
Bi-Level One-Shot Architecture Search for
Probabilistic Time Series Forecasting

Jonas Seng1 Fabian Kalter1 Zhongjie Yu1 Fabrizio Ventola1 Kristian Kersting1, 2, 3, 4

1
Technical University of Darmstadt

2
Centre for Cognitive Science TU Darmstadt

3
hessian.ai

4
German Research Centre for AI (DFKI)

Abstract Time series forecasting is ubiquitous in many disciplines. A recent hybrid architecture

named predictive Whittle networks (PWNs) tackles this task by employing two distinct

modules, a tractable probabilistic model and a neural forecaster, with the former guiding the

latter by providing likelihoods about predictions during training. Although PWNs achieve

state-of-the-art accuracy, finding the optimal type of probabilistic model and neural fore-

caster (macro-architecture search) and the architecture of each module (micro-architecture

search) of such hybrid models remains difficult and time-consuming. Current one-shot

neural architecture search (NAS) methods approach this challenge by focusing on either

the micro or the macro aspect, overlooking mutual impact, and could attain the overall

optimization only sequentially. To overcome these limitations, we introduce a bi-level one-

shot NAS method that optimizes such hybrid architectures simultaneously, leveraging the

relationships between the micro and the macro architectural levels. We empirically demon-

strate that the hybrid architectures found by our method outperform human-designed and

overparameterized ones on various challenging datasets. Furthermore, we unveil insights

into underlying connections between architectural choices and temporal features.

1 Introduction

Time series forecasting is a predictive task of primary importance that finds applications in several

disciplines such as energy management, finance, and healthcare. Recently, next to well-known

statistical models like ARIMA, deep neural methods gained popularity due to their representational

and predictive power. While achieving good performance across many tasks, most deep neural

approaches only provide point estimates without giving insights regarding the uncertainty of

their predictions. However, uncertainty about predictions is crucial in many critical applications

since it provides additional information that can tell us if the predictions might be erratic. For

example, a model predicting that a patient will benefit from a certain treatment should not be

trusted if the prediction comes with high uncertainty. Hybrid architectures are a prominent

way to obtain high predictive accuracy with useful uncertainty estimations. These architectures

generally consist of a neural forecaster, e.g., an RNN, and a probabilistic model, e.g., isotropic Gaussian
distributions (Salinas et al., 2020), normalizing flows (Rasul et al., 2021b), or probabilistic circuits (Yu

et al., 2022). In the context of time series, most of these methods operate in the time domain (Salinas

et al., 2020; Rasul et al., 2021a,b) while recent works have demonstrated how to leverage the Whittle

approximation (Whittle, 1953) to operate in the spectral domain achieving better scaling and taming

complexity (Yu et al., 2021a). A recent hybrid architecture named predictive Whittle networks

(PWNs) (Yu et al., 2022) exploits predictive uncertainty to further improve forecasting accuracy,

outperforming state-of-the-art neural architectures. Thus, PWNs turn out to be a promising venue

for probabilistic time series forecasting. However, to date, PWNs have been employed only with

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:jonas.seng@tu-darmstadt.de
mailto:
mailto:yu@cs.tu-darmstadt.de
mailto:ventola@cs.tu-darmstadt.de
mailto:kersting@cs.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/

standard neural network architectures, thus, it is unclear whether these hand-crafted architectures

are optimally designed for time series forecasting tasks.

Designing a neural architecture from scratch requires often expertise and computational re-

sources. Thus, neural architecture search (NAS) targets the challenge of automatically discovering

valuable neural architectures with the goal of substantially reducing the required resources. In

the last years, NAS has made significant progress that led to the proliferation of many approaches

based, e.g., on genetic algorithms, reinforcement learning, and gradient descent. Despite most NAS

algorithms being generally evaluated on well-established tasks such as image classification, recent

works have changed the trend and devised NAS approaches tailored to the challenging task of time

series prediction (Rakhshani et al., 2020; Chen et al., 2021; Deng et al., 2022). However, existing

NAS approaches for time series forecasting only optimize certain parts of an architecture (often

referred to as micro- and macro-architecture), therefore, they fail to optimize the entire architecture
which is crucial to model performance (Santra et al., 2021).

To tackle this shortcoming, we propose a novel differentiable one-shot method that optimizes

both the micro- and macro-architectures of PWNs. Our method frames optimization of the micro-

and macro-architecture as a bi-level optimization problem and updates the hybrid architecture

using gradients from the loss w.r.t. the micro- and macro-architecture in an alternating fashion.

Furthermore, we provide an extensive empirical evaluation demonstrating that our bi-level archi-

tecture search algorithm significantly improves the prediction accuracy of PWNs by optimizing

both its micro- and macro-architecture.
1
To summarize, we make the following contributions:

1. To optimize the entire architecture, we propose a novel bi-level neural architecture search

algorithm that optimizes both the macro- and micro-architectures of a hybrid model.

2. We empirically show that optimizing the hybrid PWN architecture using the proposed bi-level

architecture search algorithm outperforms hand-crafted baseline architectures to show the

effectiveness of our method.

3. To rule out confounding factors, we empirically demonstrate that the performance improvement

indeed stems from the optimization, and not from the overparameterization of our models during

the search for an optimal architecture.

The rest of this paper is structured as follows. First, we touch upon related work before

we formally describe our method. Then, we provide an extensive empirical evaluation before

concluding our work.

2 Related Work

Our work combines two lines of research, namely probabilistic time series modeling and neural

architecture search (NAS). We briefly review both in the following.

Probabilistic Time Series Modeling. Conventional time series forecasting models such as long

short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), gated recurrent unit (GRU) (Cho

et al., 2014), N-BEATS (Oreshkin et al., 2019), spectral RNN (Wolter et al., 2020), and Informer (Zhou

et al., 2021) have shown their great power in computing the prediction 𝑦 given the context 𝑥 of a

time series. However, these neural forecasters do not naturally provide uncertainty estimates to the

predictions, and as a result, users will have difficulty telling how much to trust their predictions.

