
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CARE-BN: PRECISE MOVING STATISTICS FOR STABI-
LIZING SPIKING NEURAL NETWORKS IN REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision-
making on neuromorphic hardware by mimicking the event-driven dynamics of
biological neurons. However, the discrete and non-differentiable nature of spikes
leads to unstable gradient propagation in directly trained SNNs, making Batch
Normalization (BN) an important component for stabilizing training. In online
Reinforcement Learning (RL), imprecise BN statistics hinder exploitation, re-
sulting in slower convergence and suboptimal policies. While Artificial Neural
Networks (ANNs) can often omit BN, SNNs critically depend on it, limiting the
adoption of SNNs for energy-efficient control on resource-constrained devices.
To overcome this, we propose Confidence-adaptive and Re-calibration Batch Nor-
malization (CaRe-BN), which introduces (i) a confidence-guided adaptive update
strategy for BN statistics and (ii) a re-calibration mechanism to align distributions.
By providing more accurate normalization, CaRe-BN stabilizes SNN optimization
without disrupting the RL training process. Importantly, CaRe-BN does not alter
inference, thus preserving the energy efficiency of SNNs in deployment. Exten-
sive experiments on both discrete and continuous control benchmarks demonstrate
that CaRe-BN improves SNN performance by up to 22.6% across different spiking
neuron models and RL algorithms. Remarkably, SNNs equipped with CaRe-BN
even surpass their ANN counterparts by 5.9%. These results highlight a new di-
rection for BN techniques tailored to RL, paving the way for neuromorphic agents
that are both efficient and high-performing.

1 INTRODUCTION

Spiking Neural Networks (SNNs) have emerged as a promising class of neural models that more
closely mimic the event-driven computation of biological brains (Maass, 1997; Gerstner et al., 2014).
This event-driven property makes SNNs particularly well suited for deployment on neuromorphic
hardware platforms (Davies et al., 2018; DeBole et al., 2019), enabling low-latency and energy-
efficient inference.

In parallel, Reinforcement Learning (RL) has achieved remarkable success across a wide range of
domains (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2018b). Among these, continuous
control tasks have received significant attention due to their alignment with real-world scenarios and
their strong connection to embodied AI and robotic applications (Kober et al., 2013; Gu et al., 2017;
Brunke et al., 2022). Combining the strengths of SNNs with RL (SNN-RL) offers the potential to
train agents that not only learn complex behaviors but also execute them with extremely low energy
consumption (Yamazaki et al., 2022). This makes SNN-RL particularly appealing for robotics and
autonomous systems deployed on resource-constrained edge devices.

However, training SNNs is challenging. Due to the discrete spike dynamics and the reliance on
surrogate gradients to approximate the backward pass, directly trained SNNs often suffer from un-
stable gradient propagation, including vanishing or exploding gradients (Zheng et al., 2021). Batch
Normalization (BN) (Ioffe & Szegedy, 2015) plays a crucial role in stabilizing SNN training by reg-
ulating activation statistics and improving gradient flow, mitigates such instability and contributes
to state-of-the-art performance (Duan et al., 2022; Jiang et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Vanilla BN CaRe-BN 

i
1

Real Estimation Real Estimation
U

pd
at

e 
Ite

ra
tio

ns

i
i+

1

(a) (b) (c) (d)

Vanilla BN 
CaRe-BN 

Figure 1: Real and estimated input activation distributions in BN layers. Between each gradient
update iterations, distributions change rapidly in (a) and (c), while remaining stable in (b) and (d).

While effective in supervised learning, BN suffers a severe breakdown in online RL because mov-
ing statistics cannot be estimated precisely under nonstationary dynamics. As shown in Figure 1,
traditional BN struggles to track the true statistics: When distributions shift rapidly (Figure 1(a)),
estimates lag behind; when distributions are relatively static (Figure 1(b)), estimates contain noise.
These inaccuracies lead agents to select suboptimal actions and generate poor trajectories, which are
then reused for training—further compounding the problem and hindering policy improvement.

This issue is especially critical for SNNs. Traditional online RL algorithms usually remove BN lay-
ers in their networks (Sutton & Barto, 2018; Fujimoto et al., 2018; Haarnoja et al., 2017; Schulman
et al., 2017). Unlike ANNs that can train stably without BN, SNNs rely heavily on normaliza-
tion to stabilize membrane potentials and surrogate-gradient backpropagation. Removing BN from
SNN-based RL leads to severe gradient instability and substantial performance degradation.

In this work, we address this issue by proposing Confidence-adaptive and Re-calibration Batch
Normalization (CaRe-BN), a BN strategy tailored for SNN-based RL. CaRe-BN introduces two
complementary components: (i) Confidence-adaptive update (Ca-BN), a confidence-weighted
moving estimator of BN statistics that ensures unbiasedness and optimal variance reduction; and
(ii) Re-calibration (Re-BN), a periodic correction scheme that leverages replay buffer resampling
to refine inference statistics. Together, these mechanisms enable precise, low-variance estimation of
BN statistics under the nonstationary dynamics of SNN-RL (Figure 1). With more accurate moving
statistics, CaRe-BN stabilizes SNN optimization without disrupting the online RL process.

We evaluate CaRe-BN on various continuous control tasks from MuJoCo (Todorov et al., 2012;
Todorov, 2014b). The results show that CaRe-BN not only resolves the issue of imprecise BN
statistics but also accelerates training and achieves state-of-the-art performance. Remarkably, SNN-
based agents equipped with CaRe-BN even outperform their ANN counterparts by 5.9%, without
requiring complex neuron dynamics or specialized RL frameworks.

2 RELATED WORKS

2.1 BATCH NORMALIZATION IN SPIKING NEURAL NETWORKS

Batch Normalization (BN) was originally proposed for ANNs to mitigate internal covariate shift
during training (Ioffe & Szegedy, 2015), thereby accelerating convergence and improving perfor-
mance (Santurkar et al., 2018). To address unstable training in SNNs, several extensions of BN
have been developed (Zheng et al., 2021; Duan et al., 2022; Kim & Panda, 2021; Jiang et al., 2024).
While these methods are effective in supervised tasks, they are designed under the assumption of
static training–inference distributions. This assumption is violated in online RL, where distributions

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

shift continually as the agent interacts with the environment, making these BN variants ill-suited for
SNN-RL.

2.2 SPIKING NEURAL NETWORKS IN REINFORCEMENT LEARNING

Early work in SNN-RL primarily relied on synaptic plasticity rules, particularly reward-modulated
Spike-Timing-Dependent Plasticity (R-STDP) and its variants (Florian, 2007; Frémaux & Gerstner,
2016; Gerstner et al., 2018; Frémaux et al., 2013; Yang et al., 2024). Another research direction
focused on ANN-to-SNN conversion: Patel et al. (2019); Tan et al. (2021); Kumar et al. (2025)
converted Deep Q-Networks (DQNs) (Mnih, 2013; Mnih et al., 2015) into SNNs. To enable direct
gradient-based training, Liu et al. (2022); Chen et al. (2022); Qin et al. (2022); Sun et al. (2022)
applied Spatio-Temporal Backpropagation (STBP) (Wu et al., 2018) to train DQNs, while Bellec
et al. (2020) introduced e-prop with eligibility traces to train policy networks using policy gradient
methods (Sutton et al., 1999).

