

000 001 002 003 004 005 ART-VITON: MEASUREMENT-GUIDED LATENT DIF- 006 FUSION FOR ARTIFACT-FREE VIRTUAL TRY-ON 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028
029
030
031
032 Virtual try-on (VITON) aims to generate realistic images of a person wearing a
033 target garment, requiring precise garment alignment in try-on regions and faithful
034 preservation of identity and background in non-try-on regions. While latent
035 diffusion models (LDMs) have advanced alignment and detail synthesis, preserving
036 non-try-on regions remains challenging. A common post-hoc strategy directly
037 replaces these regions with original content, but abrupt transitions often produce
038 boundary artifacts. To overcome this, we reformulate VITON as a linear inverse
039 problem and adopt trajectory-aligned solvers that progressively enforce measure-
040 ment consistency, reducing abrupt changes in non-try-on regions. However, ex-
041 isting solvers still suffer from semantic drift during generation, leading to arti-
042 facts. We propose ART-VITON, a measurement-guided diffusion framework that
043 ensures measurement adherence while maintaining artifact-free synthesis. Our
044 method integrates residual prior-based initialization to mitigate training-inference
045 mismatch and artifact-free measurement-guided sampling that combines data con-
046 sistency, frequency-level correction, and periodic standard denoising. Experi-
047 ments on VITON-HD, DressCode, and SHHQ-1.0 demonstrate that ART-VITON
048 effectively preserves identity and background, eliminates boundary artifacts, and
049 consistently improves visual fidelity and robustness over state-of-the-art baselines.
050
051

1 INTRODUCTION

052
053
054 Virtual try-on (VITON) aims to synthesize photorealistic images of a person wearing a desired gar-
055 ment, enabling personalized and immersive online shopping experiences. Given a person image
056 and clothing item, the system must align the garment to the body (try-on regions) while preserving
057 identity (e.g., face, hair) and background (non-try-on regions). Despite progress in generative mod-
058 els, this task remains challenging due to two requirements: precise garment alignment and faithful
059 preservation of non-try-on regions. Various approaches have been proposed to address these chal-
060 lenges (Han et al., 2018; Yu et al., 2019; Yang et al., 2020; Ge et al., 2021; Choi et al., 2021b; Xie
061 et al., 2023; Morelli et al., 2023; Gou et al., 2023; Wang et al., 2024; Kim et al., 2024a; Choi et al.,
062 2024), yet they have primarily focused on garment alignment, leaving the preservation of non-try-on
063 regions largely underexplored.

064 Early VITON methods (Han et al., 2018; Yu et al., 2019; Yang et al., 2020; Ge et al., 2021) relied
065 on GAN-based two-stage pipelines with garment warping and synthesis networks, which improved
066 alignment but suffered from sensitivity to warping accuracy, instability, and poor generalization due
067 to limited garment-person diversity in existing datasets (Han et al., 2018; Choi et al., 2021b; Morelli
068 et al., 2022). Recent diffusion models (DMs) (Ramesh et al., 2021; Rombach et al., 2022; Podell
069 et al., 2024) address these issues with stable training, broader coverage, and flexible conditioning,
070 achieving higher fidelity and stability. Two-stage approaches (Morelli et al., 2023; Wan et al., 2024)
071 still rely on garment warping, while one-stage approaches (Kim et al., 2024a; Choi et al., 2024) eliminate
072 warping by conditioning on garment features (via LoRA Hu et al. (2022), DreamBooth Ruiz
073 et al. (2023)) or structural signals (via ControlNet Zhang et al. (2023), IP-Adapter Ye et al. (2023)).
074 These advances largely resolve alignment challenges and enable more reliable, detailed synthesis.

075 Despite significant progress in garment alignment, preserving non-try-on regions has been largely
076 overlooked. Even when models are directly conditioned on such regions, they fail to fully preserve
077 non-try-on areas, resulting in distorted facial features, altered backgrounds, and reduced realism

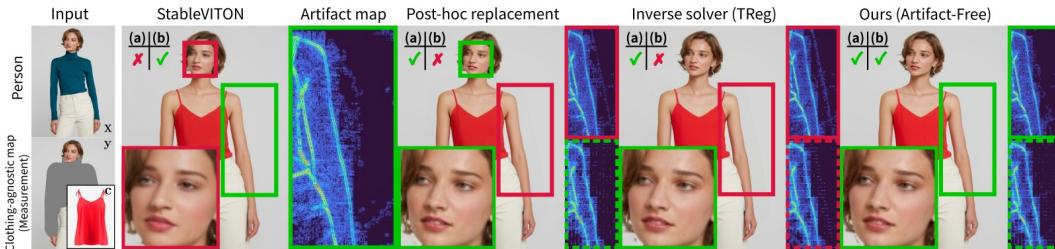


Figure 1: **Comparison of boundary artifacts across methods.** We evaluate two criteria: (a) artifact-free outputs and (b) adherence to measurements. StableVITON achieves (a) but fails in (b). Post-hoc replacement enforces (b) but introduces seams, breaking (a). Inverse solvers maintain (b) but suffer semantic drift, degrading (a) over time. ART-VITON satisfies both (a) and (b). **Green:** success(measurement adherence or artifact-free); **red:** violations or artifacts. Solid/Dashed boxes show final/intermediate ($t=835$) outputs.

(see Fig. 1, second column; also Appendix Fig. 7). A common strategy (Yang et al., 2020; Xie et al., 2023; Gou et al., 2023) for preserving identity is based on **post-hoc replacement**, where the generated output is projected onto predefined masks or clothing-agnostic maps (Fig. 1, leftmost column) so that non-try-on regions are directly overwritten with original pixels. In this work, we refer to these masks as **measurements**. While intuitive, this approach often introduces **boundary artifacts** at region interfaces, manifesting as color mismatches, lighting inconsistencies, or broken textures (Fig. 1). The root cause is a spatial discontinuity: the generative model evolves freely during inference, unaware of the hard replacement that will occur afterward, resulting in abrupt transition once replacement is applied.

To address the issue of images being generated without completely reflecting measurements, we formulate VITON as a linear inverse problem and integrate existing trajectory-aligned inverse solvers (Chung et al., 2024; Kim et al., 2025) into the latent diffusion model (LDM) sampling process. Compared to post-hoc methods, these solvers progressively guide the latent denoising trajectory, better adhering to measurements and enabling smooth transitions instead of abrupt region replacements. Nevertheless, these solvers can induce semantic inconsistencies between try-on and non-try-on regions during generation, potentially accumulating into boundary artifacts (Fig. 1, fourth column; also Appendix Fig. 8). This limitation highlights the need for a more robust solver that can maintain semantic coherence while satisfying measurements throughout the generation process.

To mitigate semantic drift and enhance visual quality, we propose ART-VITON, a novel latent diffusion inverse solver that enforces measurement consistency during generation, yielding artifact-free synthesis. Our solver incorporates three key components: (i) **data consistency**, preserving semantic coherence and reducing drift, (ii) **frequency-level correction**, restoring high-frequency details lost during pixel-to-latent transition, and (iii) **periodic standard denoising**, leveraging prior knowledge to provide temporal alignment across regions. To avoid instability from direct trajectory manipulation and mitigate training-inference mismatch Lin et al. (2024), a **residual prior** is injected at initialization to maintain both stability and generative diversity. Operating externally without modifying the LDM, our framework is model-agnostic and applicable to diverse VITON pipelines (Fig. 2). Consequently, ART-VITON preserves non-try-on regions, improves garment alignment, eliminates boundary artifacts (Fig. 1), and demonstrates improved results on three benchmark VITON datasets.

2 RELATED WORK

2.1 IMAGE-BASED VITON METHODS

Early VITON approaches primarily relied on GAN-based two-stage pipelines, where garments were warped to align with target poses and then integrated into the person image. Pioneering works (Han et al., 2018; Yang et al., 2020) used geometric matching or thin-plate spline transformations, while later methods, including VITON-HD Choi et al. (2021b), HR-VITON Lee et al. (2022), and GP-VTON Xie et al. (2023), extended this framework to high-resolution settings, improving detail preservation. Despite progress, these pipelines remained highly sensitive to warping errors, un-

stable during training, and limited in generalization, while still depending on post-hoc replacement for preserving identity, which introduced boundary artifacts.

Latent diffusion models (LDMs) brought more stable training, better garment fidelity, and controllable synthesis. Two-stage pipelines (e.g., LaDI-VTON Morelli et al. (2023), DCI-VTON Gou et al. (2023), FLDM-VTON Wang et al. (2024), GarDiff Wan et al. (2024)) retain warping modules before diffusion, while one-stage methods bypass warping by encoding garment semantics (e.g., LoRA Hu et al. (2022), Textual Inversion Gal et al. (2023)) or injecting spatial cues through adapters (Zhang et al., 2023; Ye et al., 2023; Hu, 2024; Kingma & Welling, 2022). StableVITON Kim et al. (2024a) strengthens garment–human interaction via a zero cross-attention block in ControlNet Zhang et al. (2023), while Boow-VTON Zhang et al. (2025b) encodes garments with a Parallel U-Net Hu (2024) and integrates them into self-attention to enhance structural representation. DreamPaint Seyfioglu et al. (2023) binds garments to custom tokens using DreamBooth Ruiz et al. (2023). Yet, even with these advances, most LDM-based approaches still rely on post-hoc replacement for non-try-on regions, leaving spatial discontinuity at boundaries unresolved.

2.2 DIFFUSION INVERSE SOLVERS

Diffusion inverse solvers aim to integrate measurement constraints into the denoising process. Instead of conditioning on measurements alone, inverse solvers modify the sampling trajectory to align outputs with observations. Early works such as RePaint Lugmayr et al. (2022b) and ILVR Choi et al. (2021a) applied hard projection strategies on pixel-space, while Diffusion Posterior Sampling (DPS) Chung et al. (2023) adjusted sampling trajectories with measurement gradients and Measurement-Constrained Gradient (MCG) Chung et al. (2022) enforced projection onto measurement subspaces. Although these methods improve measurement adherence, they often distort denoising trajectories at high noise levels and accumulate semantic mismatches, producing boundary artifacts. Recent extensions to LDMs attempt to mitigate this. PSLD Rout et al. (2023) extends DPS into the latent domain, Resample Song et al. (2024) reintroduces noise after replacement in an MCG-manner, and TReg Kim et al. (2025) or DreamSampler Kim et al. (2024b) alternate between pixel- and latent-space refinements for stability. While effective in reducing abrupt post-hoc inconsistencies when inverse solvers are applied to VITON, these approaches still fail to maintain smooth semantic coherence between try-on and non-try-on regions, motivating the need for a solver tailored to artifact-free try-on synthesis.

3 PRELIMINARIES

3.1 LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) Rombach et al. (2022) perform the diffusion process in a compressed latent space, improving efficiency while preserving semantics. An input image \mathbf{x} is encoded into a latent code $\mathbf{z}_0 = \mathcal{E}(\mathbf{x})$ via a pre-trained encoder \mathcal{E} , which is progressively perturbed into \mathbf{z}_t at timestep t by adding Gaussian noise. At each step, a denoising network $\epsilon_\theta(\mathbf{z}_t, t, \mathbf{c})$ predicts the noise added, conditioned on auxiliary inputs \mathbf{c} (e.g., garments, measurements, or text). Using Tweedie’s formula, the posterior latent estimate is:

$$\hat{\mathbf{z}}_0^{(t)} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{z}_t - \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon_\theta(\mathbf{z}_t, t, \mathbf{c})), \quad (1)$$

where $\bar{\alpha}_t$ is the cumulative noise scale. Based on this, the DDIM Lugmayr et al. (2022a) sampler provides a deterministic update:

$$\mathbf{z}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \cdot \hat{\mathbf{z}}_0^{(t)} + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \epsilon_\theta(\mathbf{z}_t, t, \mathbf{c}). \quad (2)$$

These iterative refinements produce high-quality samples while allowing for controllable conditioning.

