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ABSTRACT

Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision-
making on neuromorphic hardware by mimicking the event-driven dynamics of
biological neurons. However, the discrete and non-differentiable nature of spikes
leads to unstable gradient propagation in directly trained SNNs, making Batch
Normalization (BN) an important component for stabilizing training. In online
Reinforcement Learning (RL), imprecise BN statistics hinder exploitation, re-
sulting in slower convergence and suboptimal policies. While Artificial Neural
Networks (ANNs) can often omit BN, SNNs critically depend on it, limiting the
adoption of SNNs for energy-efficient control on resource-constrained devices.
To overcome this, we propose Confidence-adaptive and Re-calibration Batch Nor-
malization (CaRe-BN), which introduces (i) a confidence-guided adaptive update
strategy for BN statistics and (ii) a re-calibration mechanism to align distributions.
By providing more accurate normalization, CaRe-BN stabilizes SNN optimization
without disrupting the RL training process. Importantly, CaRe-BN does not alter
inference, thus preserving the energy efficiency of SNNs in deployment. Exten-
sive experiments on both discrete and continuous control benchmarks demonstrate
that CaRe-BN improves SNN performance by up to 22.6% across different spiking
neuron models and RL algorithms. Remarkably, SNNs equipped with CaRe-BN
even surpass their ANN counterparts by 5.9%. These results highlight a new di-
rection for BN techniques tailored to RL, paving the way for neuromorphic agents
that are both efficient and high-performing.

1 INTRODUCTION

Spiking Neural Networks (SNNs) have emerged as a promising class of neural models that more
closely mimic the event-driven computation of biological brains (Maass, 1997; Gerstner et al., 2014).
This event-driven property makes SNNs particularly well suited for deployment on neuromorphic
hardware platforms (Davies et al., 2018; DeBole et al., 2019), enabling low-latency and energy-
efficient inference.

In parallel, Reinforcement Learning (RL) has achieved remarkable success across a wide range of
domains (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2018b). Among these, continuous
control tasks have received significant attention due to their alignment with real-world scenarios and
their strong connection to embodied AI and robotic applications (Kober et al., 2013; Gu et al., 2017;
Brunke et al., 2022). Combining the strengths of SNNs with RL (SNN-RL) offers the potential to
train agents that not only learn complex behaviors but also execute them with extremely low energy
consumption (Yamazaki et al., 2022). This makes SNN-RL particularly appealing for robotics and
autonomous systems deployed on resource-constrained edge devices.

However, training SNNs is challenging. Due to the discrete spike dynamics and the reliance on
surrogate gradients to approximate the backward pass, directly trained SNNs often suffer from un-
stable gradient propagation, including vanishing or exploding gradients (Zheng et al., 2021). Batch
Normalization (BN) (Ioffe & Szegedy, 2015) plays a crucial role in stabilizing SNN training by reg-
ulating activation statistics and improving gradient flow, mitigates such instability and contributes
to state-of-the-art performance (Duan et al., 2022; Jiang et al., 2024).
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Figure 1: Real and estimated input activation distributions in BN layers. Between each gradient
update iterations, distributions change rapidly in (a) and (c), while remaining stable in (b) and (d).

While effective in supervised learning, BN suffers a severe breakdown in online RL because mov-
ing statistics cannot be estimated precisely under nonstationary dynamics. As shown in Figure 1,
traditional BN struggles to track the true statistics: When distributions shift rapidly (Figure 1(a)),
estimates lag behind; when distributions are relatively static (Figure 1(b)), estimates contain noise.
These inaccuracies lead agents to select suboptimal actions and generate poor trajectories, which are
then reused for training—further compounding the problem and hindering policy improvement.

This issue is especially critical for SNNs. Traditional online RL algorithms usually remove BN lay-
ers in their networks (Sutton & Barto, 2018; Fujimoto et al., 2018; Haarnoja et al., 2017; Schulman
et al., 2017). Unlike ANNs that can train stably without BN, SNNs rely heavily on normaliza-
tion to stabilize membrane potentials and surrogate-gradient backpropagation. Removing BN from
SNN-based RL leads to severe gradient instability and substantial performance degradation.