For continuous control tasks, hybrid frameworks have been extensively explored (Tang et al., 2020;
2021; Zhang et al., 2022; Chen et al., 2024a; Zhang et al., 2024; Ding et al., 2022; Chen et al.,
2024b; Xu et al., 2025). These approaches typically employ a Spiking Actor Network (SAN) co-
trained with a deep ANN critic in the Actor–Critic framework (Konda & Tsitsiklis, 1999). However,
none of these methods address the challenge of normalization in SNN-based RL. The absence of
proper normalization often leads to unstable updates, slower convergence, or even divergence during
training.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) communicate through discrete spikes rather than continuous acti-
vations. The most widely used neuron model is the Leaky Integrate-and-Fire (LIF) neuron, whose
membrane potential dynamics are described as:

Ht = λVt−1 + Ct, St = Θ(Ht − Vth), Vt = (1− St) ·Ht + St · Vreset, (1)

where Ct, Ht, St, and Vt denote the input current, the accumulated membrane potential, the binary
output spike, and the post-firing membrane potential at time step t, respectively. The parameters
Vth, Vreset, and λ represent the firing threshold, reset voltage, and leakage factor, respectively. Θ(·)
is the Heaviside step function.

3.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework in which an agent learns to maximize cumulative
rewards by interacting with an environment. The agent maps states (or observations) to actions,
with the learning loop consisting of two steps: (i) the agent selects an action, receives a reward, and
transitions to the next state; and (ii) the agent updates its policy by sampling mini-batches of past
experiences.

Because the policy continuously evolves during training, the data distribution is inherently non-
stationary. This poses challenges for batch normalization methods, which rely on the assumption of
a stationary distribution.

3.3 BATCH NORMALIZATION

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is a widely used technique to stabilize and
accelerate the training of deep neural networks. Given an activation xi ∈ Rd at iteration i, BN
normalizes it using the mean and variance computed over a mini-batch B = {x1

i , . . . , x
N
i }:

µB =
1

N

N∑
j=1

xj
i , σ2

B =
1

N

N∑
j=1

(xj
i − µB)

2, (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

x̂i =
xi − µB√
σ2
B + ϵ

, yi = γx̂i + β, (3)

where ϵ is a small constant for numerical stability, and γ, β are learnable affine parameters. During
inference, moving statistics (µ̂i, σ̂

2
i ) are used in place of batch statistics (µi, σ

2
i ).

In supervised learning, this discrepancy between training (mini-batch statistics) and inference (mov-
ing statistics) is usually tolerable, as imprecise moving estimates do not directly affect gradient
updates. However, in online RL, inaccurate moving statistics degrade policy exploitation, leading to
unstable training dynamics and even divergence.

4 METHODOLOGY

EMA

CA-EMA Compute
 Statistics 

Ca-BN Re-BN

...

...

Var

EMA

CA-EMA

Ca-BN

Var

Figure 2: The statistics estimation scheme of CaRe-BN. In this framework, Ca-BN is applied at
every update step, while Re-BN is performed periodically. ∆2 denotes the squared error, Var repre-
sents the variance computed according to Eq. 9, EMA refers to the exponential moving average in
Eq. 11, and CA-EMA denotes the confidence-adaptive update defined in Eqs. 5 and 6.

As illustrated in Figure 2, we propose Confidence-adaptive and Recalibration Batch Normalization
(CaRe-BN) to address the challenge of approximating moving statistics in online RL. Section 4.1
analyzes the limitations of traditional BN in online RL, where statistics are often estimated impre-
cisely. Section 4.2 introduces the confidence-adaptive update mechanism (Ca-BN), which dynami-
cally adjusts statistics estimation based on the reliability of the current approximation. Section 4.3
presents the recalibration mechanism (Re-BN), which periodically corrects accumulated estima-
tion errors. Finally, Section 4.4 integrates these components into the full CaRe-BN framework and
demonstrates its use in online RL algorithms.

4.1 ISSUES IN APPROXIMATING MOVING STATISTICS

Online RL introduces stronger distribution shifts. Unlike supervised learning, where the data
distribution is typically assumed to be static, online RL involves continuous interaction between the
agent and the environment. This results in a non-stationary data distribution, which in turn causes
activation statistics to drift over time.

Inaccurate statistics degrade RL performance. Supervised learning only requires the final mov-
ing statistics to be accurate, as inference is performed after training. In contrast, online RL requires
reliable statistics throughout training. When statistics are imprecise, the agent selects suboptimal
actions during exploration and exploitation, generating poor trajectories that further degrades policy
updates.

The key of the problem lies in accurately estimating inference-time statistics under shifting dis-
tributions. Hence, it is essential to design estimators that adapt to distributional changes while
minimizing approximation error during training.

It is worth noting that most conventional ANN-based RL algorithms do not employ BN (Lillicrap,
2015; Sutton & Barto, 2018), as shallow ANNs can often learn stable representations without nor-
malization. In contrast, BN is indispensable for stabilizing SNNs training. Therefore, addressing
this issue is particularly critical for SNN-based RL.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 CONFIDENCE-ADAPTIVE UPDATE OF BN STATISTICS (CA-BN)

Conventional BN approximates population statistics using an exponential moving average (EMA)
of the batch mean and variance:

µ̂i ← (1− α)µ̂i−1 + αµi, σ̂2
i ← (1− α)σ̂2

i−1 + ασ2
i , (4)

where α is the momentum parameter. This update rule faces a fundamental noise–delay trade-off.
As shown in Figure 1, low momentum yields stable but slow adaptation to distribution shifts, while
high momentum adapts quickly but amplifies the noise from small-batch estimates. This trade-off is
particularly harmful in online RL, where accurate normalization is critical for stable policy learning.

Inspired by the Kalman estimator (Kalman, 1960), we derive a confidence-guided mechanism that
adaptively reweights estimators to minimize the mean-squared error (MSE) of BN statistics.

Theorem 1 Let (µi, σ
2
i ) and (µ̂i|i−1, σ̂

2
i|i−1) be two unbiased estimators of the population parame-

ters (µ∗
i , σ

∗
i
2). Taking them as random variables, the optimal linear estimator is

µ̂i = (1−Kµ
i )µ̂i|i−1 +Kµ

i µi, Kµ
i =

D(µ∗
i − µ̂i|i−1)

D(µ∗
i − µ̂i|i−1) + D(µ∗

i − µi)
, (5)

σ̂2
i = (1−Kσ

i )σ̂
2
i|i−1 +Kσ

i σ
2
i , Kσ

i =
D(σ∗

i
2 − σ̂2

i|i−1)

D(σ∗
i
2 − σ̂2

i|i−1) + D(σ∗
i
2 − σ2

i )
, (6)

where Kµ
i and Kσ

i are confidence-guided adaptive weights, and D(·) denotes generalized variance1.

Proof 1 Since both µ̂i|i−1 and µi are unbiased for µ∗
i , any linear combination µ̃i = (1−K)µ̂i|i−1+

Kµi is also unbiased. The variance is
D(µ̃i − µ∗

i ) = (1−K)2 · D(µ̂i|i−1 − µ∗
i ) +K2 · D(µi − µ∗

i ). (7)

Minimizing over K yields the optimal K = Kµ
i . The variance update (Eq. 6) follows analogously.

Assumption 1 The activations in iteration i are modeled as xi ∼ N (µ∗
i , σ

∗
i
2), following the stan-

dard Gaussianity assumption in BN.

Confidence of mini-batch statistics. For a batch of size N , the sample mean µi and variance σ2
i

satisfy

µi ∼ N
(
µ∗
i ,

σ∗
i
2

N

)
,

(N − 1)σ2
i

σ∗
i
2 ∼ χ2

N−1. (8)

Since µ∗
i and σ∗

i
2 are unknown, we adopt the common approximation using µi and σ2

i , thus:

D(µ∗
i − µi) =

σ∗
i
2

N
≈ σ2

i

N
, D(σ∗

i
2 − σ2

i ) =
2σ∗

i
4

N − 1
≈ 2σ4

i

N − 1
. (9)

Confidence of previous estimates. Since the true statistics µ∗
i and σ∗

i
2 are unknown, direct com-

putation of D(µ∗
i − µ̂i|i−1) and D(σ∗

i
2 − σ̂2

i|i−1) is infeasible. To approximate them, we view the
minibatch statistics µi and σ2

i as a stochastic sample drawn from the unknown hypothetical distri-
butions induced by µ∗

i and σ∗
i
2. Thus, the squared deviations (µi − µ̂i|i−1))

2 and (σ2
i − σ̂2

i|i−1))
2

serve as unbiased but noisy probes of D(µ∗
i − µ̂i|i−1) and D(σ∗

i
2 − σ̂2

i|i−1).