3.2 LINEAR INVERSE PROBLEMS

Many imaging tasks, such as inpainting, super-resolution, and deblurring, can be cast as linear inverse problems, where the observed measurement $\mathbf{y} \in \mathbb{R}^m$ is a partial or degraded version of the

162 underlying image $\mathbf{x} \in \mathbb{R}^n$. This is generally expressed as:
 163

$$164 \quad \mathbf{y} = \mathcal{A}\mathbf{x} + \mathbf{n}, \quad \mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), \quad (3)$$

165 where $\mathcal{A} \in \mathbb{R}^{m \times n}$ is a linear operator and \mathbf{n} denotes additive Gaussian noise. The objective is
 166 to recover \mathbf{x} that both satisfies the measurements and remains consistent with the natural image
 167 distribution. Classical approaches impose explicit priors, while diffusion-based inverse solvers in-
 168 incorporate measurement constraints directly into the denoising process.
 169

170 **4 METHOD**
 171

172 **4.1 REFORMULATING VITON AS AN INVERSE PROBLEM**
 173

174 Virtual try-on requires generating a new garment in try-on regions while preserving identity and
 175 background in non-try-on regions. Let \mathbf{x} be the target person image and \mathbf{y} the observed non-try-on
 176 regions defined by a clothing-agnostic map (see Fig. 1). This forms a linear inverse problem Eq. 3,
 177 where \mathcal{A} is a masking operator. The objective is to reconstruct \mathbf{x} such that (i) measurements \mathbf{y} are
 178 faithfully preserved, (ii) attributes of the reference garment \mathbf{c} are retained, and (iii) overall visual
 179 coherence is achieved. Since \mathbf{y} is provided to the model as a noise-free conditioning input, it is
 180 assumed noise-free, i.e., no noise \mathbf{n} in Eq. 3.

181 This perspective enables direct incorporation of measurement consistency into the sampling trajec-
 182 tory of LDMs, avoiding reliance on post-hoc replacement. Assuming a well-trained autoencoder
 183 (\mathcal{E}, \mathcal{D}), the target image \mathbf{x} is reconstructed from the latent vector \mathbf{z} via $\mathbf{x} = \mathcal{D}(\mathbf{z})$ and clean latent
 184 estimate $\hat{\mathbf{z}}_0^{(t)}$ in Eq. 1. The conditional distribution then factorizes as:
 185

$$186 \quad p(\mathbf{x}|\mathbf{y}, \hat{\mathbf{z}}_0^{(t)}) \propto p(\hat{\mathbf{z}}_0^{(t)}|\mathcal{D}(\mathbf{z}), \mathbf{y}) \cdot p(\mathbf{y}|\mathcal{D}(\mathbf{z})), \quad (4)$$

187 where the first term encourages semantic plausibility (garment fidelity and visual coherence), while
 188 the second enforces measurement preservation (non-try-on regions). Standard LDM inference does
 189 not explicitly enforce this balance: non-try-on regions evolve freely and are often corrected post-
 190 hoc, introducing boundary seams. Existing inverse solvers enforce measurements \mathbf{y} during sampling
 191 but often too rigidly, leading to semantic drift and boundary artifacts. We therefore introduce ART-
 192 VITON, which directly embeds measurement consistency into the sampling trajectory through two
 193 innovations: (a) prior-based initialization and (b) artifact-free measurement-guided sampling.
 194

195 **4.2 PRIOR-BASED INITIALIZATION**
 196

197 **Eq. 4 defines the VITON posterior as balancing two terms: $p(\hat{\mathbf{z}}_0^{(t)}|\mathcal{D}(\mathbf{z}), \mathbf{y})$ (data consistency) and**
 198 **$p(\mathbf{y}|\mathcal{D}(\mathbf{z}))$ (measurement constraint).** For this posterior estimation to be valid, the initial latent \mathbf{z}_T
 199 must lie on the noisy data manifold \mathcal{M}_T . However, diffusion models suffer from train-test mis-
 200 match: training uses \mathbf{z}_T with residual signals at $T=999$, while inference commonly starts from pure
 201 Gaussian noise at reduced timesteps (e.g., $T=981$ in DDIM and VITON baselines (Wan et al., 2024;
 202 Kim et al., 2024a)). This mismatch causes \mathbf{z}_T to lie off-manifold, leading to inaccurate posterior
 203 terms and error accumulation across denoising steps.
 204

205 We address this with residual prior-based initialization that places \mathbf{z}_T on \mathcal{M}_T without additional
 206 modules. Starting from Gaussian noise \mathbf{z}_{999} , we apply one DDPM Ho et al. (2020) denoising step
 207 to obtain \mathbf{z}_{998} and use it as \mathbf{z}_T (see Fig. 2 (A)). This ensures both posterior terms in Eq. 4 are
 208 computed from on-manifold latents, stabilizing the inverse problem formulation. Table 1 shows
 209 consistent improvements across all baselines, confirming that proper initialization directly enhances
 210 posterior estimation reliability—the foundation of our inverse solver framework.
 211

212 **4.3 ARTIFACT-FREE MEASUREMENT-GUIDED SAMPLING**
 213

214 Naively enforcing measurements during denoising can preserve non-try-on regions but often in-
 215 troduces boundary artifacts, since rigid constraints disrupt semantic continuity. To balance mea-
 216 surement fidelity with artifact-free semantic plausibility, ART-VITON iteratively refines samples to
 217 converge toward a latent code $\hat{\mathbf{z}}_0$ that satisfies the measurement constraint, by integrating following
 218 complementary techniques, as shown in Fig. 2.
 219

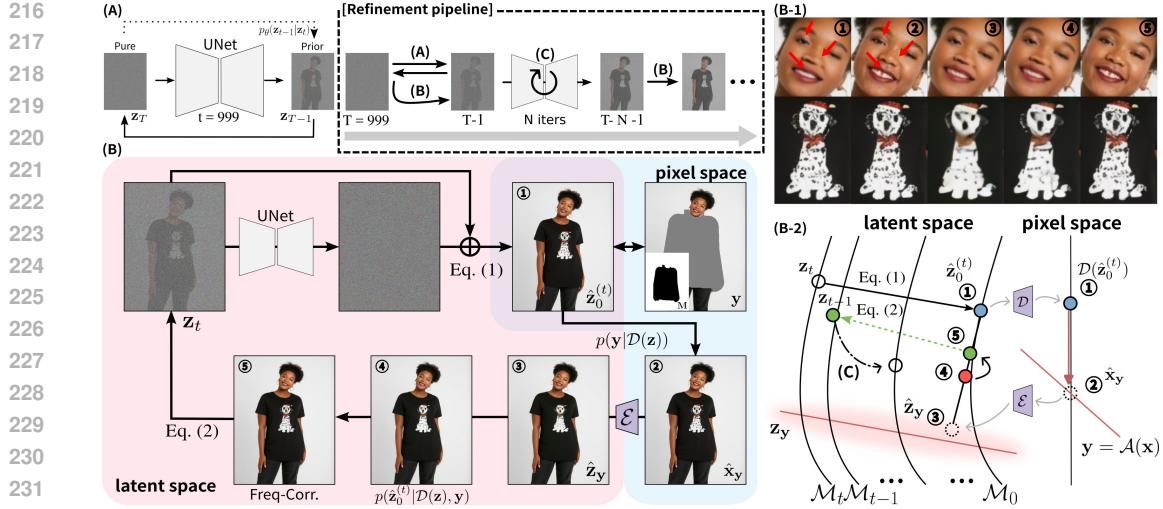


Figure 2: **ART-VITON pipeline.** (A) Prior-based initialization places z_T on the data manifold, enabling valid posterior sampling for the inverse problem. (B) Artifact-free measurement-guided solver enforces measurements while preserving semantics: ① Tweedie estimation retains garment details but violates measurements in non-try-on regions. ② Hard measurement constraints in pixel space correct preserved regions. ③ VAE re-encoding causes high-frequency loss, which is recovered via ④ data consistency optimization and ⑤ frequency-level correction, detailed in (B-1). (C) Periodic standard denoising realigns the trajectory with noisy data manifolds M_t for smooth smooth inter-region blending. (B-2) visualizes the complete sampling trajectory.

② **Hard measurement constraint.** At each step, non-try-on regions (in pixel-space) are replaced with ground-truth measurements, directly enforcing $p(y|\mathcal{D}(z))$ in Eq. 4 and ensuring faithful identity preservation:

$$\hat{x}_y = M \odot y + (1 - M) \odot \mathcal{D}(z), \quad (5)$$

where M is a binary mask (1 for measurements) and z is initialized as $\hat{z}_0^{(t)}$. The updated image \hat{x}_y is then re-encoded to $\hat{z}_y = \mathcal{E}(\hat{x}_y)$, which aligns the latent with measurement constraints but may cause information loss, moving \hat{z}_y away from the semantic trajectory (red line in Fig. 2 (B-2)).

④ **Data consistency.** Hard measurement constraint in ② is insufficient to preserve reference (garment) image attributes, leading to semantic inconsistencies across regions. Thus, focusing on $p(\hat{z}_0^{(t)}|\mathcal{D}(z), y)$ in Eq. 4, z is initialized with \hat{z}_y and optimized via TReg Kim et al. (2025), i.e., \hat{z}_y is interpolated toward the reference-informed latent $\hat{z}_0^{(t)}$ in Eq. 1:

$$\min_z \left\| \frac{\hat{z}_0^{(t)} - \mathcal{E}(\mathcal{D}(z))}{2\sigma_{\mathcal{E}}^2} \right\|_2^2, \quad \hat{z}_0^{(t)}(\bar{\alpha}_{t-1}) = \bar{\alpha}_{t-1}\hat{z}_y + (1 - \bar{\alpha}_{t-1})\hat{z}_0^{(t)}, \quad (6)$$

where $\sigma_{\mathcal{E}}$ denotes encoder reconstruction noise and $\bar{\alpha}_{t-1} \in [0, 1]$ controls the interpolation strength.

⑤ **High-frequency correction.** The optimized latent \hat{z}_y from Eq. 6 closely approximates the true latent z_y but suffers from high-frequency degradation due to VAE compression—a known limitation typically addressed via retraining (Zhang et al., 2025a; Novitskiy et al., 2025; Almog et al., 2025). Direct interpolation with \hat{z}_y would propagate this degradation across all regions, causing semantic misalignment between try-on and non-try-on areas.

We address this through frequency-domain correction without retraining. For measurement regions, we construct a corrected latent $\hat{z}'_y = \hat{z}_y^{\text{low}} + \hat{z}_y^{(t),\text{high}}$ via per-channel Fourier transform, fusing low-frequency structure from the optimized \hat{z}_y with high-frequency details from the reference-informed $\hat{z}_0^{(t)}$. For masked regions, we directly retain $\hat{z}_0^{(t)}$, which already contains accurate high-frequency information:

$$\hat{z}_0^{(t)}(\bar{\alpha}_{t-1}) = M \odot \left[\bar{\alpha}_{t-1}\hat{z}'_y + (1 - \bar{\alpha}_{t-1})\hat{z}_0^{(t)} \right] + (1 - M) \odot \hat{z}_0^{(t)}. \quad (7)$$

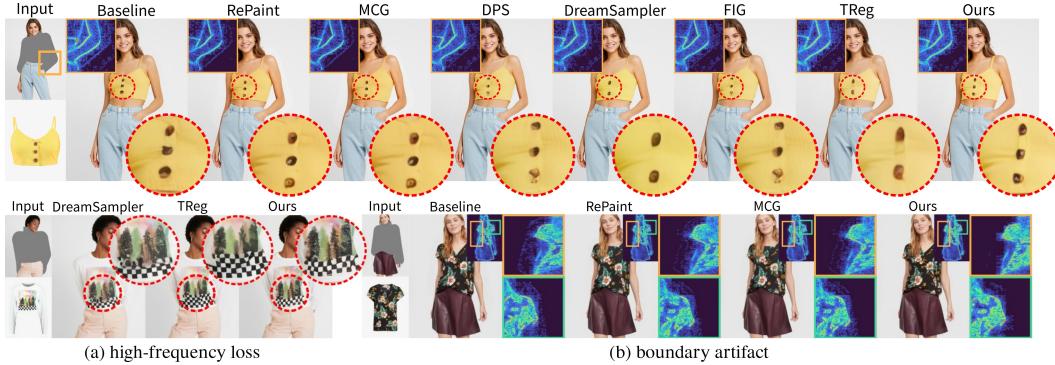


Figure 3: Qualitative comparison across inverse solver categories: (a) Hybrid stochastic methods (DreamSampler, TReg) reduce visible artifacts but lose high-frequency details. (b) Hard constraint (RePaint, MCG) and progressive methods (DPS, FIG) rely on post-hoc replacement, leading to boundary artifacts. Our method mitigates both issues, preserving fine details and enhancing visual coherence across all regions.

