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ABSTRACT

Scaling test-time computation improves performance across different tasks on
large language models (LLMs), which has also been extended to tool-augmented
agents. For these agents, scaling involves not only “thinking” in tokens but also
“acting” via tool calls. Unlike tokens in textual reasoning, the number of tool calls
directly bounds the agent’s interaction with the external environment. To this end,
we study how to scale such agents under explicit tool-call budgets, focusing on
web search agents equipped with search and browse tools. We introduce CATS
(Cost-effective Agent Test-time Scaling), a budget-aware framework designed for
effective and efficient agent scaling. CATS integrates a lightweight budget tracker
that provides a continuous signal of remaining resources to the agent’s core mod-
ules, encouraging budget-aware adaptations in planning and verification. By con-
straining the number of tool calls and unifying the costs of both token and tool
consumption, we analyze the cost–performance scaling behavior in a more con-
trolled manner. Experiments across search-intensive benchmarks show that CATS
produces more favorable scaling curves, attaining higher accuracy with fewer tool
calls and lower overall cost. Our work advances a cost-conscious design for agent
test-time scaling and offers empirical insights toward a more transparent and prin-
cipled understanding of scaling in tool-augmented agents.

1 INTRODUCTION

Scaling test-time compute in large language models (LLMs) helps improve the performance across
a wide range of tasks including reasoning, coding (Snell et al., 2024; Muennighoff et al., 2025; Wu
et al., 2025; Chen et al., 2025b). Mainstream scaling strategies such as sequential (Madaan et al.,
2023) and parallel scaling (Wang et al., 2023; Brown et al., 2024) enable models to utilize more
effort, elicit deeper reflection, and refine their outputs, often leading to substantial gains in answer
quality (Zhang et al., 2025a). These successes motivate recent efforts to extend test-time scaling
to tool-augmented agents (Zhu et al., 2025b; Wang et al., 2025a), where LLMs are equipped with
various tools to interact with the external environment such as search engines or APIs.

Test-time scaling for tool-augmented agents expands both thinking (tokens) and acting (tool calls).
Unlike the token budget in textual reasoning (Han et al., 2025b; Pu et al., 2025), in agent tasks such
as web browsing, the number of tool calls directly determines the depth and breadth of exploration,
defining the effective boundary of external information access. The challenge is not spending more,
but spending wisely: the marginal benefit per tool call is uncertain, so every budget should be spent
strategically.

The unique complexity brings up critical research questions in agent test-time scaling: How can
tool-augmented agents scale effectively by making the best use of given resource budgets? We study
this question in a budget-constrained setting, grounding our analysis in search agents equipped with
search and browse tools, which are widely used in practice (Google, 2025; OpenAI, 2025) and in-
herently require extensive tool calls and multi-round interactions to collect external information. In
search agents, the major scaling effort is defined by the number of search and browse calls avail-
able to the agent. We further evaluate cost with a unified metric that jointly accounts for token
consumption and tool-call costs.

Intuitively, keeping the agent updated with the budgets is a simple yet effective step toward better
resource use. However, without additional guidance it still tends to perform shallow search (Lu et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2025) and underexplores even when budget remains. To this end, we propose CATS (Cost-effective
Agent Test-time Scaling), a budget-aware framework designed to scale test-time compute for agents
effectively and efficiently. CATS maintains a lightweight budget tracker that continuously reports
consumed and remaining budgets, and each module adapts its behavior to this signal. The planning
module dynamically adjusts stepwise effort to match current budget, while the verification module
decides whether to dig deeper along a lead or explore wider with alternative paths accordingly,
adapting between sequential and parallel scaling as needed. By steering decisions with explicit
budget awareness, CATS enables more deliberate and cost-conscious scaling.

Finally, we empirically study the relationship between overall resource cost and task performance
in agent test-time scaling by comparing different scaling frameworks under varying budgets. To
ensure fair and transparent comparison, we unify the actual cost of token usage and tool calls into a
single cost metric. Our results show that CATS produces more favorable scaling curves: it achieves
higher performance while using fewer tool calls and incurring lower overall cost. These findings in-
dicate the clear understanding under the budget constrained setting and demonstrate the potential of
budget-aware design for effective tool-augmented agents, highlighting the importance of explicitly
accounting for cost in agent test-time scaling.

We summarize our contributions as follows:

• We formalize budget-constrained agent test-time scaling with explicit tool-call budgets,
and introduce a unified cost that jointly accounts for tokens and tool calls, enabling fair and
transparent scaling comparisons.

• We introduce CATS, which maintains a lightweight budget tracker and adjusts step-wise
effort via budget-aware planning and verification, dynamically switching between deepen-
ing a lead and branching to alternatives.

• We conduct systematic experiments under varying budgets and unified costs with search
agents, demonstrating that CATS is more cost-effective than comparing methods, yielding
more favorable scaling curves and better cost–performance trade-offs.

