
Align and Fine-Tune: Enhancing LLMs for
Time-Series Forecasting

Ching Chang1 Wei-Yao Wang1 Wen-Chih Peng1 Tien-Fu Chen1 Sagar Samtani2
1National Yang Ming Chiao Tung University 2Indiana University

blacksnail789521.cs10@nycu.edu.tw, sf1638.cs05@nctu.edu.tw
{wcpeng, tfchen}@cs.nycu.edu.tw, ssamtani@iu.edu

Abstract

Multivariate time-series forecasting is vital in fields like economic planning and
weather prediction, but deep models often require large datasets, limiting their
practicality. Pre-trained Large Language Models (LLMs) have been adapted for
time-series tasks, but challenges persist due to differences between time-series
and linguistic data, and the need for multi-scale temporal processing. To address
these challenges, we introduce LLM4TS, a framework that leverages LLMs for
time-series forecasting through a two-stage fine-tuning process: time-series align-
ment to adapt LLMs to time-series data and forecasting fine-tuning for specific
tasks. A novel two-level aggregation method integrates multi-scale temporal data
within LLMs. Experiments show that LLM4TS outperforms state-of-the-art meth-
ods, excelling in both full-shot and few-shot scenarios. Comparisons with other
unsupervised approaches highlight LLM4TS’s superior representation learning.

1 Introduction

Forecasting in multivariate time-series analysis is crucial, particularly in applications like economic
planning [1, 2, 3] and weather prediction [4, 5, 6]. Deep train-from-scratch models have shown
promise in time-series forecasting [7, 8, 9, 10, 4, 11], but they often require large datasets, which are
not always available in real-world scenarios [12, 13, 14]. Recent research has turned to pre-trained
Large Language Models (LLMs) from NLP [15, 16, 17], leveraging their strong representation
learning and few-shot capabilities. These models can be fine-tuned for non-linguistic datasets,
including time-series data [18, 19], with minimal data and parameters. However, applying LLMs to
time-series forecasting presents challenges due to the unique characteristics of time-series data.

The first challenge is their limited adaptation to the unique characteristics of time-series data, as LLMs
are primarily pre-trained on linguistic data. Although LLMs have shown effectiveness in transfer
learning across various modalities due to their data-independent self-attention mechanism [18], they
struggle to recognize key time-series patterns, leading to inaccuracies in fields like meteorology and
energy management [4]. The second challenge lies in LLMs’ limited capacity to process multi-scale
temporal information, which is crucial for accurate time-series analysis. LLMs typically do not
account for different time units and significant events, making it difficult to identify and predict
patterns across various time scales [9, 20], resulting in inaccurate forecasting [15, 17].

To address the challenges of adapting LLMs for time-series forecasting, we propose LLM4TS.
LLM4TS uses a two-stage fine-tuning process: time-series alignment adapts LLMs to time-series data
with an autoregressive objective, while forecasting fine-tuning targets specific forecasting tasks. Most
LLM parameters are frozen, preserving representation learning and ensuring strong performance in
both full- and few-shot scenarios. LLM4TS also employs a two-level aggregation strategy, embedding
multi-scale temporal information into patches to capture both series values and time-specific context,
making it a data-efficient and robust time-series forecaster. The key contributions are:

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(a) 5% training data (b) 10% training data

Figure 1: Model performance comparison on few-shot forecasting.

• Alignment with Time-Series Data: LLM4TS aligns pre-trained LLMs with time-series
characteristics, leveraging their representation learning and few-shot capabilities.

• Incorporation of Multi-Scale Temporal Data: A novel two-level aggregation method
integrates multi-scale temporal information within LLMs.

• Superior Forecasting Performance: LLM4TS outperforms state-of-the-art methods across
7 benchmarks, excelling in few-shot scenarios with minimal data.

2 Method

A sliding window is used to extract sequential samples from a complete, evenly-sampled mul-
tivariate time-series. This window, with a stride of 1, spans Tin + Tout, capturing past data
xin = (d1, . . . , dTin

) and future data xout = (dTin+1, . . . , dTin+Tout
). Each time step t contains a

C-dimensional vector, where C represents the number of features. The objective is to use past data
xin ∈ RTin×C to predict future data xout ∈ RTout×C .

2.1 Time-Series Alignment

Pre-trained LLMs, like GPT-2 [15], are primarily trained on language data, limiting their effectiveness
with time-series data. To address this, we introduce a time-series alignment stage that adapts LLMs
to time-series characteristics using the same autoregressive training method from their original pre-
training. As shown in Fig. 2(a), the model takes an input sequence of patched time-series data (e.g.,
1st patch, 2nd patch) and generates an output sequence shifted by one patch (e.g., 2nd patch, 3rd patch).

Instance Normalization To ensure stability across modalities, instance normalization is applied
alongside layer normalization without a trainable affine transformation, preserving data suitability
for the autoregressive objective. Given an input time-series xin ∈ RTin×C , instance normalization
produces xnormed ∈ RTin×C with zero mean and unit standard deviation: xnormed = IN(xin).

Time-Series Tokenization Standard LLM context windows, like the 1024 tokens in GPT-2, are
insufficient for long-term time-series forecasting. To address this, we use channel-independence
and patching [8] for tokenization. Channel-independence converts multivariate data into univariate
series, reducing the dimension to RTin×1. Patching then groups adjacent time steps, reducing the
time dimension to Tp and expanding the feature dimension to the patch length P . For a normalized
time-series xnormed ∈ RTin×C , the process is: p = patching(CI(xnormed)).

Three Encodings for Patched Time-Series Data To adapt pre-trained LLMs for time-series data,
we introduce three encoding layers: token, positional, and multi-scale temporal. The original token
encoding is replaced with a 1D convolutional layer (Convtoken) to better handle vectorized time-series
data, producing the token embedding etoken = Convtoken(p). Positional encoding uses a trainable
lookup table Epos to generate the positional embedding epos = Epos(i). To address multi-scale
temporal information, a two-level aggregation strategy is used. Level 1 aggregates temporal attributes
(seconds, minutes, hours, etc.) within each timestamp using a trainable lookup table Ea. Level 2
applies pooling to select the first timestamp as representative of each patch, creating the temporal

2

(a) Time-Series Alignment (b) Forecasting Fine-Tuning

Figure 2: LLM4TS framework. The numbers in the patched time-series (e.g., 1, 2, ..., 16 in the first
patch) represent the sequential timestamps. The framework has two stages: (a) Time-series alignment
using an autoregressive approach, and (b) Forecasting fine-tuning, starting with linear probing (only
the output layer is unfrozen) and then full fine-tuning (unfreezing all layers and PEFT components).

embedding etemp = Pooling
(∑

a∈{sec,min,hour,...} Ea(ta)
)

. The final embedding e is obtained by
summing the token, positional, and temporal embeddings: e = etoken + epos + etemp.