This selective refinement preserves semantic alignment across regions while recovering fine-grained details, eliminating artifacts without disturbing garment synthesis.

(C) Standard denoising. To avoid instability from repeated measurement-guided corrections, every N steps we apply standard denoising steps, leveraging the diffusion model’s inherent ability to harmonize inter-region inconsistencies. This realigns trajectories with the LDM manifold and prevents over-constrained solution, e.g., noisy latent \mathbf{z}_{t-1} is guided to be positioned on the subsequent noisy manifolds (in Fig. 2 (B-2)). Overall, the complete pipeline alternates between measurement-guided updates (A)→(B) and standard denoising (C), following the sequence: (A)→(B)→(C)→(B)→(C)→..., ensuring both measurement consistency and visual fidelity throughout generation.

5 EXPERIMENTS

Dataset. We evaluate our method on three datasets: VITON-HD (Choi et al., 2021b), DressCode (Morelli et al., 2022), and SHHQ-1.0 (Fu et al., 2022). VITON-HD contains 11,647 training and 2,032 test pairs of frontal-view female upper-body images (1024×768). DressCode includes full-body images with upper/lower/dress items, totaling 15,363, 8,951, and 2,947 pairs, with 1,800 test pairs per category (1024×768); we conduct experiments only on upper-body items. SHHQ-1.0 provides 40K high-quality full-body images (1024×512); for evaluation, we use the first 2,032 images, applying VITON-HD preprocessing to generate input conditions.

Baselines. We compare against GAN-based (HR-VTON Lee et al. (2022), GP-VTON Xie et al. (2023)) and LDM-based VTON models (LaDI-VTON Morelli et al. (2023), DCI-VTON Gou et al. (2023), GarDiff Wan et al. (2024), StableVTON Kim et al. (2024a), IDM-VTON Choi et al. (2024), OOTDiffusion Xu et al. (2025), ITA-MDT Hong et al. (2025)). We also benchmark inverse solvers, categorized as: hard constraint (RePaint Lugmayr et al. (2022b), MCG Chung et al. (2022)), progressive update (DPS Chung et al. (2023), FIG Yan et al. (2025)), and hybrid stochastic (DreamSampler Kim et al. (2024b), TReg Kim et al. (2025)). Unless otherwise noted, all comparisons use post-hoc replacement, which is also required for hard constraint and progressive update solvers as they fail to fully preserve measurements. See Appendices A.2 and A.3 for details of VITON and inverse solvers.

Evaluation metric. We evaluate performance under two settings: paired, where the model reconstructs the original clothing, and unpaired, where the clothing is replaced. In the paired setting, we report PSNR and SSIM for pixel fidelity and structural consistency, and LPIPS for perceptual similarity. In the unpaired setting, we adopt FID to measure visual realism and global distributional coherence, and KID to assess sample diversity.

5.1 IMPACT OF PRIOR-BASED INITIALIZATION

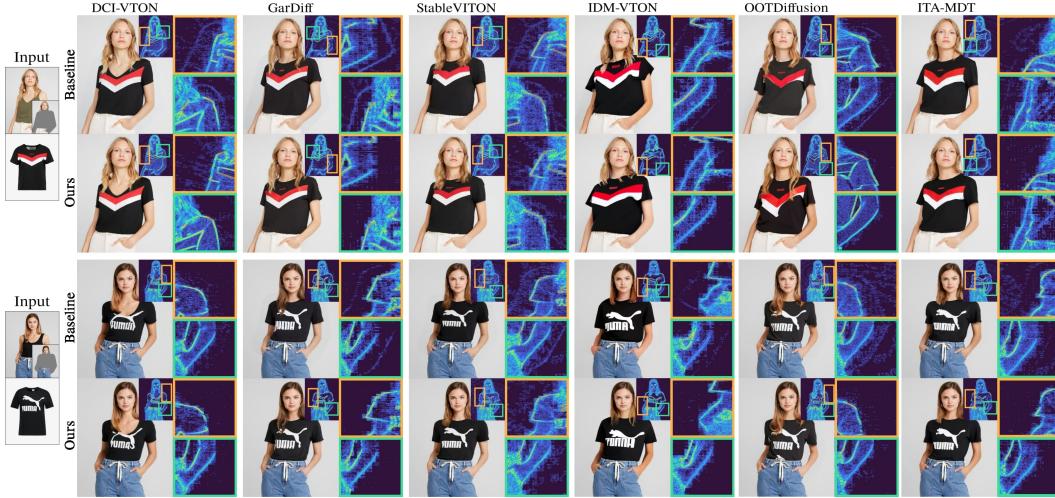


Figure 4: Qualitative results on VITON-HD. Gradient magnitude heatmaps reveal spatial discontinuities at region boundaries (necklines, sleeves, waistlines) in baseline models. Our method substantially reduces these artifacts while preserving garment details (patterns, textures, logos).

Our prior-based initialization mitigates the train-test mismatch and consistently improves performance across all architectures (Table 1). By default, all baselines start denoising at $T=981$: DCI-VTON overlays warped garments from its module, GarDiff initializes with pure Gaussian noise, and StableVITON uses noisy real images. Since StableVITON’s initialization is tailored for unpaired settings, we replaced \mathbf{z}_T with pure noise for fair paired comparisons. Adjusting starting timestep $T=999$ alone already boosts performance, particularly for StableVITON (paired) and DCI-VTON. In unpaired settings, our residual prior-based initialization better fills masked regions with plausible structure, yielding sharper and more consistent garments, especially for StableVITON. GarDiff also shows notable gains, demonstrating the broad utility across architectures of our approach.

Model	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow
DCI-VTON Gou et al. (2023)	0.8607	23.6629	0.0852	12.6386	0.0014
+ Prior @ $T=999$	0.8880	24.1447	0.0782	11.4713	0.0011
GarDiff Wan et al. (2024)	0.8062	21.1075	0.1016	11.7048	0.0061
+ Prior @ $T=999$	0.8448	21.8611	0.0864	10.5322	0.0034
StableVITON Kim et al. (2024a)	0.8550	23.1214	0.0835	10.8716	0.0022
+ Prior @ $T=999$	0.8552	23.1475	0.0833	10.4362	0.0014

Table 1: Effect of prior-based initialization at $T=999$ across baseline models on VITON-HD. Our method consistently improves all metrics regardless of architecture.

Method	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow	FLOPs (T) \downarrow	Inf. (s) \downarrow	Mem. (GB) \downarrow
StableVITON (baseline)	0.8839	23.5965	0.0757	9.8694	0.0016	86.178	9.117	7.66
RePaint Lugmayr et al. (2022b)	0.8856	23.6635	0.0752	10.0829	0.0018	87.864	9.241	7.66
MCG Chung et al. (2022)	0.8855	23.6641	0.0752	10.085	0.0015	259.87	13.518	10.38
DPS Chung et al. (2023)	0.8851	23.6390	0.0749	9.9425	0.0014	259.87	13.573	10.38
DreamSampler Kim et al. (2024b)	<u>0.8904</u>	23.8984	0.0771	10.5143	0.0018	267.22	25.463	7.66
FIG Yan et al. (2025)	0.8851	23.6390	0.0749	9.9427	0.0014	259.87	13.389	10.38
TReg Kim et al. (2025)	0.8909	23.8205	0.0844	11.7467	0.0024	130.63	11.382	7.66
Ours	0.8859	23.7027	0.0746	9.7669	0.0009	130.63	12.101	7.66

Table 2: Comparison of StableVITON with existing inverse solvers on VITON-HD. All methods use identical (A) initialization and (C) denoising steps from Fig. 2; only measurement-guided sampling (B) differs. Red cells: degradation vs. baseline. Bold: best, underline: second-best. Inf.: inference time (s) per image; Mem.: memory usage (GB). Existing solvers exhibit trade-offs—improving paired metrics at the cost of unpaired performance—while ours achieves balanced improvements.

5.2 COMPARISON WITH EXISTING INVERSE SOLVERS

Table 2 compares our method with existing inverse solver categories—hard constraint, progressive update, and hybrid stochastic. Prior solvers face a trade-off: they improve paired metrics (SSIM, PSNR) but degrade unpaired performance (FID, KID), falling below baseline in perceptual quality. In contrast, ART-VITON achieves balanced improvements across all metrics. Hard constraint methods (RePaint (Lugmayr et al., 2022b), MCG (Chung et al., 2022)) enforce measurements in

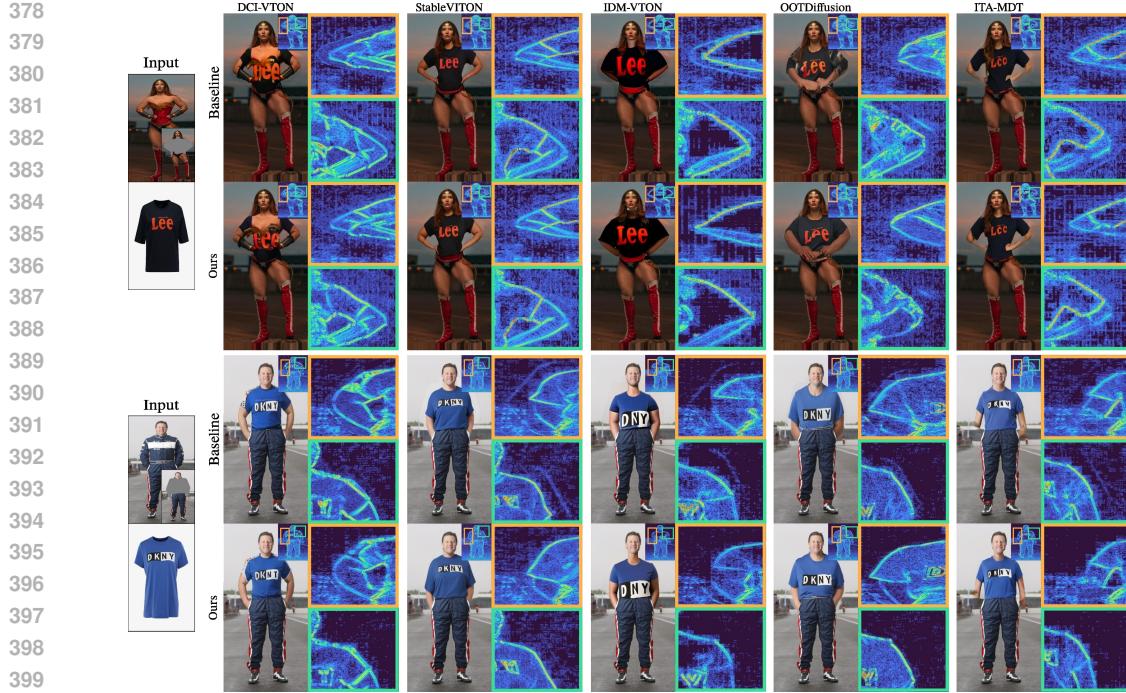


Figure 5: Cross-domain results on SHHQ-1.0. Models trained on VITON-HD are evaluated on in-the-wild images. Our method effectively mitigates artifacts across all baselines despite diverse poses, lighting conditions, and garment styles, demonstrating strong generalization.

latent space but fail to fully satisfy them. Despite aggressive enforcement, incomplete measurement satisfaction forces reliance on post-hoc replacement, causing abrupt transitions (Fig. 3b) that slightly improve paired metrics but degrade unpaired performance. Progressive update methods (DPS (Chung et al., 2023), FIG (Yan et al., 2025)) optimize more smoothly but still leave spatial discontinuities, requiring post-hoc correction and resulting in unpaired metrics below baseline.