More recently, based on the development of probabilistic time series models (eg. Gaussian

processes (Rasmussen andWilliams, 2006; Bruinsma et al., 2020), time series graphical models (Tank

et al., 2015), probabilistic circuit based models (Kalra et al., 2018; Trapp et al., 2020; Yu et al., 2021b)),

several probabilistic time series forecasting models have been proposed. Neural auto-regressive

1
Code available at https://github.com/J0nasSeng/Bi-level-optim.git

2

https://github.com/J0nasSeng/Bi-level-optim.git

models and normalizing flows have been shown to improve predictions (Salinas et al., 2020; Rasul

et al., 2021a,b), and modeling the time series in the spectral domain with tractable probabilistic

models further improves the forecasting accuracy and provides useful uncertainty estimates(Yu

et al., 2022). Although the above-mentioned time series models have shown their predicting power

on benchmark datasets, users still need to carefully tune the hyperparameters of the models when

given new data sets or new tasks.

Neural Architecture Search. As the success of deep learning techniques emerged, the problem

of finding optimal architectures for the task at hand became important to solve. Pioneering

approaches include the utilization of reinforcement learning (RL) (Pham et al., 2018), evolutionary

algorithms (EA) (Real et al., 2017) and the introduction of differentiable neural architectures that

allows optimization of architectures using Stochastic Gradient Descent (SGD) (Liu et al., 2019).

While RL and EA-based methods find state-of-the-art architectures, they come with high resource

consumption, hence often rendering them infeasible, especially for large problems. In contrast,

gradient-based approaches are significantly more efficient. Their efficacy relies on approximations

of the first-order solution of the bi-level optimization problem these approaches have to solve.

Since the major task in evaluating NAS methods on is image classification, recently several works

considered NAS specifically in the context of time series data. Deng et al. (2022) designed an AutoML

pipeline that optimizes hyperparameters and neural architectures to obtain high-performance time

series forecasting models. Chen et al. (2021) and Rakhshani et al. (2020) add time series specific

operations in the search space or as pre-processing steps to improve the performance of existing

NAS algorithms. The works mentioned above were designed to optimize only one aspect of neural

architectures, i.e. the micro- or macro-architecture. Recently, Sun et al. (2022) proposed AGNAS to

tackle the joint optimization of micro- and macro-architecture exploiting attention mechanisms to

weight operations/blocks of an architecture based on the computed feature representations. This

renders AGNAS inapplicable in hybrid architectures that contain components that do not compute

feature representations directly (e.g., probabilistic circuits). Thus, we propose a method capable of

optimizing both the micro- and macro-architecture jointly, solely requiring a differentiable loss

w.r.t. the architecture components rather than relying on feature representations.

3 Bi-Level Differentiable Architecture Search

We aim to optimize both, the macro- and micro-architecture of hybrid (neural) models at the same

time using a bi-level optimization approach, leading us to a bi-leve architecture search. Therefore,

we first briefly describe the hybrid model employed in our paper – predictive Whittle networks

(PWNs) – and proceed with our bi-level architecture search algorithm.

3.1 Predictive Whittle Networks as Hybrid Models

We focus on the task of time series forecasting with hybrid models such as PWNs, where we are

given the context 𝑥 and need to predict the future 𝑦𝑃𝑟𝑒𝑑 without knowing the ground truth 𝑦𝐺𝑇 .

PWNs are a recent hybrid deep learning architectures that model time series in the spectral domain,

and aim to both improve prediction accuracy and provide prediction uncertainty estimates. This

is done by simultaneously training a neural forecasting network in combination with a Whittle

probabilistic circuit (Whittle PC). The Whittle PC allows the tractable computation of inference

queries, in our case the Whittle PC computes the log-likelihood of the predictions from the neural

forecaster given the forecaster’s context. This information is then used as feedback to the neural

forecaster, to further improve the prediction accuracy. This is achieved by using the Whittle

forecasting loss (LWF), which can be described as a prediction error (LPred, e.g. mean squared error)

(re-)weighted by the Whittle likelihood (LWLL)

LWF = LPred(𝑦𝑃𝑟𝑒𝑑 , 𝑦𝐺𝑇) · LWLL(𝑥,𝑦𝑃𝑟𝑒𝑑 , 𝑦𝐺𝑇) . (1)

3

Macro
Architecture

Micro
Architecture

cell 1

cell 2

cell 3

out

node 1

node 2

node 3

node 4
cell i

cell i+1

Figure 1: Bi-Level Architecture Search Space. Our method optimizes both the macro- and micro-

architectures simultaneously. The search space is thus defined as a bi-level search space

where each edge of the macro search space (top) is a neural network whose architecture –

called micro-architecture – is optimized as well (bottom). Ellipses denote representations

by operations in the macro-architecture (i.e. neural networks) while rectangles denote

representations computed by operations in the micro-architecture.

While the prediction error LPred, measures the deviation between the prediction and the ground

truth, the Whittle likelihood indicates how likely the prediction fits its distribution. The Whittle

likelihood models time series in the spectral domain. More specifically, the Fourier coefficients of a

time series are assumed to follow a multivariate Gaussian distribution, and modeled with a Whittle

PC for computing the Whittle likelihood. We refer to Yu et al. (2021a, 2022) for a detailed discussion.

Furthermore, in order to accelerate the training process and extract the valuable likelihood feedback

efficiently, a warm-up phase is utilized, resulting in the following loss function

L = (1 − 𝛽)LPred(𝑦𝑃𝑟𝑒𝑑 , 𝑦𝐺𝑇) + 𝛽 LWF(𝑥,𝑦𝑃𝑟𝑒𝑑 , 𝑦𝐺𝑇), (2)

where the parameter 𝛽 is linearly increased during training. We refer to Yu et al. (2022) for more

details of the PWN model.

The architecture of the PWN in Yu et al. (2022) is hand-crafted. In the following we show how

to automatically search for 1) the combination of the neural components (the macro-architecture)

and 2) the architecture of each given neural component itself (the micro-architecture).

3.2 Problem Statement and Search Procedure

Inspired by Liu et al. (2019) we view both, the micro- and macro-architecture as directed acyclic

graphs (DAGs) Gmacro and Gmicro respectively, each containing any number of nodes in addition

to an input and an output node. In both DAGs, each node is connected to all of its predecessors.

The edges represent possible operations from a set of operations Omacro and Omicro respectively.

In the case of the micro-architecture, operations usually represent small building blocks such

as convolutions while in the case of the macro-architecture, operations represent cells from the

micro-level. The general overview of our algorithm is visualized in Figure 1. In the case of PWN,

the macro-architecture includes the PWN building blocks, i.e. different neural forecasters and
different choices of PCs.

