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ABSTRACT

Virtual try-on (VITON) aims to generate realistic images of a person wearing a
target garment, requiring precise garment alignment in try-on regions and faith-
ful preservation of identity and background in non-try-on regions. While latent
diffusion models (LDMs) have advanced alignment and detail synthesis, preserv-
ing non-try-on regions remains challenging. A common post-hoc strategy directly
replaces these regions with original content, but abrupt transitions often produce
boundary artifacts. To overcome this, we reformulate VITON as a linear inverse
problem and adopt trajectory-aligned solvers that progressively enforce measure-
ment consistency, reducing abrupt changes in non-try-on regions. However, ex-
isting solvers still suffer from semantic drift during generation, leading to arti-
facts. We propose ART-VITON, a measurement-guided diffusion framework that
ensures measurement adherence while maintaining artifact-free synthesis. Our
method integrates residual prior-based initialization to mitigate training-inference
mismatch and artifact-free measurement-guided sampling that combines data con-
sistency, frequency-level correction, and periodic standard denoising. Experi-
ments on VITON-HD, DressCode, and SHHQ-1.0 demonstrate that ART-VITON
effectively preserves identity and background, eliminates boundary artifacts, and
consistently improves visual fidelity and robustness over state-of-the-art baselines.

1 INTRODUCTION

Virtual try-on (VITON) aims to synthesize photorealistic images of a person wearing a desired gar-
ment, enabling personalized and immersive online shopping experiences. Given a person image
and clothing item, the system must align the garment to the body (try-on regions) while preserving
identity (e.g., face, hair) and background (non-try-on regions). Despite progress in generative mod-
els, this task remains challenging due to two requirements: precise garment alignment and faithful
preservation of non-try-on regions. Various approaches have been proposed to address these chal-
lenges (Han et al., 2018; Yu et al., 2019; Yang et al., 2020; Ge et al., 2021; Choi et al., 2021b; Xie
et al., 2023; Morelli et al., 2023; Gou et al., 2023; Wang et al., 2024; Kim et al., 2024a; Choi et al.,
2024), yet they have primarily focused on garment alignment, leaving the preservation of non-try-on
regions largely underexplored.

Early VITON methods (Han et al., 2018; Yu et al., 2019; Yang et al., 2020; Ge et al., 2021) relied
on GAN-based two-stage pipelines with garment warping and synthesis networks, which improved
alignment but suffered from sensitivity to warping accuracy, instability, and poor generalization due
to limited garment-person diversity in existing datasets (Han et al., 2018; Choi et al., 2021b; Morelli
et al., 2022). Recent diffusion models (DMs) (Ramesh et al., 2021; Rombach et al., 2022; Podell
et al., 2024) address these issues with stable training, broader coverage, and flexible conditioning,
achieving higher fidelity and stability. Two-stage approaches (Morelli et al., 2023; Wan et al., 2024)
still rely on garment warping, while one-stage approaches (Kim et al., 2024a; Choi et al., 2024) elim-
inate warping by conditioning on garment features (via LoRA Hu et al. (2022), DreamBooth Ruiz
et al. (2023)) or structural signals (via ControlNet Zhang et al. (2023), IP-Adapter Ye et al. (2023)).
These advances largely resolve alignment challenges and enable more reliable, detailed synthesis.

Despite significant progress in garment alignment, preserving non-try-on regions has been largely
overlooked. Even when models are directly conditioned on such regions, they fail to fully preserve
non-try-on areas, resulting in distorted facial features, altered backgrounds, and reduced realism
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Figure 1: Comparison of boundary artifacts across methods. We evaluate two criteria: (a) artifact-
free outputs and (b) adherence to measurements. StableVITON achieves (a) but fails in (b). Post-
hoc replacement enforces (b) but introduces seams, breaking (a). Inverse solvers maintain (b) but
suffer semantic drift, degrading (a) over time. ART-VITON satisfies both (a) and (b). Green: suc-
cess(measurement adherence or artifact-free); red: violations or artifacts. Solid/Dashed boxes show
final/intermediate (t=835) outputs.

(see Fig. 1, second column; also Appendix Fig. 7). A common strategy (Yang et al., 2020; Xie
et al., 2023; Gou et al., 2023) for preserving identity is based on post-hoc replacement, where
the generated output is projected onto predefined masks or clothing-agnostic maps (Fig. 1, leftmost
column) so that non-try-on regions are directly overwritten with original pixels. In this work, we
refer to these masks as measurements. While intuitive, this approach often introduces boundary
artifacts at region interfaces, manifesting as color mismatches, lighting inconsistencies, or broken
textures (Fig. 1). The root cause is a spatial discontinuity: the generative model evolves freely during
inference, unaware of the hard replacement that will occur afterward, resulting in abrupt transition
once replacement is applied.

To address the issue of images being generated without completely reflecting measurements, we
formulate VITON as a linear inverse problem and integrate existing trajectory-aligned inverse
solvers (Chung et al., 2024; Kim et al., 2025) into the latent diffusion model (LDM) sampling
process. Compared to post-hoc methods, these solvers progressively guide the latent denoising
trajectory, better adhering to measurements and enabling smooth transitions instead of abrupt region
replacements. Nevertheless, these solvers can induce semantic inconsistencies between try-on and
non-try-on regions during generation, potentially accumulating into boundary artifacts (Fig. 1, fourth
column; also Appendix Fig. 8). This limitation highlights the need for a more robust solver that can
maintain semantic coherence while satisfying measurements throughout the generation process.

To mitigate semantic drift and enhance visual quality, we propose ART-VITON, a novel latent diffu-
sion inverse solver that enforces measurement consistency during generation, yielding artifact-free
synthesis. Our solver incorporates three key components: (i) data consistency, preserving semantic
coherence and reducing drift, (ii) frequency-level correction, restoring high-frequency details lost
during pixel-to-latent transition, and (iii) periodic standard denoising, leveraging prior knowledge
to provide temporal alignment across regions. To avoid instability from direct trajectory manipula-
tion and mitigate training-inference mismatch Lin et al. (2024), a residual prior is injected at initial-
ization to maintain both stability and generative diversity. Operating externally without modifying
the LDM, our framework is model-agnostic and applicable to diverse VITON pipelines (Fig. 2).
Consequently, ART-VITON preserves non-try-on regions, improves garment alignment, eliminates
boundary artifacts (Fig. 1), and demonstrates improved results on three benchmark VITON datasets.