Hybrid stochastic solvers (DreamSampler (Kim et al., 2024b), TReg (Kim et al., 2025)) inject stochastic noise to soften transitions, reducing visible artifacts. However, stochastic perturbations degrade unpaired metrics, and VAE re-encoding loses high-frequency details, further harming perceptual quality (LPIPS, Fig. 3a). Fig. 3 (top row) shows that these limitations appear consistently across all solver categories. DreamSampler also incurs high inference cost, while gradient-based methods require substantial memory. Our method maintains semantic alignment and preserves high-frequency details throughout generation, achieving both measurement satisfaction and artifact-mitigated synthesis at reasonable computational cost.

5.3 COMPARISON WITH VITON BASELINES

VITON-HD results. Table 3 shows that our method consistently improves all baselines in the in-domain setting (VITON-HD/VITON-HD). It boosts paired metrics (SSIM, PSNR, LPIPS) by reducing boundary artifacts and preserving high-frequency details, while also improving unpaired metrics (FID, KID) through better semantic alignment. Fig. 4 illustrates this improvement: baseline models exhibit boundary artifacts in gradient heatmaps around necklines, sleeves, and waistlines, whereas our method removes these discontinuities and preserves fine garment details such as patterns, textures, logos, and text. Comprehensive results are presented in See Fig. 12.

Cross-Domain generalization. The large domain gap between studio-quality and in-the-wild images poses challenges, yet our method improves performance (Table 3, right columns). It reduces artifacts across diverse baselines (DCI-VTON, StableVITON, IDM-VTON, OOTDiffusion, ITA-MDT), enhancing visual coherence under varying poses, lighting, and garment styles. Baselines with moderate artifacts (e.g., DCI-VTON, StableVITON) achieve near-artifact-free results, while those with severe artifacts (OOTDiffusion) improve noticeably but retain minor imperfections

Dataset(train/test)		VITON-HD / VITON-HD				VITON-HD / SHHQ		
Method		SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow	FID \downarrow	KID \downarrow
HR-VITON Lee et al. (2022)		0.8710	22.3368	0.0986	11.7301	0.3926	36.2665	0.0184
GP-VTON Xie et al. (2023)		0.8718	23.6485	0.0838	12.0564	0.0029	—	—
LaDI-VTON Morelli et al. (2023)		0.8779	22.7451	0.0876	10.5203	0.0004	22.2632	0.0045
DCI-VTON* Gou et al. (2023)		0.8871	24.1413	0.0782	11.3634	0.0012	21.2350	0.0055
DCI-VTON [†]		0.8908	24.5180	0.0746	10.9724	0.0022	21.3168	0.0048
DCI-VTON (Ours)		0.8946	24.6903	0.0722	10.5408	0.0005	21.1485	0.0040
GarDiff* Wan et al. (2024)		0.8418	21.7263	0.0895	10.5858	0.0042	—	—
GarDiff [†]		0.8413	21.8914	0.0912	11.2894	0.0047	—	—
GarDiff (Ours)		0.8463	21.9647	0.0866	10.3414	0.0036	—	—
StableVITON* Kim et al. (2024a)		0.8839	23.5965	0.0757	9.8694	0.0016	22.7463	0.0066
StableVITON [†]		0.8832	23.5586	0.0772	9.9520	0.0017	22.9052	0.0061
StableVITON (Ours)		0.8859	23.7027	0.0746	9.7669	0.0009	22.5525	0.0040
IDM-VTON* Choi et al. (2024)		0.8440	20.1067	0.1193	11.5482	0.0050	27.1165	0.0125
IDM-VTON [†]		0.8441	20.1238	0.1201	12.1464	0.0058	26.4503	0.0105
IDM-VTON (Ours)		0.8477	20.4514	0.1183	11.5364	0.0048	24.3281	0.0086
OOTDiffusion* Xu et al. (2025)		0.8601	20.5861	0.0977	10.2954	0.0013	22.2065	0.0056
OOTDiffusion [†]		0.8564	20.6652	0.0968	10.3767	0.0022	22.2288	0.0058
OOTDiffusion (Ours)		0.8583	21.3201	0.0953	9.5175	0.0009	23.0877	0.0052
ITA-MDT* Hong et al. (2025)		0.8760	23.5203	0.0764	9.7530	0.0025	23.0280	0.0073
ITA-MDT [†]		0.8813	23.5662	0.0748	10.1198	0.0029	22.3726	0.0072
ITA-MDT (Ours)		0.8820	23.5735	0.0737	9.5977	0.0024	22.0231	0.0059

Table 3: Quantitative comparison on VITON-HD and cross-domain evaluation on SHHQ-1.0. Left columns show same-domain results (VITON-HD/VITON-HD), right columns show generalization capability (VITON-HD/SHHQ-1.0). * indicates post-hoc replacement; [†] indicates post-hoc Poisson blending. Our method, applied without architectural modifications, consistently improves all baseline models across both in-domain and cross-domain settings.

(Fig. 5). Overall, all methods benefit from our approach, producing results better suited for practical use. GP-VTON and GarDiff were excluded due to dataset-specific preprocessing.

Comparison with Poisson blending. We evaluate Poisson blending (Pérez et al., 2023), a gradient-domain technique used in CAT-DM (Zeng et al., 2024), against post-hoc replacement (Table ??). Results are inconsistent: most baselines show degraded unpaired metrics (FID, KID), and some also worsen in paired metrics. This occurs because Poisson blending enforces gradient continuity at boundaries but cannot fix intensity or texture mismatches, often leaving distortions at junctions (Fig. 9). In contrast, our method addresses these issues during generation, maintaining semantic alignment and restoring high-frequency details, yielding visually coherent. This indicates that effective artifact mitigation requires intervention during generation, not post-hoc correction.

DressCode results. On DressCode upper-body, our method consistently improves performance and reduces boundary artifacts observed in prior approaches (Table 4, Fig. 15). Existing methods struggle with complex poses and long garments: GP-VTON produces severe distortions, LaDI-VTON suffers from texture degradation, and baseline StableVITON exhibits boundary seams. In contrast, StableVITON enhanced with our solver suppresses these artifacts, achieving visually coherent results across challenging cases.

5.4 ABLATION STUDY

Initialization strategy analysis. Our Prior (DDPM) initialization achieves balanced gains across both paired and unpaired metrics (Table 5). Injecting data into \mathbf{z}_T boosts paired metrics (SSIM, PSNR, LPIPS) by preserving structure, while semantic alignment benefits unpaired metrics (FID, KID). Alternative strategies reveal clear trade-offs: *Pure* lacks real data, lowering paired metrics; *Unmasked* replaces measurement regions with noisy observations, misaligning semantics and degrading FID/KID; *Offset noise* adds global correlated noise to expand brightness range, which pre-

	z_T @ T=999	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow
Pure	0.855	23.1214	0.0835	10.4349	0.0014	
Pure (51 step)	0.855	23.1363	0.0834	10.4451	0.0012	
Unmasked	0.8566	23.2551	0.0834	10.6985	0.0016	
Offset noise	0.8425	22.1414	0.0962	10.3335	0.0015	
Prior (DDIM)	0.855	23.1299	0.0835	10.4631	0.0015	
Prior (DDPM)	0.8552	23.1475	0.0833	10.4362	0.0014	

Table 5: Quantitative comparison of z_T configurations at $T=999$ on StableVITON (VITON-HD). Prior (DDPM) achieves a good balance, showing strong performance across all metrics.

Method	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow
Pure	0.8530	23.0727	0.0843	10.7491	0.0018
+ (A) Prior-based	0.8552	23.1475	0.0833	10.4362	0.0014
+ (2) Hard measure.	0.8677	22.5991	0.1623	20.1817	0.0088
+ (4) Data consist.	0.8855	23.4532	0.1064	14.0034	0.0029
+ (5) Freq-Corr.	0.8861	23.7138	0.0749	9.8644	0.0013
+ (C) Std. denoising	0.8859	23.7027	0.0746	9.7669	0.0009

Table 6: Ablation study on StableVITON (VITON-HD). Incrementally adding each component of our method leads to consistent improvements, confirming their complementary roles.

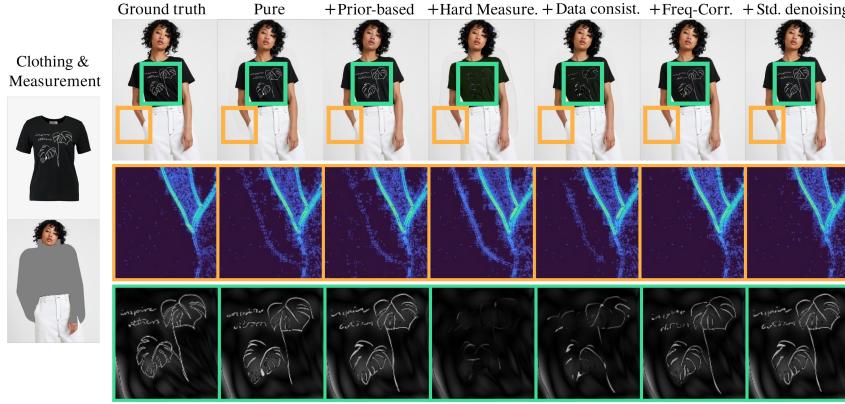


Figure 6: Ablation study of pipeline components. Direct measurement enforcement increases artifacts, while subsequent additions (data consistency, frequency correction, and periodic denoising) progressively reduce them, yielding artifact-free and coherent results.

serves semantic alignment and improves FID/KID but lacks real data, leading to poor paired metrics; *Prior (DDIM)* reduces diversity due to deterministic sampling. In contrast, *Prior (DDPM)* injects minimal semantic structure into initialization, aligning masked and measured regions while retaining diversity, yielding the most balanced performance at $T=999$.

Component contribution. We further assess each module’s role. (A) Prior-based initialization stabilizes trajectories and improves overall quality (Table 6). (2) Direct measurement enforcement guarantees constraint satisfaction but introduces severe boundary artifacts, showing the need for semantic alignment (Fig. 6). (4) Data consistency mitigates residual artifacts but only partially. (5) Frequency correction recovers high-frequency details lost in VAE encoding, improving semantic alignment across regions. (C) Periodic standard denoising leverages LDM priors for harmonization, stabilizing trajectories, and enhancing coherence. Together, these results confirm that each component is complementary, and their integration is essential for artifact-free, coherent synthesis.

6 CONCLUSION

We propose ART-VITON, a model-agnostic framework that addresses boundary artifacts in virtual try-on. By reformulating VITON as a linear inverse problem and using measurement-guided diffusion sampling, it preserves non-try-on regions and maintains garment alignment. Key innovations include prior-based initialization to reduce training-inference mismatch and artifact-free sampling via data consistency, frequency-level correction, and standard denoising. Experiments show improved boundary coherence and high-frequency detail. ART-VITON delivers accurate, artifact-free virtual try-on, providing users with a realistic and trustworthy preview of fit and style. **Extending ART-VITON to other editing tasks is promising, as artifact-free design generalizes beyond VITON.**

Limitations. While ART-VITON effectively reduces boundary artifacts, its performance depends on the quality of the underlying baseline. Models with severe inherent artifacts—such as major semantic drift or measurement violations—benefit from our method but may retain minor imperfections. Combining our solver with stronger baselines could further improve results. Nevertheless, the model-agnostic design ensures consistent gains across all baselines.