Macro-Architecture Search. The set of possible macro-architectures of PWNs is represented as a

DAG Gmacro. The set of operations Omacro consists of modules parameterized as neural networks.

4

The input of a cell is defined as the weighted sum of the outputs of its predecessors, with an

macro-architecture weight 𝜔𝑚 for an edge with module𝑚 ∈ Omacro

�̄�(𝑥) =
∑︁

𝑚∈Omacro

exp(𝜔𝑚)∑
𝑚′∈Omacro

exp(𝜔𝑚′)
𝑚(𝑥) . (3)

The architecture weights indicate which module is expected to best optimize the loss w.r.t. the

macro-architecture. We relax the categorical search to a continuous space by computing the softmax

over all possible modules. The objective of PWN in eq. (2) then becomes

L = (1 − 𝛽)LPred(�̄�𝑃𝑟𝑒𝑑 (𝑥), 𝑦𝐺𝑇) + 𝛽 LWF(𝑥, �̄�𝑃𝑟𝑒𝑑 (𝑥), 𝑦𝐺𝑇), (4)

where �̄�𝑃𝑟𝑒𝑑 (𝑥) represents the weighted predictions from the neural forecaster building blocks, 𝑥

is the original input (context) in the time domain, and 𝑦𝐺𝑇 is the ground truth prediction in the

time domain. We define the objective of the macro-architecture search for modules parameterized

by 𝜔 as

min

𝜔
L𝑣𝑎𝑙 (𝑤∗(𝜔), 𝜔), (5)

where𝑤∗(𝜔) = arg min𝑤 L𝑡𝑟𝑎𝑖𝑛 (𝑤,𝜔). This two-step optimization loop is computationally expen-

sive and inefficient as one single step for the macro-architecture weights requires a full optimization

of the entire network. To tackle this, we follow Liu et al. (2019) and approximate the optimization

task with one-step gradient descent.

∇𝜔L𝑣𝑎𝑙 (𝑤∗(𝜔), 𝜔)
≈ ∇𝜔L𝑣𝑎𝑙 (𝑤 − 𝜉∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤,𝜔), 𝜔).

(6)

In this way, we are able to efficiently obtain the macro-architecture weights that indicate which

modules to use for the PWN model.

Micro-Architecture Search. After discussing the macro-architecture search, we now complement

our method by the optimization of the micro-architecture, leading to our bi-level architecture

search. Similar to the macro-architecture we represent the set of possible micro-architectures a

DAG Gmicro. Each module𝑚 ∈ Omacro has its own associated DAG G𝑚
micro

, inducing a hierarchy of

graphs. Let us denote the architecture weights of the neural spectral forecaster and Whittle PC

as 𝜔𝑁 and 𝜔𝑃 respectively. For better understanding and readability the level of a corresponding

weight is indicated by 1 for the macro-level and 2 for the micro-level.

We can now rewrite Eq. 4 in terms of the micro-architectures of all modules since these fully

define the architecture of each module

L = (1 − 𝛽)LPred(𝜔1

𝑁 , 𝑦𝐺𝑇) + 𝛽 LWF(𝜔1

𝑁 , 𝜔
1

𝑃) (7)

to a bi-level view

L = (1 − 𝛽)LPred(𝜔1

𝑁 , 𝜔
2

𝑁) + 𝛽 LWF(𝜔1

𝑁 , 𝜔
2

𝑁 , 𝜔
1

𝑃 , 𝜔
2

𝑃) . (8)

The spectral forecaster weights affect both parts of the loss as the time series prediction is part of

calculating the Whittle likelihood, while the Whittle PC only influences said likelihood. We can

now also extend the formulation of our optimization objective to the bi-level problem and optimize

both levels in union

min

𝜔1,𝜔2

L𝑣𝑎𝑙 (𝑤∗(𝜔1, 𝜔2), 𝜔1, 𝜔2), (9)

As in the macro search space, each node in Gmicro is defined as a weighted sum over operations:

�̄�(𝑥) =
∑︁

𝑚∈Omicro

exp(𝜔2

𝑚)∑
𝑚′∈Omicro

exp(𝜔2

𝑚′)
𝑚(𝑥) . (10)

5

With that, we can calculate the final output of Gmicro by feeding the weighted operations �̄�(𝑥)
as input into all following nodes of Gmicro. The final output is then calculated as the mean of all

outputs �̄�𝑚𝑖𝑐𝑟𝑜 (𝑥) = 1

𝑛

∑𝑛
𝑖=1

�̄�𝑖 (𝑥), and can be used to replace a corresponding𝑚(𝑥) in equation 3.

This allows us to include the set of micro-architecture weights in our optimization of the macro-

architecture weights to enable our algorithm to update both levels in union.

We now can state our optimization strategy to optimize the architecture on both, the macro- and

micro-level as stated in Eq. 9. As all aspects of the architecture are relaxed to a continuous space,

gradients can be computed w.r.t. the macro- and micro-architecture. The model- and architecture

parameters are updated in an alternating fashion. Model parameters are updated using standard

SGD with the architecture parameters kept fixed. To update the architecture, we extend Eq. 6:

∇𝜔1,𝜔2L𝑣𝑎𝑙 (𝑤∗(𝜔1, 𝜔2), 𝜔1, 𝜔2)
≈ ∇𝜔1,𝜔2L𝑣𝑎𝑙 (𝑤 − 𝜉∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤,𝜔1, 𝜔2), 𝜔1, 𝜔2)

(11)

The architecture parameters are updated with SGD on validation data to foster the discovery of

well-generalizing architectures.

4 Experiments

We now examine how the differentiable bi-level architecture search performs on various time series

forecasting datasets. The following research questions are tackled:

(Q1) How do PWN architectures found by our algorithm perform compared to manually designed

architectures?

(Q2) How reliably does our algorithm choose the optimal PWN macro-architecture across datasets?

(Q3) How do different datasets influence the optimized micro-architectures?

4.1 Experimental Setup

Datasets. To evaluate the effectiveness of the proposed algorithm, we use 5 real-world time series

data sets for empirical experiments. The well-known M4 competition dataset (Makridakis et al.,

2020) consists of multiple time series from different domains such as finance and demographics.