Pre-Trained LLM To preserve LLMs’ data-independent representation learning, most param-
eters, especially in multi-head attention and feed-forward layers, are kept fixed, as training from
scratch often reduces performance. For the remaining 1.5% of trainable parameters, we use two
Parameter-Efficient Fine-Tuning (PEFT) methods: Layer Normalization Tuning, which makes the
affine transformation in layer normalization trainable, and Low-Rank Adaptation (LoRA), which
adds trainable low-rank matrices in self-attention. The embedding e is passed through pre-trained
Transformer blocks (TBs), producing final embeddings z = TBs(e). A linear output layer Wtsa then
transforms z back into patched time-series data: p̂shifted = zW⊤

tsa. This predicted output aligns with
the autoregressive objective by shifting the original patches by one. The Mean Squared Error (MSE)
loss function is used to ensure accuracy: Ltsa = MSE(pshifted, p̂shifted).

2.2 Forecasting Fine-tuning

After aligning the pre-trained LLM with patched time-series data, the trained weights, including those
from the encoding layers, are transferred to the forecasting fine-tuning stage. Fine-tuning can be done
through full fine-tuning (updating all parameters) or linear probing (updating only the final output
layer). A sequential approach, linear probing followed by full fine-tuning (LP-FT), often outperforms
either method alone by first optimizing the output layer, then adapting the model for specific tasks,
enhancing both out-of-distribution (OOD) robustness and in-distribution (ID) accuracy [21].

The forecasting fine-tuning stage retains the structure from the time-series alignment stage, including
the encoding layers and pre-trained LLM, with two key differences: instance normalization and the
output layer. Reversible Instance Normalization (RevIN) [22] is introduced to improve forecasting
accuracy by normalizing and denormalizing data to address distribution shifts common in time-
series data. During tokenization, RevIN is applied before channel-independence and patching:
p = patching(CI(RevINnorm(xin))). Denormalization is only used on unpatched data, so standard
instance normalization is used in the alignment stage. The output layer transforms the final embedding
z into the predicted future data by flattening z, passing it through a linear layer Wfft, rearranging
the data, and applying RevIN’s denormalization to produce the final prediction x̂out ∈ RTout×C :
x̂out = RevINdenorm(Rearrange((Flatten(z))W⊤

fft)). The MSE loss function ensures accurate
reconstruction of the future data: Lfft = MSE(xout, x̂out).

3 Experiments

3.1 Few-Shot Learning in Long-Term Time-Series Forecasting (LTS)

Tables 1 and 2 show long-term time-series forecasting results using 5% and 10% of the training
data, respectively. Both LLM4TS and GPT4TS [18] outperform most train-from-scratch models
in few-shot scenarios due to the representation learning capabilities of GPT-2. LLM4TS, with its

3

Table 1: Few-shot LTF with 5% training data.
Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.256 0.292 0.264 0.302 0.264 0.309 0.270 0.304 0.261 0.309 0.282 0.316 0.283 0.318
ETTh1 0.651 0.551 0.682 0.560 0.750 0.611 0.695 0.569 0.627 0.543 0.422 0.419 0.674 0.539
ETTh2 0.359 0.405 0.401 0.434 0.828 0.616 0.439 0.448 0.382 0.418 0.345 0.383 0.393 0.457
ETTm1 0.413 0.417 0.472 0.450 0.401 0.417 0.527 0.476 0.425 0.434 0.501 0.458 0.484 0.449
ETTm2 0.286 0.332 0.308 0.346 0.399 0.426 0.315 0.353 0.274 0.323 0.281 0.328 0.348 0.343

ECL 0.173 0.266 0.179 0.273 0.177 0.276 0.181 0.277 0.177 0.268 0.216 0.308 0.181 0.269
Traffic 0.418 0.295 0.434 0.305 0.451 0.317 0.418 0.297 0.423 0.299 0.492 0.351 0.430 0.320

Avg. Rank 2.120 2.200 4.200 4.000 4.680 5.080 4.760 4.640 2.720 2.920 4.400 4.280 5.000 4.640

Table 2: Few-shot LTF with 10% training data.
Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.235 0.270 0.238 0.275 0.241 0.283 0.242 0.279 0.234 0.273 0.282 0.316 0.238 0.272
ETTh1 0.525 0.493 0.590 0.525 0.691 0.600 0.633 0.542 0.555 0.522 0.428 0.427 0.582 0.525
ETTh2 0.366 0.407 0.397 0.421 0.605 0.538 0.415 0.431 0.371 0.394 0.361 0.398 0.400 0.432
ETTm1 0.408 0.413 0.464 0.441 0.411 0.429 0.501 0.466 0.404 0.427 0.501 0.458 0.460 0.443
ETTm2 0.276 0.324 0.293 0.335 0.316 0.368 0.296 0.343 0.277 0.323 0.281 0.328 0.337 0.331

ECL 0.172 0.264 0.176 0.269 0.180 0.280 0.180 0.273 0.175 0.270 0.216 0.308 0.176 0.269
Traffic 0.432 0.303 0.440 0.310 0.447 0.313 0.430 0.305 0.429 0.306 0.503 0.358 0.441 0.316

Avg. Rank 2.036 1.679 4.000 3.786 5.143 5.679 5.036 5.071 2.214 2.786 4.786 4.821 4.536 3.857

additional time-series alignment and multi-scale temporal integration, consistently surpasses GPT4TS
across datasets. Among LLM-based methods (Time-LLM, TEMPO, TEST), LLM4TS consistently
achieves the best results, particularly on larger datasets, even with only 5% or 10% of the data. Note
that TEMPO* is evaluated under a zero-shot setting as it is a prompt-based method.

3.2 Full-Shot Learning in Long-Term Time-Series Forecasting (LTF)

Table 3 presents the results of long-term time-series forecasting averaged across prediction lengths
Tout ∈ {96, 192, 336, 720}. LLM4TS excels not only in few-shot learning but also outperforms
all train-from-scratch methods even with full dataset access, thanks to its two-stage fine-tuning
and multi-scale temporal integration. In contrast, GPT4TS fails to outperform traditional models
in full-shot scenarios due to its lack of time-series alignment and multi-scale temporal integration.
Among LLM-based methods, Time-LLM leads in general, but LLM4TS outperforms it in few-shot
scenarios, showcasing superior data efficiency and robustness in limited-data settings.