2 RELATED WORK

2.1 IMAGE-BASED VITON METHODS

Early VITON approaches primarily relied on GAN-based two-stage pipelines, where garmets were
warped to align with target poses and then integrated into the person image. Pioneering works (Han
et al., 2018; Yang et al., 2020) used geometric matching or thin-plate spline transformations, while
later methods, including VITON-HD Choi et al. (2021b), HR-VITON Lee et al. (2022), and GP-
VTON Xie et al. (2023), extended this framework to high-resolution settings, improving detail
preservation. Despite progress, these pipelines remained highly sensitive to warping errors, un-
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stable during training, and limited in generalization, while still depending on post-hoc replacement
for preserving identity, which introduced boundary artifacts.

Latent diffusion models (LDMs) brought more stable training, better garment fidelity, and control-
lable synthesis. Two-stage pipelines (e.g., LaDI-VTON Morelli et al. (2023), DCI-VTON Gou et al.
(2023), FLDM-VTON Wang et al. (2024), GarDiff Wan et al. (2024)) retain warping modules before
diffusion, while one-stage methods bypass warping by encoding garment semantics (e.g., LoRA Hu
et al. (2022), Textual Inversion Gal et al. (2023)) or injecting spatial cues through adapters (Zhang
et al., 2023; Ye et al., 2023; Hu, 2024; Kingma & Welling, 2022). StableVITON Kim et al. (2024a)
strengthens garment–human interaction via a zero cross-attention block in ControlNet Zhang et al.
(2023), while Boow-VTON Zhang et al. (2025b) encodes garments with a Parallel U-Net Hu (2024)
and integrates them into self-attention to enhance structural representation. DreamPaint Seyfioglu
et al. (2023) binds garments to custom tokens using DreamBooth Ruiz et al. (2023). Yet, even
with these advances, most LDM-based approaches still rely on post-hoc replacement for non-try-on
regions, leaving spatial discontinuity at boundaries unresolved.

2.2 DIFFUSION INVERSE SOLVERS

Diffusion inverse solvers aim to integrate measurement constraints into the denoising process. In-
stead of conditioning on measurements alone, inverse solvers modify the sampling trajectory to align
outputs with observations. Early works such as RePaint Lugmayr et al. (2022b) and ILVR Choi
et al. (2021a) applied hard projection strategies on pixel-space, while Diffusion Posterior Sam-
pling (DPS) Chung et al. (2023) adjusted sampling trajectories with measurement gradients and
Measurement-Constrained Gradient (MCG) Chung et al. (2022) enforced projection onto measure-
ment subspaces. Although these methods improve measurement adherence, they often distort de-
noising trajectories at high noise levels and accumulate semantic mismatches, producing boundary
artifacts. Recent extensions to LDMs attempt to mitigate this. PSLD Rout et al. (2023) extends
DPS into the latent domain, Resample Song et al. (2024) reintroduces noise after replacement in an
MCG-manner, and TReg Kim et al. (2025) or DreamSampler Kim et al. (2024b) alternate between
pixel- and latent-space refinements for stability. While effective in reducing abrupt post-hoc incon-
sistencies when inverse solvers are applied to VITON, these approaches still fail to maintain smooth
semantic coherence between try-on and non-try-on regions, motivating the need for a solver tailored
to artifact-free try-on synthesis.

3 PRELIMINARIES

3.1 LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) Rombach et al. (2022) perform the diffusion process in a com-
pressed latent space, improving efficiency while preserving semantics. An input image x is encoded
into a latent code z0 = E(x) via a pre-trained encoder E , which is progressively perturbed into
zt at timestep t by adding Gaussian noise. At each step, a denoising network ϵθ(zt, t, c) predicts
the noise added, conditioned on auxiliary inputs c (e.g., garments, measurements, or text). Using
Tweedie’s formula, the posterior latent estimate is:

ẑ
(t)
0 =

1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t, c)

)
, (1)

where ᾱt is the cumulative noise scale. Based on this, the DDIM Lugmayr et al. (2022a) sampler
provides a deterministic update:

zt−1 =
√
ᾱt−1 · ẑ(t)0 +

√
1− ᾱt−1 · ϵθ(zt, t, c). (2)

These iterative refinements produce high-quality samples while allowing for controllable condition-
ing.

3.2 LINEAR INVERSE PROBLEMS

Many imaging tasks, such as inpainting, super-resolution, and deblurring, can be cast as linear
inverse problems, where the observed measurement y ∈ Rm is a partial or degraded version of the
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underlying image x ∈ Rn. This is generally expressed as:

y = Ax+ n, n ∼ N (0, σ2I), (3)

where A ∈ Rm×n is a linear operator and n denotes additive Gaussian noise. The objective is
to recover x that both satisfies the measurements and remains consistent with the natural image
distribution. Classical approaches impose explicit priors, while diffusion-based inverse solvers in-
corporate measurement constraints directly into the denoising process.

4 METHOD

4.1 REFORMULATING VITON AS AN INVERSE PROBLEM

Virtual try-on requires generating a new garment in try-on regions while preserving identity and
background in non-try-on regions. Let x be the target person image and y the observed non-try-on
regions defined by a clothing-agnostic map (see Fig. 1). This forms a linear inverse problem Eq. 3,
where A is a masking operator. The objective is to reconstruct x such that (i) measurements y are
faithfully preserved, (ii) attributes of the reference garment c are retained, and (iii) overall visual
coherence is achieved. Since y is provided to the model as a noise-free conditioning input, it is
assumed noise-free, i.e., no noise n in Eq. 3.

This perspective enables direct incorporation of measurement consistency into the sampling trajec-
tory of LDMs, avoiding reliance on post-hoc replacement. Assuming a well-trained autoencoder
(E ,D), the target image x is reconstructed from the latent vector z via x = D(z) and clean latent
estimate ẑ

(t)
0 in Eq. 1. The conditional distribution then factorizes as:

p(x|y, ẑ(t)0 ) ∝ p(ẑ
(t)
0 |D(z),y) · p(y|D(z)), (4)

where the first term encourages semantic plausibility (garment fidelity and visual coherence), while
the second enforces measurement preservation (non-try-on regions). Standard LDM inference does
not explicitly enforce this balance: non-try-on regions evolve freely and are often corrected post-
hoc, introducing boundary seams. Existing inverse solvers enforce measurements y during sampling
but often too rigidly, leading to semantic drift and boundary artifacts. We therefore introduce ART-
VITON, which directly embeds measurement consistency into the sampling trajectory through two
innovations: (a) prior-based initialization and (b) artifact-free measurement-guided sampling.

4.2 PRIOR-BASED INITIALIZATION

Eq. 4 defines the VITON posterior as balancing two terms: p(ẑ(t)0 |D(z),y) (data consistency) and
p(y|D(z)) (measurement constraint). For this posterior estimation to be valid, the initial latent zT
must lie on the noisy data manifold MT . However, diffusion models suffer from train-test mis-
match: training uses zT with residual signals at T=999, while inference commonly starts from pure
Gaussian noise at reduced timesteps (e.g., T=981 in DDIM and VITON baselines (Wan et al., 2024;
Kim et al., 2024a)). This mismatch causes zT to lie off-manifold, leading to inaccurate posterior
terms and error accumulation across denoising steps.

