pass@1, continue
to improve with more samples, eventually achieving significantly higher pass@k (e.g., random/AR
strategies reach ∼0.8 while low-confidence plateaus at ∼0.4 at pass@256 on MATH500). This
demonstrates that diverse generation orders (from random remasking) and token selections (from
AR decoding with temperature) can enable the model to solve more unique problems. We also
conducted an experiment (Appendix A.2) showing that AR is not fundamentally superior than other
generation orders. This implies that exploration in the generation order and token space, rather than
the specific left-to-right order, is what improves the model’s reasoning performance. The sets of
solutions generated through these diverse paths have greater coverage of the solution space, even
though each individual sample is less reliable.

This consistent phenomenon reveals a fundamental limitation of greedy decoding strategies: by
committing early to specific token choices based on local confidence, low-confidence remasking
restricts exploration of the joint space of generation orders and token selections. While effective for
optimizing a single sample, this approach fails to utilize the model’s full reasoning potential. The
model’s inherent capability, as measured by pass@k with large k, is better realized by strategies that
introduce more stochasticity.

Our analysis reveals the core opportunity in DLM decoding: achieving higher accuracy than low-
confidence remasking requires strategic exploration of both generation order and token space. To
this end, we introduce Order-Token Search, an algorithm that actively searches this joint space
within a single decoding process to locate correct answers that greedy strategies miss.

4 METHOD: ORDER-TOKEN SEARCH FOR DIFFUSION LANGUAGE MODELS

The empirical results in Section 3 establish the need for a decoding algorithm that explores multiple
potential generation paths. Standard one-trial sampling is insufficient as it commits to a single
greedy sequence. To address this, we develop Order-Token Search, a novel algorithm inspired by
beam search but tailored for the parallel, iterative nature of DLMs. The key innovation is a joint
search over both the token selections and the order in which they are generated, guided by the
model’s own likelihood predictions to score and prune candidate paths. This section details its two
key components—search and prune. The complete algorithm is provided in Appendix A.1.

4.1 SEARCH PROCESS

We begin with K identical copies (beams) of the initial sequence x1 = [c;MASKL], where c

is the prompt and MASKL denotes L mask tokens. Over continuous denoising time t ∈ [0, 1], we
independently apply the MDM to each candidate, generating new hypotheses that represent different
choices in the joint space of tokens and generation orders. Between any two user-specified time
(s, t), our algorithm can perform search and expand each candidate to become multiple candidates
independently with additional denoise steps. This expansion explores the joint space of tokens and
generation orders, creating a diverse set of candidate sequences which are then evaluated and pruned
to retain the top-K paths with the highest model likelihood (see Section 4.2).

To manage computational complexity, we structure the search using block diffusion (Arriola et al.,
2025; Nie et al., 2025). Instead of searching at every denoising step—which would incur an
O(K · |t|) overhead for |t| steps—we perform the search expansion only at the boundaries between
contiguous blocks of tokens. This reduces the overhead to O(K ·|b|), where |b| is the total number of
blocks, making the search tractable. After processing all blocks, the single best sequence is selected
from the final K candidates based on the highest likelihood. Details on computational complexity
are provided in Appendix A.5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remask DLM

Block Score=0.8 ✓

Block Score=0.5 X

Previously generated
token in block 1

Candidate token
in block 1

Generated token
in block 2

to provide context

Prompt tokens

Figure 3: Illustration of a pruning stage in Order-Token Search for DLMs. At a search step, we have
2 fully denoised sequences (on the leftmost), with yellow tokens unmasked in previous steps. We
then mask the current block (the middle 3 tokens) and measure its likelihood through feeding
each masked candidate into the DLM to obtain each token’s probability. The score function
computes the chain-rule product of token probabilities and prunes the lower-likelihood candidate.

4.2 PRUNING PROCESS

The effectiveness of Order-Token Search hinges on a pruning criterion that can accurately score
candidate sequences with diverse tokens and generation orders. Our key insight is that the
standard MDM objective can be an unreliable scorer, as the model is trained on—and often
fails at—extremely difficult infilling tasks where a large number of tokens must be predicted
simultaneously (Kim et al., 2025a). To obtain a more stable and accurate likelihood estimate, we
instead score a candidate based on the incremental denoising actions that created it.

We propose a scoring function s that evaluates the model’s confidence for each discrete denoising
step. For a step from a more corrupted state xt to a less corrupted state xs (where 0 ≤ s < t ≤ 1),
the score is calculated as:

s(xt;xs) = Ex0∼pθ(x0|xt) log p(x0|b(xs,xt,x0)), (2)

where p(·|·) is the parametrized posterior from Section 2.1. The function b identifies the specific
blocks of token positions {i | xt,i = MASK ∩ xs,i ̸= MASK} that were denoised between time t
and s, masks these blocks in x0, and returns the masked sequence. The score s(xt;xs) is the log-
likelihood of only these newly-revealed blocks, conditioned on the surrounding context provided by
the model’s full-sequence prediction x0.

This approach provides a better likelihood estimation with lower variance. By focusing on smaller,
incremental predictions, we assess the model on tasks similar to its well-learned training distribution,
where it denoises a limited number of masks at a time. The total score for a candidate sequence is
the sum of scores over all its search-guided denoising steps:

∑
(s,t)∈I s(xt;xs), where I is the set

of intervals where a search was performed. This sum captures the entire history of the candidate’s
generation path. Figure 3 illustrates this process for a single step.