Moreover, the time series in M4 cover a large range of sampling frequencies, from hourly to yearly,

making it a challenging dataset for time series forecasting. The Power dataset contains power

consumption data from different EU power grids sampled with a frequency of 15 minutes, from

2011 to 2019 (Wolter et al., 2020). The Exchange dataset is a collection of daily exchange rates from

8 countries from 1990 to 2016 (Lai et al., 2018). The Wiki dataset reports the daily hits of 2000

Wikipedia pages (Gasthaus et al., 2019; Rasul et al., 2021b). The Solar dataset, depicts the solar
energy production of 137 plants in the state of Alabama in 2006 (Lai et al., 2018). A comprehensive

overview over different properties of the data sets can be found in Appendix A.

Search Space. The search space in NAS tasks is crucial and thus needs to be carefully designed.

In our experiments, the macro-architecture search space consists of the PWN building blocks:

SRNN, STrans, CWSPN, and WEin. The micro-architecture search space for the SRNN component

consists of 8 cells and 5 operations, where each cell is a GRU cell implemented in Yu et al. (2022).

The operations include a linear transformation followed by sigmoid, tanh or ReLU activation

functions, as well as none and identity connections. The CWSPN search space, on the other hand,

is designed with 4 nodes, as this network tends to be smaller than the SRNN. The 6 operations

contain convolutions and dilated convolutions with kernel sizes 3 and 5, as well as identity and

none connections. Table 1 provides a general overview of the search space in our experiments. We

set the architecture learning rate to 0.0003 and the weight decay to 0.001 in our experiments.

6

Component Level Options #Options

Model Structure Macro

[SRNN, STrans]

[CWSPN, WEin]

2

2

SRNN Micro [ReLU, sigmoid, tanh, none, identity] 5

CWSPN Micro [3x1 (dil) conv, 5x1 (dil) conv, none, identity] 6

Table 1: Search Space Overview. We define our search space across a macro-architectural and a

micro-architectural level. Optimizing the macro-architecture can be considered as selecting

an appropriate search space while optimization of the micro-architecture performs the actual

optimization of neural architectures.

SMAPE % MSE

M4 Yearly M4 Quarterly M4 Monthly M4 Weekly M4 Daily M4 Hourly Power 10
5

Exchange 10
−4

Wiki 10
7

Solar 10
3

TFT 15.03 ± 0.12 17.22 ± 0.05 16.55 ± 0.03 16.65 ± 0.08 16.68 ± 0.09 16.99 ± 0.04 34.07 ± 0.10 14.72 ± 0.13 11.16 ± 0.05 229 ± 71.01

ETS 15.10 ± 0.00 17.46 ± 0.00 19.46 ± 0.00 19.93 ± 0.00 19.39 ± 0.00 18.65 ± 0.00 34.54 ± 0.00 10.89 ± 0.00 10.90 ± 0.00 1156 ± 0.00

DeepAR 12.31 ± 0.08 11.85 ± 0.06 10.71 ± 0.09 10.20 ± 0.04 10.52 ± 0.02 10.93 ± 0.04 37.21 ± 0.06 12.88 ± 0.04 7.44 ± 0.07 219 ± 43.06

SRNN &

CWSPN

14.60 ± 0.11 11.43 ± 0.09 14.71 ± 0.07 4.76 ± 0.10 6.16 ± 0.06 5.44 ± 0.12 4.14 ± 0.16 2.08 ± 0.28 5.38 ± 0.17 1.61 ± 0.34

SRNN &

WEin

14.51 ± 0.14 11.31 ± 0.08 14.96 ± 0.11 4.75 ± 0.09 6.34 ± 0.10 5.48 ± 0.09 4.37 ± 0.08 1.89 ± 0.27 5.23 ± 0.17 1.58 ± 0.29

STrans &

CWSPN

15.51 ± 0.16 12.06 ± 0.11 14.94 ± 0.11 4.67 ± 0.10 6.55 ± 0.10 5.37 ± 0.08 4.11 ± 0.19 6.31 ± 1.21 5.28 ± 0.10 1.51 ± 0.21

STrans &

WEin

14.92 ± 0.15 11.36 ± 0.08 14.47 ± 0.13 4.58 ± 0.09 6.06 ± 0.09 5.41 ± 0.09 4.05 ± 0.14 6.32 ± 0.99 5.38 ± 0.28 1.59 ± 0.25

SRNN
+
&

CWSPN

14.86 ± 0.16 11.82 ± 0.18 15.02 ± 0.20 5.02 ± 0.19 7.86 ± 0.30 6.56 ± 0.28 6.89 ± 0.30 233 ± 16.27 5.09 ± 0.33 2.36 ± 0.38

PWN
★

(ours)

14.11 ± 0.36 11.11 ± 0.24 14.09 ± 0.32 4.53 ± 0.25 5.92 ± 0.40 5.08 ± 0.31 3.82 ± 0.16 1.95± 0.72 4.80 ± 0.41 1.34 ± 0.49

Table 2: Accuracy Results. We compare the architecture found by our bi-level architecture search

with all combinations of macro-architectures, neural baselines (TFT, DeepAR), and a statistical

baseline model (ETS). Lower values are better. The best result with uncertainty-guided

training is marked in bold, and the overall best result is in italic. Our algorithm (marked with

★) outperforms uncertainty-guided hybrid baseline models on all except one dataset. The

selection of the correct macro-architecture critically influences the performance of the final

model, rendering optimization of the macro-architecture crucial. For more details regarding

model training please refer to appendix B.

4.2 (Q1) Time Series Forecasting Results

We now are ready to quantitatively compare the time series forecasting results with the baselines.

For our evaluation, we first applied our bi-level architecture search to obtain an optimized PWN

architecture denoted by PWN
★
. Then, the found architecture was trained from scratch and evaluated

on the test set against the baseline models. As baseline models, we trained all possible combinations

of the macro-search space and fixed the micro-architecture to the same architecture used in (Yu

et al., 2022). Additionally, Exponential Smoothing (ETS) (Gardner, 2006), Deep AR (Salinas et al.,

2020) and Temporal Fusion Transformer (TFT) (Lim et al., 2020) served as baselines. The time series

forecasting results from PWN
★
together with our baselines – the 4 handcrafted PWN structures

– are depicted in table 2. On each dataset, we repeated the experiment 10 times and report the

average and the standard deviation.

We find that the architecture PWN
★
found by our bi-level architecture search outperforms the

baselines that are guided by uncertainty during training on M4, Power, Wiki and Solar datasets.

