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Abstract

Recognizing less salient features is the key for model compression. However,
it has not been investigated in the revolutionary attention mechanisms. In this
work, we propose a novel normalization-based attention module (NAM), which
suppresses less salient weights. It applies a weight sparsity penalty to the attention
modules, thus, making them more computational efficient while retaining similar
performance. A comparison with three other attention mechanisms on both Resnet
and Mobilenet indicates that our method results in higher accuracy. Code for this
paper can be publicly accessed at https://github.com/Christian-lyc/NAM.

1 Introduction

Attention mechanisms have been one of the heated research interests in recent years (Wang et al.
[2017], Hu et al. [2018], Park et al. [2018], Woo et al. [2018], Gao et al. [2019]). It assists deep neural
networks to suppress less salient pixels or channels. Many of the prior studies focus on capturing
salient features with attention operations (Zhang et al. [2020], Misra et al. [2021]). Those methods
successfully exploit the mutual information from different dimensions of features. However, they
lack consideration on the contributing factors of weights, which is capable of further suppressing
the insignificant channels or pixels. Inspired by Liu et al. [2017], we aim to utilize the contributing
factors of weights for the improvement of attention mechanisms. We use a scaling factor of batch
normalization which uses the standard deviation to represent the importance of weights. This can
avoid adding fully-connected and convolutional layers, which is used in the SE, BAM and CBAM.
Thus, we propose an efficient attention mechanism – Normalization-based Attention Module (NAM).
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2 Related work

Many prior works attempt to improve the performance of neural networks by suppressing insignificant
weights. Squeeze-and-Excitation Networks (SENet) (Hu et al. [2018]) integrate the spatial information
into channel-wise feature responses and compute the corresponding attention with two multi-layer-
perceptron (MLP) layers. Later, Bottleneck Attention Module (BAM) (Park et al. [2018]) builds
separated spatial and channel submodules in parallel and they can be embedded into each bottleneck
block. Convolutional Block Attention Module (CBAM) (Woo et al. [2018]) provides a solution
that embeds the channel and spatial attention submodules sequentially. To avoid the ignorance of
cross-dimension interactions, Triplet Attention Module (TAM) (Misra et al. [2021]) takes account
of dimension correlations by rotating the feature maps. However, these works neglect information
from the tuned weights from training. Therefore, we aim to highlight salient features by utilizing the
variance measurement of the trained model weights.

3 Methodology

We propose NAM as an efficient and lightweight attention mechanism. We adopt the module inte-
gration from CBAM (Woo et al. [2018]) and redesign the channel and spatial attention submodules.
Then, a NAM module is embedded at the end of each network block. For residual networks, it is
embedded at the end of the residual structures. For the channel attention submodule, we use a
scaling factor from batch normalization (BN) (Ioffe and Szegedy [2015]), as shown in Equation (1).
The scaling factor measures the variance of channels and indicates their importance.

Bout = BN(Bin) = γ
Bin − µB√
σ2
B + ε

+ β (1)

where µB and σB are the mean and standard deviation of mini batch B, respectively; γ and β are
trainable affine transformation parameters (scale and shift) (Ioffe and Szegedy [2015]). The channel
attention submodule is shown in Figure 1 and Equation (2), where Mc represents the output features.
γ is the scaling factor for each channel, and the weights are obtained as Wγ = γi/

∑
j=0 γj . We

also apply a scaling factor of BN to the spatial dimension to measure the importance of pixels. We
name it pixel normalization. The corresponding spatial attention submodule is shown in Figure 2
and Equation (3), where the output is denoted as Ms. λ is the scaling factor, and the weights are
Wλ = λi/

∑
j=0 λj .

To suppress the less salient weights, we add a regularization term into the loss function, as shown in
Equation (4) (Liu et al. [2017]), where x denotes the input; y is the output; W represents network
weights; l(·) is the loss function; g(·) is the l1 norm penalty function; p is the penalty that balances
g(γ) and g(λ).