In summary, Order-Token Search performs a joint search over tokens and generation orders, guided
by the MDM’s own likelihood. By allowing candidates to explore denoising paths independently,
Order-Token Search achieves diverse and effective exploration of the joint output space. The
algorithm evaluates this exploration by scoring a candidate’s entire generation history through
incremental block-level likelihoods, providing a comprehensive measure of global coherence. This
approach efficiently leverages the iterative, parallel nature of MDMs: block diffusion minimizes
computational overhead, while the full-sequence prediction x0 supplies rich context for stable
likelihood estimation. Consequently, Order-Token Search enables effective pruning of low-
likelihood paths, steering the search toward high-quality, coherent outputs.

5 EXPERIMENTS

We conduct a series of experiments to evaluate the effectiveness of Order-Token Search in improving
the reasoning performance of MDMs. Our investigation centers on the following research questions:
(1) Does Order-Token Search yield consistent improvements in reasoning accuracy over competitive

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model performance on Mathematics and Planning Benchmarks. We report accuracy
across four benchmarks and multiple generation lengths for two base models (LLaDA and LLaDA-
1.5). Bolded values indicate the best performance. With the stronger AR- and majority-voting-
based baselines, no single method dominates every setting; however, Order-Token Search (Order-
Token Search) achieves the highest overall accuracy (All) for both base models and attains the
best dataset-level averages on MATH500 and Countdown, while remaining competitive with the
strongest baselines on GSM8K and Sudoku.

All GSM8K MATH500 Countdown Sudoku

Method / Seq Len All 64 128 256 512 Avg 64 128 256 512 Avg 64 128 256 512 Avg 64 128 256 512 Avg

LLaDA Low-confidence 31.1 44.3 68.7 76.7 78.2 67.0 21.2 26.0 32.4 36.2 29.0 25.8 20.7 19.5 16.0 20.5 8.5 11.7 6.5 5.5 8.1
Low-conf + MV 32.5 46.4 72.5 80.9 83.1 70.7 20.2 27.4 35.0 36.2 29.7 22.7 23.8 18.4 18.0 20.7 8.9 10.3 8.5 7.2 8.7
Random + MV 28.8 43.1 70.7 80.2 80.3 68.6 17.2 26.2 31.8 31.8 26.8 6.3 15.2 14.1 15.2 12.7 6.4 6.5 8.4 6.9 7.1
Order-Token Search 35.2 45.6 71.6 79.8 83.3 70.1 22.4 30.4 36.0 42.4 32.8 27.7 34.4 26.2 25.4 28.4 10.1 11.7 8.5 7.4 9.4
AR 28.8 34.0 62.7 75.7 76.9 62.3 18.8 23.4 27.4 34.4 26.0 10.6 12.9 13.3 14.1 12.7 14.7 15.9 13.6 12.0 14.1
AR + MV 31.0 41.0 69.1 81.7 86.4 69.6 17.4 23.0 32.2 39.9 28.1 10.2 13.3 11.3 13.7 12.1 14.4 15.9 12.1 14.3 14.2
AR + beam-search 33.3 40.3 70.4 81.1 82.9 68.7 22.2 26.6 35.4 39.8 31.0 18.4 23.1 21.5 21.9 21.2 13.2 17.7 10.6 8.2 12.4

LLaDA-1.5 Low-confidence 32.3 44.2 69.6 77.5 79.4 67.7 20.2 26.4 32.5 36.2 28.8 19.8 19.7 17.9 21.8 19.8 13.5 15.6 11.4 10.3 12.7
Low-conf + MV 35.0 49.1 74.4 84.1 84.2 73.0 21.2 30.0 34.8 39.3 31.3 20.7 23.8 20.3 25.4 22.5 13.7 14.9 10.8 12.6 13.0
Random + MV 30.2 47.7 74.8 81.2 82.8 71.6 22.4 26.2 31.0 30.4 27.5 5.5 16.4 9.0 14.5 11.4 11.1 11.3 9.3 9.2 10.2
Order-Token Search 36.7 48.4 74.5 81.7 84.0 72.2 24.4 30.8 37.4 42.4 33.8 27.7 31.3 23.8 29.3 28.0 13.8 16.1 11.2 9.9 12.8
AR 30.3 37.5 67.7 77.3 79.1 65.4 17.2 23.5 31.2 35.0 26.7 12.3 15.2 14.5 15.7 14.4 14.5 15.8 14.5 13.6 14.6
AR + MV 32.2 40.7 72.9 83.8 84.2 70.4 18.4 26.4 33.6 37.9 29.1 12.5 17.2 14.8 16.0 15.1 14.6 16.6 13.2 13.1 14.4
AR + beam-search 33.5 45.1 73.2 82.0 84.9 71.3 19.0 26.4 35.2 38.8 29.9 14.8 21.1 16.0 20.3 18.1 17.5 16.8 13.5 11.0 14.7

baselines—such as low-confidence remasking and majority-voting—across a variety of tasks? (2)
How does the likelihood estimation of Order-Token Search compare to a naive autoregressive-like
approximation? (3) How does performance scale with beam size K, and at what point do we observe
diminishing returns? Finally, we provide a case study where Order-Token Search successfully solves
a problem that other baseline methods fail to resolve.