Because these single-minibatch estimates exhibit high variance, we maintain smoothed recursive
estimators updated using an exponential moving average with momentum parameter α:

D(µ∗
i − µ̂i|i−1) ≈ Dµ

i , D(σ∗
i
2 − σ̂2

i|i−1) ≈ Dσ
i , (10)

Dµ
i ← (1− α)Dµ

i−1 + α(µi − µ̂i|i−1))
2, Dσ

i ← (1− α)Dσ
i−1 + α(σ2

i − σ̂2
i|i−1))

2. (11)

Combining Eqs. 5–11, we obtain the confidence-adaptive update scheme2. When distributional
shifts are rapid, Dµ

i and Dσ
i grow large, increasing Kµ

i and Kσ
i and accelerating adaptation. Con-

versely, when statistics are stable, these terms shrink, lowering Kµ
i and Kσ

i and reducing noise from
small mini-batches.

1The confidence is defined as the inverse of rhe generalized variance: confidence score = 1
D .

2As BN statistics fluctuate without monotonic trends, we define µ̂i|i−1 = µi−1 and σ̂2
i|i−1 = σ2

i−1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 RE-CALIBRATION MECHANISM OF BN STATISTICS (RE-BN)

While the confidence-adaptive update provides online estimates of BN statistics during training,
these estimates may still drift from the true population values due to stochastic mini-batch noise.
The most accurate approach would be to recompute exact statistics by forward-propagating the
entire dataset after each update (Wu & Johnson, 2021). However, this is computationally infeasible
in RL, as it would require processing millions of samples at every step.

A more practical alternative is to periodically re-calibrate BN statistics using larger aggregated
batches. Specifically, at fixed intervals Tcal, we draw M calibration batches {B1, . . . ,BM} from
the replay buffer. For each batch Bj , we compute its mean µj and variance σ2

j . The recalibrated BN
statistics are then given by:

µ̂i =
1

M

M∑
j=1

µj , σ̂2
i =

1

M

M∑
j=1

(σ2
j + µ2

j )− µ̂2
i . (12)

This recalibration requires additional forward passes, but the extra overhead is upper bounded by M
Tcal

times the total training cost. Since we set Tcal ≫M , the computational overhead remains negligible,
while significantly improving the accuracy of BN statistics.

4.4 INTEGRATING WITH RL

The proposed Confidence-adaptive and Re-calibration Batch Normalization (CaRe-BN) integrates
two complementary mechanisms: the confidence-adaptive update in Section 4.2, which provides an
online estimation of batch normalization (BN) statistics, and the re-calibration procedure in Sec-
tion 4.3, which corrects accumulated bias. The overall integration within an online RL framework
is outlined in Algorithm 1.

Algorithm 1 General RL Algorithm with CaRe-BN
1: Initialize the agent networks and the replay buffer.
2: for each iteration do
3: Select an action and store the transition (inference BN statistics).
4: Update the agent by sampling a minibatch of N transitions (mini-batch BN statistics).
5: Update the moving BN statistics as:

Dµ
i ← (1− α)Dµ

i−1 + α(µi − µ̂i−1)
2, Dσ

i ← (1− α)Dσ
i−1 + α(σ2

i − σ̂2
i−1)

2,

µ̂i =
Dµ

i · µi +
σ2
i

N · µ̂i−1

Dµ
i +

σ2
i

N

, σ̂2
i =

Dσ
i · σ2

i +
2σ4

i

N−1 · σ̂
2
i−1

Dσ
i +

2σ4
i

N−1

.

6: if Re-calibration then
7: Sample M minibatches of N transitions each and update BN statistics using Eq. (12).
8: end if
9: end for

It is important to note that the inference procedure of CaRe-BN remains identical to that of conven-
tional BN. Consequently, the CaRe-BN layer is seamlessly fused into synaptic weights, introducing
no additional inference overhead during deployment.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate CaRe-BN on RL tasks covering both discrete and continuous action spaces. All envi-
ronments use default settings, and performance is evaluated by averaging the rewards in 10 trials.

For discrete action spaces, we consider four widely used Atari 2600 games from the Arcade Learning
Environment (ALE) (Bellemare et al., 2013; Machado et al., 2018): Pong, Breakout, SpaceInvaders,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Freeway, and Seaquest. We adopt a deep Q-learning framework (Mnih et al., 2015) and train a deep
Spiking Q-Network (Liu et al., 2022) that receives RAM-based observations and outputs state-action
values.

For continuous control, we evaluate on five standard MuJoCo benchmarks (Todorov et al., 2012;
Todorov, 2014b) provided in the OpenAI Gymnasium suite (Brockman, 2016; Towers et al.,
2024): InvertedDoublePendulum (IDP) (Todorov, 2014a), Ant (Schulman et al., 2015), HalfChee-
tah (Wawrzyński, 2009), Hopper (Erez et al., 2012), and Walker2d. We employ a hybrid frame-
work in which a spiking actor network is co-trained with a deep critic network using several RL
algorithms, including Deep Deterministic Policy Gradient (DDPG) (Lillicrap, 2015), Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018), and Soft Actor-Critic (SAC) (Haarnoja et al., 2018a).

To evaluate the generality of CaRe-BN, we experiment with multiple spiking neuron models: the
Leaky Integrate-and-Fire (LIF) neuron (Gerstner & Kistler, 2002), the Current-based LIF (CLIF)
neuron (Tang et al., 2021), and the Dynamic Neuron (DN) model (Zhang et al., 2022), with detailed
dynamics provided in the Appendix. All SNN agents are trained via Spatio-Temporal Backpropa-
gation (STBP) (Wu et al., 2018), with the CaRe-BN module inserted between every pair of adjacent
layers. For fair comparison, all models share the same hyperparameters, fully listed in the Appendix.

During each RL environment step, the SNN agent performs a single forward inference composed of
5 simulation time steps, after which all neuron states are reset.

5.2 MORE PRECISE BN STATISTICS LEAD TO BETTER EXPLORATION

0 1 2 3 4 5
Training Steps (1e4)

0.12

0.14

0.16

W
as

se
rs

te
in

 D
is

ta
nc

e Layer 1

CaRe-BN
BN

0 1 2 3 4 5
Training Steps (1e4)

0.18

0.20

0.22

0.24
Layer 2

0 1 2 3 4 5
Training Steps (1e4)

0.4

0.6

0.8

Layer 3

Figure 3: Wasserstein distance between estimated BN
statistics and the true distribution across layers, mea-
sured with CLIF neurons and the TD3 algorithm in the
InvertedDoublePendulum-v4 environment. Shaded areas
denote half a standard deviation over five runs. Curves are
uniformly smoothed for visual clarity.

In online RL, the quality of explo-
ration directly affects subsequent pol-
icy updates. As discussed in Sec-
tion 4.1, traditional BN methods strug-
gle to maintain accurate moving statis-
tics, which can lead to suboptimal ex-
ploration behavior.

To quantify this effect, we compute
the Wasserstein distance between the
true feature distribution and the Gaus-
sian distribution estimated by BN. Fig-
ure 3 shows that CaRe-BN consis-
tently reduces this discrepancy across
all layers throughout training, produc-
ing more precise normalization.