2 PROBLEM FORMULATION

2.1 AGENT TEST-TIME SCALING

We formulate agent test-time scaling as how an agent’s performance scales with its budget for ex-
ternal tool-call interaction, refining the broader concept of test-time interaction scaling as discussed
in Shen et al. (2025). To make agent test-time scaling cost-effective, an ideal agent should be able to
achieve its best possible performance under an arbitrary budget constraint on the scaling curve. To
this end, our target is to design a cost-effective agent framework, π, that maximizes answer accuracy
while adhering to a strict tool-call budget.

Assume the agent is equipped with a set of K tools as T = {t1, . . . , tK}. For a given question
x ∈ X , the agent works under a budget b = (b1, . . . , bK), where bi is the maximum number of
invocations of tool ti ∈ T . Let ŷπ(x) denote the agent’s predicted answer for question x with
ground truth y(x) and let ci(x;π) be the realized number of calls to tool ti on x. We formulate the
cost-effective agent test-time scaling problem as a budget-constrained optimization objective:

max
π

Accb(π) = Ex

[
1{ŷπ(x) = y(x)}

]
s.t. ci(x;π) ≤ bi for all i = 1, . . . ,K, and every x ∈ X

(1)

Here the objective is the expected accuracy over all questions. The constraint ensures that for any
given question, the number of realized calls for each tool never exceeds its allocated budget. By
evaluating the agent performance at various budget levels, we can trace the performance-cost curve,
which characterizes the agent’s test-time scaling behavior, showing how effectively it leverages bud-
get resources to its problem solving capabilities.

Budget vs. Cost. We distinguish between the preset budget constraint, which specifies the maxi-
mum number of tool calls available to the agent, and the realized cost, which reflects the resources
actually consumed during execution. While the budget imposes a hard upper limit, the final cost
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depends on the agent’s strategy. To facilitate a more consistent and comprehensive comparison, we
introduce in Section 2.2 a unified post-hoc cost metric for analyzing agents’ test-time scaling.

Choice of Budget. Among possible constraints, we prioritize a tool-call budget over a token-based
budget for its relevance, consistency, and practicability. A tool-call limit offers a more relevant and
direct constraint on an agent’s ability to acquire external knowledge than the tokens used for internal
reasoning. This choice is also consistent with and justified by established practices in Shen et al.
(2025). Furthermore, it offers greater practicability, as it is often non-trivial to pre-determine an
appropriate token budget for complex, multi-step agentic tasks. While the budget is defined by tool
calls, we still incorporate token usage into our unified cost metric (Section 2.2) to ensure a more fair
and transparent comparison.

2.2 PROBLEM INSTANTIATION WITH SEARCH AGENT

In our work, we instantiate the test-time scaling problem with search agent, a setting selected for its
broad applicability and the presence of established benchmarks.

A search agent is an LLM that answers an information-seeking question x by retrieving external
evidence and reasoning over it. The agent follows an iterative ReAct-style loop (Yao et al., 2023),
alternating between internal thinking and external actions. The agent has access to two primary tools
for interacting with the world:

• Search. This tool helps perform a standard search engine query. Given a text query, it
returns a list of search results, each including a title, a brief snippet, and a URL.

• Browse. Given a specific URL, this tool scrapes the full content of the corresponding
webpage, providing detailed information that is often unavailable in a search snippet.

Unified Cost Metric. We model the agent’s total cost as the sum of consumed resources along two
dimensions: tokens and tool calls. To create a unified metric, we map both to their corresponding
economic costs.

• Token cost. This represents the agent’s internal cognitive effort, including its reasoning,
planning, and parametric knowledge processing. Token costs are calculated based on the
pricing of the model provider, distinguishing among input, output, and cache hit tokens.
In multi-round iterative frameworks, the output of iteration i becomes part of the input for
iteration i+ 1. Any overlap is a cache hit, thereby lowering the token consumption cost.

• Tool call cost. This represents the agent’s active interaction with the external environment
through information-seeking actions. Each invocation of an external service (e.g., a search
query or a browsing request) incurs a cost determined by the pricing of the corresponding
API or third-party provider.

The total unified cost, Cunified(x;π), for solving a given question x under policy π is the sum of the
token cost and the tool call cost. Let ci(x;π) be the number of actual invocations to tool ti and Pi

be the economic cost per invocation of ti. The unified cost metric is then defined as:

Cunified(x;π) = ctoken(x;π)︸ ︷︷ ︸
Token Cost

+

K∑
i=1

ci(x;π) · Pi︸ ︷︷ ︸
Total Tool Cost

(2)

Here, ctoken(x;π) represents the total cost incurred from token consumption during the agent’s rea-
soning process for question x. This formulation allows us to uniformally analyze the actual incurred
costs for each execution. These two dimensions are inherently coupled: additional tool calls gen-
erally increase token consumption, as the agent must process and reason over the retrieved external
information. Measuring this unified cost under varying budget constraints, b, enables a more com-
prehensive and consistent analysis across different policies.