In this work, we address this issue by proposing Confidence-adaptive and Re-calibration Batch
Normalization (CaRe-BN), a BN strategy tailored for SNN-based RL. CaRe-BN introduces two
complementary components: (i) Confidence-adaptive update (Ca-BN), a confidence-weighted
moving estimator of BN statistics that ensures unbiasedness and optimal variance reduction; and
(ii) Re-calibration (Re-BN), a periodic correction scheme that leverages replay buffer resampling
to refine inference statistics. Together, these mechanisms enable precise, low-variance estimation of
BN statistics under the nonstationary dynamics of SNN-RL (Figure 1). With more accurate moving
statistics, CaRe-BN stabilizes SNN optimization without disrupting the online RL process.

We evaluate CaRe-BN on various continuous control tasks from MuJoCo (Todorov et al., 2012;
Todorov, 2014b). The results show that CaRe-BN not only resolves the issue of imprecise BN
statistics but also accelerates training and achieves state-of-the-art performance. Remarkably, SNN-
based agents equipped with CaRe-BN even outperform their ANN counterparts by 5.9%, without
requiring complex neuron dynamics or specialized RL frameworks.

2 RELATED WORKS

2.1 BATCH NORMALIZATION IN SPIKING NEURAL NETWORKS

Batch Normalization (BN) was originally proposed for ANNs to mitigate internal covariate shift
during training (Ioffe & Szegedy, 2015), thereby accelerating convergence and improving perfor-
mance (Santurkar et al., 2018). To address unstable training in SNNs, several extensions of BN
have been developed (Zheng et al., 2021; Duan et al., 2022; Kim & Panda, 2021; Jiang et al., 2024).
While these methods are effective in supervised tasks, they are designed under the assumption of
static training–inference distributions. This assumption is violated in online RL, where distributions
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shift continually as the agent interacts with the environment, making these BN variants ill-suited for
SNN-RL.

2.2 SPIKING NEURAL NETWORKS IN REINFORCEMENT LEARNING

Early work in SNN-RL primarily relied on synaptic plasticity rules, particularly reward-modulated
Spike-Timing-Dependent Plasticity (R-STDP) and its variants (Florian, 2007; Frémaux & Gerstner,
2016; Gerstner et al., 2018; Frémaux et al., 2013; Yang et al., 2024). Another research direction
focused on ANN-to-SNN conversion: Patel et al. (2019); Tan et al. (2021); Kumar et al. (2025)
converted Deep Q-Networks (DQNs) (Mnih, 2013; Mnih et al., 2015) into SNNs. To enable direct
gradient-based training, Liu et al. (2022); Chen et al. (2022); Qin et al. (2022); Sun et al. (2022)
applied Spatio-Temporal Backpropagation (STBP) (Wu et al., 2018) to train DQNs, while Bellec
et al. (2020) introduced e-prop with eligibility traces to train policy networks using policy gradient
methods (Sutton et al., 1999).

For continuous control tasks, hybrid frameworks have been extensively explored (Tang et al., 2020;
2021; Zhang et al., 2022; Chen et al., 2024a; Zhang et al., 2024; Ding et al., 2022; Chen et al.,
2024b; Xu et al., 2025). These approaches typically employ a Spiking Actor Network (SAN) co-
trained with a deep ANN critic in the Actor–Critic framework (Konda & Tsitsiklis, 1999). However,
none of these methods address the challenge of normalization in SNN-based RL. The absence of
proper normalization often leads to unstable updates, slower convergence, or even divergence during
training.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) communicate through discrete spikes rather than continuous acti-
vations. The most widely used neuron model is the Leaky Integrate-and-Fire (LIF) neuron, whose
membrane potential dynamics are described as:

Ht = λVt−1 + Ct, St = Θ(Ht − Vth), Vt = (1− St) ·Ht + St · Vreset, (1)

where Ct, Ht, St, and Vt denote the input current, the accumulated membrane potential, the binary
output spike, and the post-firing membrane potential at time step t, respectively. The parameters
Vth, Vreset, and λ represent the firing threshold, reset voltage, and leakage factor, respectively. Θ(·)
is the Heaviside step function.

3.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework in which an agent learns to maximize cumulative
rewards by interacting with an environment. The agent maps states (or observations) to actions,
with the learning loop consisting of two steps: (i) the agent selects an action, receives a reward, and
transitions to the next state; and (ii) the agent updates its policy by sampling mini-batches of past
experiences.