We address this with residual prior-based initialization that places zT on MT without additional
modules. Starting from Gaussian noise z999, we apply one DDPM Ho et al. (2020) denoising step
to obtain z998 and use it as zT (see Fig. 2 (A)). This ensures both posterior terms in Eq. 4 are
computed from on-manifold latents, stabilizing the inverse problem formulation. Table 1 shows
consistent improvements across all baselines, confirming that proper initialization directly enhances
posterior estimation reliability—the foundation of our inverse solver framework.

4.3 ARTIFACT-FREE MEASUREMENT-GUIDED SAMPLING

Naively enforcing measurements during denoising can preserve non-try-on regions but often in-
troduces boundary artifacts, since rigid constraints disrupt semantic continuity. To balance mea-
surement fidelity with artifact-free semantic plausibility, ART-VITON iteratively refines samples to
converge toward a latent code ẑ0 that satisfies the measurement constraint, by integrating following
complementary techniques, as shown in Fig. 2.
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Figure 2: ART-VITON pipeline. (A) Prior-based initialization places zT on the data manifold,
enabling valid posterior sampling for the inverse problem. (B) Artifact-free measurement-guided
solver enforces measurements while preserving semantics: 1⃝ Tweedie estimation retains garment
details but violates measurements in non-try-on regions. 2⃝ Hard measurement constraints in pixel
space correct preserved regions. 3⃝ VAE re-encoding causes high-frequency loss, which is recov-
ered via 4⃝ data consistency optimization and 5⃝ frequency-level correction, detailed in (B-1). (C)
Periodic standard denoising realigns the trajectory with noisy data manifolds Mt for smooth smooth
inter-region blending. (B-2) visualizes the complete sampling trajectory.

2⃝ Hard measurement constraint. At each step, non-try-on regions (in pixel-space) are replaced
with ground-truth measurements, directly enforcing p(y|D(z)) in Eq. 4 and ensuring faithful iden-
tity preservation:

x̂y = M⊙ y + (1−M)⊙D(z), (5)

where M is a binary mask (1 for measurements) and z is initialized as ẑ(t)0 . The updated image x̂y

is then re-encoded to ẑy = E(x̂y), which aligns the latent with measurement constraints but may
cause information loss, moving ẑy away from the semantic trajectory (red line in Fig. 2 (B-2)).

4⃝ Data consistency. Hard measurement constraint in 2⃝ is insufficient to preserve reference
(garment) image attributes, leading to semantic inconsistencies across regions. Thus, focusing on
p(ẑ

(t)
0 |D(z),y) in Eq. 4, z is initialized with ẑy and optimized via TReg Kim et al. (2025), i.e., ẑy

is interpolated toward the reference-informed latent ẑ(t)0 in Eq. 1:

min
z

∥∥∥∥∥ ẑ(t)0 − E(D(z))

2σ2
E

∥∥∥∥∥
2

2

, ẑ
(t)
0 (ᾱt−1) = ᾱt−1ẑy + (1− ᾱt−1)ẑ

(t)
0 , (6)

where σE denotes encoder reconstruction noise and ᾱt−1 ∈ [0, 1] controls the interpolation strength.

5⃝ High-frequency correction. The optimized latent ẑy from Eq. 6 closely approximates the true
latent zy but suffers from high-frequency degradation due to VAE compression—a known limitation
typically addressed via retraining (Zhang et al., 2025a; Novitskiy et al., 2025; Almog et al., 2025).
Direct interpolation with ẑy would propagate this degradation across all regions, causing semantic
misalignment between try-on and non-try-on areas.

We address this through frequency-domain correction without retraining. For measurement regions,
we construct a corrected latent ẑ′y = ẑlow

y + ẑ
(t),high
0 via per-channel Fourier transform, fusing low-

frequency structure from the optimized ẑy with high-frequency details from the reference-informed
ẑ
(t)
0 . For masked regions, we directly retain ẑ

(t)
0 , which already contains accurate high-frequency

information:

ẑ
(t)
0 (ᾱt−1) = M⊙

[
ᾱt−1ẑ

′
y + (1− ᾱt−1)ẑ

(t)
0

]
+ (1−M)⊙ ẑ

(t)
0 . (7)
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Figure 3: Qualitative comparison across inverse solver categories: (a) Hybrid stochastic methods
(DreamSampler, TReg) reduce visible artifacts but lose high-frequency details. (b) Hard constraint
(RePaint, MCG) and progressive methods (DPS, FIG) rely on post-hoc replacement, leading to
boundary artifacts. Our method mitigates both issues, preserving fine details and enhancing visual
coherence across all regions.

This selective refinement preserves semantic alignment across regions while recovering fine-grained
details, eliminating artifacts without disturbing garment synthesis.

(C) Standard denoising. To avoid instability from repeated measurement-guided corrections, every
N steps we apply standard denoising steps, leveraging the diffusion model’s inherent ability to har-
monize inter-region inconsistencies. This realigns trajectories with the LDM manifold and prevents
over-constrained solution, e.g., noisy latent zt−1 is guided to be positioned on the subsequent noisy
manifolds (in Fig. 2 (B-2)). Overall, the complete pipeline alternates between measurement-guided
updates (A)→(B) and standard denoising (C), following the sequence: (A)→(B)→(C)→(B)→(C)→
. . . , ensuring both measurement consistency and visual fidelity throughout generation.

5 EXPERIMENTS

Dataset. We evaluate our method on three datasets: VITON-HD (Choi et al., 2021b), Dress-
Code (Morelli et al., 2022), and SHHQ-1.0 (Fu et al., 2022). VITON-HD contains 11, 647 training
and 2, 032 test pairs of frontal-view female upper-body images (1024 × 768). DressCode includes
full-body images with upper/lower/dress items, totaling 15, 363, 8, 951, and 2, 947 pairs, with 1, 800
test pairs per category (1024× 768); we conduct experiments only on upper-body items. SHHQ-1.0
provides 40K high-quality full-body images (1024 × 512); for evaluation, we use the first 2, 032
images, applying VITON-HD preprocessing to generate input conditions.