3 CATS: COST-EFFECTIVE AGENT TEST-TIME SCALING

We propose CATS, a framework for scaling test-time resources for tool-augmented agents under
explicit budget. As shown in Figure 1, given an information-seeking question and a tool call budget,
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Attempt 2
Query 30 / 50

URL 40 / 50
…

Tool Call

Tool Response

Budget Tracker
Query Budget: 
50 / 50
URL Budget: 
50 / 50

Question
Between 1990 and 1994 (Inclusive), what teams played in a soccer match with a Brazilian referee had four yellow cards, two for each team where three of the total four were not 
issued during the first half, and four substitutions, one of which was for an injury in the first 25 minutes of the match.

Thinking & Planning
The tool budget is sufficient. Let’s carry out the plan.
☑Identify Brazilian referees officiating in major tournaments 1990-1994.
    ☐In the 1994 FIFA World Cup.
    ☐In the 1990 FIFA World Cup.
      ☐In Copa América 1991 and 1993.
☐For each identified referee, find the matches they officiated.
☐For each match, find a detailed match report and verify the conditions.

Answer
Contradiction. 
I could not find an answer.

Verification
Summary: The current plan has not been fully 
executed...There are still several identified matches that 
have not been checked, and the budget is sufficient to 
complete this investigation.
Decision: Continue Continue / Pivot

Success

Budget Tracker
Query Budget: 30 / 50
URL Budget: 40 / 50

Attempt 1
Query 50 / 50

URL 50 / 50

Remaining Budget
Query Budget: 30 / 50
URL Budget: 40 / 50

✖N iterations

Answer  1 & 
Verification 1

Answer  2 & 
Verification 2

Budget Tracker
Query Budget: 0 / 50
URL Budget: 0 / 50

Attempt K
Query 0 / 50

URL 0 / 50

Answer  2 & 
Verification 2Answer Selection Answer  1 & 

Verification 1
Answer  K & 
Verification K…

Figure 1: Overview of the CATS framework. Given a question and per-tool budgets, the agent begins
with budget-aware thinking and planning, structured as a checklist. Each tool call consumes part of
the assigned budget, and the agent keeps iterating by reasoning over new information and updated
budgets. When an answer is proposed, CATS performs verification and decides to either continue,
pivot, or proceed to a new attempt with the remaining budget. CATS terminates when any of the
budgets are exhausted.

CATS first engages in internal thinking to decompose the constraints specified in the question and
formulate a structured plan of actions. Then the agent invokes tools by generating specific tokens
that trigger external APIs for search and browse actions. For the search tool, the agent issues queries
and receives candidate results. For the browse tool, an LLM processes the scraped webpage content
and produces a tailored web content summary and relevant findings. These outputs are appended
to the working sequence as tool responses, expanding the context with newly retrieved evidence. A
budget tracker is updated after each tool call, recording the resources used and the remaining budget.

Whenever the agent proposes a candidate answer, the verification module checks its validity and
decides whether to continue with the current sequence or start a new attempt with the remaining
budget. CATS terminates when any budgeted resource is exhausted. Finally, an LLM-as-a-judge
selects the best answer by evaluating all verified answers, along with their corresponding verification
details, from each attempt, to produce the final output.

The central design principle of CATS is budget awareness: the agent is continually updated on
its remaining budget in every iteration of execution. This persistent awareness not only adapts its
thinking, planning, and verification behaviors to the budget but also encourages the agent to make
full and effective use of its available resources.

3.1 BUDGET TRACKER

An explicit budget block records both usage and remaining resources throughout execution, updating
after each iteration. Beyond guiding decision-making, explicit budget tracking enforces effective
resource utilization. By making budget status transparent, the agent is encouraged to balance the
usage of different types of tools, fully leveraging the resources provided.

3.2 BUDGET-AWARE PLANNING

Planning in CATS incorporates both constraint decomposition and structured dynamic planning.
Information-seeking tasks require strategic planning to decompose the problem and allocate the
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budget to navigate the large search space efficiently. Selecting an appropriate starting point is crit-
ical: a well-chosen entry narrows the search space and conserves budget, while a poor choice can
quickly exhaust the budget. To address this, we prompt the agent to first perform constraint de-
composition and to categorize the clues implied in the question into two types: exploration and
verification. Exploration clues open new directions or candidate sets, whereas verification clues
help confirm details or filter among candidates. While a verification clue can sometimes provide a
direct shortcut to the answer, relying on it prematurely is risky, as it may consume resources without
guaranteeing progress.