Table 3: Full-shot LTF.
Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.223 0.260 0.237 0.271 0.249 0.300 0.226 0.264 0.226 0.258 0.282 0.316 0.229 0.269
ETTh1 0.404 0.418 0.428 0.426 0.423 0.437 0.413 0.431 0.408 0.424 0.428 0.427 0.414 0.432
ETTh2 0.333 0.383 0.355 0.395 0.431 0.447 0.330 0.379 0.334 0.383 0.361 0.398 0.331 0.380
ETTm1 0.343 0.378 0.352 0.383 0.357 0.379 0.351 0.381 0.329 0.372 0.501 0.458 0.353 0.382
ETTm2 0.251 0.313 0.267 0.326 0.267 0.334 0.255 0.315 0.251 0.314 0.281 0.328 0.279 0.291

ECL 0.159 0.253 0.167 0.263 0.166 0.264 0.162 0.253 0.159 0.253 0.216 0.308 0.163 0.254
Traffic 0.401 0.273 0.414 0.295 0.434 0.295 0.391 0.264 0.388 0.264 0.503 0.358 0.431 0.295

Avg. Rank 2.036 2.214 4.786 4.750 5.536 5.357 2.571 2.750 1.643 2.143 6.607 6.250 4.214 3.679

Table 4: Unsupervised representation learning
evaluation in forecasting with linear probing.

Methods LLM4TS PatchTST BTSF TS2Vec TNC TS-TCC
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.315 0.365 0.322 0.369 0.541 0.519 0.599 0.534 0.632 0.596 0.653 0.610
48 0.342 0.384 0.354 0.385 0.613 0.524 0.629 0.555 0.705 0.688 0.720 0.693

168 0.401 0.415 0.419 0.424 0.640 0.532 0.755 0.636 1.097 0.993 1.129 1.044
336 0.421 0.427 0.445 0.446 0.864 0.689 0.907 0.717 1.454 0.919 1.492 1.076
720 0.426 0.447 0.487 0.478 0.993 0.712 1.048 0.790 1.604 1.118 1.603 1.206

ETTh1

Avg. 0.381 0.408 0.405 0.420 0.730 0.595 0.788 0.646 1.098 0.863 1.119 0.926

3.3 Unsupervised Representation Learning

We assess LLM4TS’s representation learning using linear evaluation on time-series forecasting,
where the model is pre-trained with an autoregressive objective, then frozen, and a linear layer
is trained for forecasting. Table 4 shows LLM4TS’s superior performance on the ETTh1 dataset,
demonstrating its effective adaptation to time-series data during alignment. This evaluation focuses
on self-supervised methods, excluding deep train-from-scratch models and GPT4TS, which lacks a
distinct representation learning stage. Despite PatchTST’s use of an MLM approach for representation
learning, LLM4TS outperforms all methods, with a 6.02% average improvement in MSE.

3.4 Ablation Study

We conducted ablation studies to evaluate the impact of key components in LLM4TS, including
time-series alignment, multi-scale temporal encoding, and PEFT methods, across both full- and
few-shot scenarios. The results highlight the importance of each component in enhancing forecasting
accuracy. We also examined various training strategies in the forecasting fine-tuning stage and
assessed the benefits of retaining LLMs’ pre-trained weights. Detailed findings are in Appendix B.7.

4 Conclusion

This paper present LLM4TS, a framework for time-series forecasting using pre-trained LLMs.
LLM4TS employs a two-stage fine-tuning strategy: time-series alignment to adapt LLMs to time-
series data and forecasting fine-tuning for specific tasks. It also introduces a two-level aggregation
method to integrate multi-scale temporal data, enhancing LLMs’ interpretation of time-related
information. Experiments on seven datasets show LLM4TS outperforms state-of-the-art methods,
including those trained from scratch, in both full and few-shot scenarios. Future work will explore
more recent LLMs like GPT-3.5 and LLaMA-2 to assess advancements, and extend LLM4TS to tasks
like classification and anomaly detection to broaden its applicability.

4

References

[1] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In SIGIR, pages 95–104. ACM, 2018.

[2] Hiteshi Tandon, Prabhat Ranjan, Tanmoy Chakraborty, and Vandana Suhag. Coronavirus
(covid-19): Arima-based time-series analysis to forecast near future and the effect of school
reopening in india. Journal of Health Management, 24(3):373–388, 2022.

[3] Ananda Chatterjee, Hrisav Bhowmick, and Jaydip Sen. Stock price prediction using time series,
econometric, machine learning, and deep learning models. CoRR, abs/2111.01137, 2021.

[4] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
AAAI, pages 11106–11115. AAAI Press, 2021.

[5] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosoph-
ical Transactions of the Royal Society A, 379(2194):20200209, 2021.

[6] Pradeep Hewage, Ardhendu Behera, Marcello Trovati, Ella Pereira, Morteza Ghahremani,
Francesco Palmieri, and Yonghuai Liu. Temporal convolutional neural (TCN) network for an
effective weather forecasting using time-series data from the local weather station. Soft Comput.,
24(21):16453–16482, 2020.

[7] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, pages 11121–11128. AAAI Press, 2023.

[8] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In ICLR. OpenReview.net, 2023.

[9] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

[10] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In ICML,
volume 162 of Proceedings of Machine Learning Research, pages 27268–27286. PMLR, 2022.

[11] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian,
Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time
series forecasting. Advances in Neural Information Processing Systems, 36, 2024.

[12] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models. CoRR, abs/2203.15556, 2022.

[13] Yian Zhang, Alex Warstadt, Xiaocheng Li, and Samuel R. Bowman. When do you need
billions of words of pretraining data? In ACL/IJCNLP (1), pages 1112–1125. Association for
Computational Linguistics, 2021.

[14] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Trans. Mach. Learn. Res., 2022, 2022.

[15] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1:9, 2019.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

5

[17] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[18] Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained LM. In NeurIPS, 2023.

[19] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models. CoRR, abs/2310.01728, 2023.

[20] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In ICLR. OpenReview.net,
2023.

[21] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang.
Fine-tuning can distort pretrained features and underperform out-of-distribution. In ICLR.
OpenReview.net, 2022.

[22] Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift.
In ICLR. OpenReview.net, 2022.

[23] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as
universal computation engines. In AAAI, pages 7628–7636. AAAI Press, 2022.

[24] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
NeurIPS, 2023.

[25] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria. Text-to-audio
generation using instruction guided latent diffusion model. In ACM Multimedia, pages 3590–
3598. ACM, 2023.

[26] Fangxun Shu, Lei Zhang, Hao Jiang, and Cihang Xie. Audio-visual LLM for video understand-
ing. CoRR, abs/2312.06720, 2023.

[27] Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David A. Sontag. Tabllm: Few-shot classification of tabular data with large language models.
In AISTATS, volume 206 of Proceedings of Machine Learning Research, pages 5549–5581.
PMLR, 2023.

[28] Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
large language models understand structured table data? a benchmark and empirical study.
In Proceedings of the 17th ACM International Conference on Web Search and Data Mining,
WSDM ’24, page 645–654, New York, NY, USA, 2024. Association for Computing Machinery.

[29] Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In ICML, volume 202 of
Proceedings of Machine Learning Research, pages 11398–11442. PMLR, 2023.

[30] Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series
forecasting by reprogramming large language models. In The Twelfth International Conference
on Learning Representations, 2024.

[31] Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
TEMPO: Prompt-based generative pre-trained transformer for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024.