0 1 2 3 4 5
Training Steps (1e4)

0

2

4

6

8

Ex
pl

or
at

io
n 

R
et

ur
ns

 (1
e3

) IDP-v4

CaRe-BN
BN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

4

5
Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

2

4

6

8

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

4

Walker2d-v4

Figure 4: Exploration returns of BN and CaRe-BN with CLIF neurons and the TD3 algorithm
across five MuJoCo tasks. Shaded areas represent half a standard deviation across five random
seeds. Curves are uniformly smoothed for visual clarity.

The impact of improved statistics is reflected in exploration performance. As shown in Figure 4,
CaRe-BN consistently achieves higher exploration returns. Since CaRe-BN does not directly modify
the gradient update process, the observed improvement in exploration performance is solely due to
its more precise estimation of BN statistics. This leads to better exploration policies, which in turn
generate higher-quality trajectories for updating the agent. As a result, CaRe-BN forms a positive
feedback loop: improved statistics → better exploration → higher-quality experiences → better
policy.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.3 ADAPTABILITY OF CARE-BN

To evaluate the adaptability of CaRe-BN, we test it across different RL algorithms (DQN (Mnih
et al., 2015), DDPG (Lillicrap, 2015), TD3 (Fujimoto et al., 2018), and SAC3 (Haarnoja et al.,
2018a)) and spiking neuron models (LIF, CLIF (Tang et al., 2021), and DN (Zhang et al., 2022)).

0

5

Av
er

ag
e

 R
et

ur
ns

 (1
e3

)

IDP-v4

CaRe-BN+LIF
LIF

2

4

Ant-v4

2.5

5.0

7.5

HalfCheetah-v4

0

2

Hopper-v4

0

2

4

Walker2d-v4

0

5

Av
er

ag
e

 R
et

ur
ns

 (1
e3

)

CaRe-BN+CLIF
CLIF

2

4

5

10

0

2

0

2

4

0 1 2 3 4 5
Training Steps (1e4)

0

5

Av
er

ag
e

 R
et

ur
ns

 (1
e3

)

CaRe-BN+DN
DN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

2

4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

5

10

(a) Training with TD3 Algorithm

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

2

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

2

4

0

5

Av
er

ag
e

R
et

ur
ns

 (1
e3

)

IDP-v4

CaRe-BN+LIF
LIF

0

5

HalfCheetah-v4

0

2

Hopper-v4

0

1

2

Walker2d-v4

0

5

Av
er

ag
e

R
et

ur
ns

 (1
e3

)

CaRe-BN+CLIF
CLIF

0

5

0

1

2

0

2

0 1 2 3 4 5
Training Steps (1e4)

0

5

Av
er

ag
e

R
et

ur
ns

 (1
e3

)

CaRe-BN+DN
DN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

5

(b) Training with DDPG Algorithm

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

Figure 5: Learning curves of SNN-based agents in continuous control trained with TD3 (top) and
DDPG (bottom). Since the DDPG algorithm (in both ANN and SNN) diverges in the Ant-v4 envi-
ronment, these curves are not shown. Shaded areas represent half a standard deviation across five
random seeds. Curves are uniformly smoothed for visual clarity.

Better final return. Figure 5 shows the learning curves for SNN models with and without CaRe-BN.
In most cases, CaRe-BN consistently outperforms standard SNNs, converging faster and achieving
higher final returns. These improvements are robust across different spiking neurons and RL algo-
rithms, confirming that CaRe-BN enhances performance in diverse settings.

Lower variance. Figure 6 (a) and (b) display the relative variance of the final policy. Compared to
standard SNNs, CaRe-BN significantly reduces the variance of SNN-RL training, and even achieves
lower variance than ANN baselines (i.e., 17.71% for DDPG and 21.24% for TD3). This indicates
that CaRe-BN not only enhances performance but also improves the stability and reproducibility.

Generalizing across different RL domains. Beyond continuous control, we also evaluate CaRe-
BN in discrete-action settings using the deep spiking Q-network. As shown in Figure 7, SNN agents
equipped with CaRe-BN achieve markedly improved performance across Atari tasks. These results
demonstrate the strong generalization capability of CaRe-BN across diverse RL domains.

3Curves with SAC are shown in Figure 9 in the Appendix.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Va
ria

nc
e 

(%
) 23.9

11.8
15.3

40.5

LIF CLIF

(a) Variance in DDPG

Va
ria

nc
e 

(%
)

25.1 24.6

6.3
3.1

LIF CLIF

(b) Variance in TD3
BN Ca-BN Re-BN CaRe-BN

Pe
rf

or
m

an
ce

 (%
)

92.2

95.3
94.0

100

(c) Ablation Study
Training Steps

Pe
rf

or
m

an
ce

(d) CaRe-BN in ANNs

CaRe-BN Vanilla

Figure 6: (a), (b) Relative variance percentage of final policy returns, computed by averaging the
standard deviation ratio across five random seeds, for all environments. (c) Normalized maximum
performance across all environments for the ablation study, using CLIF neurons and TD3 algorithm.
(d) Normalized learning curves across all environments for ANNs implementing CaRe-BN. The
dashed lines represent DDPG and the solid lines represent TD3. Performance and training steps are
normalized linearly. Curves are uniformly smoothed for visual clarity.

0.0 0.5 1.0 1.5 2.0
Training Steps (1e6)

20

15

Av
er

ag
e 

R
et

ur
ns

Pong-v5

CaRe-BN
Vanilla SNN

0.0 0.5 1.0 1.5 2.0
Training Steps (1e6)

0

10

20

Breakout-v5

0.0 0.5 1.0 1.5 2.0
Training Steps (1e6)

0

10

20

Freeway-v5

0.0 0.5 1.0 1.5 2.0
Training Steps (1e6)

500

1000

Seaquest-v5

0.0 0.5 1.0 1.5 2.0
Training Steps (1e6)

100

200

300

SpaceInvaders-v5

Figure 7: Learning curves of SNN-based agents in discrete control. Shaded areas represent half a
standard deviation across three random seeds. Curves are uniformly smoothed for visual clarity.

5.4 EXCEEDING SOTA

To further validate the effectiveness of CaRe-BN, we compare it with existing state-of-the-art
(SOTA) SNN-RL methods and various batch normalization strategies for SNNs. The evaluation
is conducted using the TD3 algorithm (Fujimoto et al., 2018) (a strong SOTA baseline for continu-
ous control) and the CLIF neuron model (Tang et al., 2021) (the most commonly used neuron type in
recent SNN-RL studies). The ANN-SNN conversion baseline follows the SOTA method proposed
in Bu et al. (2025). For direct-trained SNNs, we include pop-SAN (Tang et al., 2021), MDC-SAN
(Zhang et al., 2022), and ILC-SAN (Chen et al., 2024a). Additionally, we test several BN algorithms
for SNNs, including tdBN (Zheng et al., 2021), BNTT (Kim & Panda, 2021), TEBN (Duan et al.,
2022), and TABN (Jiang et al., 2024). The performance is summarized in Table 1, where the average
performance gain (APG) is defined as:

APG =

(
1

|envs|
∑

env∈envs

performance(env)
baseline(env)

− 1

)
· 100%, (13)

where |envs| denotes the total number of environments, and performance(env) and baseline(env)
represent the performance of the evaluated algorithm and the ANN baseline in each environment,
respectively.

Compared with other SNN-RL methods: CaRe-BN significantly outperforms previous SNN-RL
approaches, demonstrating that normalization plays a more crucial role than architectural modifica-
tions in improving SNN-RL performance.

Compared with other BN methods: Compared to existing SNN-specific BN variants, CaRe-BN
performs superior, establishing a new state-of-the-art normalization strategy for SNN-RL.