Also, PWN
★
is very competitive on the Exchange dataset as runner-up. Further, we observe a slight

increase in standard deviation for PWN
★
, likely originating from random effects during architecture

search. Our results indicate that a bi-level architecture search algorithm can indeed improve the

performance of hybrid models, by finding the best modules as well as the suitable structures of

each module.

7

In order to evaluate the influence of the increased number of parameters in PWN
★
during the

search, we conduct another experiment by employing a larger SRNN s.t. the number of parameters

is close to the model used during the search. The larger model has an SRNN with 12 GRU cells,

denoted as SRNN
+
& CWSPN, shown in the second last row in table 2. The results confirm that,

generally, simply enlarging the model size does not yield an improvement in performance, as all the

prediction results from SRNN
+
& CWSPN are worse than our bi-level searched PWN

★
. Therefore,

we can conclude that the improvement of PWN
★
is indeed from architecture search, rather than by

only increasing the model size.

To conclude, our results show that we outperform the handcrafted models with our bi-level

optimization algorithm on all but one data set. Additionally, we have shown that this increase is

not solely based on larger models but the result of a more optimal architecture.

4.3 (Q2) Optimizing the Macro-Architecture

We now evaluate the module selection performance of the search over the macro-architecture

search space. The results from all combinations of modules given the original PWN are shown

in table 2, and the best modules are summarised in table 3 labeled ‘best’. The proposed macro-

architecture search algorithm successfully selects the module of the spectral neural forecaster, as

they mostly match the best modules. However, the macro-architecture search could not find the

best module of the Whittle PC in most of the cases. One possible explanation is that due to their

own structural properties, CWSPN converges faster during training than WEin using gradient

descent. It is well known that gradient-based architecture search tends to select architectures with

higher convergence speed rather than selecting architectures minimizing the objective. This could

lead the macro-architecture search to select faster converging modules.

To conclude, our method selects the best neural forecasting module in most cases, the selection

of the best-performing PC remains challenging and is one potential future research direction.

Additionally, table 2 clearly shows that choosing the correct macro-architecture is crucial to

obtaining high-performing models. Our approach consistently identifies the best neural forecaster

module, allowing it to find state-of-the-art model architectures.

M4 Yearly M4 Quarterly M4 Monthly M4 Weekly M4 Daily M4 Hourly Power Exchange Wiki Solar

chosen STrans STrans STrans STrans STrans STrans SRNN SRNN STrans SRNNspectral

forecaster best SRNN SRNN STrans STrans STrans STrans SRNN SRNN STrans SRNN

chosen CWSPN CWSPN CWSPN CWSPN CWSPN CWSPN CWSPN CWSPN CWSPN CWSPNWhittle

PC best WEin WEin WEin WEin WEin WEin CWSPN WEin CWSPN WEin

Table 3: Module Selection. Comparison of module search choice to the best-performing combina-

tion. Identical color means, that the correct module has been selected, according to our

baseline results. We can see that the selection of the spectral forecaster works well, while the

performance of PC selection is lacking.

4.4 (Q3) Optimizing the Micro-Architecture

After investigating the performance of our bi-level architecture search to find the best macro-

architecture, we proceed by analyzing its behavior in terms of finding micro-architectures. We

analyze the frequency at which each operation is selected across different datasets. This allows us

to draw conclusions about how sensitive the architecture selection of our algorithm is w.r.t. the

data presented. For our analysis, we ran the bi-level architecture search for 5 runs with different

random seeds, and illustrate the average number of operations for SRNN (in table 4) and CWSPN

(in table 5). We refer to Appendix G for better visualization of the tables.

We analyze the micro-architectures of the SRNN and CWSPN separately. Themicro-architecture

search results on SRNN, shown in table 4, demonstrate that the preferred operations differ between

data sets. First of all, identity connections are chosen vastly more than other operations, on

8

M4 Yearly M4 Quarterly M4 Monthly M4 Weekly M4 Daily M4 Hourly Power Exchange Wiki Solar

none 0 0.2 0.4 0.4 0 0 1.2 0 0.2 0.2

tanh 0 0 0 0 0 0 0.2 0 0 0

ReLU 0.8 0.4 4.4 6.4 12.2 11.0 5.6 0 0 16.6

sigmoid 6.4 7.6 1.0 0.6 0.6 2.2 0 1.4 4.6 0

identity 38.6 27.8 30.2 28.6 23.2 22.8 27.0 30.6 31.2 17.2

Table 4: SRNN architecture results. Average number of times an operation is present in the optimized

SRNN architecture. We can observe a strong preference for identity connections and a

tendency of either sigmoid or ReLU activation functions.

most of the data sets. This behavior coincides with the behavior of DARTS and has already

been discussed in Heuillet et al. (2023). Identity connections fundamentally represent residual

connections, providing an initial performance boost. This initial advantage is often enough to

choose this operation over others, even though its long-term performance might be subpar. On the

other hand, none connections have been chosen very rarely on all the data sets, which results in

much larger model sizes compared to the standard SRNN structure. Secondly, when looking at the

activation function operations, one can see that ReLU and sigmoid are the most selected operations

on all the data sets. Interestingly, we observe that ReLU operations are chosen more frequently on

subsets of the M4 data set with higher sampling rates (weekly, daily and hourly), as well as on Power
(15min) and Solar (1h). Similarly, sigmoid operations are more preferred by the data sets with a

relatively lower sampling rate, such as Exchange and Wiki (1 day) and M4 (yearly and quarterly).

We leave further investigation of this behavior for future work.

M4 Yearly M4 Quaterly M4 Monthly M4 Weekly M4 Daily M4 Hourly Power Exchange Wiki Solar

none 3.4 2.8 3.6 3.0 2.4 2.4 3.0 0.4 0.8 0

identity 0 0 0 0 0 0 0.4 8.0 0 3.6

3x1 conv 0.2 0 4.0 3.0 3.4 3.6 2.4 0.4 4.8 3.8

5x1 conv 0 0.2 1.0 2.4 0.4 0.2 1.6 0.2 1.4 0

3x1 dil conv 3.2 3.8 0 0.8 0.8 0.2 0 0 0.6 0

5x1 dil conv 3.2 3.2 1.0 2.0 3.0 3.0 3.2 0 2.4 3.8

Table 5: CWSPN architecture results. Average number of times an operation is present in the opti-

mized CWSPN architecture. We can observe that data sets, with the exception of Exchange,

either prefer a combination of 3x1 dilated and 5x1 dilated convolutions or 3x1 and 5x1 dilated

convolutions.