5.1 EXPERIMENTAL SETUP

We compare Order-Token Search against several strong baselines: Low-confidence remasking, a
greedy decoding method adopted as an optimal base model configuration in Zhao et al. (2025).
Random remasking with majority voting, which generates a compute-equivalent set of diverse
samples via random remasking and selects answers using a consistency heuristic (Wang et al.,
2022). Low-confidence with majority voting, which combines the greedy decoding with the
consistency heuristic mentioned above. AR, which follows the left-to-righ autoregressive order
in generation. AR with majority voting and AR with beam search, which strengthen the AR
baseline with, respectively, a consistency heuristic and a likelihood-based search. Order Search,
a computationally expensive algorithm that uses AR-like likelihood to search for the optimal
generation order. Token Search, an equally expensive algorithm that uses AR-like likelihood to
search through the top-K likely tokens for each position.

Model and Tasks. Our primary testbed is LLaDA-8B-Instruct (Nie et al., 2025), a state-of-the-art
open-source diffusion language model. Since it has not undergone post-training with methods like
diffu-GRPO (Zhao et al., 2025), it offers a clean baseline for isolating the performance improvements
attributable to our inference-time algorithm. We additionally evaluate LLaDA-1.5 (Zhu et al., 2025),
an RL post-trained variant of LLaDA, to verify that our conclusions hold even after reinforcement-
learning-based post-training. For tasks, we evaluate on two mathematical reasoning and two
planning benchmarks. GSM8K (Cobbe et al., 2021) contains ∼1.32k grade school math problems
requiring multi-step reasoning. MATH500 (Lightman et al., 2023) is a challenging subset of
500 high-school competition-level problems from the MATH (Hendrycks et al., 2021) dataset.
Countdown (Pan et al., 2025) is a combinatorial arithmetic game where the goal is to reach a target
number using basic operations on a given set. Sudoku requires logical reasoning and constraint
satisfaction to solve a puzzle grid (Zhao et al., 2025).

5.2 ORDER-TOKEN SEARCH IMPROVES REASONING ACCURACY

Overall performance: Order-Token Search is the strongest decoding across benchmarks. As
shown in Table 1, after adding majority-voting and autoregressive baselines, no single decoding
method dominates every dataset or sequence length, but Order-Token Search remains the strongest
overall. For both LLaDA and LLaDA-1.5, it attains the highest All accuracy (35.2% vs. 33.3% for the
best baseline on LLaDA, and 36.7% vs. 35.0% on LLaDA-1.5) and the best dataset-level averages

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Accuracy of search algorithms with different likelihood
estimate. Bolded values indicate best performance. Order-Token
Search consistently outperforms both Order Search and Token Search
that adopt an AR-like likelihood estimate.

Decoding Method (Compute) GSM8K MATH500 Countdown Sudoku

Token Search (3x) 8.5 3.8 0.0 6.1
Order Search (3x) 79.2 35.8 15.2 5.9
Order-Token Search (1x) 79.8 36.0 26.2 8.5

Table 3: On the Countdown
task, Larger beam size re-
sults in higher accuracy.

Beam Size(K) Accuracy (%)
K=1 16.0
K=3 19.1
K=5 20.3
K=8 21.1

on MATH500 and Countdown. On GSM8K, diffusion-style decoding (Low-confidence, Low-conf
+ MV, Random + MV) and autoregressive decoding (AR, AR + MV, AR + beam-search) trade wins
with Order-Token Search at different sequence lengths while Order-Token Search remains close in
performance, whereas on Sudoku the AR variants are typically strongest, as discussed below.

Diffusion baselines: Order-Token Search improves over remasking and voting on hard
reasoning tasks. Within diffusion-style decoding, the greedy Low-confidence baseline already
provides solid performance, and adding majority voting reliably improves GSM8K averages for
both models. Random + MV, which replaces confidence-based remasking with random remasking,
can be competitive on GSM8K but substantially degrades the tasks that requires more structured
reasoning: its Countdown averages fall to 12.7% and 11.4% for LLaDA and LLaDA-1.5, compared
with 20.7% and 22.5% for Low-conf + MV. In contrast, Order-Token Search consistently improves
over these diffusion baselines on MATH500 and Countdown: its MATH500 averages reach 32.8%
and 33.8% (vs. 29.7% and 31.3% for Low-conf + MV), and its Countdown averages increase to
28.4% and 28.0%. For example, on Countdown with LLaDA at length 128, Order-Token Search
attains 34.4% accuracy, versus 23.8% for Low-conf + MV and 15.2% for Random + MV.