Compared with ANNs: Notably, CaRe-BN trained with TD3 outperforms its ANN counterparts
by 5.9% on average4. This highlights that with proper normalization, SNNs can not only match but

4As shown in Figure 9 in the Appendix, SNNs equipped with CaRe-BN also outperform their ANN coun-
terparts when trained with SAC (Haarnoja et al., 2018a).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 1: Max average returns over 5 random seeds with CLIF spiking neurons, and the average per-
formance gain (APG) against ANN baseline, where ± denotes one standard deviation. All modules
are trained using the TD3 algorithm. All directly trained SNN modules have 5 simulation time steps.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

ANN 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
ANN-SNN 3859± 4440 3550± 963 8703± 658 3098± 281 4235± 354 −21.11%
pop-SAN 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514 −6.66%
MDC-SAN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353 0.37%
ILC-SAN 9352± 1 5584± 272 9222± 615 3403± 148 4200± 717 4.64%

tdBN 9346± 2 4403± 1134 9402± 527 3592± 46 3464± 970 −2.28%
BNTT 9347± 1 4379± 941 9466± 659 3524± 161 3689± 1247 −1.62%
TEBN 9349± 1 4408± 1156 9452± 539 3472± 135 4235± 381 0.69%
TABN 9348± 2 4382± 753 9784± 169 3585± 83 4537± 398 3.25%

CaRe-BN 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 5.90%

exceed the performance of traditional ANN-based RL agents, while retaining their energy-efficient
advantages.

5.5 ABLATION STUDIES

We conduct ablation studies by separately evaluating the effects of the Confidence-adaptive update
(Ca-BN) and the Re-calibration mechanism (Re-BN), as shown in Figure 6 (c). The results demon-
strate that both the adaptive estimation and recalibration mechanisms are beneficial on their own.
However, their combination provides the most significant improvement. Specifically, Ca-BN ad-
dresses the mismatch between training and inference statistics, while Re-BN corrects accumulated
errors, further stabilizing training. By integrating both components, CaRe-BN achieves more precise
and consistent normalization, leading to superior overall performance.

5.6 SNN-FRIENDLY DESIGN

Dispite the stunning improvement in SNNs, we also evaluate CaRe-BN on standard ANNs trained
with TD3 and DDPG, as shown in Figure 6 (d). The results indicate that ANNs with CaRe-BN
perform similarly to their baseline counterparts without CaRe-BN. This outcome is expected for the
following reasons: (i) Shallow ANNs can already train stably and effectively without normalization5,
so adding CaRe-BN does not provide significant improvements. (ii) While CaRe-BN provides more
precise estimates of BN statistics, this does not negatively impact the RL training process. These
results further underscore that the improvements observed are not due to a stronger RL mechanism,
but rather to the SNN-specific normalization strategies.

6 CONCLUSION

In this work, we introduced CaRe-BN, the first batch normalization method specifically designed
for SNNs in RL. By addressing the instability of conventional BN in online RL, CaRe-BN enables
SNNs to outperform their ANN counterparts in continuous control tasks. Importantly, CaRe-BN is
lightweight and easy to integrate, making it a seamless drop-in replacement for existing SNN-RL
pipelines without introducing additional computational overhead.

Beyond its technical contributions, CaRe-BN brings SNN-RL one step closer to practical deploy-
ment. By stabilizing training and improving exploration, it unlocks the potential of SNNs to act
as both energy-efficient and high-performance agents in real-world continuous control applications.
We believe this work underscores the importance of normalization strategies tailored to the unique
dynamics of SNNs and opens new avenues for bridging the gap between neuromorphic learning and
reinforcement learning at scale.

5In RL, networks typically consist of two hidden layers with 256 neurons.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neu-
rons. Nature communications, 11(1):3625, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253–279, 2013.

G Brockman. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):411–444, 2022.

Tong Bu, Maohua Li, and Zhaofei Yu. Inference-scale complexity in ann-snn conversion for high-
performance and low-power applications. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 24387–24397, 2025.

Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Deep reinforcement learning with
spiking q-learning. arXiv preprint arXiv:2201.09754, 2022.

Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Fully spiking actor network with in-
tralayer connections for reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 36(2):2881–2893, 2024a.

Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Noisy spiking actor network for explo-
ration. arXiv preprint arXiv:2403.04162, 2024b.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 2018.

Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P
Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al.
TrueNorth: Accelerating from zero to 64 million neurons in 10 years. Computer, 2019.

Jianchuan Ding, Bo Dong, Felix Heide, Yufei Ding, Yunduo Zhou, Baocai Yin, and Xin Yang.
Biologically inspired dynamic thresholds for spiking neural networks. Advances in neural infor-
mation processing systems, 35:6090–6103, 2022.

Chaoteng Duan, Jianhao Ding, Shiyan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective
batch normalization in spiking neural networks. Advances in Neural Information Processing
Systems, 35:34377–34390, 2022.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control for periodic
tasks with contacts. Robotics: Science and Systems VII, 2012.

Răzvan V Florian. Reinforcement learning through modulation of spike-timing-dependent synaptic
plasticity. Neural computation, 19(6):1468–1502, 2007.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in neural circuits, 9:85, 2016.

Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Reinforcement learning using a con-
tinuous time actor-critic framework with spiking neurons. PLoS computational biology, 9(4):
e1003024, 2013.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press, 2014.

Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
learning rules. Frontiers in neural circuits, 12:53, 2018.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international confer-
ence on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. Pmlr, 2018b.

Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on
Neural Networks and Learning Systems, 34(8):5200–5205, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Haiyan Jiang, Vincent Zoonekynd, Giulia De Masi, Bin Gu, and Huan Xiong. Tab: Temporal accu-
mulated batch normalization in spiking neural networks. In The Twelfth International Conference
on Learning Representations, 2024.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in neuroscience, 15:773954, 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Aakash Kumar, Lei Zhang, Hazrat Bilal, Shifeng Wang, Ali Muhammad Shaikh, Lu Bo, Avinash
Rohra, and Alisha Khalid. Dsqn: Robust path planning of mobile robot based on deep spiking
q-network. Neurocomputing, 634:129916, 2025.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Guisong Liu, Wenjie Deng, Xiurui Xie, Li Huang, and Huajin Tang. Human-level control through
directly trained deep spiking q-networks. IEEE transactions on cybernetics, 53(11):7187–7198,
2022.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
Neural networks, 10(9):1659–1671, 1997.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and Robert Kozma. Im-
proved robustness of reinforcement learning policies upon conversion to spiking neuronal network
platforms applied to atari breakout game. Neural Networks, 120:108–115, 2019.

Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumislawska,
and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic processor com-
prising 256 neurons and 128K synapses. Frontiers in Neuroscience, 9:141, 2015.

Lang Qin, Rui Yan, and Huajin Tang. A low latency adaptive coding spiking framework for deep
reinforcement learning. arXiv preprint arXiv:2211.11760, 2022.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Yinqian Sun, Yi Zeng, and Yang Li. Solving the spike feature information vanishing problem in
spiking deep q network with potential based normalization. Frontiers in Neuroscience, 16:953368,
2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Weihao Tan, Devdhar Patel, and Robert Kozma. Strategy and benchmark for converting deep q-
networks to event-driven spiking neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 9816–9824, 2021.

Guangzhi Tang, Neelesh Kumar, and Konstantinos P Michmizos. Reinforcement co-learning of deep
and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware.
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6090–
6097. IEEE, 2020.

Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos Michmizos. Deep reinforcement
learning with population-coded spiking neural network for continuous control. In Conference on
Robot Learning, pp. 2016–2029. PMLR, 2021.

Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints: The-
ory and implementation in mujoco. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6054–6061. IEEE, 2014a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints: The-
ory and implementation in mujoco. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6054–6061. IEEE, 2014b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Mark Towers, Ariel Kwiatkowski, Jordan K Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, KG Arjun, et al. Gymnasium: A standard
interface for reinforcement learning environments. CoRR, 2024.