Because the policy continuously evolves during training, the data distribution is inherently non-
stationary. This poses challenges for batch normalization methods, which rely on the assumption of
a stationary distribution.

3.3 BATCH NORMALIZATION

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is a widely used technique to stabilize and
accelerate the training of deep neural networks. Given an activation xi ∈ Rd at iteration i, BN
normalizes it using the mean and variance computed over a mini-batch B = {x1

i , . . . , x
N
i }:

µB =
1

N

N∑
j=1

xj
i , σ2

B =
1

N

N∑
j=1

(xj
i − µB)

2, (2)
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x̂i =
xi − µB√
σ2
B + ϵ

, yi = γx̂i + β, (3)

where ϵ is a small constant for numerical stability, and γ, β are learnable affine parameters. During
inference, moving statistics (µ̂i, σ̂

2
i ) are used in place of batch statistics (µi, σ

2
i ).

In supervised learning, this discrepancy between training (mini-batch statistics) and inference (mov-
ing statistics) is usually tolerable, as imprecise moving estimates do not directly affect gradient
updates. However, in online RL, inaccurate moving statistics degrade policy exploitation, leading to
unstable training dynamics and even divergence.

4 METHODOLOGY

EMA

CA-EMA Compute
 Statistics 

Ca-BN Re-BN

...

...

Var

EMA

CA-EMA

Ca-BN

Var

Figure 2: The statistics estimation scheme of CaRe-BN. In this framework, Ca-BN is applied at
every update step, while Re-BN is performed periodically. ∆2 denotes the squared error, Var repre-
sents the variance computed according to Eq. 9, EMA refers to the exponential moving average in
Eq. 11, and CA-EMA denotes the confidence-adaptive update defined in Eqs. 5 and 6.

As illustrated in Figure 2, we propose Confidence-adaptive and Recalibration Batch Normalization
(CaRe-BN) to address the challenge of approximating moving statistics in online RL. Section 4.1
analyzes the limitations of traditional BN in online RL, where statistics are often estimated impre-
cisely. Section 4.2 introduces the confidence-adaptive update mechanism (Ca-BN), which dynami-
cally adjusts statistics estimation based on the reliability of the current approximation. Section 4.3
presents the recalibration mechanism (Re-BN), which periodically corrects accumulated estima-
tion errors. Finally, Section 4.4 integrates these components into the full CaRe-BN framework and
demonstrates its use in online RL algorithms.

4.1 ISSUES IN APPROXIMATING MOVING STATISTICS

Online RL introduces stronger distribution shifts. Unlike supervised learning, where the data
distribution is typically assumed to be static, online RL involves continuous interaction between the
agent and the environment. This results in a non-stationary data distribution, which in turn causes
activation statistics to drift over time.

Inaccurate statistics degrade RL performance. Supervised learning only requires the final mov-
ing statistics to be accurate, as inference is performed after training. In contrast, online RL requires
reliable statistics throughout training. When statistics are imprecise, the agent selects suboptimal
actions during exploration and exploitation, generating poor trajectories that further degrades policy
updates.

The key of the problem lies in accurately estimating inference-time statistics under shifting dis-
tributions. Hence, it is essential to design estimators that adapt to distributional changes while
minimizing approximation error during training.

It is worth noting that most conventional ANN-based RL algorithms do not employ BN (Lillicrap,
2015; Sutton & Barto, 2018), as shallow ANNs can often learn stable representations without nor-
malization. In contrast, BN is indispensable for stabilizing SNNs training. Therefore, addressing
this issue is particularly critical for SNN-based RL.

4
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4.2 CONFIDENCE-ADAPTIVE UPDATE OF BN STATISTICS (CA-BN)

Conventional BN approximates population statistics using an exponential moving average (EMA)
of the batch mean and variance:

µ̂i ← (1− α)µ̂i−1 + αµi, σ̂2
i ← (1− α)σ̂2

i−1 + ασ2
i , (4)

where α is the momentum parameter. This update rule faces a fundamental noise–delay trade-off.
As shown in Figure 1, low momentum yields stable but slow adaptation to distribution shifts, while
high momentum adapts quickly but amplifies the noise from small-batch estimates. This trade-off is
particularly harmful in online RL, where accurate normalization is critical for stable policy learning.