Autoregressive baselines: Order-Token Search outperforms AR on reasoning, while Sudoku
is a backbone failure case. Comparing to autoregressive decoders, AR, AR + MV, and AR
+ beam-search are strong baselines on GSM8K and Sudoku, with AR + MV and AR + beam-
search often achieving the best GSM8K scores at longer sequence lengths and the best Sudoku
performance for both backbones. Nevertheless, Order-Token Search still provides clear advantages
on the harder reasoning tasks: averaging the dataset-level averages over both LLaDA variants, its
GSM8K/MATH500/Countdown scores are 71.2%/33.3%/28.2%, compared to 70.0%/28.6%/13.6%
for AR + MV and 70.0%/30.5%/19.7% for AR + beam-search (a block size=1 special case
of our search). Finally, all Sudoku performance remain far below the 25% accuracy of uniform
guessing on a 4 × 4 grid (e.g., Order-Token Search at 9.4%/12.8% and AR + beam-search at
12.4%/14.7%), so we view Sudoku as a failure case of this backbone rather than evidence against
the value of searching jointly over orders and tokens.

5.3 THE NECESSITY OF DEDICATED LIKELIHOOD ESTIMATION FOR MDMS

The efficacy of any search-based decoding algorithm is contingent upon its capacity to accurately
estimate the likelihood of candidate sequences for effective pruning. As established in Section
4.2, employing a naive or autoregressive (AR)-style likelihood estimation is suboptimal for MDMs,
which inherently model tokens at multiple positions in parallel. Our baseline search algorithms,
Order Search and Token Search, utilize an AR-style likelihood estimation by computing the logits of
revealed tokens in a forward pass. The inferior performance of these baselines in Table 2, compared
to Order-Token Search, provides initial evidence that this scoring method is misaligned with the
MDM paradigm.

On the Countdown task, Order-Token Search surpasses Order Search by 11%, while Token Search
degrades the base model’s performance to 0%. This result substantiates that performing a naive
beam search over token values, guided by a sequence of greedily-decided positions (selected via
low-confidence remasking), is ineffective for MDMs. Furthermore, searching the generation orders
in isolation is insufficient, as Order Search requires triple the computational cost to approach the
performance of Order-Token Search. The superior and efficient performance of Order-Token Search
is directly attributable to its dedicated likelihood estimation and its joint exploration of the generation
order and token space.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We need to use an

arithmetic operation to

combine the numbers 87,

28, and 35 to get the

target 94.
We need to use an
arithmetic operation
to combine the numbers
87, 28, and 35 to get
the target 94. Let's
start by considering
the operations and
their combinations.

1. Subtract 28 from 87
to get 59.
2. Add 35 to 59 to get
94.

So, the expression is:
87 - 28 + 35 = 94.

Final Answer

... Let's start by
considering the operations
and their combinations.

1. Subtract 28 from 87 to
get 59.

... Let's start by
considering the largest
operations first. We can
add 87 and 28 to get 115,
which is close to

... Let's try the following

steps:

1. Start with 87.

2. Add 28 to get 115.

✔

Correct
reasoning

✘
Incorrect
reasoning,

pruned

Incorrect
reasoning,
but kept

✘

... Let's try the following
steps:
1. Start with 87.
2. Add 28 to get 115.
3. Subtract 35 to get 90.

However, we need to reach 94.
Let's try another approach.

... Let's start by considering
the operations and their
combinations.

1. Subtract 28 from 87 to get
59.
2. Add 35 to 59 to get 94.

So, the expression is:
87 - 28 +

✘

Incorrect first
attempt

✔
Correct

reasoning

... Let's start by considering

the operations and their

combinations.

1. Subtract 28 from 87 to get
59.
2. Add 35 to 59 to get 94.

So,the expression is:
\(87 - 28 +

✘

Correct reasoning,
but extra

characters

1st Block Generation

2nd Block Generation

Figure 4: Case study of search trajectories for a sampled Countdown problem. Each box depicts a
independently generated candidate sequence with arrows denoting the parent-child relationship in
block diffusion. Order-Token Search evaluates each candidate and decides whether to move forward
with its prefix sequence. Its likelihood criterion successfully pruned out inferior candidates that
contains incorrect reasoning or syntactical errors, ultimately retaining only high-scoring candidates
that lead to the correct solution.

5.4 SCALING WITH BEAM SIZE

We evaluate the scalability of Order-Token Search by analyzing the trade-off between reasoning
accuracy and computational cost as the beam size K increases. Results on the Countdown task
(Table 3) show that performance improves consistently with beam size, rising from 16.0% at K = 1
(equivalent to greedy decoding) to 21.1% at K = 8. The marked gain from K = 1 to K = 3
(+3.1%) confirms that even modest beam expansion helps escape suboptimal greedy paths.

Beyond K = 3, however, we observe diminishing returns: accuracy increases by only 1.2% from
K = 3 to K = 5, and 0.8% from K = 5 to K = 8. These results indicate that while larger beams
enable more thorough exploration and higher accuracy, the marginal improvement decreases as K
grows. This establishes a practical guideline for setting K to maximize accuracy within a given
computational budget.

5.5 CASE STUDY: A SEARCH INSTANCE

Figure 4 provides a qualitative analysis of Order-Token Search’s search trajectory on a Countdown
task requiring the combination of numbers (87, 28, 35) to reach a target value of 94. This particular
problem exemplifies a case where the low-confidence remasking baseline fails, as it greedily
commits to the locally plausible but ultimately incorrect path beginning with 87 + 28 = 115.
However, this path cannot yield the target 94 using the remaining number 35, since 115± 35 results
in values (80 or 150) distant from the solution.