540 REFERENCES
541

542 Gal Almog, Ariel Shamir, and Ohad Fried. Reed-vae: Re-encode decode training for iterative image
543 editing with diffusion models. In *Computer Graphics Forum*, pp. e70020. Wiley Online Library,
544 2025.

545 Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Con-
546 ditioning method for denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF*
547 *International Conference on Computer Vision*, pp. 14367–14376, 2021a.

548 Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul Choo. Viton-hd: High-resolution virtual
549 try-on via misalignment-aware normalization. In *Proceedings of the IEEE/CVF conference on*
550 *computer vision and pattern recognition*, pp. 14131–14140, 2021b.

551 Yisol Choi, Sangkyung Kwak, Kyungmin Lee, Hyungwon Choi, and Jinwoo Shin. Improving diffu-
552 sion models for authentic virtual try-on in the wild. In *European Conference on Computer Vision*,
553 pp. 206–235. Springer, 2024.

554 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
555 for inverse problems using manifold constraints. *Advances in Neural Information Processing*
556 *Systems*, 35:25683–25696, 2022.

557 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
558 Ye. Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh Interna-
559 tional Conference on Learning Representations*, 2023.

560 Hyungjin Chung, Jong Chul Ye, Peyman Milanfar, and Mauricio Delbracio. Prompt-tuning latent
561 diffusion models for inverse problems. In *Proceedings of the 41st International Conference on*
562 *Machine Learning*, pp. 8941–8967, 2024.

563 Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen-Change Loy, Wayne Wu,
564 and Ziwei Liu. Stylegan-human: A data-centric odyssey of human generation. *arXiv preprint*,
565 arXiv:2204.11823, 2022.

566 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
567 Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
568 textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.

569 Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion trans-
570 former is a strong image synthesizer. *arXiv preprint arXiv:2303.14389*, 2023.

571 Yuying Ge, Yibing Song, Ruimao Zhang, Chongjian Ge, Wei Liu, and Ping Luo. Parser-free virtual
572 try-on via distilling appearance flows. In *Proceedings of the IEEE/CVF conference on computer*
573 *vision and pattern recognition*, pp. 8485–8493, 2021.

574 Junhong Gou, Siyu Sun, Jianfu Zhang, Jianlou Si, Chen Qian, and Liqing Zhang. Taming the power
575 of diffusion models for high-quality virtual try-on with appearance flow. In *Proceedings of the*
576 *31st ACM International Conference on Multimedia*, pp. 7599–7607, 2023.

577 Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. Viton: An image-based virtual
578 try-on network. In *Proceedings of the IEEE conference on computer vision and pattern recogni-
579 tion*, pp. 7543–7552, 2018.

580 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
581 arXiv:2207.12598, 2022.

582 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
583 *neural information processing systems*, 33:6840–6851, 2020.

584 Ji Woo Hong, Tri Ton, Trung X Pham, Gwanhyeong Koo, Sunjae Yoon, and Chang D Yoo. Ita-mdt:
585 Image-timestep-adaptive masked diffusion transformer framework for image-based virtual try-on.
586 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 28284–28294,
587 2025.

594 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 595 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 596

597 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 598 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 599 pp. 8153–8163, 2024.

600 Jeongho Kim, Guojung Gu, Minho Park, Sunghyun Park, and Jaegul Choo. Stableviton: Learning
 601 semantic correspondence with latent diffusion model for virtual try-on. In *Proceedings of the*
 602 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 8176–8185, 2024a.
 603

604 Jeongsol Kim, Geon Yeong Park, and Jong Chul Ye. Dreamsampler: Unifying diffusion sampling
 605 and score distillation for image manipulation. In *European Conference on Computer Vision*, pp.
 606 398–414. Springer, 2024b.

607 Jeongsol Kim, Geon Yeong Park, Hyungjin Chung, and Jong Chul Ye. Regularization by texts for
 608 latent diffusion inverse solvers. In *The Thirteenth International Conference on Learning Repre-
 609 sentations*, 2025.

610

611 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL <https://arxiv.org/abs/1312.6114>.

612

613 Sangyun Lee, Gyojung Gu, Sunghyun Park, Seunghwan Choi, and Jaegul Choo. High-resolution
 614 virtual try-on with misalignment and occlusion-handled conditions. In *European Conference on*
 615 *Computer Vision*, pp. 204–219. Springer, 2022.

616

617 Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
 618 sample steps are flawed. In *Proceedings of the IEEE/CVF winter conference on applications of*
 619 *computer vision*, pp. 5404–5411, 2024.

620

621 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 622 Repaint: Inpainting using denoising diffusion probabilistic models, 2022a. URL <https://arxiv.org/abs/2201.09865>.

623

624 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 625 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 626 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022b.

627

628 Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio Cesari, and Rita Cucchiara.
 629 Dress code: High-resolution multi-category virtual try-on. In *Proceedings of the IEEE/CVF con-
 630 ference on computer vision and pattern recognition*, pp. 2231–2235, 2022.

631

632 Davide Morelli, Alberto Baldrati, Giuseppe Cartella, Marcella Cornia, Marco Bertini, and Rita Cuc-
 633 chiara. Ladi-vton: Latent diffusion textual-inversion enhanced virtual try-on. In *Proceedings of*
 634 *the 31st ACM international conference on multimedia*, pp. 8580–8589, 2023.

635

636 Lev Novitskiy, Viacheslav Vasilev, Maria Kovaleva, Vladimir Arkhipkin, and Denis Dimitrov. Vivat:
 637 Virtuous improving vae training through artifact mitigation. *arXiv preprint arXiv:2506.07863*,
 2025.

638

639 OpenAI. Chatgpt (gpt-5). <https://chat.openai.com/>, 2025. Large language model.

640

641 Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In *Seminal Graphics*
 642 *Papers: Pushing the Boundaries, Volume 2*, pp. 577–582. 2023.

643

644 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 645 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 646 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.

647

648 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 649 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 650 *learning*, pp. 8821–8831. Pmlr, 2021.

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

651

652 Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
 653 Solving linear inverse problems provably via posterior sampling with latent diffusion models.
 654 *Advances in Neural Information Processing Systems*, 36:49960–49990, 2023.

655

656 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 657 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 658 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 659 22510, 2023.

660

661 Mehmet Saygin Seyfoglu, Karim Bouyarmane, Suren Kumar, Amir Tavanaei, and Ismail B Tutar.
 662 Dreampaint: Few-shot inpainting of e-commerce items for virtual try-on without 3d modeling.
 663 *arXiv preprint arXiv:2305.01257*, 2023.

664

665 Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving
 666 inverse problems with latent diffusion models via hard data consistency, 2024. URL <https://arxiv.org/abs/2307.08123>.

667

668 Siqi Wan, Yehao Li, Jingwen Chen, Yingwei Pan, Ting Yao, Yang Cao, and Tao Mei. Improving
 669 virtual try-on with garment-focused diffusion models. In *European Conference on Computer
 670 Vision*, pp. 184–199. Springer, 2024.

671

672 Chenhui Wang, Tao Chen, Zhihao Chen, Zhizhong Huang, Taoran Jiang, Qi Wang, and Hongming
 673 Shan. Fldm-vton: Faithful latent diffusion model for virtual try-on. In *IJCAI*, 2024.

674

675 Zhenyu Xie, Zaiyu Huang, Xin Dong, Fuwei Zhao, Haoye Dong, Xijin Zhang, Feida Zhu, and
 676 Xiaodan Liang. Gp-vton: Towards general purpose virtual try-on via collaborative local-flow
 677 global-parsing learning. In *Proceedings of the IEEE/CVF conference on computer vision and
 678 pattern recognition*, pp. 23550–23559, 2023.

679

680 Yuhao Xu, Tao Gu, Weifeng Chen, and Arlene Chen. Ootdiffusion: Outfitting fusion based latent
 681 diffusion for controllable virtual try-on. In *Proceedings of the AAAI Conference on Artificial
 682 Intelligence*, volume 39, pp. 8996–9004, 2025.

683

684 Yici Yan, Yichi Zhang, Xiangming Meng, and Zhizhen Zhao. Fig: Flow with interpolant guidance
 685 for linear inverse problems. In *The Thirteenth International Conference on Learning Representa-
 686 tions*, 2025.

687

688 Han Yang, Ruimao Zhang, Xiaobao Guo, Wei Liu, Wangmeng Zuo, and Ping Luo. Towards photo-
 689 realistic virtual try-on by adaptively generating-preserving image content. In *Proceedings of the
 690 IEEE/CVF conference on computer vision and pattern recognition*, pp. 7850–7859, 2020.

691

692 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 693 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

694

695 Ruiyun Yu, Xiaoqi Wang, and Xiaohui Xie. Vtnfp: An image-based virtual try-on network with body
 696 and clothing feature preservation. In *Proceedings of the IEEE/CVF international conference on
 697 computer vision*, pp. 10511–10520, 2019.

698

699 Jianhao Zeng, Dan Song, Weizhi Nie, Hongshuo Tian, Tongtong Wang, and An-An Liu. Cat-dm:
 700 Controllable accelerated virtual try-on with diffusion model. In *Proceedings of the IEEE/CVF
 701 conference on computer vision and pattern recognition*, pp. 8372–8382, 2024.

702

703 Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, and Di Huang. Diffusion-4k: Ultra-high-
 704 resolution image synthesis with latent diffusion models. In *Proceedings of the Computer Vision
 705 and Pattern Recognition Conference*, pp. 23464–23473, 2025a.

706

707 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 708 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 709 pp. 3836–3847, 2023.

702 Xuanpu Zhang, Dan Song, Pengxin Zhan, Tianyu Chang, Jianhao Zeng, Qingguo Chen, Weihua
 703 Luo, and An-An Liu. Boow-vton: Boosting in-the-wild virtual try-on via mask-free pseudo data
 704 training. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26399–
 705 26408, 2025b.

708 A APPENDIX

710 A.1 USE OF LARGE LANGUAGE MODELS

712 We used a large language model OpenAI (2025) solely to improve the clarity and readability of
 713 the manuscript (e.g., grammar and phrasing). The model did not contribute to research ideation,
 714 methodology, or analysis, and the authors take full responsibility for all contents.

716 A.2 IMPLEMENTATION DETAILS OF BASELINES

718 We evaluate our method across diverse baseline models with varying architectures and configura-
 719 tions. Our experiments include DCI-VTON Gou et al. (2023) and StableVITON Kim et al. (2024a),
 720 both built on Stable Diffusion Rombach et al. (2022) v1.4; GarDiff Wan et al. (2024), which is based
 721 on SD v2.1; IDM-VTON Choi et al. (2024) leveraging SDXL Podell et al. (2024) inpainting; OOT-
 722 Diffusion Xu et al. (2025) using SD v1.5; and ITA-MDT Hong et al. (2025) built upon the Masked
 723 Diffusion Transformer Gao et al. (2023). We utilize publicly available pretrained checkpoints for
 724 all baselines, with the exception of StableVITON, which we train on the DressCode Morelli et al.
 725 (2022) dataset focusing on upper-body items for consistency. The original baseline configurations
 726 vary significantly in their sampling strategies. DCI-VTON, GarDiff, StableVITON, IDM-VTON,
 727 and OOTDiffusion begin sampling from timestep $T=981$, while ITA-MDT starts at $T=999$. Ini-
 728 tial latent construction also differs across methods: DCI-VTON overlays warped garments from its
 729 warping module, StableVITON uses noisy real images, while GarDiff, IDM-VTON, OOTDiffusion,
 730 and ITA-MDT initialize with pure Gaussian noise. Classifier-free guidance Ho & Salimans (2022)
 731 scales range from 1.0 (DCI-VTON, GarDiff, StableVITON) to 2.0 (IDM-VTON, OOTDiffusion,
 732 ITA-MDT) and 7.5 (LaDI-VTON).