Mc = sigmoid(Wγ(BN(F1))) (2)
Ms = sigmoid(Wλ(BNs(F2))) (3)

Loss =
∑
(x,y)

l(f(x,W ), y) + p
∑

g(γ) + p
∑

g(λ) (4)

4 Experiment

In this section, we compare the performance of NAM with SE, BAM, CBAM, and TAM for ResNet
and MobileNet. We evaluate every method with four Nvidia Tesla V100 GPUs on a cluster. We first
run ResNet50 on CIFAR-100 (Krizhevsky et al. [2009]) and use the same preprocess and training
configurations as CBAM (Woo et al. [2018]), with p as 0.0001. The comparison in Table 1 indicates
that NAM with channel or spatial attention alone outperforms the other four attention mechanisms.
We then run MobileNet on ImageNet (Deng et al. [2009]) as it is one of the standard datasets for
image classification benchmarks. We set p as 0.001 and the rest of the configurations the same as
CBAM. The comparison in Table 2 shows that NAM with channel and spatial attention combined
outperforms the other three with similar computation complexity.
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Figure 1: Channel attention mechanism
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Figure 2: Spatial attention mechanism

Table 1: Classification results on CIFAR-100

Architecture Parameters FLOPs Top-1 Error (%) Top-5 Error (%)

ResNet 50 23.71M 1.30G 22.74 6.37
ResNet 50 + SE 26.22M 1.31G 20.29 5.18
ResNet 50 + BAM 24.06M 1.33G 19.97 5.03
ResNet 50 + CBAM 26.24M 1.31G 19.44 4.66
ResNet 50 + TAM 23.71M 1.33G 20.15 5.13
ResNet 50 + NAM(ch*) 23.74M 1.31G 19.09 4.5
ResNet 50 + NAM(sp*) 23.71M 1.31G 19.38 4.72

? ch stands for channel attention only; sp indicates spatial attention only.

Table 2: Classification results on ImageNet

Architecture Parameters FLOPs Top-1 Error (%) Top-5 Error (%)

MobileNet V2 3.51M 0.31G 30.52 11.20
MobileNet V2 + SE 3.53M 0.32G 29.77 10.65
MobileNet V2 + BAM 3.54M 0.32G 29.91 10.80
MobileNet V2 + CBAM 3.54M 0.32G 29.74 10.66
MobileNet V2 + NAM 3.51M 0.32G 29.34 10.18

5 Conclusion

We proposed a NAM module that is more efficient by suppressing the less salient features. Our
experiments indicate that NAM provides efficiency gain on both ResNet and MobileNet. We are
conducting a detailed analysis of the performance of NAM regarding its integration variations
and hyper-parameter tuning. We also plan to optimize NAM with different model compression
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techniques to promote its efficiency. In the future, we will investigate its effects on other deep
learning architectures and applications.
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A Appendix

A.1 Comparison of CBAM and NAM regarding the number of parameters

Table 3: The comparison of channel attention for CBAM and NAM on ResNet50

Parameters CBAM NAM

Block1 512*4*512*4/16*2 (C ∗R ∗ C ∗R/r ∗ 2) 512*4 (C ∗R)
Block2 256*4*256*4/16*2 256*4
Block3 128*4*128*4/16*2 128*4
Block4 64*4*64*4/16*2 64*4
Overhead 696320 3840

We show a comparison of the number of parameters in CBAM and NAM in Table 4 and 3. They
empirically verify the parameter reduction of NAM. In the channel attention module, C represents
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the number of the input channels of each block. R represents the expanding ratio of each block. r
represents the reduction ratio utilized in the MLP to compute the channel attention, which is set to
16 in CBAM. The kernel size is denoted as k, which is 7. In NAM, H and W represent the height
and width of the input images respectively. From Table 4 and 3, we observe a significant parameter
reduction in the channel attention module and an insignificant increase of parameters in the spatial
attention module of NAM against CBAM. As a result, NAM has fewer parameters than CBAM.

Table 4: The comparison of spatial attention for CBAM and NAM on ResNet50

Parameters CBAM NAM

Block1 2*1*7*7 (2 ∗ 1 ∗ k2) 32*32 (H ∗W )
Block2 2*1*7*7 16*16
Block3 2*1*7*7 8*8
Block4 2*1*7*7 4*4
Overhead 392 1360
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