Order-Token Search overcomes this limitation by maintaining multiple candidate paths simulta-
neously. While the addition-based path is explored, the algorithm also evaluates the alternative
87−28 = 59 trajectory. The dedicated likelihood estimation correctly identifies the subtraction path
as superior when 59 + 35 precisely yields the target 94. This case demonstrates how Order-Token
Search’s joint exploration of generation orders and token space enables escape from local optima
that trap greedy methods, systematically identifying globally correct solutions through parallel
hypothesis testing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 RELATED WORK

Diffusion Language Models. Initial developments in discrete diffusion models were established
by D3PM (Austin et al., 2021) and further progressed using masked token approaches (Sahoo
et al., 2024; Nie et al., 2024). Efficient versions such as Plaid (Gulrajani & Hashimoto, 2023)
and SEDD (Lou et al., 2024) achieve performance comparable to GPT-2 (Radford et al., 2019), but
their scalability still falls short of autoregressive models. The most recent scaling efforts include
Dream (Ye et al., 2025), which adapts pre-trained autoregressive models into diffusion models, and
LLaDA (Nie et al., 2025), which trains powerful diffusion language models from scratch.

Test-Time Strategies. A primary method to enhance diffusion models is to increase test-time
compute, often by using more denoising steps. Recent work has shown that expanding the inference-
time sample space can guide generation toward high-reward outputs (Singhal et al., 2025; Kim et al.,
2025b), with techniques like re-masking being introduced to scale the denoising process for masked
diffusion models specifically (Wang et al., 2025). In the broader context of language models, search
algorithms like beam search, speculative decoding (Leviathan et al., 2023; Xia et al., 2023), and
contrastive decoding (Li et al., 2022) have been developed to improve decoding beyond greedy
selection. However, these algorithms are tailored for the autoregressive paradigm, where the search
space is confined to token values given a fixed generation order.

Our work addresses this limitation. The iterative denoising of MDMs creates a joint search space
over both token values and their generation order, which is inaccessible to autoregressive methods.
Our algorithm, Order-Token Search, is designed for this new paradigm, leveraging parallel decoding
to explore multiple generation paths and select outputs based on overall likelihood.

7 CONCLUSION

In this work, we revisited decoding for Diffusion Language Models through the lens of reasoning.
We modeled each problem as inducing a graph of logical dependencies, with any DLM decoding
trace corresponding to a particular trajectory through this graph. Our analysis of pass@k revealed
that standard low-confidence remasking effectively collapses the rich space of possible trajectories
to a narrow set of greedy paths: it improves single-sample accuracy but restricts exploration of
alternative generation orders that would solve more problems, whereas more diverse remasking
strategies broaden this space at the expense of pass@1.

To reconcile this trade-off, we introduced Order-Token Search, a decoding algorithm that performs
structured search in the joint space of generation orders and token values while leveraging the
parallel denoising nature of MDMs. By maintaining multiple candidate hypotheses and guiding the
search with a novel, block-based likelihood estimation, Order-Token Search discovers trajectories
whose generation orders better align with the underlying dependency graph. Experiments on
mathematical reasoning and planning benchmarks show that this inference-time search yields
systematic gains in accuracy (pass@1), matching or surpassing the improvements of expensive
post-training methods such as diffu-GRPO. These findings highlight that decoding-time search over
orders is not merely a heuristic refinement, but a central ingredient for unlocking the reasoning
capabilities latent in DLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. All experiments are conducted using publicly
available benchmark datasets (GSM8K, MATH500, Countdown, and Sudoku) and pretrained
models (LLaDA-8B-Instruct, LLaDA-1.5), with our contributions centered on methodological and
algorithmic advancements, in particular the development of the Order-Token Search method which
explores the joint space of generation order and token selection. The study does not involve human
subjects, personal data, or other sensitive information, and no applications with a high likelihood
of causing harm are considered. We have carefully examined potential risks and broader societal
impacts of this research and did not identify significant ethical concerns.

REPRODUCIBILITY

We have taken deliberate steps to ensure that our work can be reliably reproduced. Detailed
descriptions of the datasets and model employed are provided in Section 5.1, while Appendix
A.4 outlines the inference setups and hyperparameter configurations. The details of Order-
Token Search are documented in Appendix A.1. Upon acceptance, we will make our algorithm
implementation publicly available to support reproducibility and enable subsequent research.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Subham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between
autoregressive and diffusion language models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://arxiv.org/abs/2503.09573.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 17981–17993. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/958c530554f78bcd8e97125b70e6973d-Paper.pdf.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
Advances in Neural Information Processing Systems, 36:16693–16715, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M. Kakade, and Sitan Chen. Train for the
worst, plan for the best: Understanding token ordering in masked diffusions. In Forty-second
International Conference on Machine Learning, 2025a. URL https://openreview.net/
forum?id=DjJmre5IkP.

Jaihoon Kim, Taehoon Yoon, Jisung Hwang, and Minhyuk Sung. Inference-time scaling for flow
models via stochastic generation and rollover budget forcing. arXiv preprint arXiv:2503.19385,
2025b.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

11

https://arxiv.org/abs/2503.09573
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/958c530554f78bcd8e97125b70e6973d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=DjJmre5IkP
https://openreview.net/forum?id=DjJmre5IkP

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sihang Li, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Let invariant rationale
discovery inspire graph contrastive learning. In ICML, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the
ratios of the data distribution. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 32819–32848. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.
press/v235/lou24a.html.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marro-
quin, Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and ef-
fective masked diffusion language models. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 130136–130184. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/eb0b13cc515724ab8015bc978fdde0ad-Paper-Conference.pdf.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. In Advances in Neural Information Processing
Systems, 2024.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models, 2025. URL https://arxiv.org/abs/2501.06848.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=PxTIG12RRHS.