733 For consistent evaluation, we standardize the inference protocol by applying prior-based initializa-
 734 tion to all baselines and employing the DDIM Lugmayr et al. (2022a) sampler with 50 timesteps.
 735 This unified setup enables fair comparison while demonstrating the model-agnostic nature of our
 736 approach across different architectural paradigms. For inverse solvers, all methods are adapted to
 737 the latent diffusion framework, sharing the same (A) initialization and (C) standard denoising steps
 738 ($N = 2$), differing only in the (B) measurement-guided sampling component.

739 A.3 INVERSE SOLVER FORMULATION

741 We classify inverse solvers into three types: hard constraints (RePaint Lugmayr et al. (2022b),
 742 MCG Chung et al. (2022)), progressive updates (DPS Chung et al. (2023), FIG Yan et al. (2025)),
 743 and hybrid stochastic methods (DreamSampler Kim et al. (2024b), TReg Kim et al. (2025)). Hard
 744 constraints induce semantic drift between regions due to strong measurement enforcement, directly
 745 causing boundary artifacts. Progressive updates maintain stable optimization and produce minimal
 746 artifacts. However, both hard constraints and progressive updates operate in latent space, failing to
 747 fully satisfy measurements (Fig. 10). To address this, we apply post-hoc replacement, which can
 748 still cause boundary artifacts due to semantic mismatch and spatial discontinuities. Hybrid stochas-
 749 tic methods enforce measurement constraints in pixel space and inject stochastic noise to harmonize
 750 regions, reducing artifacts. Nevertheless, persistent semantic drift still leads to artifact formation.

751 We formulate virtual try-on as an inverse problem and integrate various solver strategies into the la-
 752 tent diffusion sampling process. This section presents the mathematical foundations and implemen-
 753 tation details of each approach. We denote the measurement mask as M and the target measurement
 754 as y . The bar notation indicates resizing to match the latent code resolution. Specifically, \bar{M} denotes
 755 the measurement mask with value 1 in the resized measurement region, and \bar{y} represents the resized
 target measurement. A comparison with the inverse solvers is shown in Fig. 11.

756 **DDIM sampling Lugmayr et al. (2022a).** The deterministic DDIM sampling forms the basis for
 757 all inverse solvers. Given a noisy latent \mathbf{z}_t at timestep t , we first estimate the clean latent using
 758 Tweedie's formula:

$$\hat{\mathbf{z}}_0^{(t)} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{z}_t - \sqrt{1 - \bar{\alpha}_t} \cdot \boldsymbol{\epsilon}_\theta(\mathbf{z}_t, t, \mathbf{c})). \quad (8)$$

762 The denoising step then updates the latent to timestep $t - 1$:

$$\mathbf{z}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{z}}_0^{(t)} + \sqrt{1 - \bar{\alpha}_{t-1}} \boldsymbol{\epsilon}_\theta(\mathbf{z}_t, t, \mathbf{c}). \quad (9)$$

766 A.3.1 HARD MEASUREMENT METHODS

768 These methods enforce measurement consistency through direct projection or replacement in the
 769 latent space.

770 **RePaint Lugmayr et al. (2022b).** This approach replaces the measurement region with noisy ob-
 771 servations at each denoising step. We omit the resampling strategy proposed in Repaint as it is too
 772 time-consuming:

$$\bar{\mathbf{y}}_{t-1} \sim \mathcal{N}(\sqrt{\bar{\alpha}_{t-1}} \bar{\mathbf{y}}, (1 - \bar{\alpha}_{t-1}) \mathbf{I}), \quad (10)$$

$$\mathbf{z}'_{t-1} = \bar{\mathbf{M}} \odot \bar{\mathbf{y}}_{t-1} + (1 - \bar{\mathbf{M}}) \odot \mathbf{z}_{t-1}. \quad (11)$$

776 **MCG (Manifold-Constrained Gradient) Chung et al. (2022).** This method combines gradient-
 777 based optimization with hard projection:

$$\mathbf{z}'_{t-1} = \mathbf{z}_{t-1} - \gamma \nabla_{\mathbf{z}_t} \|\bar{\mathbf{y}} - \bar{\mathbf{M}} \odot \hat{\mathbf{z}}_0^{(t)}\|_2^2, \quad (12)$$

$$\mathbf{z}''_{t-1} = \bar{\mathbf{M}} \odot \bar{\mathbf{y}}_{t-1} + (1 - \bar{\mathbf{M}}) \odot \mathbf{z}'_{t-1}, \quad (13)$$

782 where γ is the gradient step size, which we set to 1.

784 A.3.2 PROGRESSIVE UPDATE METHODS

786 These methods guide the sampling trajectory iteratively through gradient updates without relying on
 787 hard measurement constraints.

788 **DPS (Diffusion Posterior Sampling) Chung et al. (2023).** DPS adjusts the sampling trajectory via
 789 measurement consistency gradients computed in the Tweedie space:

$$\mathbf{z}'_{t-1} = \mathbf{z}_{t-1} - \gamma \nabla_{\mathbf{z}_t} \|\bar{\mathbf{y}} - \bar{\mathbf{M}} \odot \hat{\mathbf{z}}_0^{(t)}\|_2^2, \quad (14)$$

792 where we set $\gamma = 1$.

793 **FIG (Flow with Interpolant Guidance) Yan et al. (2025).** By operating directly on the noisy
 794 latent, FIG performs gradient updates along the diffusion trajectory, preserving stability and sample
 795 diversity, whereas Tweedie-space optimization is more precise but incurs higher computational cost
 796 and reduces diversity.

$$\mathbf{z}'_{t-1} = \mathbf{z}_{t-1} - \gamma \nabla_{\mathbf{z}_{t-1}} \|\bar{\mathbf{y}}_{t-1} - \bar{\mathbf{M}} \odot \mathbf{z}_{t-1}\|_2^2, \quad (15)$$

799 with $\gamma = 1$.

801 A.3.3 HYBRID STOCHASTIC METHODS

803 These approaches combine deterministic updates with stochastic noise injection, where the degree
 804 of stochasticity is controlled through $\eta \beta_t$, to balance measurement consistency and generation di-
 805 versity.

$$\tilde{\epsilon}_t := \frac{\sqrt{1 - \bar{\alpha}_{t-1} - \eta^2 \beta_t^2} \cdot \boldsymbol{\epsilon}_\theta + \eta \beta_t \cdot \boldsymbol{\epsilon}}{\sqrt{1 - \bar{\alpha}_{t-1}}}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I}), \quad (16)$$

809 where η controls the noise level and β_t is the noise schedule. The pixel-space optimization is solved
 via conjugate gradient (CG) with a regularization coefficient λ of $1e-4$:

DreamSampler Kim et al. (2024b). DreamSampler integrates pixel-space and latent-space optimization to guide the diffusion sampling trajectory while maintaining measurement consistency. Let \emptyset denote a null embedding, as introduced in the classifier-free guidance (CFG) framework, used to perform latent optimization without conditioning information. In the final latent update, the stochastic noise term $\tilde{\epsilon}_t$ is set by $\eta\beta_t = \sqrt{\bar{\alpha}_t(1-\bar{\alpha}_{t-1})}$, controlling the amount of injected noise to balance diversity and trajectory stability.

$$\hat{\mathbf{z}}_{0,\emptyset}^{(t)} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{z}_t - \sqrt{1-\bar{\alpha}_t} \cdot \epsilon_\theta(\mathbf{z}_t, t, \emptyset)), \quad (17)$$

$$\hat{\mathbf{x}}_{\mathbf{y},\emptyset} = \arg \min_{\mathbf{x}_\emptyset} \left(\|\mathbf{y} - \bar{\mathbf{M}} \odot \mathbf{x}_\emptyset\|_2^2 + \lambda \|\mathbf{x}_\emptyset - \mathcal{D}(\hat{\mathbf{z}}_{0,\emptyset}^{(t)})\|_2^2 \right), \quad \hat{\mathbf{z}}_{\mathbf{y},\emptyset} = \mathcal{E}(\hat{\mathbf{x}}_{\mathbf{y},\emptyset}), \quad (18)$$

$$\hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_{t-1}) = \bar{\alpha}_{t-1} \hat{\mathbf{z}}_{\mathbf{y},\emptyset} + (1 - \bar{\alpha}_{t-1}) \hat{\mathbf{z}}_{0,\emptyset}^{(t)}, \quad (19)$$

$$\hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_t, \bar{\alpha}_{t-1}) = \bar{\mathbf{M}} \odot \hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_{t-1}) + (1 - \bar{\mathbf{M}}) \odot (\bar{\alpha}_t \hat{\mathbf{z}}_0^{(t)} + (1 - \bar{\alpha}_t) \hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_{t-1})), \quad (20)$$

$$\mathbf{z}'_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_t, \bar{\alpha}_{t-1}) + \sqrt{1 - \bar{\alpha}_{t-1}} \tilde{\epsilon}_t, \quad (21)$$

where \mathcal{E} and \mathcal{D} denote encoder and decoder, and λ balances data fidelity.

TReg Kim et al. (2025). TReg performs the hybrid approach by performing optimization directly in pixel space with latent regularization. It solves a regularized inverse problem where the measurement operator $\bar{\mathbf{M}}$ enforces constraints, while the regularization term maintains semantic coherence via the diffusion prior. In the stochastic update, the noise parameter is set as $\eta\beta_t = \sqrt{\bar{\alpha}_{t-1}(1-\bar{\alpha}_{t-1})}$, following a noise schedule distinct from DreamSampler.

$$\hat{\mathbf{x}}_{\mathbf{y}} = \arg \min_{\mathbf{x}} \left(\|\mathbf{y} - \bar{\mathbf{M}} \odot \mathbf{x}\|_2^2 + \lambda \|\mathbf{x} - \mathcal{D}(\hat{\mathbf{z}}_0^{(t)})\|_2^2 \right), \quad \hat{\mathbf{z}}_{\mathbf{y}} = \mathcal{E}(\hat{\mathbf{x}}_{\mathbf{y}}), \quad (22)$$

$$\hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_{t-1}) = \bar{\alpha}_{t-1} \hat{\mathbf{z}}_{\mathbf{y}} + (1 - \bar{\alpha}_{t-1}) \hat{\mathbf{z}}_0^{(t)}, \quad (23)$$

$$\mathbf{z}'_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{z}}_0^{(t)}(\bar{\alpha}_{t-1}) + \sqrt{1 - \bar{\alpha}_{t-1}} \tilde{\epsilon}_t. \quad (24)$$

A.4 ADDITIONAL ABLATION STUDY

We conduct ablation studies on two key hyperparameters: the interpolation weights in data consistency optimization (Eq. 6) and the frequency of standard denoising steps (component (C) in Fig. 2).

Interpolation weights in data consistency. Eq. 6 performs data consistency optimization by finding the latent \mathbf{z} that balances between the current optimized latent $\hat{\mathbf{z}}_{\mathbf{y}}$ and the reference-informed latent $\hat{\mathbf{z}}_0^{(t)}$. This can be formulated as a quadratic minimization problem:

$$\hat{\mathbf{z}}_0^{(t)}(\lambda_{\text{curr}}) = \arg \min_{\mathbf{z}} \lambda_{\text{curr}} \|\mathbf{z} - \hat{\mathbf{z}}_{\mathbf{y}}\|_2^2 + \lambda_{\text{ref}} \|\mathbf{z} - \hat{\mathbf{z}}_0^{(t)}\|_2^2, \quad (25)$$

which has a closed-form solution:

$$\mathbf{z} = \frac{\lambda_{\text{curr}}}{\lambda_{\text{curr}} + \lambda_{\text{ref}}} \hat{\mathbf{z}}_{\mathbf{y}} + \frac{\lambda_{\text{ref}}}{\lambda_{\text{curr}} + \lambda_{\text{ref}}} \hat{\mathbf{z}}_0^{(t)}. \quad (26)$$

The weights λ_{curr} and λ_{ref} determine the relative trust between the optimized and reference-informed latents. To maintain consistency with diffusion reverse trajectories, these weights should adapt across timesteps. At early timesteps (near $T=999$), $\hat{\mathbf{z}}_0^{(t)}$ remains far from the true latent $\mathbf{z}_{\mathbf{y}}$, so excessive reliance on $\hat{\mathbf{z}}_{\mathbf{y}}$ would amplify semantic mismatches between masked and measurement regions, destabilizing the trajectory. Conversely, at later timesteps, $\hat{\mathbf{z}}_0^{(t)}$ converges closer to $\mathbf{z}_{\mathbf{y}}$, warranting increased weight on $\hat{\mathbf{z}}_{\mathbf{y}}$. This motivates a time-dependent weighting scheme where λ_{curr} increases and λ_{ref} decreases as denoising progresses.