Paweł Wawrzyński. A cat-like robot real-time learning to run. In Adaptive and Natural Computing
Algorithms: 9th International Conference, ICANNGA 2009, Kuopio, Finland, April 23-25, 2009,
Revised Selected Papers 9, pp. 380–390. Springer, 2009.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Yuxin Wu and Justin Johnson. Rethinking” batch” in batchnorm. arXiv preprint arXiv:2105.07576,
2021.

Zijie Xu, Tong Bu, Zecheng Hao, Jianhao Ding, and Zhaofei Yu. Proxy target: Bridging the gap be-
tween discrete spiking neural networks and continuous control. arXiv preprint arXiv:2505.24161,
2025.

Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Bulsara, and Ngan Le. Spiking neural networks and
their applications: A review. Brain sciences, 12(7):863, 2022.

Zhile Yang, Shangqi Guo, Ying Fang, Zhaofei Yu, and Jian K Liu. Spiking variational policy
gradient for brain inspired reinforcement learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Duzhen Zhang, Tielin Zhang, Shuncheng Jia, and Bo Xu. Multi-sacle dynamic coding improved
spiking actor network for reinforcement learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pp. 59–67, 2022.

Duzhen Zhang, Qingyu Wang, Tielin Zhang, and Bo Xu. Biologically-plausible topology improved
spiking actor network for efficient deep reinforcement learning. arXiv preprint arXiv:2403.20163,
2024.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

Our submission follows the ICLR Code of Ethics. We do not identify any specific ethical concerns
in this work.

B REPRODUCIBILITY STATEMENT

Source code are provided in the supplementary materials. We also provide our full implementation
and experimental configurations in the Appendix. All experiments were conducted on a single
NVIDIA RTX 4090 GPU, but the code can also be executed on CPU-only devices, albeit with longer
training times. These materials ensure that the reported results can be reproduced and verified by
the community.

C USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely for polishing the presentation of this paper, such
as correcting typos, improving grammar. All ideas, derivations, algorithm design, and experiments
were conceived and implemented independently without reliance on LLMs.

D APPENDIX

D.1 SNN ARCHITECTURES

D.1.1 DEEP SPIKING Q-NETWORK ARCHITECTURE

The deep spiking Q-network consists of an SNN that receives the 128-dimensional RAM input using
direct coding. The network contains two hidden layers, each with 256 LIF neurons. The Q-values
are obtained by reading out the membrane potentials of the output layer, which uses non-leaky,
non-firing neurons to provide stable value estimates.

D.1.2 SPIKING ACTOR NETWORK ARCHITECTURE

The spiking actor network (SAN) consists of a population encoder with Gaussian receptive fields, a
multi-layer SNN with a population output, and a decoder with non-firing neurons.

Forward Propagation of the SAN. In the state encoder, each input dimension is represented by
Nin soft-reset IF neurons with Gaussian receptive fields. These fields have trainable parameters µ
and σ. The neurons receive stimulation AE at every time step and output spikes Sin according to:

AE = exp

[
−1

2

(s− µ)2

σ2

]
(14)

V in
t = V in

t−1 − Sin
t−1 +AE ,

Sin
t = Θ(V in

t − VE),
(15)

where VE is the threshold for the encoding populations.

The final layer of the SNN consists of Nout neurons, corresponding to each action dimension. The
decoder layer consists of non-spiking integrate-and-fire neurons connected to the last layer of the
SNN:

V out
t = V out

t−1 +W out · SL
t + bout, (16)

where W out and bout are the weights and biases, respectively. The final output action is determined
by the membrane potential at the last time step, a = V out

T . A detailed description of the forward
propagation in the spiking actor network is provided in Algorithm 2.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Forward propagation of the Spiking Actor Network (SAN)
1: Input: Ms-dimensional observation s
2: Compute input population stimulation:

AE = exp
[
− 1

2
(s−µ)2

σ2

]
3: for t = 1, . . . , T do
4: Compute encoder membrane potential and spikes:

V in
t = V in

t−1 − Sin
t−1 +AE , Sin

t = Θ(V in
t − VE)

5: for l = 1, . . . , L do
6: Update neurons in layer l at timestep t
7: end for
8: Update decoder membrane potential:

V out
t = V out

t−1 +W out · SL
t + bout

9: end for
10: Output: Ma-dimensional action a = V out

T

Backpropagation of the SAN. The SAN parameters are optimized using gradients with respect
to the output action a = V out

T , given ∂L
∂a .

For the decoder:
∂L

∂W out = ∂L
∂a ·

∂V out
T

∂W out ,
∂L

∂bout = ∂L
∂a ·

∂V out
T

∂bout .
(17)

The main SNN is trained using spatio-temporal backpropagation (STBP) (Wu et al., 2018), with the
rectangular surrogate gradient function defined as:

Θ′(x) =

{
1
2ω , −ω ≤ x ≤ ω,

0, otherwise,
(18)

where ω denotes the window size.

Next, we derive the gradient of the encoder stimulation AE , as shown in Eq. 19. For simplicity,
the term ∂Sin

t

∂AE
is manually set to 1, which is a common surrogate assumption to simplify gradient

computation:
∂L

∂AE
=

T∑
t=1

∂L

∂Sin
t

· ∂S
in
t

∂AE
=

T∑
t=1

∂L

∂Sin
t

. (19)

Finally, the trainable parameters µ and σ of the encoder can be updated as:
∂L
∂µ = ∂L

∂AE
· ∂AE

∂µ = ∂L
∂AE
· s−µ

σ2 AE ,

∂L
∂σ = ∂L

∂AE
· ∂AE

∂σ = ∂L
∂AE
· (s−µ)2

σ3 AE .
(20)

D.2 SPIKING NEURON MODELS

Section 3.1 introduced the LIF neuron model. Here, we provide the detailed dynamics of the spiking
neuron models used in our experiments.

D.2.1 LIF NEURON MODEL

The dynamics of the LIF neuron are defined in Eq. 1, where the input current is computed as:

Cl
t = W lSl−1

t + bl, (21)
where W and b denote the synaptic weights and biases, respectively.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.2.2 CURRENT-BASED LIF (CLIF) NEURON MODEL

In the current-based LIF (CLIF) neuron proposed in Tang et al. (2021), the input current in Eq. 21
is modified as:

Cl
t = λcI

l
t−1 +W lSl−1

t + bl, (22)

where λc is the current leakage parameter. All other dynamics of CLIF neurons are identical to those
of standard LIF neurons.

D.2.3 DYNNAMIC NEURON MODEL

The second-order Dynamic Neuron (DN) model proposed in (Zhang et al., 2022) is designed to
capture richer temporal dynamics for continuous control. Each DN maintains a membrane potential
V and a resistance variable U to model hyperpolarization effects. The neuron dynamics are governed
by:

dV l
t

dt
= (V l

t )
2 − V l

t − U l
t + I lt, (23)

dU l
t

dt
= θvV

l
t − θuU

l
t , (24)

where θv and θu denote the conductance parameters of V and U , respectively. When the neuron
fires, the membrane potential V is reset to Vreset, and the resistance variable U is incremented by θs.
Using a first-order Taylor expansion, the iterative update of the DN model can be written as:

Cl
t = α · Cl

t−1 +W lSl−1
t + bl;

V l
t =

(
1− Sl

t−1

)
· V l

t−1 + Sl
t−1 · Vreset;

U l
t = U l

t−1 + Sl
t−1 · θu;

Vdelta = V l2

t − V l
t − U l

t + Cl
t;

Udelta = θv · V l
t − θu · U l

t ;
V l
t = V l

t + Vdelta ;
U l
t = U l

t + Udelta ;
Sl
t = Θ

(
V l
t − Vth

)
.

(25)

D.3 EXPERIMENT DETAILS

D.3.1 COMPUTE RESOURCES

All experiments were conducted on an RTX 4090 GPU (except for the training time study in Ap-
pendix D.5.1).