Guanghan Wang, Yair Schiff, Subham Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

12

https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.mlr.press/v235/lou24a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/eb0b13cc515724ab8015bc978fdde0ad-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/eb0b13cc515724ab8015bc978fdde0ad-Paper-Conference.pdf
https://arxiv.org/abs/2501.06848
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu Wei, and Zhifang Sui. Speculative decoding:
Exploiting speculative execution for accelerating seq2seq generation. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 3909–3925, Singapore, December 2023. Association for Computational Linguistics.
URL https://aclanthology.org/2023.findings-emnlp.257.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? In
Advances in Neural Information Processing Systems (NeurIPS), 2025. To appear.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

13

https://aclanthology.org/2023.findings-emnlp.257
https://hkunlp.github.io/blog/2025/dream

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

USE OF LLMS

Large language models (LLMs) were used solely to assist with grammar refinement and writing
clarity during the manuscript preparation stage. All technical ideas, experimental designs, model
implementations, and analyses were conceived and executed by the authors without reliance on
LLMs. The use of LLMs did not influence research outcomes, data interpretation, or reported results.
We carefully reviewed and edited all text to ensure accuracy, originality, and compliance with ethical
and academic standards.

A APPENDIX

A.1 ORDER-TOKEN SEARCH ALGORITHM

To make our proposed decoding strategy more concrete, we present the pseudocode of our Order-
Token Search, which illustrates how partially masked sequences are expanded, scored and pruned,
exploring both the token space and order space.

Algorithm 1 Order-Token Search for Diffusion Language Models
1: Input: Prompt p, model pθ, beam size K, generation length L, total steps S, search interval N ,

temperature τ , number of blocks b.
2: Initialize beam set B ← {(xi, s[b], score)}, where xi = [p;MASKL], s[0 : b − 1] = 0,

score = 0 ▷ K identical beams
3: for step s← 1 to S do
4: l← pθ(B.x) ▷ Get logits for all beams, shape: (K,L, V)
5: if s mod N == 0 then ▷ Search step
6: Bcandidates ← ∅
7: for (x, s, score) ∈ B do
8: block idx← get current block index(x) ▷ Compatible with semi-AR generation
9: for i← 1 to K do ▷ Expand each beam into K candidates

10: l̃← add gumbel noise(lx, τ) ▷ Perturb logits for exploration
11: x0 ← argmax(̃l, dim = −1) ▷ Sample a candidate completion
12: xcandidate ← transfer tokens(x,x0, lx) ▷ Only apply L

S predicted tokens
13: xfull seq ← transfer all tokens(x,x0) ▷ Apply all predicted tokens
14: xmasked ← mask tokens(xfull seq, block idx) ▷ Mask the current block
15: block score← score block(xmasked, block idx) ▷ Score the sequence
16: s[block idx] = block score
17: score = sum(s[0 :block idx])
18: Bcandidates ← Bcandidates ∪ {(xcandidate, s, score)}
19: end for
20: end for
21: B← topK(Bcandidates) ▷ Prune to the K best candidates
22: else ▷ Standard sampling step
23: for (x, ,) ∈ B do ▷ Update each beam independently
24: l̃← add gumbel noise(lx, τ)
25: x0 ← argmax(̃l, dim = −1)
26: x← transfer tokens(x,x0, lx) ▷ No scoring/pruning
27: end for
28: end if
29: end for
30: Return: The sequence from B with the highest final score.

A.2 IS THE AUTOREGRESSIVE ORDER FUNDAMENTALLY SUPERIOR?

The parallel between random remasking and a fixed AR order in Figure 2 raises a natural hypothesis:
perhaps the samples that lead to the high pass@256 for random remasking are those that, by

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure S1: Correlation between generation order and accuracy. The x-axis shows how ”chaotic” a
generated sample is measured in the Hamming distance of its decoding order from a strict left-to-
right (AR) order. The y-axis is the average accuracy of the generated samples with the same chaotic
value for a problem. The size of the point represents the number of samples. We find no correlation,
indicating that decoding in an AR-like order is not a predictor of success.

chance, follow an autoregressive-like order. If this were true, it would imply that the AR order
is a fundamentally superior decoding path for the model.

We test this hypothesis directly with a large-scale correlation study. For a given dataset, we generate
256 samples for each problem using random remasking. For each generated sample, we compute
two metrics:

Accuracy: A binary indicator of whether the final solution is correct.

AR Similarity: The Hamming distance between the sequence of positions unmasked in this sample
and a canonical left-to-right (AR) order. A low Hamming distance indicates a generation order that
is highly similar to AR.

If the hypothesis were correct, we would observe a strong negative correlation between the Hamming
distance (difference from AR order) and accuracy; samples that decode in an AR-like order would
be more likely to be correct.