The agent is further instructed to generate and maintain an explicit plan throughout execution. This
tree-structured plan acts as a dynamic checklist, recording step status, resource usage, and alloca-
tion, while guiding future actions. As shown in the planning block from Figure 1, a single step in
the plan represents a subtask that may require multiple tool calls to complete, for instance, several
searches followed by browsing and filtering to get a candidate list. The planning module then adapts
its exploration strategy to the budget: with more budget available, it can afford to explore multiple
complementary sources in parallel, whereas with limited budget, it must strategically prioritize the
most promising candidates. During execution, the agent continually revises the plan to reflect newly
acquired information, prune unproductive paths, and redirect progress toward promising leads.

By integrating constraint decomposition with budget-aware dynamic planning, the agent is able to
balance exploration and verification within a controllable search space, ensuring both efficiency and
reliability in information-seeking tasks.

3.3 BUDGET-AWARE SELF-VERIFICATION

Once the agent proposes an answer, the verification module revisits the trajectory and budget usage
to check its correctness. This process begins with a backward verification of the reasoning and tool
calling trajectory, evaluating each constraint specified in the question. For each of them, the module
determines whether it has been satisfied, contradicted, or remains unverifiable. This retrospective
reasoning systematically grounds the answer against the original requirements and clues.

Based on this analysis, the module produces a verification decision. If all constraints are satisfied, the
answer is marked as a success. If several constraints remain unverifiable but the trajectory appears
promising, provided the budget is sufficient for deeper exploration, the outcome is to continue ex-
ploration. In contrast, if contradictions are identified or the remaining budget cannot support further
investigation towards this lead, the agent is expected to terminate expensive or low-yield directions
early and pivot toward a different direction to avoid wasting tool call resources while resources are
still sufficient to pursue alternatives.

When the decision is to continue or pivot, the module also generates a concise summary of the
trajectory so far. This includes the reasoning history, intermediate conclusions, and suggestions for
optimization to avoid redundant exploration. Moreover, this summary serves as a condensed context,
replacing the previous lengthy trajectory to reduce token usage. By compressing the reasoning state
into a shorter form, the module ensures that subsequent exploration is not only better informed
but also more cost-effective in terms of context length. Together, budget-aware verification and
trajectory summarization allow the agent to balance correctness, resource efficiency, and context
management, ensuring reliable progress within budget constraints.

4 EXPERIMENTS

4.1 SETUP

Datasets. To benchmark web search agents, we employ the challenging information-seeking
datasets BrowseComp (Wei et al., 2025) and BrowseComp-zh (Zhou et al., 2025).

Baselines. We compare CATS against a range of models and agentic frameworks, including both
general-purpose base models (Hurst et al., 2024; Jaech et al., 2024; Comanici et al., 2025; Anthropic,
2025a;b) and those specifically fine-tuned for agentic search tasks (Li et al., 2025a; Liu et al., 2025a;
Gao et al., 2025; Lu et al., 2025). To evaluate the final answer accuracy, we use Gemini-2.5-Flash
as the judge model and adopt the evaluation prompt from Phan et al. (2025).

5
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For scaling methods, we evaluate sequential and parallel scaling approaches applied to the Re-
Act (Yao et al., 2023) baseline. For sequential scaling, to encourage the agent to use more tools
during its iterative execution, we follow the approach from textual reasoning (Muennighoff et al.,
2025) and append the sentence, “Wait, I must use both search and browse tools more before gen-
erating the final answer. Let me rethink.”, whenever the agent provides an answer. This process is
repeated until the agent’s tool budget is exhausted, after which it is prompted to produce the final
answer. For parallel scaling, we use temperature sampling to generate diverse reasoning paths. To
aggregate the results, we use Gemini-2.5-Flash to select the most common answer via a majority
vote (Wang et al., 2023). To enforce the budget constraint, we sample additional sequences until the
budget is exhausted. Thus the number of sampled sequences may vary across different questions.

4.2 IMPLEMENTATION DETAILS

We use Gemini-2.5-Flash and Gemini-2.5-Pro (Comanici et al., 2025) as the default backbone mod-
els in our framework. By default, we disable the thinking mode by setting the thinking budget as 0
for flash and 1024 for pro models. The maximum number of new tokens for generation was set to
65,536. We use a temperature of 0.7 during agent execution to encourage exploration, and use a de-
terministic temperature of 0.0 for final answer selection and answer evaluation. We use the Google
Custom Search JSON API for search tools, and Jina.ai1 for web browsing.

5 RESULTS

5.1 MAIN RESULTS

Table 1 shows the performance comparison across different web search agents. Under the strict
budget constraints of 100 tool uses for BrowseComp and 50 for BrowseComp-zh, CATS consis-
tently achieves better results than other baselines, obtaining 21.5% on BrowseComp and 41.9% on
BrowseComp-zh using Gemini-2.5-Pro. This indicates the effectiveness of our budget-aware design
in maximizing the efficiency of every tool call.
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(a) Scaling curve under budget constraints.
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(b) Scaling curve against average unified cost.

Figure 2: Scaling behaviors along (a) total number of tool calls and (b) average unified cost, evalu-
ated on a 200-example subset of BrowseComp using Gemini-2.5-Pro.