Similarly, the micro-architecture search results on CWSPN are shown in table 5. The most

notable observation is that the convolution operations are much less frequently selected on the

smallest data set Exchange, which might indicate that for data sets with smaller sizes, the fully

connected layers are already sufficient. Furthermore, the zero operations are likely to be selected

on M4 and Power datasets, whose size are both relatively larger than the rest, resulting in smaller

model sizes. Lastly, we also observe that the sampling rate and the length of the context time series

also influence the selection of operations. More specifically, the M4 subsets Yearly and Quarterly,

which both have a low sampling rate and short context length, tend to select more operations of

3× and 5× dilated convolution, while the rest subsets of the M4 data set are given more operations

of 3× and 5× convolution.

To summarize, we find that the data presented has a higher impact on the CWSPN micro-

architectures than on the SRNN micro-architectures since in the case of SRNN the operation count

is quite similar across datasets. This is not the case for CWPSN architectures. Further, we found

that our method seems to favor identity connections during the search, similar to the findings in

(Heuillet et al., 2023). Finally, we find that the sampling frequency has a notable effect on the choice

of convolution operations in CWSPNs.

9

5 Conclusion

In this work, we proposed a novel differentiable neural architecture search capable of optimizing

both, the micro- and macro-architecture of hybrid models. We evaluated our algorithm across

various time series forecasting datasets using a search space derived from a recent state-of-the-art

hybrid model (PWNs) for probabilistic time series forecasting. Empirical results show that our

bi-level architecture search algorithm finds suitable micro- and macro-architectures, and in turn,

outperforms our baselines on time series forecasting.

Limitations & Future Work. One of the limitations of this work is that we did not prove that our

bi-level architecture search favors operations with faster convergence properties over operations

minimizing the objective function. Probing this conjecture is therefore a good direction for future

work as well as exploring how to balance the module selection with their convergence in training if

our conjecture holds true. Also, besides inheriting the efficiency of DARTS, we also inherit possible

unstable behaviors in some cases. An analysis of the sensitivity of our approach w.r.t. the choice of

hyperparameters is an interesting venue for future work as well as exploring other, more robust

extensions of DARTS in our framework. Another natural extension is to enable micro-architecture

search for other modules, e.g. STrans and WEin, as well as to explore other modules that are even

not evaluated in the original PWN.

6 Broader Impact Statement

After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.

Acknowledgements. This work was supported by the National High-Performance Computing

Project for Computational Engineering Sciences (NHR4CES) and the Federal Ministry of Educa-

tion and Research (BMBF) Competence Center for AI and Labour (“KompAKI”, FKZ 02L19C150).

Furthermore, this work benefited from the cluster project “The Third Wave of AI”.

References

Bruinsma, W., Perim, E., Tebbutt, W., Hosking, J. S., Solin, A., and Turner, R. E. (2020). Scalable exact

inference in multi-output gaussian processes. In International Conference on Machine Learning
(ICML).

Chen, D., Chen, L., Shang, Z., Zhang, Y., Wen, B., and Yang, C. (2021). Scale-aware neural architecture

search for multivariate time series forecasting. arXiv preprint arXiv:2112.07459.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural

machine translation: Encoder-decoder approaches. In Workshop on Syntax, Semantics and
Structure in Statistical Translation.

Deng, D., Karl, F., Hutter, F., Bischl, B., and Lindauer, M. (2022). Efficient automated deep learning

for time series forecasting. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD).

Gardner, E. S. (2006). Exponential smoothing: The state of the art—part ii. International Journal of
Forecasting, 22(4):637–666.

Gasthaus, J., Benidis, K., Wang, Y., Rangapuram, S. S., Salinas, D., Flunkert, V., and Januschowski, T.

(2019). Probabilistic forecasting with spline quantile function rnns. In International Conference
on Artificial Intelligence and Statistics (AISTATS).

10

Heuillet, A., Nasser, A., Arioui, H., and Tabia, H. (2023). Efficient automation of neural network

design: A survey on differentiable neural architecture search. arXiv preprint arXiv:2304.05405.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation.

Kalra, A., Rashwan, A., Hsu, W.-S., Poupart, P., Doshi, P., and Trimponias, G. (2018). Online

structure learning for feed-forward and recurrent sum-product networks. In Advances in Neural
Information Processing Systems (NeurIPS).

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling long- and short-term temporal patterns

with deep neural networks. In International ACM SIGIR Conference on Research & Development in
Information Retrieval.

Lim, B., Arik, S. O., Loeff, N., and Pfister, T. (2020). Temporal fusion transformers for interpretable

multi-horizon time series forecasting.

Liu, H., Simonyan, K., and Yang, Y. (2019). Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR).

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020). The m4 competition: 100,000 time series

and 61 forecasting methods. International Journal of Forecasting.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio, Y. (2019). N-beats: Neural basis expan-

sion analysis for interpretable time series forecasting. In International Conference on Learning
Representations (ICLR).

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via

parameters sharing. In International Conference on Machine Learning (ICML).

Rakhshani, H., Ismail Fawaz, H., Idoumghar, L., Forestier, G., Lepagnot, J., Weber, J., Brévilliers, M.,

and Muller, P.-A. (2020). Neural architecture search for time series classification. In International
Joint Conference on Neural Networks.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R. (2021a). Autoregressive denoising diffusion

models for multivariate probabilistic time series forecasting. In International Conference on
Machine Learning (ICML).

Rasul, K., Sheikh, A., Schuster, I., Bergmann, U.M., and Vollgraf, R. (2021b). Multivariate probabilistic

time series forecasting via conditioned normalizing flows. In International Conference on Learning
Representations (ICLR).

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).

Large-scale evolution of image classifiers. In International Conference on Machine Learning
(ICML).

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). DeepAR: Probabilistic forecasting

with autoregressive recurrent networks. International Journal of Forecasting.

Santra, S., Hsieh, J.-W., and Lin, C.-F. (2021). Gradient descent effects on differential neural

architecture search: A survey. IEEE Access.