Baselines. We compare against GAN-based (HR-VITON Lee et al. (2022), GP-VTON Xie et al.
(2023)) and LDM-based VITON models (LaDI-VTON Morelli et al. (2023), DCI-VTON Gou et al.
(2023), GarDiff Wan et al. (2024), StableVITON Kim et al. (2024a), IDM-VTON Choi et al. (2024),
OOTDiffusion Xu et al. (2025), ITA-MDT Hong et al. (2025)). We also benchmark inverse solvers,
categorized as: hard constraint (RePaint Lugmayr et al. (2022b), MCG Chung et al. (2022)), pro-
gressive update (DPS Chung et al. (2023), FIG Yan et al. (2025)), and hybrid stochastic (Dream-
Sampler Kim et al. (2024b), TReg Kim et al. (2025)). Unless otherwise noted, all comparisons use
post-hoc replacement, which is also required for hard constraint and progressive update solvers as
they fail to fully preserve measurements. See Appendices A.2 and A.3 for details of VITON and
inverse solvers.

Evaluation metric. We evaluate performance under two settings: paired, where the model recon-
structs the original clothing, and unpaired, where the clothing is replaced. In the paired setting,
we report PSNR and SSIM for pixel fidelity and structural consistency, and LPIPS for perceptual
similarity. In the unpaired setting, we adopt FID to measure visual realism and global distributional
coherence, and KID to assess sample diversity.

5.1 IMPACT OF PRIOR-BASED INITIALIZATION

6
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Figure 4: Qualitative results on VITON-HD. Gradient magnitude heatmaps reveal spatial disconti-
nuities at region boundaries (necklines, sleeves, waistlines) in baseline models. Our method sub-
stantially reduces these artifacts while preserving garment details (patterns, textures, logos).

Model SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
DCI-VTON Gou et al. (2023) 0.8607 23.6629 0.0852 12.6386 0.0014
+ Prior @ T=999 0.8880 24.1447 0.0782 11.4713 0.0011
GarDiff Wan et al. (2024) 0.8062 21.1075 0.1016 11.7048 0.0061
+ Prior @ T=999 0.8448 21.8611 0.0864 10.5322 0.0034
StableVITON Kim et al. (2024a) 0.8550 23.1214 0.0835 10.8716 0.0022
+ Prior @ T=999 0.8552 23.1475 0.0833 10.4362 0.0014

Table 1: Effect of prior-based initialization at T=999 across
baseline models on VITON-HD. Our method consistently
improves all metrics regardless of architecture.

Our prior-based initialization miti-
gates the train-test mismatch and
consistently improves performance
across all architectures (Table 1). By
default, all baselines start denois-
ing at T=981: DCI-VTON overlays
warped garments from its module,
GarDiff initializes with pure Gaus-
sian noise, and StableVITON uses
noisy real images. Since StableVI-
TON’s initialization is tailored for unpaired settings, we replaced zT with pure noise for fair paired
comparisons. Adjusting starting timestep T=999 alone already boosts performance, particularly
for StableVITON (paired) and DCI-VTON. In unpaired settings, our residual prior-based initial-
ization better fills masked regions with plausible structure, yielding sharper and more consistent
garments, especially for StableVITON. GarDiff also shows notable gains, demonstrating the broad
utility across architectures of our approach.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓ FLOPs (T) ↓ Inf. (s) ↓ Mem. (GB) ↓
StableVITON (baseline) 0.8839 23.5965 0.0757 9.8694 0.0016 86.178 9.117 7.66

RePaint Lugmayr et al. (2022b) 0.8856 23.6635 0.0752 10.0829 0.0018 87.864 9.241 7.66
MCG Chung et al. (2022) 0.8855 23.6641 0.0752 10.085 0.0015 259.87 13.518 10.38
DPS Chung et al. (2023) 0.8851 23.6390 0.0749 9.9425 0.0014 259.87 13.573 10.38
DreamSampler Kim et al. (2024b) 0.8904 23.8984 0.0771 10.5143 0.0018 267.22 25.463 7.66
FIG Yan et al. (2025) 0.8851 23.6390 0.0749 9.9427 0.0014 259.87 13.389 10.38
TReg Kim et al. (2025) 0.8909 23.8205 0.0844 11.7467 0.0024 130.63 11.382 7.66
Ours 0.8859 23.7027 0.0746 9.7669 0.0009 130.63 12.101 7.66

Table 2: Comparison of StableVITON with existing inverse solvers on VITON-HD. All methods use
identical (A) initialization and (C) denoising steps from Fig. 2; only measurement-guided sampling
(B) differs. Red cells: degradation vs. baseline. Bold: best, underline: second-best. Inf.: inference
time (s) per image; Mem.: memory usage (GB). Existing solvers exhibit trade-offs—improving
paired metrics at the cost of unpaired performance—while ours achieves balanced improvements.

5.2 COMPARISON WITH EXISTING INVERSE SOLVERS

Table 2 compares our method with existing inverse solver categories—hard constraint, progressive
update, and hybrid stochastic. Prior solvers face a trade-off: they improve paired metrics (SSIM,
PSNR) but degrade unpaired performance (FID, KID), falling below baseline in perceptual qual-
ity. In contrast, ART-VITON achieves balanced improvements across all metrics. Hard constraint
methods (RePaint (Lugmayr et al., 2022b), MCG (Chung et al., 2022)) enforce measurements in
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Figure 5: Cross-domain results on SHHQ-1.0. Models trained on VITON-HD are evaluated on
in-the-wild images. Our method effectively mitigates artifacts across all baselines despite diverse
poses, lighting conditions, and garment styles, demonstrating strong generalization.

latent space but fail to fully satisfy them. Despite aggressive enforcement, incomplete measure-
ment satisfaction forces reliance on post-hoc replacement, causing abrupt transitions (Fig. 3b) that
slightly improve paired metrics but degrade unpaired performance. Progressive update methods
(DPS (Chung et al., 2023), FIG (Yan et al., 2025)) optimize more smoothly but still leave spatial
discontinuities, requiring post-hoc correction and resulting in unpaired metrics below baseline.

Hybrid stochastic solvers (DreamSampler (Kim et al., 2024b), TReg (Kim et al., 2025)) inject
stochastic noise to soften transitions, reducing visible artifacts. However, stochastic perturbations
degrade unpaired metrics, and VAE re-encoding loses high-frequency details, further harming per-
ceptual quality (LPIPS, Fig. 3a). Fig. 3 (top row) shows that these limitations appear consistently
across all solver categories. DreamSampler also incurs high inference cost, while gradient-based
methods require substantial memory. Our method maintains semantic alignment and preserves
high-frequency details throughout generation, achieving both measurement satisfaction and artifact-
mitigated synthesis at reasonable computational cost.