CATS achieves higher performance under the same budget constraint. To better understand the
scaling behavior, we vary the tool-call budget and evaluate performance on a random subset of 200
examples from BrowseComp for a manageable analysis. Figure 2a shows the accuracy against the
average number of tool calls, including both search and browse. Across all budget levels, CATS
consistently outperforms the parallel majority-vote baseline, demonstrating that budget-aware adap-
tation leads to more effective use of limited tool calls.

CATS achieves higher performance when accounting for unified costs. Beyond tool-call counts,
we measure performance under a unified cost metric that incorporates both token usage and tool-call
expenses. As shown in Figure 2b, CATS achieves more favorable scaling curves, delivering higher

1https://jina.ai/
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Table 1: Performance comparison across web search agents. We denote results from our own ex-
periments with ⋆; other baseline scores are cited from their respective publications. The “Training”
column specifies whether the model has been specifically trained on agentic web search tasks. For
our budget-constrained setting, BrowseComp is provided a budget of 100 tool uses per tool, while
BrowseComp-zh is limited to 50.

Method Training BrowseComp BrowseComp-zh
Model Only

GPT-4o ✗ 0.6 6.2
Claude-3.7-Sonnet ✗ 2.3 11.8
Gemini-2.5-Flash⋆ ✗ 2.7 23.9
Gemini-2.5-Pro⋆ ✗ 6.3 27.8
OpenAI o1 ✗ 9.9 29.1

Agentic Framework

OpenAI Deep research ✓ 51.5 42.9
ASearcher ✓ 5.2 15.6
WebSailor ✓ 12.0 30.1
DeepDive ✓ 14.8 25.6
WebExplorer ✓ 15.7 32.0

Budget-constrained

Flash-Baseline ✗ 10.3 29.4
Flash-Sequential ✗ 13.5 29.8
Flash-Parallel ✗ 14.1 29.8
Flash-CATS ✗ 16.5 35.3
Pro-Baseline ✗ 8.4 30.7
Pro-Sequential ✗ 9.5 30.5
Pro-Parallel ✗ 13.1 37.0
Pro-CATS ✗ 21.5 41.9

accuracy at comparable or lower costs. This indicates that CATS not only improves effectiveness
under budget constraints but also yields better cost–performance trade-offs.

5.2 EARLY STOPPING

In this section, we evaluate how effectively agents perform under various budget constraints with-
out requiring it to exhaust all available resources. We analyze the performance of the agent’s first
attempt: for CATS, this is the first answer that passes its internal verification, while for the baseline,
it corresponds to a single generation pass. For both methods, if any tool budget is exhausted, the
agent is prompted to immediately generate a final answer based on its progress.
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(a) Baseline on BrowseComp-zh.
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(b) CATS on BrowseComp-zh.

Figure 3: Comparison of early stopping on BrowseComp-zh.

Figure 3 compares the performance on the BrowseComp-zh dataset using Gemini-2.5-Pro. The x-
axis represents the predefined budget for both search and browse tool calls. The bars indicate the
average number of tool calls used, while the line plot shows the resulting first-attempt accuracy.
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Budget awareness allows CATS to scale effectively with increased resources. The baseline (Fig-
ure 3a) demonstrates poor resource management. It consistently underutilizes the browse tool (fewer
than 0.1 calls on average) and shows diminishing returns early, with accuracy stagnating at 30.7%
for all budgets of 30 and above. This indicates a lack of budget awareness, preventing it from lever-
aging increased resources. Conversely, CATS (Figure 3b) shows the advantage of budget-aware
framework. It strategically increases its use of both search and browse tools as the budget expands.
This balanced approach leads to a sustained improvement in accuracy, rising from 29.8% (budget=3)
to 37.4% (budget=200). Notably, CATS’s performance with a small budget of 5 already surpasses
the baseline’s maximum achievable accuracy. This underscores CATS’s ability to make more strate-
gic and cost-effective decisions, achieving better results with the same or even fewer resources.
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Figure 4: Average unified cost analysis on
BrowseComp-zh using Gemini-2.5-Pro.

CATS is more cost-effective by enabling
early stopping. To provide a direct and trans-
parent comparison of cost-efficiency, Figure 4
shows accuracy against the actual unified cost.
CATS demonstrates a much steeper perfor-
mance curve, indicating that it achieves higher
accuracy for a lower cost compared to the paral-
lel majority vote baseline. CATS reaches over
37% accuracy for approximately $0.23, while
the parallel baseline requires more than double
that cost (over $0.50) to achieve a comparable
result. This efficiency benefits from its budget-
aware verification module, which enables early
termination upon finding a satisfactory answer
and minimizes unnecessary spending.

5.3 ANALYSIS

5.3.1 PLANNING MODULE

Table 2: Effect of the planning module. Results are averaged over three runs on a 200-example
subset of BrowseComp. With the same budget, the planning module encourages greater tool usage
and yields higher average performance.