11

Sun, Z., Hu, Y., Lu, S., Yang, L., Mei, J., Han, Y., and Li, X. (2022). AGNAS: Attention-guided micro

and macro-architecture search. In Proceedings of the 39th International Conference on Machine
Learning, volume 162, pages 20777–20789. PMLR.

Tank, A., Foti, N. J., and Fox, E. B. (2015). Bayesian structure learning for stationary time series. In

Conference on Uncertainty in Artificial Intelligence (UAI).

Trapp, M., Peharz, R., Pernkopf, F., and Rasmussen, C. E. (2020). Deep structured mixtures of

gaussian processes. In International Conference on Artificial Intelligence and Statistics (AISTATS).

Whittle, P. (1953). The analysis of multiple stationary time series. Journal of the Royal Statistical
Society: Series B (Methodological).

Wolter, M., Gall, J., and Yao, A. (2020). Sequence prediction using spectral rnns. In International
Conference on Artificial Neural Networks.

Yu, Z., Ventola, F., and Kersting, K. (2021a). Whittle networks: A deep likelihood model for time

series. In International Conference on Machine Learning (ICML).

Yu, Z., Ventola, F., Thoma, N., Dhami, D. S., Mundt, M., and Kersting, K. (2022). Predictive whittle

networks for time series. In Conference on Uncertainty in Artificial Intelligence (UAI).

Yu, Z., Zhu, M., Trapp, M., Skryagin, A., and Kersting, K. (2021b). Leveraging probabilistic circuits

for nonparametric multi-output regression. In Conference on Uncertainty in Artificial Intelligence
(UAI).

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., and Zhang, W. (2021). Informer: Beyond

efficient transformer for long sequence time-series forecasting. In AAAI conference on artificial
intelligence.

12

Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] In section 4 we have shown that our algorithm is able to

provide a notable boost for predictive performance of PWN.

(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [No] We don’t think

that our work presents any notable or specific negative impacts.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] All experiments were run on the

same PCs, addtionaly each dataset has used performance metrics from previous publications

to allow easy comparability of results

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] See Sec.4 as well as Appendix B and C

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] Yes each experiment was

repeated 5 times and each time a different random seed was used

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] See Table 2

(e) Did you report the statistical significance of your results? [Yes] Spread and error metrics

are reported. (e.g. Table 2) Estimates of significance between different experiments however

are not given, as a sample size of 5 runs per experiment is not sufficient enough to do that

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Not applicable

to our problem setting of time series forecasting. All data sets and metrics are however

used in recent publications in the field of time series forecasting

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] Rough hand tuned estimates

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See appendix C

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We tested the performance of the macro-architecture search separately. See Sec. 4.3

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] Yes a link to the code was provided on page 2.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] Following the readme instructions a small experiment for both the

architecture search as well as training a found architecture can be started easily.

13

https://2022.automl.cc/ethics-accessibility/

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] See readme and Code itself

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] Experiments were conducted over a prolonged time period and not all

raw results exsist anymore.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The Code and readme includes

parts to gain the data used

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] See Section 4.1

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No data containing sensitive information was used

in the experiments

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [N/A]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

14

A Dataset Properties

In this section, we provide the detailed statistics of the datasets used in our experiments.

Dimension Domain Freq.

Time Steps

per Dimension

Prediction

Length

Context

Timespan

Evaluation

Metric

M4 Yearly 23000 R+ 1-y 30 6 24 SMAPE

M4 Quarterly 24000 R+ 3-mon 40 8 32 SMAPE

M4 Monthly 48000 R+ 1-mon 469* 18 108 SMAPE

M4 Weekly 359 R+ 1-wek 1455* 14 63 SMAPE

M4 Daily 4227 R+ 1-d 1006* 14 70 SMAPE

M4 Hourly 414 R+ 1-hr 960* 48 480 SMAPE

Power 8 R+ 15-min 139872 144 1440 MSE

Exchange 8 R+ 1-d 6071 30 180 MSE

Wiki 2000 N0 1-d 792 30 180 MSE

Solar 137 R+ 1-hr 7009 24 720 MSE

Table 6: Dataset Parameters. Overview of dataset properties and fundamental Hyperparameters.

* Dimensions have variable length, highest number of time steps per dimension is reported.

B Hyperparameters

B.1 PWN

In this section we provide the hyperparameters for PWN training. All experiments were run with

seeds 0-10.

M4 Yearly M4 Quarterly M4 Monthly M4 Weekly M4 Daily M4 Hourly Power Exchange Wiki Solar

#Epochs 15000 15000 15000 15000 15000 15000 5000 1000 1000 200

Batchsize 256 256 256 256 256 64 256 32 64 64

FFT

Window Size

6 8 18 14 14 24 96 60 60 24

FFT

Compression

1 1 1 1 1 1 4 2 2 2

Hidden dim. 128 196 196 64 196 64 64 64 64 64

Layers 2 3 3 2 2 2 2 2 2 2

EM

step-size

0.05 0.025 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

EM freq. 1 1 5 1 5 1 1 1 1 1

Learning

Rate

0.001 0.001 0.001 0.001 0.001 0.001 0.004 0.003 0.004 0.003

Table 7: Overview of PWN hyperparameters.

B.2 Baselines

The baselines were trained using the AutoGluonTS and neuralforecast library. All baselines

optimized the SMAPE loss for M4 and the MSE loss for the other datasets. The prediction length

was set according to Tab. 6. We applied a basic hyperparameter optimization for each model

provided by AutoGluonTS/neuralforecast.

C Computational Resources and Footprint

Our bi-level approach makes use of the differentiability of the loss w.r.t. the architecture on both

the micro- and macro level. The architecture optimization follows Liu et al. (2019), thus, it exploits

weight sharing and a one-step approximation of the model weights. As DARTS is an efficient

15

optimization method, and since we apply it on two levels of the architecture, our approach inherits

the time requirements of DARTS.

Most experiments were conducted on machines with an Nvidia RTX 2080 Ti GPU and an AMD

Ryzen 7 3800X CPU. Ablation experiments have been conducted on Nvidia DGX machines with

A100 GPUs. The total compute time for all experiments (including baselines) is approximately 5000

GPU hours.

On A100 GPUs, the runtime of one search is approximately 7 hours on average while the

training of the found PWN architecture takes about 2.5 GPU days. The maximum memory usage

during the experiments was 5GB of RAM (on GPU).