[32] Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. TEST: Text prototype aligned
embedding to activate LLM’s ability for time series. In The Twelfth International Conference
on Learning Representations, 2024.

[33] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In ICLR. OpenReview.net, 2023.

[34] Sangwon Lee, Junho Hong, Ling Liu, and Wonik Choi. Ts-fastformer: Fast transformer for
time-series forecasting. ACM Trans. Intell. Syst. Technol., 15(2), feb 2024.

6

[35] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In ICLR. OpenReview.net, 2022.

[36] Minghao Liu, Shengqi Ren, Siyuan Ma, Jiahui Jiao, Yizhou Chen, Zhiguang Wang, and
Wei Song. Gated transformer networks for multivariate time series classification. CoRR,
abs/2103.14438, 2021.

[37] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. In IJCAI, pages 6778–6786. ijcai.org, 2023.

[38] Sabeen Ahmed, Ian E. Nielsen, Aakash Tripathi, Shamoon Siddiqui, Ravi Prakash Ramachan-
dran, and Ghulam Rasool. Transformers in time-series analysis: A tutorial. Circuits Syst. Signal
Process., 42(12):7433–7466, 2023.

[39] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong,
and Bixiong Xu. Ts2vec: Towards universal representation of time series. In AAAI, pages
8980–8987. AAAI Press, 2022.

[40] Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning
for time series with temporal neighborhood coding. In ICLR. OpenReview.net, 2021.

[41] Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative
bilinear temporal-spectral fusion. In ICML, volume 162 of Proceedings of Machine Learning
Research, pages 25038–25054. PMLR, 2022.

[42] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting.
In IJCAI, pages 2352–2359. ijcai.org, 2021.

7

Table 5: Statistical overview of the 7 datasets for long-term time-series forecasting.
Datasets Features Timesteps Granularity
Weather 21 52,696 10 min
Traffic 862 17,544 1 hour

Electricity 321 26,304 1 hour
ETTh1 & ETTh2 7 17,420 1 hour

ETTm1 & ETTm2 7 69,680 5 min

A Related Work

A.1 Transfer Learning Across Various Modalities with LLMs

Large Language Models (LLMs) have proven highly effective in transfer learning across multiple
modalities, including images [23, 24], audio [25, 26], tabular data [27, 28], and time-series data
[18, 19]. A key advantage of using LLMs in these different domains is their ability to perform well
even with limited data [18]. To maintain the data-independent representation learning capability of
LLMs, the majority of their parameters are kept fixed during the transfer learning process. Empirical
evidence [23, 18] shows that LLMs with fixed parameters often outperform models trained from
scratch, highlighting the benefit of retaining the pre-trained representation learning strengths of
these models (additional experiments are discussed in Section B.7.3). Theoretically, it has been
demonstrated that the self-attention modules in pre-trained transformers can develop data-independent
operations, similar to principal component analysis [18], enabling them to serve as universal compute
engines [23] or general computation calculators [29]. In the time-series domain, GPT4TS [18]
utilizes the pre-trained GPT-2, showing strong performance in time-series forecasting, particularly in
few-shot conditions, without the need for fine-tuning most parameters. Time-LLM [30] reprograms
LLMs for time-series forecasting by transforming time series into textual prototypes and using
prompts for guidance, outperforming specialized models in few-shot and zero-shot settings. TEMPO
[31] adapts GPT-like models for time-series forecasting by decomposing trends and utilizing prompts
for better distribution adaptation, excelling in zero-shot scenarios. TEST [32] aligns time-series
data with LLM embeddings through tokenization and contrastive learning, enabling efficient time-
series forecasting without fine-tuning. With LLM4TS, we tackle the challenges of adapting LLMs
to time-series-specific features and processing multi-scale temporal information, thereby boosting
performance in time-series forecasting tasks.

A.2 Long-Term Time-Series Forecasting

Significant efforts have focused on using Transformer models for long-term time-series forecasting
[4, 9, 10, 8, 33, 34]. While Transformer-based models have gained prominence, DLinear [7] has
shown that a simple linear model can outperform many sophisticated Transformer-based methods.
These deep models excel when trained on large datasets, but their performance often diminishes in
limited-data settings. LLM4TS, however, achieves new benchmarks alongside state-of-the-art models
in both full-data and few-shot conditions.

A.3 Time-Series Representation Learning

In the time-series field, self-supervised learning has emerged as a powerful method for representation
learning. Although Transformers are increasingly seen as suitable for end-to-end time-series analysis
[35, 36, 8, 37, 38], CNN-based [39] and RNN-based [40] models still dominate in time-series self-
supervised learning. However, the ability of Transformers to model long-range dependencies and
capture complex patterns makes them well-suited for time-series data, where sequential relationships
are intricate. Since the time-series alignment phase in LLM4TS can be viewed as a self-supervised
learning strategy, we evaluate LLM4TS’s capacity for representation learning, demonstrating that
Transformers can surpass CNN and RNN-based models in unsupervised time-series learning.

8

B More on Experiments

B.1 Datasets

In our long-term forecasting experiments, we use seven real-world, publicly accessible benchmark
datasets. Table 5 provides detailed statistics for each dataset, including the number of features, the
total length, and their sampling frequencies.

Weather1 consists of local climatological data spanning four years across approximately 1,600
U.S. locations. Each record includes 11 weather variables, alongside the target variable ’wet bulb.’
Traffic2 contains hourly data from the California Department of Transportation, capturing road
occupancy rates via sensors on freeways in the San Francisco Bay area. Electricity3 comprises hourly
power usage data from 321 customers between 2012 and 2014, with ’MT_320’ used as the target
variable. ETT [4] provides long-term electric power deployment data. The dataset includes two
hourly-sampled (ETTh1, ETTh2) and two 15-minute-sampled (ETTm1, ETTm2) datasets, spanning
over two years from various provinces in China. Each ETT dataset contains one oil temperature
variable and six power load variables.

B.2 Evaluation Metrics

In time-series forecasting, the most commonly used evaluation metrics are Mean Squared Error
(MSE) and Mean Absolute Error (MAE). The Mean Squared Error (MSE) is defined as:

MSE =
1

N

N∑
n=1

(xout − x̂out)
2, (1)

where xout is the actual future value corresponding to the input past data xin, and x̂out is the predicted
future value based on the input. N represents the total number of samples. The Mean Absolute Error
(MAE) is calculated as:

MAE =
1

N

N∑
n=1

|xout − x̂out|. (2)

B.3 Baselines

For long-term time-series forecasting, we evaluate several state-of-the-art models. The same models
are used for few-shot learning and ablation studies. GPT4TS [18] uses patching and channel inde-
pendence to convert time-series data into tokens, leveraging a pre-trained GPT-2 while maintaining
most of the pre-trained weights. DLinear [7] challenges the dominance of Transformer models in
time-series forecasting by introducing a simple single-layer linear model that outperforms complex
Transformer-based models on multiple real-world datasets. PatchTST [8] employs a Transformer-
based approach with patching and channel-independence to convert time-series data into patches for
efficient processing. FEDformer [10] enhances Transformer models by incorporating seasonal-trend
decomposition and frequency analysis for improved efficiency and effectiveness in long-term fore-
casting, offering linear complexity while capturing global trends and detailed structures. Time-LLM
[30] reprograms LLMs for time-series forecasting by transforming time-series data into text-based
prototypes and using prompts to guide predictions, achieving strong performance in few-shot and
zero-shot settings. TEMPO [31] adapts GPT-like models for time-series by decomposing trends
and using prompts to adjust for distributional changes, excelling in zero-shot environments. TEST
[32] aligns time-series data with LLM embeddings through tokenization and contrastive learning,
allowing effective time-series forecasting without fine-tuning pre-trained LLMs.