Method Accuracy Avg. # Query Avg. # URL

ReAct 11.0 7.75 0.35
ReAct + planning 12.8 13.81 0.82

To evaluate the impact of the planning module, we augment the ReAct baseline with our proposed
design, which integrates constraint analysis and a dynamically structured checklist plan. The tool-
call budget is capped at 200 for both search queries and browse URLs. As shown in Table 2, the
addition of planning module alone improves the agent’s ability to organize exploration and utilize
tool usage more effectively, resulting in a performance gain of 1.8%.

5.4 BUDGET TRACKER

Table 3: Effect of the budget tracker. Results are averaged over three runs on a 200-example subset
of BrowseComp.

Method Accuracy # search # browse

ReAct 11.0 7.75 0.35
ReAct + Budget Tracker 12.7 9.31 0.89
ReAct + Sequential Scaling 12.7 16.93 0.78

We next examine the effect of augmenting the ReAct baseline with a budget tracker under a fixed
budget of 200 search and 200 browse calls. As shown in Table 3, adding the budget tracker improves
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accuracy from 11.0% to 12.7%, while only modestly increasing tool usage. By comparison, sequen-
tial scaling also raises accuracy to 12.7%, but does so by nearly doubling the number of search calls
(from 7.8 to 16.9). This contrast highlights the efficiency of budget awareness: the budget tracker
achieves comparable performance to sequential scaling with significantly fewer tool calls. Rather
than relying on sheer volume of actions, the tracker enables more effective utilization of available
tools, making it a more cost-effective approach to scaling.

6 RELATED WORK

6.1 TEST-TIME SCALING

Test-time scaling (TTS) (Snell et al., 2024; Zhang et al., 2025a) strategies typically fall into two
categories. The first is sequential scaling, where a model iteratively refines its output based on self
feedback or reflection (Madaan et al., 2023; Zhang et al., 2025b; Muennighoff et al., 2025; Liu et al.,
2025b). The second category is parallel scaling, where multiple reasoning paths are sampled and an
aggregation strategy is used to determine the final answer (Brown et al., 2024; Wang et al., 2023).
Further, hybrid scaling attempts to combine their complementary benefits (Chen et al., 2025a;b;
Wan et al., 2025; Li et al., 2024). While prior work focuses on text-only reasoning, we extend
TTS to tool-augmented agents, where scaling accounts for both tokens and tool calls under budget
constraints. As these methods push performance by increasing computation, a complementary line
of work examines how to constrain the effort. Typical constraints are defined over tokens, sampled
sequences, or FLOPs (Nayab et al., 2024; Welleck et al., 2024; Damani et al., 2025; Pu et al., 2025).
Specifically, AgentTTS (Wang et al., 2025a) optimizes LLM size and sampling numbers under a
unified FLOPs budget. In contrast, we formalize and constrain the tool-call budget, shifting the
focus from token-related limits in text reasoning to cost-effective scaling of tool-augmented agents.

6.2 WEB SEARCH AGENTS

Web search agents use search and browse tools to solve complex, multi-hop queries (Chen et al.,
2025c; Wong et al., 2025; Team et al., 2025; Han et al., 2025a; Team, 2025). One research direc-
tion builds training data and applies various training methods to specialize the models (Jin et al.,
2025; Li et al., 2025a; Liu et al., 2025a; Tao et al., 2025). Another explores inference-time strate-
gies (Li et al., 2025b; Zhu et al., 2025a; Qiao et al., 2025), such as incorporating programmatic
execution to perform multiple tool call actions (Pang et al., 2025), finding an optimal, statically effi-
cient configuration (Wang et al., 2025b), or exploring various design choices when scaling test-time
compute (Zhu et al., 2025b). Instead, our work focuses on dynamic, cost-effective performance,
providing the first analysis of agent scaling behavior under explicit budget constraints.