D.3.2 SPIKING NEURON PARAMETERS

The parameters for the LIF and CLIF neurons are listed in Table 2. These are the same as those used
in Tang et al. (2021), except that the LIF neuron does not include a current leakage parameter.

Table 2: Parameters of LIF and CLIF (Tang et al., 2021) neurons
Parameter LIF CLIF (Tang et al., 2021)

Membrane leakage parameter λ 0.75 0.75
Threshold voltage Vth 0.5 0.5
Reset voltage Vreset 0 0
Current leakage parameter α - 0.5

The parameters of the DN model are listed in Table 3. All values are obtained using the pre-learning
procedure described in Zhang et al. (2022).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Parameters of the DN (Zhang et al., 2022)
Parameter Value

SNN time steps 5
Threshold voltage Vth 0.5
Current leakage parameter α 0.5
Conductivity of membrane potential θv −0.172
Conductivity of hidden state θu 0.529
Reset voltage Vreset 0.021
spike effect to hidden state θs 0.132

D.3.3 SPECIFIC PARAMETERS FOR CARE-BN

Table 4 lists the hyperparameters of CaRe-BN. The recalibration frequency Tre is set equal to the
evaluation frequency used in the RL algorithms. All hyperparameters are kept consistent across
different spiking neuron models and RL algorithms.

Table 4: Hyper-parameters of the CaRe-BN
Parameter Value

Momentum α 0.8
Recalibration frequency Tre 5000
Recalibration batchs M 100

D.3.4 SPIKING ACTOR NETWORK PARAMETERS

All hyper-parameters of the spiking actor network are listed in Table 5. These settings are consistent
with those used in a wide range of previous studies (Tang et al., 2021; Zhang et al., 2022; Chen et al.,
2024a).

Table 5: Hyper-parameters of the spiking actor network
Parameter Value

Encoder population per dimension Nin 10
Encoder threshold VE 0.999
Network hidden units (256, 256)
Decoder population per dimension Nout 10
Surrogate gradient window size ω 0.5

D.3.5 RL ALGORITHM PARAMETERS

The experiments are conducted using DQN (Mnih et al., 2015)), DDPG (Lillicrap, 2015), TD3
(Fujimoto et al., 2018), and the SAC (Haarnoja et al., 2018a) algorithms, with their respective hy-
perparameters listed in Tables 6, 7, 8, and 9.

D.3.6 EXPERIMENT ENVIRONMENTS IN CONTINUOUS CONTROL

Figure 8 illustrates various MuJoCo environments (Todorov et al., 2012; Todorov, 2014b) from
the OpenAI Gymnasium benchmarks (Brockman, 2016; Towers et al., 2024), including Inverted-
DoublePendulum (IDP) (Todorov, 2014a), Ant (Schulman et al., 2015), HalfCheetah (Wawrzyński,
2009), Hopper (Erez et al., 2012), and Walker. All environments used the default configurations
without modification.

Note that the state vectors, which can range from −∞ to ∞, are normalized to (−1, 1) using a
tanh function. Similarly, since the actions have minimum and maximum limits, the outputs of the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Hyper-parameters of the implemented DQN algorithm (Mnih et al., 2015)
Parameter Value

Learning rate 1 · 10−4

Network architecture (256, 256)
Optimizer Adam
Target update interval 2000
Batch size N 128
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Max epsilon 1
Min epsilon 0.1
Epsilon decay steps 20000

Table 7: Hyper-parameters of the implemented DDPG algorithm (Lillicrap, 2015)
Parameter Value

Actor learning rate 1 · 10−4

Actor regularization None
Critic learning rate 1 · 10−3

Critic regularization weight decay =0.01
Critic architecture (400, 300)
Critic activation Relu
Optimizer Adam
Target update rate τ 5 · 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Exploration niose N (0, σ) N (0, 0.2)

(a) IDP-v4 (b) Ant-v4 (c) HalfCheetah-v4 (d) Hopper-v4 (e) Walker2d-v4

Figure 8: Several continuous control tasks of the MuJoCo environments on OpenAI Gymnasium.
(a) InvertedDoublePendulum-v4, (b) Ant-v4, (c) HalfCheetah-v4, (d) Hopper-v4, (e) Walker2d-v4.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Hyper-parameters of the implemented TD3 algorithm (Fujimoto et al., 2018)
Parameter Value

Actor learning rate 3 · 10−4

Actor regularization None
Critic learning rate 3 · 10−4

Critic regularization None
Critic architecture (256, 256)
Critic activation Relu
Optimizer Adam
Target update rate τ 5 · 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Exploration niose N (0, σ) N (0, 0.1)
Actor update interval d 2
Target policy noise N (0, σ̃) N (0, 0.2)
Target policy noise clip c 0.5

Table 9: Hyper-parameters of the implemented SAC algorithm (Haarnoja et al., 2018a)
Parameter Value

Actor learning rate 3 · 10−4

Actor regularization None
Critic learning rate 3 · 10−4

Critic regularization None
Critic architecture (256, 256)
Critic activation Relu
Optimizer Adam
Target update rate τ 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Actor update interval d 1
Entropy target −dim(A)
Alpha learning rate 3 · 10−4

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

actor network are first normalized to (−1, 1) via a tanh function and then linearly scaled to the
corresponding (Min action,Max action) range.

D.4 ADDITIONAL EXPERIMENTAL RESULTS

D.4.1 ADDITIONAL RESULTS WITH SAC

In the main text, we demonstrated that CaRe-BN surpass its ANN counterparts using the TD3 al-
gorithm. We further train the SNN agent using SAC, a stronger modern off-policy RL algorithm.
As shown in Figure 9, SNNs equipped with CaRe-BN also have the potential to surpass their ANN
counterparts under SAC.

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

1000

2000

3000

4000

5000

Av
er

ag
e 

R
et

ur
ns

Ant-v4

CaRe-BN
Vanilla SNN
ANN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

500

1000

1500

2000

2500

3000

Hopper-v4

Figure 9: Learning curves of the SNN-based agents using SAC algorithm. Shaded areas represent
half a standard deviation across five random seeds. Curves are uniformly smoothed for visual clarity.

D.4.2 ADDITIONAL RESULTS ON ADAPTABILITY

In the main text, we demonstrated that CaRe-BN improves performance across various spiking neu-
ron models and RL algorithms. Additionally, Tables 10, 11, 12, 13, 14, and , 15 report the maximum
average returns and the average performance gains of CaRe-BN compared to vanilla SNNs across
different spiking neurons and RL algorithms.

Table 10: Max average returns over 5 random seeds in DDPG with LIF neurons.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9352± 1 7954± 356 3035± 127 2931± 1395 0.00%
CaRe-BN 9351± 1 8199± 305 3512± 79 3347± 321 8.24%

Table 11: Max average returns over 5 random seeds in DDPG with CLIF neurons.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9352± 2 8205± 376 2566± 1270 2224± 1607 0.00%
CaRe-BN 9352± 0 7972± 245 3247± 100 3709± 321 22.62%

Table 12: Max average returns over 5 random seeds in DDPG with DNs.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9351± 3 8069± 897 3134± 134 3238± 633 0.00%
CaRe-BN 9351± 2 7731± 457 3418± 159 3438± 399 2.76%

D.4.3 ADDITIONAL COMPARISON WITH ANNS

Fig.10 shows the normalized learning curves of our CaRe-BN within different spiking neurons.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Max average returns over 5 random seeds in TD3 with LIF neurons.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9347± 1 4243± 949 9073± 946 3507± 85 2807± 1834 0.00%
CaRe-BN 9346± 1 5083± 356 8813± 533 3489± 118 4556± 497 15.74%

Table 14: Max average returns over 5 random seeds in TD3 with CLIF neurons.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514 0.00%
CaRe-BN 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 15.20%

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Training Steps

0.2

0.4

0.6

0.8

1.0

N
oa

rm
al

iz
ed

 P
er

fo
rm

an
ce

(a) LIF Neuron

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Training Steps

(b) CLIF Neuron

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Training Steps

(c) Dynamic Neuron

SNN with CaRe-BN SNN without CaRe-BN ANN

Figure 10: Normalized learning curves across all environments of the TD3 algorithm with different
spiking neurons across all environments. The performance and training steps are normalized linearly
based on ANN performance. Curves are uniformly smoothed for visual clarity.