Figure S1 plots these results, aggregating data across all samples of the same AR similarity for each
problem in a dataset. The result is clear: we find no evidence of a correlation. The coefficient of
the fitted lines for each dataset falls under the the order of magnitude of 10−3. This result holds
consistently across all datasets and models we tested.

This null result is profound. It indicates that the autoregressive order is not a uniquely privileged
path to a correct solution. Instead, the DLM has learned a rich, multi-faceted solution space where
a correct answer can be reached through a vast plurality of different reasoning trajectories. The high
pass@k achieved by random remasking is not due to it occasionally stumbling upon an AR order;
it is due to the model’s inherent ability to solve problems correctly via many diverse sequences of
thought. The AR order’s high pass@k is simply one manifestation of this general capability, not its
source.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 COMPARISON STUDY OF GREEDY DECODING AND ORDER-TOKEN SEARCH UNDER
IDENTICAL TEMPERATURE

To further validate the effectiveness of our approach, we compare greedy decoding with Order-
Token Search under identical temperature settings. This controlled setup rules out confounding
factors and highlights the contribution of the search strategy itself. As reported in Table S1, Order-
Token Search delivers a remarkable performance boost on the Countdown dataset, confirming that
the method provides tangible gains beyond simple greedy decoding.

Table S1: Countdown task performance under different configurations.
Seq Len(L), Diffusion Steps(S), Beam Size(K), Temperature(T) Accuracy (%)

L=128,S=64,K=1,T=0.0 20.7
L=128,S=64,K=1,T=0.4 22.7
L=128,S=64,K=5,T=0.4 34.4

A.4 ADDITIONAL EXPERIMENTAL DETAILS

We provide further details on the experimental settings that complement the main results.

A.4.1 BEAM SEARCH SETTINGS

Our Order-Token Search results (as shown in Table 1 and Table 2 is configured with beam sizes
of K ∈ {3, 5, 8} and block size of 32 along with a small search for the Gumbel noise temperature
τ ∈ [0.2, 1.0], keeping in mind its role in balancing diversity and stability. As a general principle,
a higher temperature introduces more diversity among the beams, but it can also risk destabilizing
the token selection and decoding order. The settings used for our main experiments were chosen to
maintain a reasonable balance between these factors.

In the main paper, we adopt the low-confidence remasking strategy together with the setting
gen len = 2 × diffusion steps;block size = 32 for our baseline experiments. This
configuration follows prior work (Zhao et al., 2025) and provides what can be regarded as a
form of optimality: while it does not guarantee strict global optimality, it has been shown to
yield a reasonably effective and competitive baseline under low-confidence conditions. Random-
remasking majority-voting and Order-Token Search both use the same configuration. And we
change block size = gen len = 1 to simulate AR decoding on AR, AR majority-voting
and AR Beam Search.

For the Order Search and Token Search experiments reported in Table 2, we use the configuration
with K = 3 and τ = 0.0. For Table 3, we adopt a setting of gen len = 512 and τ = 0.7. The two
sets of Countdown accuracies are obtained under different configurations and are serving different
purposes. In the main results table, we report benchmark-level performance: we examine different
generation lengths and report with the optimal temperature. By contrast, Table 3 is a controlled
ablation where we fix the generation length to 512 and use a single temperature of τ = 0.7, then vary
only the beam size K to study how performance scales with K.

A.4.2 PASS@K EVALUATION SETTINGS

For pass@k evaluation, we adopt the same configuration as in Yue et al. (2025). We set the
temperature to 0.8, which provides a balance between token diversity and plausibility. We use
gen len = block size = 256, since the models we adopt are trained to generate sequences in
a fully flexible order and we employ the same setup at inference time. For autoregressive decoding,
we implement it via block diffusion with block size = 1.

A.4.3 COMPUTATIONAL COST ANALYSIS

Low-temp Order Search generally search only on the decoding order of sequences based on the
confidence of each position. This algorithm is designed based on the intuition that decoding order
might change the ultimate accuracy. Therefore, at every step, we keep K positions that have the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

highest probability from model logits independently unmasked. We then perform a look-ahead at
the next step to have K2 candidate sequences each with one more position unmasked. We calculate
the confidence score and keep the top-K candidates. In the experiment, we adopt the configuration
of K = 3, T = 0.0,gen len = 256 and the results also witness promising improvement.

However, the algorithm is computationally expensive, for it requires K2×gen len forward passes
in total. With K = 3 and gen len = 256, this amounts to 32 × 256 = 2304 forward evaluations.
In contrast, our Order-Token Search with K = 5 requires only (128 × 5) +

(
128
32

)
× 25 = 740

forward passes, where 128/32 corresponds to the number of blocks and each block update involves
5× 5 expansions.

Low-temp Token Search is closely related to Order Search, but instead of expanding K positions
at each step, it expands the top-K most confident tokens for a single position. Starting from
K sequences, this again produces K2 candidate sequences per step, leading to the same overall
complexity of K2 × gen len forward passes. For instance, with K = 3 and gen len = 256,
Token Search also requires 32×256 = 2304 forward evaluations. Although the search space differs
(token values vs. decoding order), the computational burden remains quadratic in K, making it
substantially more expensive than our Order-Token Search, which scales only linearly with K.