For unsupervised representation learning, we consider advanced models that extract meaningful
representations from time-series data without relying on labeled data. PatchTST [8], in this context,
uses a Masked Language Model (MLM) approach, similar to BERT, to learn effective representations
for time-series. BTSF [41] introduces a Bilinear Temporal-Spectral Fusion framework that integrates

1https://www.ncei.noaa.gov/data/local-climatological-data/
2http://pems.dot.ca.gov/
3https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014

9

Table 6: Few-shot long-term forecasting using 5% of the training data. For most datasets, results
are reported over prediction lengths Tout ∈ {96, 192, 336, 720}. However, for datasets marked with
* (ETTh1, ETTh2, and Traffic), only Tout ∈ {96, 192, 336} are used because there are insufficient
data to constitute a training set when Tout = 720. The best results are in bold, while the second-best
results are in underlined. Note that TEMPO* is evaluated under a zero-shot setting as it is a prompt-
based method.

Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.173 0.227 0.175 0.230 0.184 0.242 0.171 0.224 0.172 0.263 0.211 0.254 0.182 0.276
192 0.218 0.265 0.227 0.276 0.228 0.283 0.230 0.277 0.224 0.271 0.254 0.298 0.273 0.283
336 0.276 0.310 0.286 0.322 0.279 0.322 0.294 0.326 0.282 0.321 0.292 0.332 0.294 0.325

Weather

720 0.355 0.366 0.366 0.379 0.364 0.388 0.384 0.387 0.366 0.381 0.370 0.379 0.383 0.388
96 0.509 0.484 0.543 0.506 0.547 0.503 0.557 0.519 0.483 0.464 0.400 0.406 0.531 0.447

192 0.717 0.581 0.748 0.580 0.720 0.604 0.711 0.570 0.629 0.540 0.426 0.421 0.750 0.533
336 0.728 0.589 0.754 0.595 0.984 0.727 0.816 0.619 0.768 0.626 0.441 0.430 0.741 0.636

ETTh1

720 - - - - - - - - - - - - - -
96 0.314 0.375 0.376 0.421 0.442 0.456 0.401 0.421 0.336 0.397 0.301 0.353 0.368 0.457

192 0.365 0.408 0.418 0.441 0.617 0.542 0.452 0.455 0.406 0.425 0.355 0.389 0.407 0.486
336 0.398 0.432 0.408 0.439 1.424 0.849 0.464 0.469 0.405 0.432 0.379 0.408 0.402 0.428

ETTh2

720 - - - - - - - - - - - - - -
96 0.349 0.379 0.386 0.405 0.332 0.374 0.399 0.414 0.316 0.377 0.438 0.424 0.340 0.381

192 0.374 0.394 0.440 0.438 0.358 0.390 0.441 0.436 0.450 0.464 0.461 0.432 0.473 0.451
336 0.411 0.417 0.485 0.459 0.402 0.416 0.499 0.467 0.450 0.424 0.515 0.467 0.519 0.464

ETTm1

720 0.516 0.479 0.577 0.499 0.511 0.489 0.767 0.587 0.483 0.471 0.591 0.509 0.604 0.499
96 0.192 0.273 0.199 0.280 0.236 0.326 0.206 0.288 0.174 0.261 0.185 0.267 0.254 0.275

192 0.249 0.309 0.256 0.316 0.306 0.373 0.264 0.324 0.215 0.287 0.243 0.304 0.265 0.286
336 0.301 0.342 0.318 0.353 0.380 0.423 0.334 0.367 0.273 0.330 0.309 0.345 0.360 0.373

ETTm2

720 0.402 0.405 0.460 0.436 0.674 0.583 0.454 0.432 0.433 0.412 0.386 0.395 0.511 0.439
96 0.139 0.235 0.143 0.241 0.150 0.251 0.145 0.244 0.147 0.242 0.178 0.276 0.144 0.246

192 0.155 0.249 0.159 0.255 0.163 0.263 0.163 0.260 0.158 0.241 0.198 0.293 0.180 0.248
336 0.174 0.269 0.179 0.274 0.175 0.278 0.183 0.281 0.178 0.277 0.209 0.309 0.194 0.304

ECL

720 0.222 0.310 0.233 0.323 0.219 0.311 0.233 0.323 0.224 0.312 0.279 0.355 0.205 0.277
96 0.401 0.285 0.419 0.298 0.427 0.304 0.404 0.286 0.414 0.291 0.476 0.343 0.443 0.317

192 0.418 0.293 0.434 0.305 0.447 0.315 0.412 0.294 0.419 0.291 0.496 0.355 0.407 0.320
336 0.436 0.308 0.449 0.313 0.478 0.333 0.439 0.310 0.437 0.314 0.503 0.356 0.440 0.323

Traffic

720 - - - - - - - - - - - - - -
Avg. Rank 2.120 2.200 4.200 4.000 4.680 5.080 4.760 4.640 2.720 2.920 4.400 4.280 5.000 4.640

temporal and spectral information, improving time-series representation learning through instance-
level augmentation and fusion techniques. TS2Vec [39] is a universal framework that learns time-
series representations by distinguishing multi-scale contextual information at both the instance and
timestamp levels, showing effectiveness across diverse time-series tasks. TNC [40] applies the
Augmented Dickey-Fuller test to detect temporal neighborhoods and employs Positive-Unlabeled
learning to reduce sampling bias. TS-TCC [42] generates two distinct views through strong and weak
augmentations and improves representations through contrastive learning by focusing on temporal
and contextual differences between these views.

B.4 Implementation Details

In our experiments for long-term time-series forecasting, few-shot learning, and ablation studies,
we adopt the settings from PatchTST [8] to ensure consistent comparisons across models. We first
evaluate the model’s performance in few-shot scenarios, followed by a thorough evaluation under
full-shot conditions to provide a well-rounded analysis. The look-back window length Tin is set to
either 336 or 512 (depending on which yields the best results), while the patch length P is set to

10

Table 7: Few-shot long-term forecasting using 10% of the training data. We use prediction lengths
T ∈ {96, 192, 336, 720} for all datasets. The best results are in bold, while the second-best results
are underlined. Note that TEMPO* is evaluated under a zero-shot setting as it is a prompt-based
method.

Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.158 0.207 0.163 0.215 0.171 0.224 0.165 0.215 0.161 0.210 0.211 0.254 0.163 0.213
192 0.204 0.249 0.210 0.254 0.215 0.263 0.210 0.257 0.204 0.248 0.254 0.298 0.230 0.263
336 0.254 0.288 0.256 0.292 0.258 0.299 0.259 0.297 0.261 0.302 0.292 0.332 0.258 0.282

Weather

720 0.322 0.336 0.321 0.339 0.320 0.346 0.332 0.346 0.309 0.332 0.370 0.379 0.301 0.328
96 0.417 0.432 0.458 0.456 0.492 0.495 0.516 0.485 0.448 0.460 0.400 0.406 0.455 0.457

192 0.469 0.468 0.570 0.516 0.565 0.538 0.598 0.524 0.484 0.483 0.426 0.421 0.572 0.519
336 0.505 0.499 0.608 0.535 0.721 0.622 0.657 0.550 0.589 0.540 0.441 0.430 0.578 0.531

ETTh1

720 0.708 0.572 0.725 0.591 0.986 0.743 0.762 0.610 0.700 0.604 0.443 0.451 0.723 0.594
96 0.282 0.351 0.331 0.374 0.357 0.411 0.353 0.389 0.275 0.326 0.301 0.353 0.332 0.374

192 0.364 0.400 0.402 0.411 0.569 0.519 0.403 0.414 0.374 0.373 0.355 0.389 0.401 0.433
336 0.374 0.416 0.406 0.433 0.671 0.572 0.426 0.441 0.406 0.429 0.379 0.408 0.408 0.440

ETTh2

720 0.445 0.461 0.449 0.464 0.824 0.648 0.477 0.480 0.427 0.449 0.409 0.440 0.459 0.480
96 0.360 0.388 0.390 0.404 0.352 0.392 0.410 0.419 0.346 0.388 0.438 0.424 0.392 0.401

192 0.386 0.401 0.429 0.423 0.382 0.412 0.437 0.434 0.373 0.416 0.461 0.432 0.423 0.426
336 0.415 0.417 0.469 0.439 0.419 0.434 0.476 0.454 0.413 0.426 0.515 0.467 0.471 0.444

ETTm1

720 0.470 0.445 0.569 0.498 0.490 0.477 0.681 0.556 0.485 0.476 0.591 0.509 0.552 0.501
96 0.184 0.265 0.188 0.269 0.213 0.303 0.191 0.274 0.177 0.261 0.185 0.267 0.233 0.262

192 0.240 0.301 0.251 0.309 0.278 0.345 0.252 0.317 0.241 0.314 0.243 0.304 0.303 0.302
336 0.294 0.337 0.307 0.346 0.338 0.385 0.306 0.353 0.274 0.327 0.309 0.345 0.359 0.341

ETTm2

720 0.386 0.393 0.426 0.417 0.436 0.440 0.433 0.427 0.417 0.390 0.386 0.395 0.452 0.419
96 0.135 0.231 0.139 0.237 0.150 0.253 0.140 0.238 0.139 0.241 0.178 0.276 0.138 0.235

192 0.152 0.246 0.156 0.252 0.164 0.264 0.160 0.255 0.151 0.248 0.198 0.293 0.158 0.255
336 0.173 0.267 0.175 0.270 0.181 0.282 0.180 0.276 0.169 0.270 0.209 0.309 0.176 0.275

ECL

720 0.229 0.312 0.233 0.317 0.223 0.321 0.241 0.323 0.240 0.322 0.279 0.355 0.230 0.311
96 0.402 0.288 0.414 0.297 0.419 0.298 0.403 0.289 0.418 0.291 0.476 0.343 0.415 0.317

192 0.416 0.294 0.426 0.301 0.434 0.305 0.415 0.296 0.414 0.296 0.496 0.355 0.425 0.300
336 0.429 0.302 0.434 0.303 0.449 0.313 0.426 0.304 0.421 0.311 0.503 0.356 0.436 0.310

Traffic

720 0.480 0.326 0.487 0.337 0.484 0.336 0.474 0.331 0.462 0.327 0.538 0.376 0.489 0.338
Avg. Rank 2.036 1.679 4.000 3.786 5.143 5.679 5.036 5.071 2.214 2.786 4.786 4.821 4.536 3.857

16 with a stride S of 8. For unsupervised representation learning, we adjust the settings slightly to
Tin = 512, P = 12, and S = 12. Following the configuration used in GPT4TS [18], we utilize only
the first six layers of the 12-layer GPT-2 base model [15].

B.5 Few-Shot Learning in Long-Term Time-Series Forecasting

Table 6 presents the results of long-term time-series forecasting using only 5% of the training data,
while Table 7 shows similar results with 10% of the training data. In both cases, we maintain
consistent splits for the training, validation, and test sets across full and few-shot learning scenarios.
The training data percentages were deliberately limited to 5% and 10% to assess model performance
in few-shot settings. For each dataset, we train a single model during the time-series alignment phase,
which is then applied consistently across all prediction lengths. In the forecasting fine-tuning phase,
however, we fine-tune a separate model for each prediction length, ensuring that all models share the
same hyperparameters.

Both LLM4TS and GPT4TS [18] consistently outperform most models trained from scratch in
limited-data scenarios across various datasets, thanks to the pre-trained representation learning
capabilities of GPT-2. By incorporating time-series alignment and multi-scale temporal information,
LLM4TS proves to be a more data-efficient time-series forecaster than GPT4TS, achieving better

11

Table 8: Long-term forecasting for multivariate time-series data. We use prediction lengths
T ∈ {96, 192, 336, 720} for all datasets. The best results are in bold, while the second-best results
are underlined. Note that TEMPO* is evaluated under a zero-shot setting as it is a prompt-based
method.