5.3 COMPARISON WITH VITON BASELINES

VITON-HD results. Table 3 shows that our method consistently improves all baselines in the
in-domain setting (VITON-HD/VITON-HD). It boosts paired metrics (SSIM, PSNR, LPIPS) by
reducing boundary artifacts and preserving high-frequency details, while also improving unpaired
metrics (FID, KID) through better semantic alignment. Fig. 4 illustrates this improvement: baseline
models exhibit boundary artifacts in gradient heatmaps around necklines, sleeves, and waistlines,
whereas our method removes these discontinuities and preserves fine garment details such as pat-
terns, textures, logos, and text. Comprehensive results are presented in See Fig. 12.

Cross-Domain generalization. The large domain gap between studio-quality and in-the-wild im-
ages poses challenges, yet our method improves performance (Table 3, right columns). It re-
duces artifacts across diverse baselines (DCI-VTON, StableVITON, IDM-VTON, OOTDiffusion,
ITA-MDT), enhancing visual coherence under varying poses, lighting, and garment styles. Base-
lines with moderate artifacts (e.g., DCI-VTON, StableVITON) achieve near-artifact-free results,
while those with severe artifacts (OOTDiffusion) improve noticeably but retain minor imperfections
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Dataset(train/test) VITON-HD / VITON-HD VITON-HD / SHHQ
Method SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓ FID ↓ KID ↓
HR-VITON Lee et al. (2022) 0.8710 22.3368 0.0986 11.7301 0.3926 36.2665 0.0184
GP-VTON Xie et al. (2023) 0.8718 23.6485 0.0838 12.0564 0.0029 − −
LaDI-VTON Morelli et al. (2023) 0.8779 22.7451 0.0876 10.5203 0.0004 22.2632 0.0045

DCI-VTON∗ Gou et al. (2023) 0.8871 24.1413 0.0782 11.3634 0.0012 21.2350 0.0055
DCI-VTON† 0.8908 24.5180 0.0746 10.9724 0.0022 21.3168 0.0048
DCI-VTON (Ours) 0.8946 24.6903 0.0722 10.5408 0.0005 21.1485 0.0040
GarDiff∗ Wan et al. (2024) 0.8418 21.7263 0.0895 10.5858 0.0042 − −
GarDiff† 0.8413 21.8914 0.0912 11.2894 0.0047 − −
GarDiff (Ours) 0.8463 21.9647 0.0866 10.3414 0.0036 − −
StableVITON∗ Kim et al. (2024a) 0.8839 23.5965 0.0757 9.8694 0.0016 22.7463 0.0066
StableVITON† 0.8832 23.5586 0.0772 9.9520 0.0017 22.9052 0.0061
StableVITON (Ours) 0.8859 23.7027 0.0746 9.7669 0.0009 22.5525 0.0040
IDM-VTON∗ Choi et al. (2024) 0.8440 20.1067 0.1193 11.5482 0.0050 27.1165 0.0125
IDM-VTON† 0.8441 20.1238 0.1201 12.1464 0.0058 26.4503 0.0105
IDM-VTON (Ours) 0.8477 20.4514 0.1183 11.5364 0.0048 24.3281 0.0086

OOTDiffusion∗ Xu et al. (2025) 0.8601 20.5861 0.0977 10.2954 0.0013 22.2065 0.0056
OOTDiffusion† 0.8564 20.6652 0.0968 10.3767 0.0022 22.2288 0.0058
OOTDiffusion (Ours) 0.8583 21.3201 0.0953 9.5175 0.0009 23.0877 0.0052

ITA-MDT∗ Hong et al. (2025) 0.8760 23.5203 0.0764 9.7530 0.0025 23.0280 0.0073
ITA-MDT† 0.8813 23.5662 0.0748 10.1198 0.0029 22.3726 0.0072
ITA-MDT (Ours) 0.8820 23.5735 0.0737 9.5977 0.0024 22.0231 0.0059

Table 3: Quantitative comparison on VITON-HD and cross-domain evaluation on SHHQ-1.0. Left
columns show same-domain results (VITON-HD/VITON-HD), right columns show generalization
capability (VITON-HD/SHHQ-1.0). ∗ indicates post-hoc replacement; † indicates post-hoc Poisson
blending. Our method, applied without architectural modifications, consistently improves all base-
line models across both in-domain and cross-domain settings.

(Fig. 5). Overall, all methods benefit from our approach, producing results better suited for practical
use. GP-VTON and GarDiff were excluded due to dataset-specific preprocessing.

Comparison with Poisson blending. We evaluate Poisson blending (Pérez et al., 2023), a gradient-
domain technique used in CAT-DM (Zeng et al., 2024), against post-hoc replacement (Table ??).
Results are inconsistent: most baselines show degraded unpaired metrics (FID, KID), and some
also worsen in paired metrics. This occurs because Poisson blending enforces gradient continuity
at boundaries but cannot fix intensity or texture mismatches, often leaving distortions at junctions
(Fig. 9). In contrast, our method addresses these issues during generation, maintaining semantic
alignment and restoring high-frequency details, yielding visually coherent. This indicates that ef-
fective artifact mitigation requires intervention during generation, not post-hoc correction.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
GP-VTON 0.8876 26.5946 0.0864 15.0994 0.0022
LaDI-VTON 0.9298 24.8196 0.0498 14.5299 0.0013
StableVITON 0.9366 26.5536 0.0365 13.0582 0.0015
StableVITON (Ours) 0.9377 26.7143 0.0361 13.0083 0.0009

Table 4: Quantitative evaluation on DressCode upper-body.
Our method consistently improves all metrics, showing ro-
bust performance in full-body scenarios.

DressCode results. On DressCode
upper-body, our method consistently
improves performance and reduces
boundary artifacts observed in prior
approaches (Table 4, Fig. 15). Ex-
isting methods struggle with complex
poses and long garments: GP-VTON
produces severe distortions, LaDI-
VTON suffers from texture degrada-
tion, and baseline StableVITON exhibits boundary seams. In contrast, StableVITON enhanced with
our solver suppresses these artifacts, achieving visually coherent results across challenging cases.