Table 7 compares different weighting strategies. Using only $\hat{\mathbf{z}}_{\mathbf{y}}$ ($\lambda_{\text{curr}}=1, \lambda_{\text{ref}}=0$) severely degrades all metrics, confirming that measurement satisfaction alone is insufficient. Using only $\hat{\mathbf{z}}_0^{(t)}$ ($\lambda_{\text{curr}}=0, \lambda_{\text{ref}}=1$) improves unpaired metrics but sacrifices paired performance. Fixed symmetric weighting ($\lambda_{\text{curr}}=\lambda_{\text{ref}}$) provides balanced results but does not account for trajectory evolution. Time-dependent schemes align better with diffusion dynamics: $\lambda_{\text{curr}} = \frac{\lambda_{\text{ref}}\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t-1}}$ (our default, highlighted in gray) achieves the best unpaired metrics (FID, KID) and competitive paired metrics, while

④ Data consist.		SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow
λ_{curr}	λ_{ref}					
1	0	0.8677	22.5991	0.1623	20.1817	0.0088
0	1	0.8552	23.1475	0.0833	10.4362	0.0014
λ_{ref}	λ_{curr}	<u>0.8862</u>	<u>23.7223</u>	<u>0.0748</u>	<u>9.8565</u>	<u>0.0010</u>
$\frac{\lambda_{\text{ref}}(1-\bar{\alpha}_{t-1})}{\bar{\alpha}_{t-1}}$	—	0.8864	23.7327	0.0749	9.8938	0.0012
$\frac{\lambda_{\text{ref}}\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t-1}}$	—	0.8859	23.7027	0.0746	9.7669	0.0009

Table 7: **Ablation study on standard denoising frequency.** Impact of periodic standard denoising interval N (component (C) in Fig. 2). $N=2$ (gray row, our default) balances trajectory stability and measurement preservation. **Bold:** best, underline: second-best.

(C) Std. denoising	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	FID \downarrow	KID \downarrow
$N=1$	0.8860	23.7041	0.0748	9.8309	0.0013
$N=2$	<u>0.8859</u>	<u>23.7027</u>	0.0746	9.7669	0.0009
$N=3$	0.8858	23.6891	0.0746	9.7841	0.0014
$N=5$	0.8857	23.6780	0.0746	<u>9.7687</u>	0.0013
$N=10$	0.8855	23.6602	0.0746	9.8106	0.0016
$N=25$	0.8852	23.6387	<u>0.0747</u>	9.9489	<u>0.0012</u>
$N=50$	0.8552	23.1475	0.0833	10.4362	0.0014

Table 8: **Ablation study on data consistency interpolation weights.** Comparison of different weighting strategies for balancing $\hat{\mathbf{z}}_y$ and $\hat{\mathbf{z}}_0^{(t)}$ in Eq. 6. Time-dependent weighting $\lambda_{\text{curr}} = \frac{\lambda_{\text{ref}}\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t-1}}$ (gray row, our default) achieves the best balance across metrics. **Bold:** best, underline: second-best.

$\lambda_{\text{curr}} = \frac{\lambda_{\text{ref}}(1-\bar{\alpha}_{t-1})}{\bar{\alpha}_{t-1}}$ performs best on paired metrics. We select the former as it better balances all metrics and produces more stable trajectories.

Frequency of standard denoising. Table 8 examines the frequency N of periodic standard denoising steps (component (C)), which realigns trajectories with noisy data manifolds \mathcal{M}_t . Too frequent application ($N=1$) over-smooths measurement constraints, slightly degrading unpaired metrics. Too infrequent application ($N \geq 25$) prevents sufficient optimization, degrading all metrics. $N=2$ (our default, highlighted in gray) provides the best balance, achieving optimal unpaired performance (FID, KID) while maintaining strong paired metrics. This confirms that moderate realignment frequency effectively stabilizes trajectories without over-smoothing measurement constraints.

A.5 ADDITIONAL RESULTS

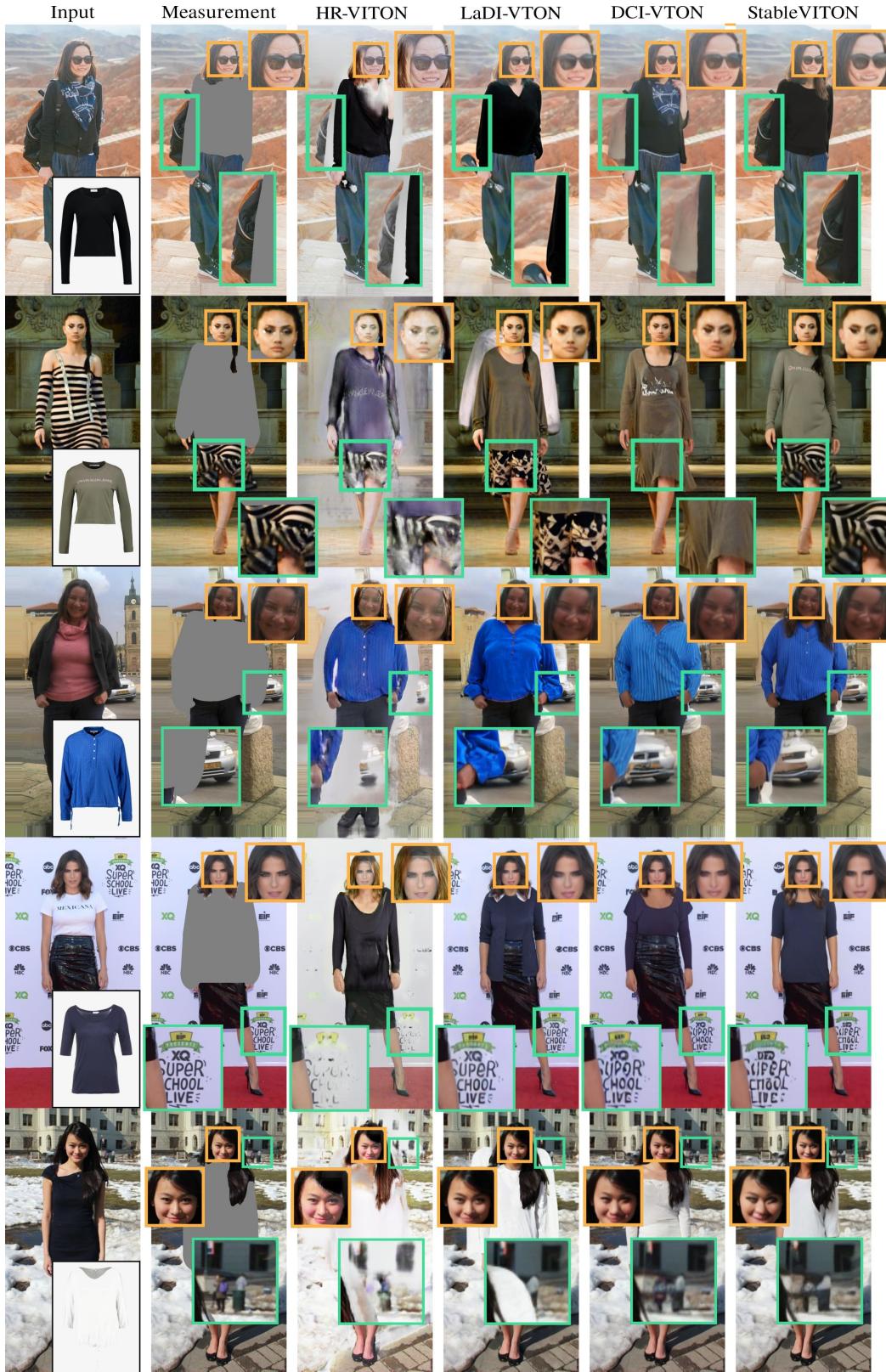
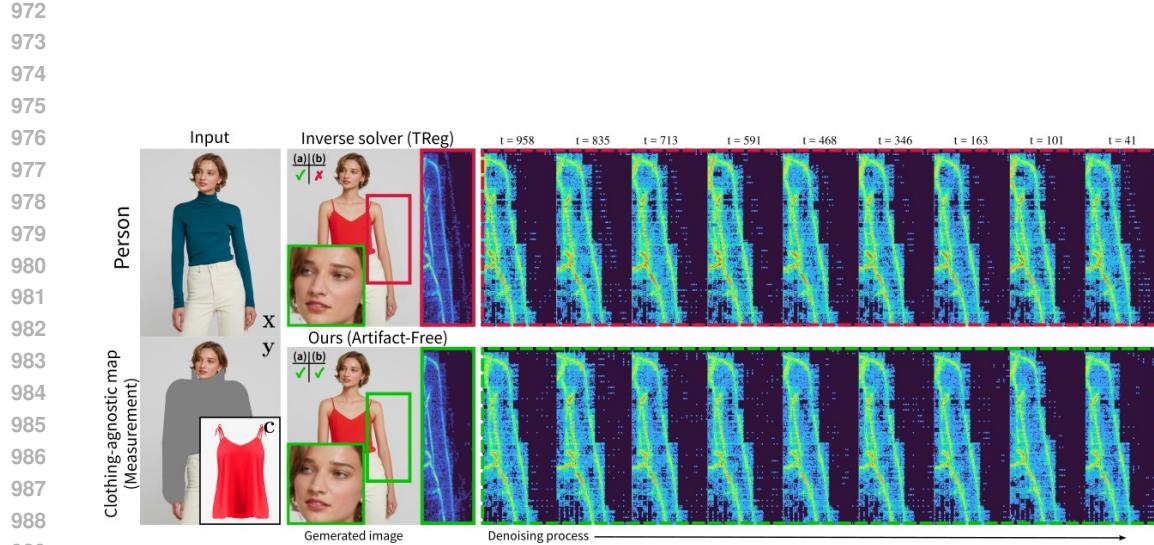
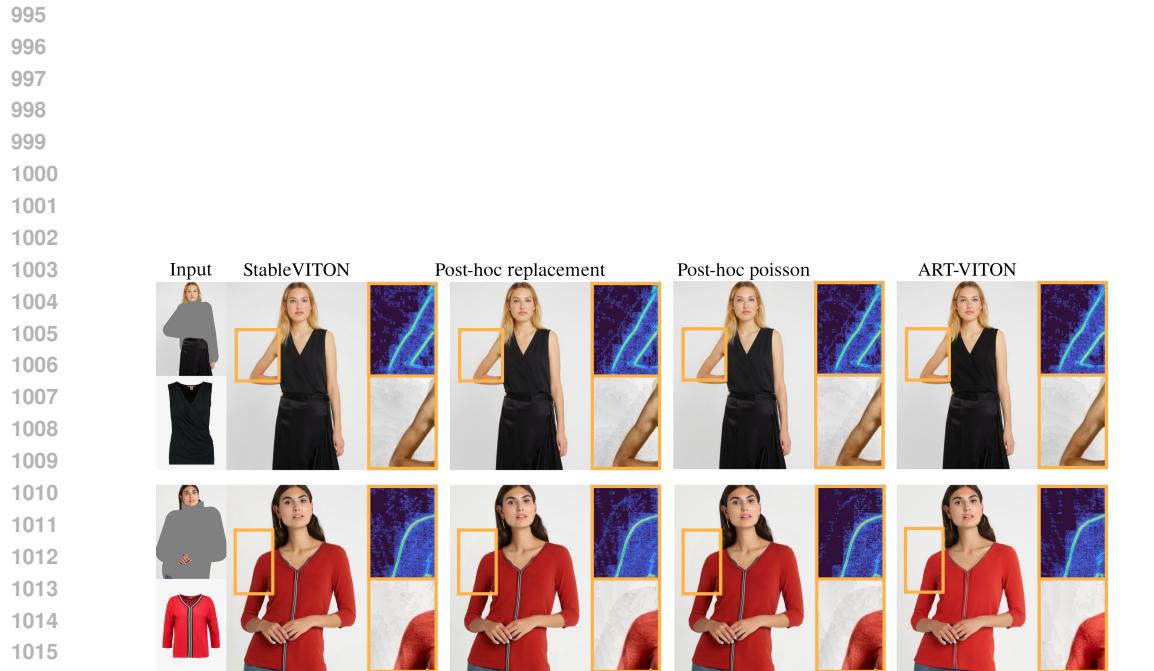


Figure 7: Qualitative results of baseline models on the SHHQ-1.0 dataset. Our observations show that generated images fail to preserve content in non-try-on regions: bags, skirts, cars, text, and human features (green boxes). Orange boxes indicate areas where facial details are not properly preserved.