Methods LLM4TS GPT4TS DLinear PatchTST Time-LLM TEMPO* TEST
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.147 0.196 0.162 0.212 0.176 0.237 0.149 0.198 0.147 0.201 0.211 0.254 0.150 0.202
192 0.191 0.238 0.204 0.248 0.220 0.282 0.194 0.241 0.189 0.234 0.254 0.298 0.198 0.246
336 0.241 0.277 0.254 0.286 0.265 0.319 0.245 0.282 0.262 0.279 0.292 0.332 0.245 0.286

Weather

720 0.313 0.329 0.326 0.337 0.333 0.362 0.314 0.334 0.304 0.316 0.370 0.379 0.324 0.342
96 0.371 0.394 0.376 0.397 0.375 0.399 0.370 0.399 0.362 0.392 0.400 0.406 0.372 0.400

192 0.403 0.412 0.416 0.418 0.405 0.416 0.413 0.421 0.398 0.418 0.426 0.421 0.414 0.422
336 0.420 0.422 0.442 0.433 0.439 0.443 0.422 0.436 0.430 0.427 0.441 0.430 0.422 0.437

ETTh1

720 0.422 0.444 0.477 0.456 0.472 0.490 0.447 0.466 0.442 0.457 0.443 0.451 0.447 0.467
96 0.269 0.332 0.285 0.342 0.289 0.353 0.274 0.336 0.268 0.328 0.301 0.353 0.275 0.338

192 0.328 0.377 0.354 0.389 0.383 0.418 0.339 0.379 0.329 0.375 0.355 0.389 0.340 0.379
336 0.353 0.396 0.373 0.407 0.448 0.465 0.329 0.380 0.368 0.409 0.379 0.408 0.329 0.381

ETTh2

720 0.383 0.425 0.406 0.441 0.605 0.551 0.379 0.422 0.372 0.420 0.409 0.440 0.381 0.423
96 0.285 0.343 0.292 0.346 0.299 0.343 0.290 0.342 0.272 0.334 0.438 0.424 0.293 0.346

192 0.324 0.366 0.332 0.372 0.335 0.365 0.332 0.369 0.310 0.358 0.461 0.432 0.332 0.369
336 0.353 0.385 0.366 0.394 0.369 0.386 0.366 0.392 0.352 0.384 0.515 0.467 0.368 0.392

ETTm1

720 0.408 0.419 0.417 0.421 0.425 0.421 0.416 0.420 0.383 0.411 0.591 0.509 0.418 0.420
96 0.165 0.254 0.173 0.262 0.167 0.269 0.165 0.255 0.161 0.253 0.185 0.267 0.193 0.237

192 0.220 0.292 0.229 0.301 0.224 0.303 0.220 0.292 0.219 0.293 0.243 0.304 0.257 0.264
336 0.268 0.326 0.286 0.341 0.281 0.342 0.274 0.329 0.271 0.329 0.309 0.345 0.289 0.295

ETTm2

720 0.350 0.380 0.378 0.401 0.397 0.421 0.362 0.385 0.352 0.379 0.386 0.395 0.375 0.369
96 0.128 0.223 0.139 0.238 0.140 0.237 0.129 0.222 0.131 0.224 0.178 0.276 0.132 0.223

192 0.146 0.240 0.153 0.251 0.153 0.249 0.157 0.240 0.152 0.241 0.198 0.293 0.158 0.241
336 0.163 0.258 0.169 0.266 0.169 0.267 0.163 0.259 0.160 0.248 0.209 0.309 0.163 0.260

ECL

720 0.200 0.292 0.206 0.297 0.203 0.301 0.197 0.290 0.192 0.298 0.279 0.355 0.199 0.291
96 0.372 0.259 0.388 0.282 0.410 0.282 0.360 0.249 0.362 0.248 0.476 0.343 0.407 0.282

192 0.391 0.265 0.407 0.290 0.423 0.287 0.379 0.256 0.374 0.247 0.496 0.355 0.423 0.287
336 0.405 0.275 0.412 0.294 0.436 0.296 0.392 0.264 0.385 0.271 0.503 0.356 0.430 0.296

Traffic

720 0.437 0.292 0.450 0.312 0.466 0.315 0.432 0.286 0.430 0.288 0.538 0.376 0.463 0.315
Avg. Rank 2.036 2.214 4.786 4.750 5.536 5.357 2.571 2.750 1.643 2.143 6.607 6.250 4.214 3.679

performance across all datasets. Notably, LLM4TS with just 5% of the training data outperforms the
best baseline using 10% of the data. For the largest dataset, Traffic, PatchTST is the top-performing
model in the full-shot scenario, but this trend does not hold in few-shot settings. With only 10% of
the training data, LLM4TS outperforms PatchTST in 5 out of 8 evaluations, and with just 5% of the
data, it leads in 5 out of 6 evaluations. This highlights that, in few-shot scenarios, traditional deep
models trained from scratch generally lag behind those leveraging pre-trained LLMs.

We also compare the performance of the latest LLM-based methods for time-series forecasting:
Time-LLM, TEMPO, and TEST. TEMPO, a prompt-based method, is evaluated in a zero-shot setting,
so its performance remains constant across both few-shot and full-shot scenarios. For larger datasets
such as Weather, Electricity, and Traffic, LLM4TS consistently delivers the best results, even with just
5% or 10% of the training data. On the ETTh1 and ETTh2 datasets, TEMPO performs best, while
Time-LLM excels on the ETTm1 and ETTm2 datasets. Overall, LLM4TS demonstrates superior
performance across these LLM-based methods in both the 5% and 10% training data scenarios.

B.6 Full-Shot Learning in Long-Term Time-Series Forecasting

Table 8 shows the results of long-term time-series forecasting, averaged over a consistent prediction
length set Tout ∈ {96, 192, 336, 720} for all datasets. Although the primary focus of pre-trained

12

Figure 3: Ablation study on key components in LLM4TS. Each ablation is conducted under both
full- and few-shot learning with 10% training data. We report results averaged over prediction lengths
Tout ∈ {96, 192, 336, 720} for the ETTh1 dataset. The best results are in bold.

Figure 4: Ablation study on training strategies in forecasting fine-tuning. Each ablation is
conducted under both full- and few-shot learning with 10% training data. We report results averaged
over prediction lengths Tout ∈ {96, 192, 336, 720} for the ETTh1 dataset. The best results are in
bold.

LLMs is on few-shot learning, LLM4TS not only excels in this area but also outperforms all deep
train-from-scratch methods, even when provided with full access to the datasets. This success
is attributed to LLM4TS’s two-stage fine-tuning process and its ability to incorporate multi-scale
temporal information. In contrast, GPT4TS, despite leveraging GPT-2’s pre-trained representation
learning capabilities, does not surpass traditional train-from-scratch baselines in full-shot scenarios.
This limitation becomes particularly evident when dealing with large amounts of training data, largely
due to GPT4TS’s lack of time-series alignment and absence of multi-scale temporal information
integration, both of which are crucial for improving time-series forecasting performance. Interestingly,
for the largest dataset (Traffic), PatchTST manages to outperform both LLM4TS and GPT4TS. This
suggests that in full-shot settings, where sufficient data is available, traditional deep train-from-scratch
models may occasionally surpass those using pre-trained LLMs.

We also compare the latest LLM-based methods for time-series forecasting: Time-LLM, TEMPO,
and TEST. TEMPO, being a prompt-based method, is evaluated in a zero-shot setting and consis-
tently reports zero-shot results in both few-shot and full-shot scenarios. Time-LLM emerges as the
top-performing model, utilizing an innovative approach of reprogramming LLMs for time-series
forecasting by converting time-series data into text-based prototypes and using prompts for guiding
predictions. However, LLM4TS remains competitive, staying close to Time-LLM in performance.
Notably, LLM4TS outperforms Time-LLM in few-shot scenarios, demonstrating its strong data
efficiency and robustness when training data is limited.