5.4 ABLATION STUDY

Initialization strategy analysis. Our Prior (DDPM) initialization achieves balanced gains across
both paired and unpaired metrics (Table 5). Injecting data into zT boosts paired metrics (SSIM,
PSNR, LPIPS) by preserving structure, while semantic alignment benefits unpaired metrics (FID,
KID). Alternative strategies reveal clear trade-offs: Pure lacks real data, lowering paired metrics;
Unmasked replaces measurement regions with noisy observations, misaligning semantics and de-
grading FID/KID; Offset noise adds global correlated noise to expand brightness range, which pre-
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zT @ T=999 SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
Pure 0.855 23.1214 0.0835 10.4349 0.0014
Pure (51 step) 0.855 23.1363 0.0834 10.4451 0.0012
Unmasked 0.8566 23.2551 0.0834 10.6985 0.0016
Offset noise 0.8425 22.1414 0.0962 10.3335 0.0015
Prior (DDIM) 0.855 23.1299 0.0835 10.4631 0.0015
Prior (DDPM) 0.8552 23.1475 0.0833 10.4362 0.0014

Table 5: Quantitative comparison of zT config-
urations at T=999 on StableVITON (VITON-
HD). Prior (DDPM) achieves a good balance,
showing strong performance across all metrics.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
Pure 0.8530 23.0727 0.0843 10.7491 0.0018
+ (A) Prior-based 0.8552 23.1475 0.0833 10.4362 0.0014
+ 2⃝ Hard measure. 0.8677 22.5991 0.1623 20.1817 0.0088
+ 4⃝ Data consist. 0.8855 23.4532 0.1064 14.0034 0.0029
+ 5⃝ Freq-Corr. 0.8861 23.7138 0.0749 9.8644 0.0013
+ (C) Std. denoising 0.8859 23.7027 0.0746 9.7669 0.0009

Table 6: Ablation study on StableVITON (VITON-
HD). Incrementally adding each component of our
method leads to consistent improvements, confirm-
ing their complementary roles.

Figure 6: Ablation study of pipeline components. Direct measurement enforcement increases arti-
facts, while subsequent additions (data consistency, frequency correction, and periodic denoising)
progressively reduce them, yielding artifact-free and coherent results.

serves semantic alignment and improves FID/KID but lacks real data, leading to poor paired metrics;
Prior (DDIM) reduces diversity due to deterministic sampling. In contrast, Prior (DDPM) injects
minimal semantic structure into initialization, aligning masked and measured regions while retaining
diversity, yielding the most balanced performance at T=999.

Component contribution. We further assess each module’s role. (A) Prior-based initialization
stabilizes trajectories and improves overall quality (Table 6). 2⃝ Direct measurement enforcement
guarantees constraint satisfaction but introduces severe boundary artifacts, showing the need for se-
mantic alignment (Fig. 6). 4⃝ Data consistency mitigates residual artifacts but only partially. 5⃝
Frequency correction recovers high-frequency details lost in VAE encoding, improving semantic
alignment across regions. (C) Periodic standard denoising leverages LDM priors for harmoniza-
tion, stabilizing trajectories, and enhancing coherence. Together, these results confirm that each
component is complementary, and their integration is essential for artifact-free, coherent synthesis.

6 CONCLUSION

We propose ART-VITON, a model-agnostic framework that addresses boundary artifacts in virtual
try-on. By reformulating VITON as a linear inverse problem and using measurement-guided diffu-
sion sampling, it preserves non-try-on regions and maintains garment alignment. Key innovations
include prior-based initialization to reduce training-inference mismatch and artifact-free sampling
via data consistency, frequency-level correction, and standard denoising. Experiments show im-
proved boundary coherence and high-frequency detail. ART-VITON delivers accurate, artifact-free
virtual try-on, providing users with a realistic and trustworthy preview of fit and style. Extending
ART-VITON to other editing tasks is promising, as artifact-free design generalizes beyond VITON.

Limitations. While ART-VITON effectively reduces boundary artifacts, its performance depends
on the quality of the underlying baseline. Models with severe inherent artifacts—such as major
semantic drift or measurement violations—benefit from our method but may retain minor imperfec-
tions. Combining our solver with stronger baselines could further improve results. Nevertheless, the
model-agnostic design ensures consistent gains across all baselines.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

We used a large language model OpenAI (2025) solely to improve the clarity and readability of
the manuscript (e.g., grammar and phrasing). The model did not contribute to research ideation,
methodology, or analysis, and the authors take full responsibility for all contents.

A.2 IMPLEMENTATION DETAILS OF BASELINES

We evaluate our method across diverse baseline models with varying architectures and configura-
tions. Our experiments include DCI-VTON Gou et al. (2023) and StableVITON Kim et al. (2024a),
both built on Stable Diffusion Rombach et al. (2022) v1.4; GarDiff Wan et al. (2024), which is based
on SD v2.1; IDM-VTON Choi et al. (2024) leveraging SDXL Podell et al. (2024) inpainting; OOT-
Diffusion Xu et al. (2025) using SD v1.5; and ITA-MDT Hong et al. (2025) built upon the Masked
Diffusion Transformer Gao et al. (2023). We utilize publicly available pretrained checkpoints for
all baselines, with the exception of StableVITON, which we train on the DressCode Morelli et al.
(2022) dataset focusing on upper-body items for consistency. The original baseline configurations
vary significantly in their sampling strategies. DCI-VTON, GarDiff, StableVITON, IDM-VTON,
and OOTDiffusion begin sampling from timestep T=981, while ITA-MDT starts at T=999. Ini-
tial latent construction also differs across methods: DCI-VTON overlays warped garments from its
warping module, StableVITON uses noisy real images, while GarDiff, IDM-VTON, OOTDiffusion,
and ITA-MDT initialize with pure Gaussian noise. Classifier-free guidance Ho & Salimans (2022)
scales range from 1.0 (DCI-VTON, GarDiff, StableVITON) to 2.0 (IDM-VTON, OOTDiffusion,
ITA-MDT) and 7.5 (LaDI-VTON).

For consistent evaluation, we standardize the inference protocol by applying prior-based initializa-
tion to all baselines and employing the DDIM Lugmayr et al. (2022a) sampler with 50 timesteps.
This unified setup enables fair comparison while demonstrating the model-agnostic nature of our
approach across different architectural paradigms. For inverse solvers, all methods are adapted to
the latent diffusion framework, sharing the same (A) initialization and (C) standard denoising steps
(N = 2), differing only in the (B) measurement-guided sampling component.

A.3 INVERSE SOLVER FORMULATION

We classify inverse solvers into three types: hard constraints (RePaint Lugmayr et al. (2022b),
MCG Chung et al. (2022)), progressive updates (DPS Chung et al. (2023), FIG Yan et al. (2025)),
and hybrid stochastic methods (DreamSampler Kim et al. (2024b), TReg Kim et al. (2025)). Hard
constraints induce semantic drift between regions due to strong measurement enforcement, directly
causing boundary artifacts. Progressive updates maintain stable optimization and produce minimal
artifacts. However, both hard constraints and progressive updates operate in latent space, failing to
fully satisfy measurements (Fig. 10). To address this, we apply post-hoc replacement, which can
still cause boundary artifacts due to semantic mismatch and spatial discontinuities. Hybrid stochas-
tic methods enforce measurement constraints in pixel space and inject stochastic noise to harmonize
regions, reducing artifacts. Nevertheless, persistent semantic drift still leads to artifact formation.