A.5 COMPUTATION COMPLEXITY

To manage computational complexity, we deliberately structure the search using block diffusion
(Arriola et al., 2025; Nie et al., 2025). This avoids the prohibitive cost of a naive search at every
step, which would incur a complexity of O(S ·K2 · L), where S is the number of diffusion steps.
The overhead of our approach is far lower. Let L be the generation length, K the beam size, and
B the number of blocks. The total Number of Function Evaluations (NFE) for OTS is the sum of
K independent denoising trajectories (costing S ·K · L) and the likelihood evaluations for search,
which are performed B times at block boundaries (costing B ·K2 · L).

Thus, the total NFE is NFE(OTS) ≈ S ·K ·L+B ·K2 ·L. In our main experimental setting (where
S = L/2 and B = L/32), with a typical beam size K ≈ 4, this simplifies to NFE(OTS) ≈ (L2 ·
K)/2+(K2·L2)/32 ≈ 2.5·L2. This is critically important, as it is directly comparable to the NFE of
a standard majority-voting baseline with 5 samples: NFE(MV-5) = S ·5·L = (L/2)·5·L = 2.5·L2.
Therefore, OTS provides a structured joint search over the (order× token) space at roughly the same
computational cost as a widely-used unstructured sampling baseline. After processing all blocks,
the single best sequence is selected from the final K candidates based on the highest likelihood.
To further validate our analysis, we measured wall-clock time on the Countdown dataset, averaging
over all problems and comparing low-confidence remasking, naive majority voting (5 samples), and
OTS with 4 beams. As shown in Table S2, our optimized implementation of OTS runs faster than
the majority-voting baseline.

Table S2: Wall-clock time (in seconds) comparison on the Countdown dataset, averaged over
all problems. This demonstrates that OTS (4 beams) is roughly 2-3x slower than a single low-
confidence run, but about 2x faster than majority voting with 5 samples.

Method / Generation length 64 128 256 512

Low-confidence remasking 1.55 3.19 6.60 14.52
+ Majority-voting (5 samples) 7.73 15.94 32.99 72.59
Order-Token Search (4 beams) 3.52 7.46 16.64 40.41

A.6 ORDER-TOKEN SEARCH SCALING WITH NFE

In this section, we analyze how OTS scales with test-time compute on the Countdown benchmark,
comparing it to majority-voting strategies under roughly matched FLOP budgets. Figure S2 plots
accuracy as a function of NFE by varying the beam size for OTS and the number of samples for
AR+MV and Random+MV. At the matched-compute frontier, OTS with beam size 6 achieves 29.3%
accuracy, while AR+MV and Random+MV peak at 19.9% and 18.4%, respectively. Moreover, OTS
continues to gain accuracy as beams are added (from 16.0% at beam 1 to 29.3% at beam 6), whereas
majority-voting baselines only exhibit marginal returns as more samples are drawn. This dominance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure S2: Countdown accuracy versus test-time compute (NFE) for OTS and majority-voting
baselines. For each method, we vary beam size (OTS) or the number of samples (AR+MV,
Random+MV), and choose the largest configuration so that all right-most points have roughly
matched NFE. At this matched-compute point, OTS with beam size 6 attains 29.3% accuracy,
compared to 19.9% for AR+MV and 18.4% for Random+MV, indicating more efficient use of
additional FLOPs than simply drawing more independent diffusion samples.

in the accuracy–NFE plane shows that jointly searching over orders and tokens turns extra compute
into substantially larger performance gains than standard multi-sample diffusion decoding.

A.7 SENSITIVITY OF ORDER-TOKEN SEARCH TO BLOCK SIZE

Our scoring function s(xt;xs) is explicitly designed to be stable across a range of block sizes.
Conceptually, the block size controls a bias–variance trade-off in likelihood estimation. When
the block is larger, the model must jointly predict more tokens at once, making each scoring step
harder but fewer in number. When the block is smaller, each prediction is easier and closer to the
MDM training distribution—where the model typically denoises a limited number of masks at a
time—but search is invoked more frequently. In all cases, the score of a candidate is the sum of
these incremental block-level log-likelihoods over its full generation path (Eq. 2), so changing the
block size simply changes how finely this path-wise likelihood is decomposed, not the underlying
distribution being estimated. We therefore view the block size primarily as an efficiency and
granularity knob rather than a fragile hyperparameter for the scoring rule itself.

In practice, we find that Order-Token Search is not highly sensitive to the exact block size within
a reasonable range. On MATH500 with generation length 128, sweeping the block size from 1 to
128 yields accuracies between 23.0% and 28.0%. Across block sizes 2–64, performance stays in a
narrow band around 26.5% (approximately 26.5±1.5), and all such settings significantly outperform
the degenerate cases of block size 1 and 128, where Order-Token Search either loses the order space
entirely (block size 1) or forces the model to effectively denoise the entire sequence in one shot
(block size 128). This empirical plateau for intermediate block sizes matches the bias–variance
trade-off discussed above and supports the view that block size primarily controls the efficiency and
granularity of search rather than acting as a delicate tuning parameter. The full sweep is visualized
in Figure S3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure S3: Effect of block size on OTS accuracy on MATH500 with generation length 128.
Accuracy remains stable for block sizes 2–64, while the degenerate settings of block size 1 and 128
significantly underperform, confirming that block size mainly acts as an efficiency and granularity
knob.

19