13

Table 9: Ablation study on the effectiveness of LLM’s pre-trained weights. Each ablation
is conducted under few-shot learning with 10% and 5% training data. ’No Freeze’ refers to the
model utilizing LLM’s pre-trained weights without freezing any layers during training, whereas ’No
Pretrain’ denotes the model not utilizing LLM’s pre-trained weights, implying the model is trained
from scratch. We report results averaged over prediction lengths Tout ∈ {96, 192, 336, 720} for the
Weather, ETTm1, and ETTm2 datasets. The best average results are in bold.

Methods LLM4TS GPT4TS No Freeze No Pretrain
Metric MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.235 0.270 0.238 0.275 0.273 0.302 0.278 0.305
ETTm1 0.408 0.413 0.464 0.441 0.546 0.484 0.473 0.44610%
ETTm2 0.276 0.324 0.293 0.335 0.340 0.367 0.361 0.385
Weather 0.256 0.292 0.264 0.302 0.284 0.312 0.298 0.324
ETTm1 0.413 0.417 0.467 0.450 0.562 0.496 0.470 0.4525%
ETTm2 0.286 0.332 0.308 0.347 0.327 0.362 0.413 0.411

B.7 Ablation Study

B.7.1 Key Components in LLM4TS

Figure 3 examines the impact of time-series alignment, multi-scale temporal encoding, and Parameter-
Efficient Fine-Tuning (PEFT) on LLM4TS, evaluating both full- and few-shot scenarios on the ETTh1
dataset. A comparative analysis—with and without these components—demonstrates their individual
significance in improving forecasting accuracy in both scenarios. LLM4TS achieves outstanding
performance in few-shot learning, with an average 6.2% reduction in MSE when these components
are integrated.

The experimental results reveal three key insights. First, there is a clear trend of greater MSE improve-
ment as the prediction length increases. This suggests that the core components of LLM4TS become
increasingly advantageous in scenarios requiring more advanced predictive capability, particularly for
longer prediction lengths. Second, the gains are more pronounced in few-shot scenarios compared to
full-shot ones when these components are added to LLM4TS. This underscores LLM4TS’s strength
as a data-efficient time-series forecaster, largely due to its built-in components. Third, among the
two PEFT methods, LoRA outperforms Layer Normalization in both full-shot and few-shot sce-
narios. This consistent advantage highlights LoRA’s effectiveness in boosting the model’s overall
performance.

B.7.2 Training Strategies in Forecasting Fine-Tuning

As outlined in Section 2.2, linear probing (LP) excels in out-of-distribution (OOD) scenarios, while
full fine-tuning (FT) performs better in in-distribution (ID) cases. However, the LP-FT strategy,
which combines both, can outperform FT and LP in both OOD and ID settings. Figure 4 shows that
LP-FT improves performance in both full- and few-shot learning on the ETTh1 dataset, achieving
an average MSE improvement of 0.7% in full-shot learning and 2.51% in few-shot learning. The
relatively modest improvements in both scenarios can be attributed to the limited number of trainable
parameters in LLM4TS’s backbone model, even when applying FT, which reduces the gap between
LP and FT. The findings further highlight that few-shot learning benefits more from LP-FT, likely due
to its greater sensitivity to OOD issues. Additionally, as seen in the ablation study on LLM4TS’s core
components, longer prediction lengths tend to produce more significant gains in few-shot scenarios.

B.7.3 Effectiveness of LLM’s Pre-Trained Weights

As discussed in Section A.1, most parameters in LLMs are kept fixed to maintain their data-
independent representation learning capability. Table 9 shows that LLM4TS performs best when
most of its parameters remain frozen, as observed on the Weather, ETTm1, and ETTm2 datasets.
Specifically, LLM4TS achieves an average MSE improvement of 17.78% compared to the ’No
Freeze’ strategy, where pre-trained weights are used without freezing any layers during training.
Additionally, when compared to the ’No Pretrain’ approach—where the model is trained entirely

14

Table 10: Training parameters.
Model Trainable Parameters Total Parameters Trainable Parameters Percentage

LLM4TS 3.4M 85M 4%
PatchTST 20M 20M 100%

FEDformer 33M 33M 100%

Figure 5: Comparison of training and inference time (in seconds) for one batch. We use the
prediction length Tout = 96 for the ETTh2 dataset. The best results are in bold.

from scratch—LLM4TS shows an even larger average improvement of 18.28% in MSE. This high-
lights the critical importance of preserving the representation learning strengths that are inherent to
pre-trained models, primarily due to the self-attention mechanisms in transformers, which facilitate
data-independent operations.

B.8 Training and Inference Cost

Assessing the computational costs of LLM-based models is crucial for evaluating their feasibility in
real-world applications. In this study, we compare LLM4TS with two other leading Transformer-based
baselines, PatchTST and FEDformer. Details regarding the number of trainable and total parameters
are provided in Table 10. LLM4TS stands out by keeping most of its pre-trained parameters frozen
and utilizing two Parameter-Efficient Fine-Tuning (PEFT) methods: Layer Normalization Tuning
and LoRA. As a result, only 4% of its parameters are trainable, significantly reducing the number of
trainable parameters compared to its train-from-scratch counterparts.

The execution time for both training and inference for LLM4TS, PatchTST, and FEDformer was
measured using an NVIDIA Tesla V100 GPU, and the results are shown in Figure 5. To ensure a fair
comparison, we standardized the batch size to 128 and set the hidden dimensions to 768, consistent
with GPT-2’s specifications. The evaluation was conducted on a single batch, and for LLM4TS,
the training time is reported for both stages, as the model undergoes a two-stage training process.
LLM4TS demonstrated faster execution times during both the training and inference stages compared
to the baselines. This improved efficiency can be attributed to LLM4TS’s architecture, which retains
most parameters as non-trainable, significantly reducing the computational load during both the
training and inference phases.

15

	Introduction
	Method
	Time-Series Alignment
	Forecasting Fine-tuning

	Experiments
	Few-Shot Learning in Long-Term Time-Series Forecasting (LTS)
	Full-Shot Learning in Long-Term Time-Series Forecasting (LTF)
	Unsupervised Representation Learning
	Ablation Study

	Conclusion
	Related Work
	Transfer Learning Across Various Modalities with LLMs
	Long-Term Time-Series Forecasting
	Time-Series Representation Learning

	More on Experiments
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details
	Few-Shot Learning in Long-Term Time-Series Forecasting
	Full-Shot Learning in Long-Term Time-Series Forecasting
	Ablation Study
	Key Components in LLM4TS
	Training Strategies in Forecasting Fine-Tuning
	Effectiveness of LLM's Pre-Trained Weights

	Training and Inference Cost