We formulate virtual try-on as an inverse problem and integrate various solver strategies into the la-
tent diffusion sampling process. This section presents the mathematical foundations and implemen-
tation details of each approach. We denote the measurement mask as M and the target measurement
as y. The bar notation indicates resizing to match the latent code resolution. Specifically, M̄ denotes
the measurement mask with value 1 in the resized measurement region, and ȳ represents the resized
target measurement. A comparison with the inverse solvers is shown in Fig. 11.
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DDIM sampling Lugmayr et al. (2022a). The deterministic DDIM sampling forms the basis for
all inverse solvers. Given a noisy latent zt at timestep t, we first estimate the clean latent using
Tweedie’s formula:

ẑ
(t)
0 =

1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t, c)

)
. (8)

The denoising step then updates the latent to timestep t− 1:

zt−1 =
√
ᾱt−1ẑ

(t)
0 +

√
1− ᾱt−1ϵθ(zt, t, c). (9)

A.3.1 HARD MEASUREMENT METHODS

These methods enforce measurement consistency through direct projection or replacement in the
latent space.

RePaint Lugmayr et al. (2022b). This approach replaces the measurement region with noisy ob-
servations at each denoising step. We omit the resampling strategy proposed in Repaint as it is too
time-consuming:

ȳt−1 ∼ N (
√
ᾱt−1ȳ, (1− ᾱt−1)I), (10)

z′t−1 = M̄⊙ ȳt−1 + (1− M̄)⊙ zt−1. (11)

MCG (Manifold-Constrained Gradient) Chung et al. (2022). This method combines gradient-
based optimization with hard projection:

z′t−1 = zt−1 − γ∇zt
∥ȳ − M̄⊙ ẑ

(t)
0 ∥22, (12)

z′′t−1 = M̄⊙ ȳt−1 + (1− M̄)⊙ z′t−1, (13)

where γ is the gradient step size, which we set to 1.

A.3.2 PROGRESSIVE UPDATE METHODS

These methods guide the sampling trajectory iteratively through gradient updates without relying on
hard measurement constraints.

DPS (Diffusion Posterior Sampling) Chung et al. (2023). DPS adjusts the sampling trajectory via
measurement consistency gradients computed in the Tweedie space:

z′t−1 = zt−1 − γ∇zt∥ȳ − M̄⊙ ẑ
(t)
0 ∥22, (14)

where we set γ = 1.

FIG (Flow with Interpolant Guidance) Yan et al. (2025). By operating directly on the noisy
latent, FIG performs gradient updates along the diffusion trajectory, preserving stability and sample
diversity, whereas Tweedie-space optimization is more precise but incurs higher computational cost
and reduces diversity.

z′t−1 = zt−1 − γ∇zt−1
∥ȳt−1 − M̄⊙ zt−1∥22, (15)

with γ = 1.

A.3.3 HYBRID STOCHASTIC METHODS

These approaches combine deterministic updates with stochastic noise injection, where the degree
of stochasticity is controlled through ηβt, to balance measurement consistency and generation di-
versity.

ϵ̃t :=

√
1− ᾱt−1 − η2β2

t · ϵθ + ηβt · ϵ√
1− ᾱt−1

, ϵ ∼ N (0, I), (16)

where η controls the noise level and βt is the noise schedule. The pixel-space optimization is solved
via conjugate gradient (CG) with a regularization coefficient λ of 1e−4:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

DreamSampler Kim et al. (2024b). DreamSampler integrates pixel-space and latent-space op-
timization to guide the diffusion sampling trajectory while maintaining measurement consistency.
Let ∅ denote a null embedding, as introduced in the classifier-free guidance (CFG) framework,
used to perform latent optimization without conditioning information. In the final latent update, the
stochastic noise term ϵ̃t is set by ηβt =

√
ᾱt(1− ᾱt−1), controlling the amount of injected noise

to balance diversity and trajectory stability.

ẑ
(t)
0,∅ =

1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t,∅)

)
, (17)

x̂y,∅ = argmin
x∅

(
∥y − M̄⊙ x∅∥22 + λ∥x∅ −D(ẑ

(t)
0,∅)∥22

)
, ẑy,∅ = E(x̂y,∅), (18)

ẑ
(t)
0 (ᾱt−1) = ᾱt−1ẑy,∅ + (1− ᾱt−1)ẑ

(t)
0,∅, (19)

ẑ
(t)
0 (ᾱt, ᾱt−1) =M̄⊙ ẑ

(t)
0 (ᾱt−1) + (1− M̄)⊙ (ᾱtẑ

(t)
0 + (1− ᾱt)ẑ

(t)
0 (ᾱt−1)), (20)

z′t−1 =
√
ᾱt−1ẑ

(t)
0 (ᾱt, ᾱt−1) +

√
1− ᾱt−1ϵ̃t, (21)

where E and D denote encoder and decoder, and λ balances data fidelity.

TReg Kim et al. (2025). TReg performs the hybrid approach by performing optimization di-
rectly in pixel space with latent regularization. It solves a regularized inverse problem where
the measurement operator M̄ enforces constraints, while the regularization term maintains se-
mantic coherence via the diffusion prior. In the stochastic update, the noise parameter is set as
ηβt =

√
ᾱt−1(1− ᾱt−1), following a noise schedule distinct from DreamSampler.

x̂y = argmin
x

(
∥y − M̄⊙ x∥22 + λ∥x−D(ẑ

(t)
0 )∥22

)
, ẑy = E(x̂y), (22)

ẑ
(t)
0 (ᾱt−1) = ᾱt−1ẑy + (1− ᾱt−1)ẑ

(t)
0 , (23)

z′t−1 =
√
ᾱt−1ẑ

(t)
0 (ᾱt−1) +

√
1− ᾱt−1ϵ̃t. (24)

A.4 ADDITIONAL ABLATION STUDY

We conduct ablation studies on two key hyperparameters: the interpolation weights in data consis-
tency optimization (Eq. 6) and the frequency of standard denoising steps (component (C) in Fig. 2).

Interpolation weights in data consistency. Eq. 6 performs data consistency optimization by finding
the latent z that balances between the current optimized latent ẑy and the reference-informed latent
ẑ
(t)
0 . This can be formulated as a quadratic minimization problem:

ẑ
(t)
0 (λcurr) = argmin

z
λcurr∥z− ẑy∥22 + λref∥z− ẑ

(t)
0 ∥22, (25)

which has a closed-form solution:

z =
λcurr

λcurr + λref
ẑy +

λref

λcurr + λref
ẑ
(t)
0 . (26)

The weights λcurr and λref determine the relative trust between the optimized and reference-informed
latents. To maintain consistency with diffusion reverse trajectories, these weights should adapt
across timesteps. At early timesteps (near T=999), ẑ(t)0 remains far from the true latent zy, so
excessive reliance on ẑy would amplify semantic mismatches between masked and measurement
regions, destabilizing the trajectory. Conversely, at later timesteps, ẑ(t)0 converges closer to zy,
warranting increased weight on ẑy. This motivates a time-dependent weighting scheme where λcurr
increases and λref decreases as denoising progresses.