D.4.4 ADDITIONAL COMPARISON WITH OTHER SNN-BN MECHANISMS

Tab. 16, shows the performance of different BN variants and CaRe-BN with the LIF neuron model
in TD3 algorithm.

Table 16: Max average returns over 5 random seeds with LIF neuron, and the average performance
gain (APG) against ANN baseline, where ± denotes one standard deviation.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

ANN (TD3) 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
Vanilla LIF 9347± 1 4243± 949 9073± 946 3507± 85 2807± 1834 −7.08%
tdBN 9346± 1 4876± 577 8845± 526 3601± 29 4098± 408 1.65%
BNTT 9348± 1 5244± 321 9339± 874 3593± 62 3480± 1450 1.22%
TEBN 9347± 1 4408± 1156 9452± 539 3472± 135 4235± 381 0.69%
TABN 9347± 1 4431± 1353 9173± 595 3474± 183 3818± 1133 −1.64%
CaRe-BN 9346± 1 5083± 356 8813± 533 3489± 118 4556± 497 3.92%

Table 15: Max average returns over 5 random seeds in TD3 with DNs.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353 0.00%
CaRe-BN 9349± 2 5444± 161 9581± 638 3470± 115 4084± 362 4.37%

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.4.5 ADDITIONAL RESULTS IN ANN

We shows the normalized learning curves of the CaRe-BN with ANN in Fig.6 (d). Here, we show the
detailed learning curves and maximum average returns of 5 environments in Fig.11, Fig.12, Tab.18
and Tab. 19, respectively.

D.4.6 ADDITIONAL RESULTS WITH DIFFERENT SNN SIMULATION TIME STEPS.

We future study the impact of SNN simulation time steps. As shown in Table 17, SNNs generally
benefit from larger simulation time steps, and CaRe-BN achieves even stronger results when using
8 SNN simulation steps (up to 6.32% improvement over ANNs). However, we report the main
results using an SNN simulation time step of 5, following the standard configuration adopted in
prior SNN-based RL studies (Tang et al., 2021; Zhang et al., 2022; Chen et al., 2024a).

Table 17: Max average returns over 5 random seeds of CaRe-BN with CLIF spiking neurons trained
using the TD3 algorithm, and the average performance gain (APG) against ANN baseline, where ±
denotes one standard deviation.

SNN time steps IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

2 953± 247 4924± 171 7635± 392 3588± 10 3885± 1365 −23.80%
3 9285± 100 5078± 325 8190± 567 3522± 89 4391± 282 2.03%
5 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 5.90%
8 9354± 1 5417± 421 9989± 278 3479± 95 4311± 348 6.32%

0 1 2 3 4 5
Training Steps (1e4)

0

2

4

6

8

Av
er

ag
e 

R
et

ur
ns

 (1
e3

)

IDP-v4

CaRe-BN+ANN
ANN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

2

4

6

8

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0.0

0.5

1.0

1.5

2.0

2.5

Walker2d-v4

Figure 11: Learning curves of utilizing CaRe-BN in ANN with DDPG algorithm. The shaded region
represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual
clarity.

0 1 2 3 4 5
Training Steps (1e4)

0

2

4

6

8

Av
er

ag
e 

R
et

ur
ns

 (1
e3

)

IDP-v4

CaRe-BN+ANN
ANN

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

1

2

3

4

5

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

2

4

6

8

10

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

Hopper-v4

0.0 0.2 0.4 0.6 0.8 1.0
Training Steps (1e6)

0

1

2

3

4

Walker2d-v4

Figure 12: Learning curves of utilizing CaRe-BN in ANN with TD3 algorithm. The shaded region
represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual
clarity.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 18: Max average returns over 5 random seeds in DDPG with ANN.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9357± 4 8604± 241 3486± 162 3385± 408 0.00%
CaRe-BN 9360± 0 8887± 408 3475± 135 3328± 882 0.33%

Table 19: Max average returns over 5 random seeds in TD3 with ANN.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
CaRe-BN 9360± 0 5014± 1122 10458± 1271 3436± 114 3021± 1360 −0.69%

D.5 ENERGY CONSUMPTIONS

D.5.1 TRAINING COSTS

To assess the computational overhead introduced by CaRe-BN, we measure the training time and
GPU memory usage on an RTX 3090 GPU paired with an Intel(R) Xeon(R) Platinum 8358P CPU.
The results are summarized in Table 20. As shown, CaRe-BN does not introduce significant addi-
tional training time or memory consumption compared with other BN variants.

Table 20: Training costs of different BN mechanisms on the Ant-v4 environment, trained with TD3
algorithm and CLIF neurons. Training time corresponds to the total wall-clock time required for
5000 RL steps, including exploration, replay sampling, target computation, and gradient updates.

Training costs tdBN BNTT TEBN TAB CaRe-BN

Training time for 5000 updates (s) 242 266 251 264 247
GPU memory (MiB) 437 437 441 441 437

D.5.2 INFERRING COSTS

Table 21: Energy consumption per inference (in nJ) for the spiking actor network with CLIF neurons,
trained using TD3 across various tasks.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 Average

ANN 1715.20 1862.40 1785.60 1728.00 1785.60 1775.36
SNN with CaRe-BN 12.94 17.36 17.37 16.59 18.13 16.48

We evaluate the energy consumption of SNNs equipped with CaRe-BN during inference. Energy is
estimated following the methodology of Merolla et al. (2014), where each floating-point operation
(FLOP) is assumed to consume 12.5 pJ and each synaptic operation (SOP) consumes 77 fJ (Qiao
et al., 2015; Hu et al., 2021). As shown in Table 21, the ANN baselines require substantially more
energy per inference. In contrast, the SNN models with CaRe-BN demonstrate dramatically reduced
energy consumption across all evaluated tasks. These results highlight the strong energy efficiency
of SNNs and underscore their potential for deployment on resource-constrained platforms.

24


	Introduction
	Related Works
	Batch Normalization in Spiking Neural Networks
	Spiking Neural Networks in Reinforcement Learning

	Preliminaries
	Spiking Neural Networks
	Reinforcement Learning
	Batch Normalization

	Methodology
	Issues in Approximating Moving Statistics
	Confidence-adaptive Update of BN Statistics (Ca-BN)
	Re-calibration Mechanism of BN Statistics (Re-BN)
	Integrating with RL

	Experiments
	Experimental Setup
	More Precise BN Statistics Lead to Better Exploration
	Adaptability of CaRe-BN
	Exceeding SOTA
	Ablation Studies
	SNN-friendly design

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models
	Appendix
	SNN Architectures
	Deep Spiking Q-network Architecture
	Spiking Actor Network Architecture

	Spiking Neuron Models
	LIF Neuron Model
	Current-Based LIF (CLIF) Neuron Model
	Dynnamic Neuron Model

	Experiment Details
	Compute Resources
	Spiking Neuron Parameters
	Specific Parameters for CaRe-BN
	Spiking Actor Network Parameters
	RL Algorithm Parameters
	Experiment environments in continuous control

	Additional Experimental Results
	Additional Results with SAC
	Additional Results on Adaptability
	Additional comparison with ANNs
	Additional comparison with other SNN-BN mechanisms
	Additional results in ANN
	Additional results with different SNN simulation time steps.

	Energy Consumptions
	Training Costs
	Inferring Costs