7 CONCLUSION

in this paper, we investigate cost-effective test-time scaling of agents under budget constraints. We
formulate the problem by introducing explicit tool-call budgets and a unified cost metric that cap-
tures overall resource consumption. To address this setting, we propose CATS, a cost-effective agent
test-time scaling framework that employs a budget tracker to guide planning and verification, en-
abling it to make adaptive and strategic decisions. Experiments show that CATS obtains more cost-
effective scaling curve under constrained budgets. The budget-awareness design of CATS advances
more effective and efficient agent test-time scaling, enabling the development of cost-conscious,
adaptive, and practical tool-augmented agents.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of LLMs (ChatGPT and Gemini) exclusively for editing the text to correct
grammatical errors and improve clarity and flow. All core scientific content and research ideas were
authored solely by the human authors.
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aging self-verification and self-correction for improved test-time scaling. CoRR, abs/2501.19306,
2025b. doi: 10.48550/ARXIV.2501.19306. URL https://doi.org/10.48550/arXiv.
2501.19306.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, Sahel Sharifymoghaddam, Yanxi Li, Haoran Hong,
Xinyu Shi, Xuye Liu, Nandan Thakur, Crystina Zhang, Luyu Gao, Wenhu Chen, and Jimmy
Lin. Browsecomp-plus: A more fair and transparent evaluation benchmark of deep-research
agent. CoRR, abs/2508.06600, 2025c. doi: 10.48550/ARXIV.2508.06600. URL https:
//doi.org/10.48550/arXiv.2508.06600.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inder-
jit S. Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla,
Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpek-
tor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav
Mishra, Eric Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kaw-
intiranon, Tania Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaı̈ Deu-
tel, Nam Nguyen, Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Wagh-
mare, Helen Miller, Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel
Janus, Tero Rissa, Dan Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond,
Klemen Kloboves, Cindy Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang,
Mantas Pajarskas, Joe Heyward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett,
Sushant Kafle, Sercan Arik, Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mah-
moudieh, Koray Kavukcuoglu, Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dim-
itris Paparas, Hadar Shemtov, Bo-Juen Chen, Robin Strudel, David Reitter, Aurko Roy, An-
drey Vlasov, Changwan Ryu, Chas Leichner, Haichuan Yang, Zelda Mariet, Denis Vnukov,

10

https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://www-cdn.anthropic.com/6d8a8055020700718b0c49369f60816ba2a7c285.pdf
https://doi.org/10.48550/arXiv.2407.21787
https://doi.org/10.48550/arXiv.2504.00762
https://doi.org/10.48550/arXiv.2501.19306
https://doi.org/10.48550/arXiv.2501.19306
https://doi.org/10.48550/arXiv.2508.06600
https://doi.org/10.48550/arXiv.2508.06600


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa Rawlani, Christy Koh, JD Co-
Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru Mei, and Mu Cai. Gemini
2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next genera-
tion agentic capabilities. CoRR, abs/2507.06261, 2025. doi: 10.48550/ARXIV.2507.06261. URL
https://doi.org/10.48550/arXiv.2507.06261.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard to
think: Input-adaptive allocation of LM computation. In The Thirteenth International Conference
on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=6qUUgw9bAZ.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous RL.
CoRR, abs/2508.07976, 2025. doi: 10.48550/ARXIV.2508.07976. URL https://doi.org/
10.48550/arXiv.2508.07976.

Google. Gemini deep research — your personal research assistant. https://gemini.google/
overview/deep-research/, 2025.

Rujun Han, Yanfei Chen, Zoey CuiZhu, Lesly Miculicich, Guan Sun, Yuanjun Bi, Weiming Wen,
Hui Wan, Chunfeng Wen, Solène Maı̂tre, George Lee, Vishy Tirumalashetty, Emily Xue, Zizhao
Zhang, Salem Haykal, Burak Gokturk, Tomas Pfister, and Chen-Yu Lee. Deep researcher with
test-time diffusion. CoRR, abs/2507.16075, 2025a. doi: 10.48550/ARXIV.2507.16075. URL
https://doi.org/10.48550/arXiv.2507.16075.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware LLM reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mo-
hammad Taher Pilehvar (eds.), Findings of the Association for Computational Linguistics, ACL
2025, Vienna, Austria, July 27 - August 1, 2025, pp. 24842–24855. Association for Computa-
tional Linguistics, 2025b. URL https://aclanthology.org/2025.findings-acl.
1274/.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
mali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright,
Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
ger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. CoRR, abs/2410.21276, 2024.
doi: 10.48550/ARXIV.2410.21276. URL https://doi.org/10.48550/arXiv.2410.
21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, An-
drey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan

11

https://doi.org/10.48550/arXiv.2507.06261
https://openreview.net/forum?id=6qUUgw9bAZ
https://doi.org/10.48550/arXiv.2508.07976
https://doi.org/10.48550/arXiv.2508.07976
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://doi.org/10.48550/arXiv.2507.16075
https://aclanthology.org/2025.findings-acl.1274/
https://aclanthology.org/2025.findings-acl.1274/
https://doi.org/10.48550/arXiv.2410.21276
https://doi.org/10.48550/arXiv.2410.21276


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Ed-
mund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao,
Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won
Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya.
Openai o1 system card. CoRR, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
https://doi.org/10.48550/arXiv.2412.16720.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL https://doi.org/10.
48550/arXiv.2503.09516.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu,
Yong Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-
human reasoning for web agent. CoRR, abs/2507.02592, 2025a. doi: 10.48550/ARXIV.2507.
02592. URL https://doi.org/10.48550/arXiv.2507.02592.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. CoRR,
abs/2501.05366, 2025b. doi: 10.48550/ARXIV.2501.05366. URL https://doi.org/10.
48550/arXiv.2501.05366.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan, Xinglin Wang, Bin Sun, Heda Wang, and
Kan Li. Escape sky-high cost: Early-stopping self-consistency for multi-step reasoning. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Aus-
tria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=ndR8Ytrzhh.