In an additional ablation study we only search the macro- and then the micro-architecture. In

this setting, the total running time to perform the search on both levels is about 13-15 hours (6.5–7.5

hours for each level), almost double the time required by our bi-level search. Therefore, compared

to sequentially first searching for a macro-architecture and then for a micro-architecture (given

the selected macro-architecture), by searching both simultaneously with our bi-level approach, we

nearly halved the search time. The main computational load is still the full training of the found

PWN architecture, which needs 2.5 GPU days.

D SMAPE

The symmetric mean absolute percentage error (SMAPE) can be calculated as

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛

∑︁
𝑖

|𝑦𝑖 − 𝑦𝑖 |
|𝑦𝑖 | + |𝑦𝑖 |

, (12)

where 𝑦 are the predicted values and 𝑦 refers to the ground truth.

16

E PWN Module Search Schematics

In this section, we demonstrate the graph for bi-level architecture search space for PWN.

Cell 1 Cell 2 Output

SRNN

STrans CWSPN

WEin

Input

GRU
Cell

1

GRU
Cell

2

GRU
Cell

8
…

 Node
2

Node
4

Node
3

Node
1

Figure 2: Bi-Level PWN Architecture Search Space. Depicted is the overview of the architecture

search space for PWN.

17

F Bi-Level Optimization Algorithm

Algorithm 2 Bi-Level Architecture Search. We alternate between updating the model- and archi-

tecture weights during optimization (steps 2 and 4). In steps 1 and 2, model weights𝑤 are updated

with a fixed architecture. Therefore, we compute the output of the network by weighting the output

of the neural forecasters and Whittle PCs according to the current macro-architecture weights

𝜎 (𝜔1) where 𝜎 is the softmax function. Each forecaster network 𝑁 itself is a supernet (representing

the micro-architecture via weights 𝜔2
), here the same mechanism is applied. After that the training

loss is computed and model weights𝑤 are updated. In steps 3 and 4 the same procedure is applied.

However, the validation loss is computed and architecture weights are updated.

Input 𝑥 , weight decay 𝜌 , architectural learning rate 𝛾 , ground truth 𝑦

1. Pass input 𝑥 from training set through macro- and micro-level

𝑜𝑢𝑡𝑁 =
∑

𝑁 ∈forecasters 𝜎 (𝜔1)𝑁 · 𝑁 (𝑥, 𝜔2

𝑁
,𝑤𝑁);

𝑜𝑢𝑡𝑃 =
∑

𝑃∈Whittle PCs
𝜎 (𝜔1)𝑃 · 𝑃 (𝑥, 𝑜𝑢𝑡𝑁 ,𝑤𝑃);

L𝑡𝑟𝑎𝑖𝑛 ← L𝑊𝐹 (𝑥, 𝑜𝑢𝑡𝑁 , 𝑜𝑢𝑡𝑃 , 𝑦)
2. Update network weights of all micro-level networks with

𝑤 = 𝑤 − 𝜉∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤,𝜔1, 𝜔2) + 𝜌 | |𝑤 | | where𝑤 =
⋃

𝑁 ∈forecasters𝑤𝑁 ∪
⋃

𝑃∈Whittle PCs
𝑤𝑃

3. Pass input 𝑥 from validation set through macro- and micro-level

𝑜𝑢𝑡𝑁 =
∑

𝑁 ∈forecasters 𝜎 (𝜔1)𝑁 · 𝑁 (𝑥, 𝜔2

𝑁
,𝑤𝑁);

𝑜𝑢𝑡𝑃 =
∑

𝑃∈Whittle PCs
𝜎 (𝜔1)𝑃 · 𝑃 (𝑥, 𝑜𝑢𝑡𝑁 ,𝑤𝑃);

L𝑣𝑎𝑙 ← L𝑊𝐹 (𝑥, 𝑜𝑢𝑡𝑁 , 𝑜𝑢𝑡𝑃 , 𝑦)
4. Update micro- and macro-level architecture weights of all micro-level networks with

(𝑤1,𝑤2) = (𝑤1,𝑤2) − 𝛾∇𝜔1,𝜔2L𝑣𝑎𝑙 (𝑤 − 𝜉∇𝑤L𝑡𝑟𝑎𝑖𝑛 (𝑤,𝜔1, 𝜔2), 𝜔1, 𝜔2) + 𝜌 | | (𝜔1, 𝜔2) | |
where𝑤 is defined as in step 2.

18

G Architecture Composition

The Example Appendix can be removed.

0 1 2

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

0.2
0.2

1.2

0.4
0.4

0.2

(a) none

0 1 2

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

0.2

(b) tanh

0 5 10 15 20

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

16.6

5.6
11

12.2
6.4

4.4
0.4
0.8

(c) ReLU

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

4.6
1.4

2.2
0.6
0.6
1

7.6
6.4

(d) sigmoid

0 10 20 30 40

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

17.2
31.2
30.6

27

22.8
23.2

28.6
30.2

27.8
38.6

(e) identity

Figure 3: SRNN Architecture composition bar plot.

19

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

0.8
0.4

3

2.4
2.4

3

3.6
2.8

3.4

(a) none

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

3.6

8

0.4

(b) identity

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

3.8
4.8

0.4
2.4

3.6
3.4

3

4

0.2

(c) 3x1 conv

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

1.4
0.2

1.6
0.2
0.4

2.4
1

0.2

(d) 5x1 conv

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

0.6

0.2
0.8
0.8

3.8
3.2

(e) 3x1 dil conv

0 2 4 6 8 10

Solar

Wiki

EXG

Power

M4-H

M4-D

M4-W

M4-M

M4-Q

M4-Y

3.8
2.4

3.2
3

3

2

1

3.2
3.2

(f) 5x1 dil conv

Figure 4: CWSPN Architecture composition bar plot.

20

	Introduction
	Related Work
	Bi-Level Differentiable Architecture Search
	Predictive Whittle Networks as Hybrid Models
	Problem Statement and Search Procedure

	Experiments
	Experimental Setup
	(Q1) Time Series Forecasting Results
	(Q2) Optimizing the Macro-Architecture
	(Q3) Optimizing the Micro-Architecture

	Conclusion
	Broader Impact Statement
	Dataset Properties
	Hyperparameters
	PWN
	Baselines

	Computational Resources and Footprint
	SMAPE
	PWN Module Search Schematics
	Bi-Level Optimization Algorithm
	Architecture Composition