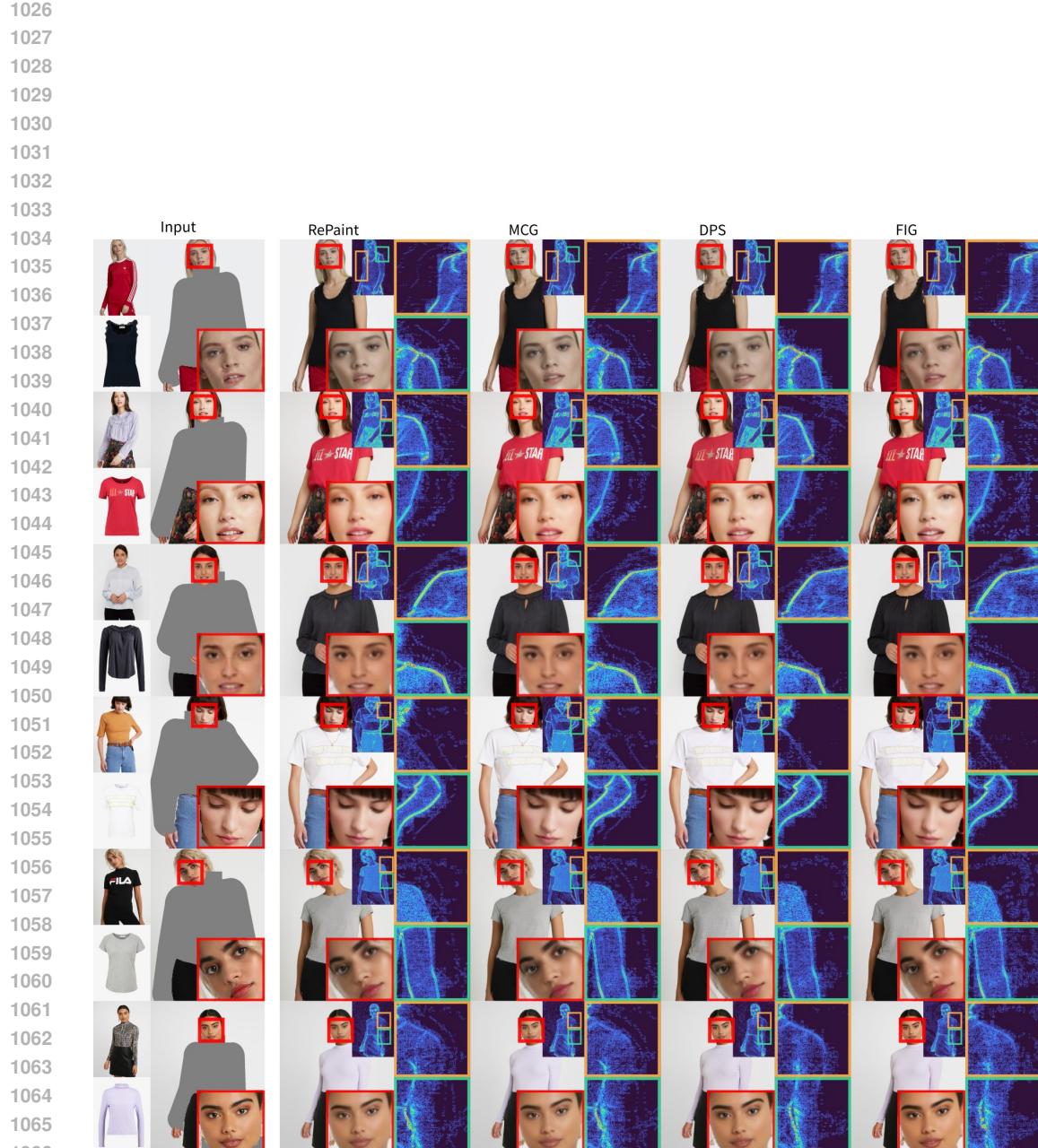


990 Figure 8: Extended comparison of artifact maps across timesteps during generation for the inverse
991 solver (TReg) versus ART-VITON. We highlight semantic drift: TReg produces predominantly red
992 maps, indicating persistent artifacts, while ART-VITON mitigates drift and satisfies both (a) artifact-
993 free outputs and (b) measurement adherence, yielding mostly green maps. Solid and dashed boxes
994 denote final and intermediate outputs, respectively.



1017 Figure 9: Comparison of post-hoc replacement, Poisson blending, and ART-VITON. Both post-hoc
1018 replacement and Poisson blending produce visible inconsistencies at region junctions (orange boxes:
1019 contrast-enhanced close-ups with artifact maps). Poisson blending smooths gradients in pixel space
1020 but often amplifies distortions by masking rather than resolving latent-space misalignment. ART-
1021 VITON substantially mitigates artifacts by addressing their root cause during diffusion sampling,
1022 producing visually coherent results with preserved fine details.

1023
1024
1025



1067
1068 Figure 10: StableVITON on VITON-HD with inverse solvers applied without post-hoc replacement.
1069 Red indicates face zoom-in, and orange and green indicate artifact map zoom-ins. Hard constraint
1070 solvers (RePaint, MCG) and progressive update solvers (DPS, FIG) fail to fully satisfy measure-
1071 ments, highlighting the need for post-hoc replacement. Hard constraints generate artifacts due to
1072 semantic inconsistencies across regions, whereas progressive updates produce minimal artifacts, as
1073 each update induces only small changes.
1074
1075
1076
1077
1078
1079

Figure 11: Comparison on the VITON-HD dataset with baseline (StableVITON) and existing inverse solvers. **Red** circles highlight texture degradation, particularly in hybrid stochastic methods (DreamSampler, TReg), while our approach preserves fine garment details and patterns. **Orange** boxes indicate artifacts present in other methods, which are absent in our results.



Figure 12: Additional qualitative results on the VITON-HD comparing baseline methods with our approach. (a) Comparison of baselines and their versions enhanced with our method: our approach consistently removes boundary artifacts while preserving high-frequency garment details such as logos, text, and complex patterns. (b) Results of the remaining models without our enhancement: in 2-stage pipeline models, warping results show garment distortions and color inconsistencies.



Figure 13: Extended comparison demonstrating robustness across domains on the SHHQ-1.0 dataset. (a) Comparison of baselines and their versions enhanced with our method: even in cross-domain scenarios, our approach effectively removes artifacts, demonstrating robustness. (b) Other VITON methods show boundary artifacts and garment distortion, whereas our approach preserves boundaries and garment details.

Figure 14: Extended comparison demonstrating robustness across domains on the SHHQ-1.0. Other VITON methods show boundary artifacts and garment distortion.

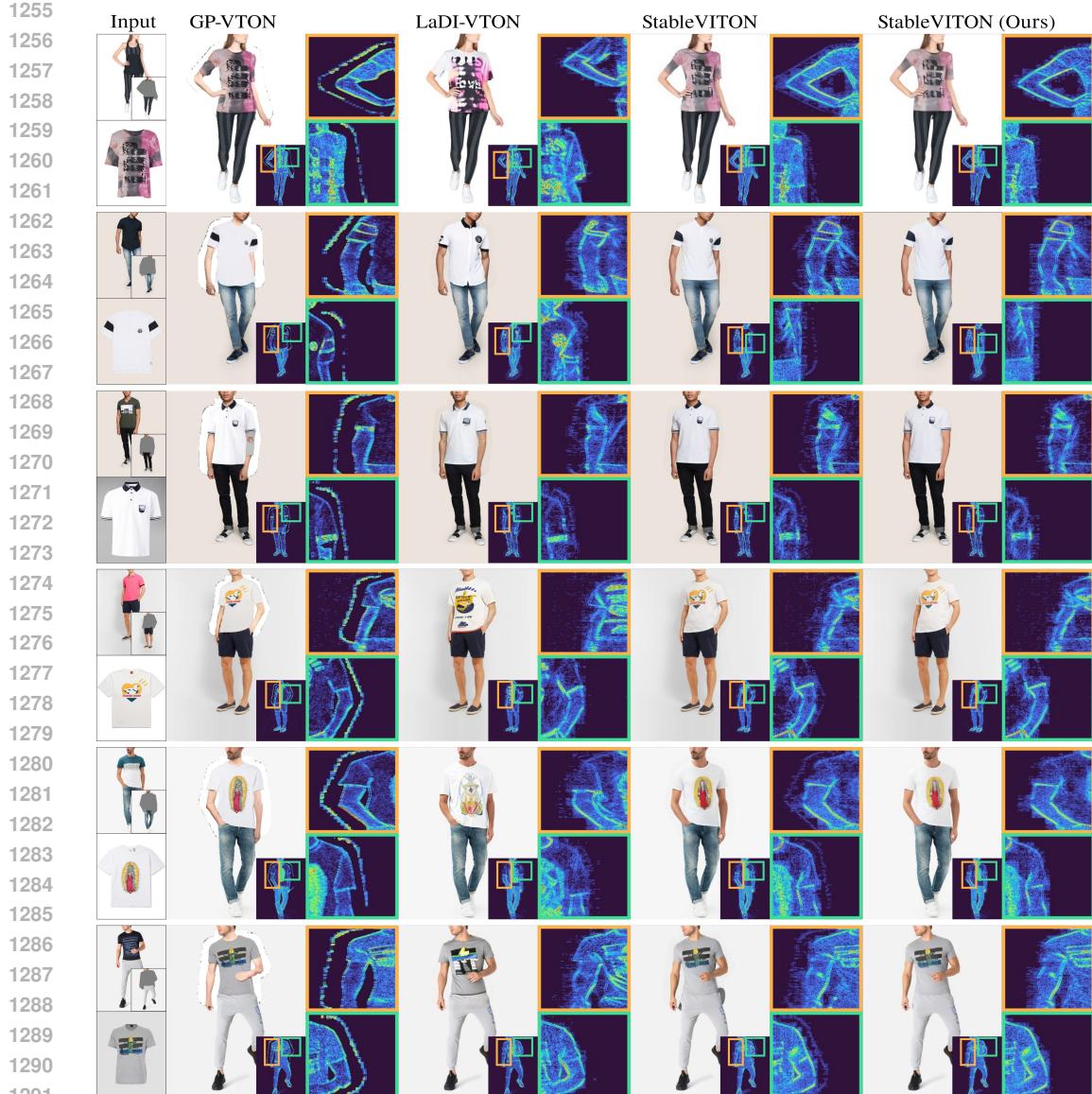


Figure 15: Qualitative comparison of baseline VITON methods on DressCode. Traditional methods (GP-VTON, LaDI-VTON) exhibit misalignment and texture distortion, while StableVITON shows boundary artifacts despite better garment alignment. Our method applied to StableVITON (right-most) alleviates boundary inconsistencies while preserving garment details and identity features.