Junteng Liu, Yunji Li, Chi Zhang, Jingyang Li, Aili Chen, Ke Ji, Weiyu Cheng, Zijia Wu,
Chengyu Du, Qidi Xu, Jiayuan Song, Zhengmao Zhu, Wenhu Chen, Pengyu Zhao, and Junx-
ian He. Webexplorer: Explore and evolve for training long-horizon web agents. 2025a. URL
https://api.semanticscholar.org/CorpusID:281204359.

Licheng Liu, Zihan Wang, Linjie Li, Chenwei Xu, Yiping Lu, Han Liu, Avirup Sil, and Manling
Li. A simple ”try again” can elicit multi-turn LLM reasoning. CoRR, abs/2507.14295, 2025b.
doi: 10.48550/ARXIV.2507.14295. URL https://doi.org/10.48550/arXiv.2507.
14295.

Rui Lu, Zhenyu Hou, Zihan Wang, Hanchen Zhang, Xiao Liu, Yujiang Li, Shi Feng, Jie Tang, and
Yuxiao Dong. Deepdive: Advancing deep search agents with knowledge graphs and multi-turn
rl, 2025. URL https://arxiv.org/abs/2509.10446.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel J. Candès, and Tatsunori Hashimoto. s1: Simple test-
time scaling. CoRR, abs/2501.19393, 2025. doi: 10.48550/ARXIV.2501.19393. URL https:
//doi.org/10.48550/arXiv.2501.19393.

12

https://doi.org/10.48550/arXiv.2412.16720
https://doi.org/10.48550/arXiv.2503.09516
https://doi.org/10.48550/arXiv.2503.09516
https://doi.org/10.48550/arXiv.2507.02592
https://doi.org/10.48550/arXiv.2501.05366
https://doi.org/10.48550/arXiv.2501.05366
https://openreview.net/forum?id=ndR8Ytrzhh
https://openreview.net/forum?id=ndR8Ytrzhh
https://api.semanticscholar.org/CorpusID:281204359
https://doi.org/10.48550/arXiv.2507.14295
https://doi.org/10.48550/arXiv.2507.14295
https://arxiv.org/abs/2509.10446
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2501.19393
https://doi.org/10.48550/arXiv.2501.19393


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sania Nayab, Giulio Rossolini, Giorgio C. Buttazzo, Nicolamaria Manes, and Fabrizio Giacomelli.
Concise thoughts: Impact of output length on LLM reasoning and cost. CoRR, abs/2407.19825,
2024. doi: 10.48550/ARXIV.2407.19825. URL https://doi.org/10.48550/arXiv.
2407.19825.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025.

Xianghe Pang, Shuo Tang, Rui Ye, Yuwen Du, Yaxin Du, and Siheng Chen. Browsemaster: Towards
scalable web browsing via tool-augmented programmatic agent pair. CoRR, abs/2508.09129,
2025. doi: 10.48550/ARXIV.2508.09129. URL https://doi.org/10.48550/arXiv.
2508.09129.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi, Michael
Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Jason Hausenloy, Oliver Zhang,
Mantas Mazeika, Daron Anderson, Tung Nguyen, Mobeen Mahmood, Fiona Feng, Steven Y.
Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou, Zihan Wang, Jessica P. Wang,
Pawan Kumar, Oleksandr Pokutnyi, Robert Gerbicz, Serguei Popov, John-Clark Levin, Mstyslav
Kazakov, Johannes Schmitt, Geoff Galgon, Alvaro Sanchez, Yongki Lee, Will Yeadon, Scott
Sauers, Marc Roth, Chidozie Agu, Søren Riis, Fabian Giska, Saiteja Utpala, Zachary Giboney,
Gashaw M. Goshu, Joan of Arc Xavier, Sarah-Jane Crowson, Mohinder Maheshbhai Naiya, Noah
Burns, Lennart Finke, Zerui Cheng, Hyunwoo Park, Francesco Fournier-Facio, John Wydallis,
Mark Nandor, Ankit Singh, Tim Gehrunger, Jiaqi Cai, Ben McCarty, Darling Duclosel, Jung-
bae Nam, Jennifer Zampese, Ryan G. Hoerr, Aras Bacho, Gautier Abou Loume, Abdallah Galal,
Hangrui Cao, Alexis C. Garretson, Damien Sileo, Qiuyu Ren, Doru Cojoc, Pavel Arkhipov, Us-
man Qazi, Lianghui Li, Sumeet Motwani, Christian Schröder de Witt, Edwin Taylor, Johannes
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A RESOURCE DETAILS

The cost of tool calls is determined by the pricing of the providers. To standardize billing, we’ve
established a unified rate of $0.001 USD per invocation for both search API calls and web browsing
actions. The consumption of tokens is billed separately, adhering to the official pricing models of
the API provider pricing2.

2https://cloud.google.com/vertex-ai/generative-ai/pricing
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