Table 7 compares different weighting strategies. Using only ẑy (λcurr=1, λref=0) severely de-
grades all metrics, confirming that measurement satisfaction alone is insufficient. Using only ẑ

(t)
0

(λcurr=0, λref=1) improves unpaired metrics but sacrifices paired performance. Fixed symmet-
ric weighting (λcurr=λref) provides balanced results but does not account for trajectory evolution.
Time-dependent schemes align better with diffusion dynamics: λcurr =

λrefᾱt−1

1−ᾱt−1
(our default, high-

lighted in gray) achieves the best unpaired metrics (FID, KID) and competitive paired metrics, while
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4⃝ Data consist. SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
λcurr λref

1 0 0.8677 22.5991 0.1623 20.1817 0.0088
0 1 0.8552 23.1475 0.0833 10.4362 0.0014
λref λcurr 0.8862 23.7223 0.0748 9.8565 0.0010
λref(1−ᾱt−1)

ᾱt−1
− 0.8864 23.7327 0.0749 9.8938 0.0012

λrefᾱt−1

1−ᾱt−1
− 0.8859 23.7027 0.0746 9.7669 0.0009

Table 7: Ablation study on standard denoising frequency. Impact of periodic standard denoising
interval N (component (C) in Fig. 2). N=2 (gray row, our default) balances trajectory stability and
measurement preservation. Bold: best, underline: second-best.

(C) Std. denoising SSIM ↑ PSNR ↑ LPIPS ↓ FID ↓ KID ↓
N = 1 0.8860 23.7041 0.0748 9.8309 0.0013
N = 2 0.8859 23.7027 0.0746 9.7669 0.0009
N = 3 0.8858 23.6891 0.0746 9.7841 0.0014
N = 5 0.8857 23.6780 0.0746 9.7687 0.0013
N = 10 0.8855 23.6602 0.0746 9.8106 0.0016
N = 25 0.8852 23.6387 0.0747 9.9489 0.0012
N = 50 0.8552 23.1475 0.0833 10.4362 0.0014

Table 8: Ablation study on data consistency interpolation weights. Comparison of different weight-
ing strategies for balancing ẑy and ẑ

(t)
0 in Eq. 6. Time-dependent weighting λcurr =

λrefᾱt−1

1−ᾱt−1
(gray

row, our default) achieves the best balance across metrics. Bold: best, underline: second-best.

λcurr =
λref(1−ᾱt−1)

ᾱt−1
performs best on paired metrics. We select the former as it better balances all

metrics and produces more stable trajectories.

Frequency of standard denoising. Table 8 examines the frequency N of periodic standard denois-
ing steps (component (C)), which realigns trajectories with noisy data manifolds Mt. Too frequent
application (N=1) over-smooths measurement constraints, slightly degrading unpaired metrics. Too
infrequent application (N≥25) prevents sufficient optimization, degrading all metrics. N=2 (our
default, highlighted in gray) provides the best balance, achieving optimal unpaired performance
(FID, KID) while maintaining strong paired metrics. This confirms that moderate realignment fre-
quency effectively stabilizes trajectories without over-smoothing measurement constraints.

A.5 ADDITIONAL RESULTS
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Figure 7: Qualitative results of baseline models on the SHHQ-1.0 dataset. Our observations show
that generated images fail to preserve content in non-try-on regions: bags, skirts, cars, text, and
human features (green boxes). Orange boxes indicate areas where facial details are not properly
preserved.
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Figure 8: Extended comparison of artifact maps across timesteps during generation for the inverse
solver (TReg) versus ART-VITON. We highlight semantic drift: TReg produces predominantly red
maps, indicating persistent artifacts, while ART-VITON mitigates drift and satisfies both (a) artifact-
free outputs and (b) measurement adherence, yielding mostly green maps. Solid and dashed boxes
denote final and intermediate outputs, respectively.

Figure 9: Comparison of post-hoc replacement, Poisson blending, and ART-VITON. Both post-hoc
replacement and Poisson blending produce visible inconsistencies at region junctions (orange boxes:
contrast-enhanced close-ups with artifact maps). Poisson blending smooths gradients in pixel space
but often amplifies distortions by masking rather than resolving latent-space misalignment. ART-
VITON substantially mitigates artifacts by addressing their root cause during diffusion sampling,
producing visually coherent results with preserved fine details.
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Figure 10: StableVITON on VITON-HD with inverse solvers applied without post-hoc replacement.
Red indicates face zoom-in, and orange and green indicate artifact map zoom-ins. Hard constraint
solvers (RePaint, MCG) and progressive update solvers (DPS, FIG) fail to fully satisfy measure-
ments, highlighting the need for post-hoc replacement. Hard constraints generate artifacts due to
semantic inconsistencies across regions, whereas progressive updates produce minimal artifacts, as
each update induces only small changes.
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Figure 11: Comparison on the VITON-HD dataset with baseline (StableVITON) and existing in-
verse solvers. Red circles highlight texture degradation, particularly in hybrid stochastic methods
(DreamSampler, TReg), while our approach preserves fine garment details and patterns. Orange
boxes indicate artifacts present in other methods, which are absent in our results.
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Figure 12: Additional qualitative results on the VITON-HD comparing baseline methods with our
approach. (a) Comparison of baselines and their versions enhanced with our method: our approach
consistently removes boundary artifacts while preserving high-frequency garment details such as
logos, text, and complex patterns. (b) Results of the remaining models without our enhancement: in
2-stage pipeline models, warping results show garment distortions and color inconsistencies.
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Figure 13: Extended comparison demonstrating robustness across domains on the SHHQ-1.0
dataset. (a) Comparison of baselines and their versions enhanced with our method: even in cross-
domain scenarios, our approach effectively removes artifacts, demonstrating robustness. (b) Other
VITON methods show boundary artifacts and garment distortion, whereas our approach preserves
boundaries and garment details.
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Figure 14: Extended comparison demonstrating robustness across domains on the SHHQ-1.0. Other
VITON methods show boundary artifacts and garment distortion.

Figure 15: Qualitative comparison of baseline VITON methods on DressCode. Traditional methods
(GP-VTON, LaDI-VTON) exhibit misalignment and texture distortion, while StableVITON shows
boundary artifacts despite better garment alignment. Our method applied to StableVITON (right-
most) alleviates boundary inconsistencies while preserving garment details and identity features.
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