Inspired by the Kalman estimator (Kalman, 1960), we derive a confidence-guided mechanism that
adaptively reweights estimators to minimize the mean-squared error (MSE) of BN statistics.

Theorem 1 Let (µi, σ
2
i ) and (µ̂i|i−1, σ̂

2
i|i−1) be two unbiased estimators of the population parame-

ters (µ∗
i , σ

∗
i
2). Taking them as random variables, the optimal linear estimator is

µ̂i = (1−Kµ
i )µ̂i|i−1 +Kµ

i µi, Kµ
i =

D(µ∗
i − µ̂i|i−1)

D(µ∗
i − µ̂i|i−1) + D(µ∗

i − µi)
, (5)

σ̂2
i = (1−Kσ

i )σ̂
2
i|i−1 +Kσ

i σ
2
i , Kσ

i =
D(σ∗

i
2 − σ̂2

i|i−1)

D(σ∗
i
2 − σ̂2

i|i−1) + D(σ∗
i
2 − σ2

i )
, (6)

where Kµ
i and Kσ

i are confidence-guided adaptive weights, and D(·) denotes generalized variance1.

Proof 1 Since both µ̂i|i−1 and µi are unbiased for µ∗
i , any linear combination µ̃i = (1−K)µ̂i|i−1+

Kµi is also unbiased. The variance is
D(µ̃i − µ∗

i ) = (1−K)2 · D(µ̂i|i−1 − µ∗
i ) +K2 · D(µi − µ∗

i ). (7)

Minimizing over K yields the optimal K = Kµ
i . The variance update (Eq. 6) follows analogously.

Assumption 1 The activations in iteration i are modeled as xi ∼ N (µ∗
i , σ

∗
i
2), following the stan-

dard Gaussianity assumption in BN.

Confidence of mini-batch statistics. For a batch of size N , the sample mean µi and variance σ2
i

satisfy

µi ∼ N
(
µ∗
i ,

σ∗
i
2

N

)
,

(N − 1)σ2
i

σ∗
i
2 ∼ χ2

N−1. (8)

Since µ∗
i and σ∗

i
2 are unknown, we adopt the common approximation using µi and σ2

i , thus:

D(µ∗
i − µi) =

σ∗
i
2

N
≈ σ2

i

N
, D(σ∗

i
2 − σ2

i ) =
2σ∗

i
4

N − 1
≈ 2σ4

i

N − 1
. (9)

Confidence of previous estimates. Since the true statistics µ∗
i and σ∗

i
2 are unknown, direct com-

putation of D(µ∗
i − µ̂i|i−1) and D(σ∗

i
2 − σ̂2

i|i−1) is infeasible. To approximate them, we view the
minibatch statistics µi and σ2

i as a stochastic sample drawn from the unknown hypothetical distri-
butions induced by µ∗

i and σ∗
i
2. Thus, the squared deviations (µi − µ̂i|i−1))

2 and (σ2
i − σ̂2

i|i−1))
2

serve as unbiased but noisy probes of D(µ∗
i − µ̂i|i−1) and D(σ∗

i
2 − σ̂2

i|i−1).

Because these single-minibatch estimates exhibit high variance, we maintain smoothed recursive
estimators updated using an exponential moving average with momentum parameter α:

D(µ∗
i − µ̂i|i−1) ≈ Dµ

i , D(σ∗
i
2 − σ̂2

i|i−1) ≈ Dσ
i , (10)

Dµ
i ← (1− α)Dµ

i−1 + α(µi − µ̂i|i−1))
2, Dσ

i ← (1− α)Dσ
i−1 + α(σ2

i − σ̂2
i|i−1))

2. (11)

Combining Eqs. 5–11, we obtain the confidence-adaptive update scheme2. When distributional
shifts are rapid, Dµ

i and Dσ
i grow large, increasing Kµ

i and Kσ
i and accelerating adaptation. Con-

versely, when statistics are stable, these terms shrink, lowering Kµ
i and Kσ

i and reducing noise from
small mini-batches.

1The confidence is defined as the inverse of rhe generalized variance: confidence score = 1
D .

2As BN statistics fluctuate without monotonic trends, we define µ̂i|i−1 = µi−1 and σ̂2
i|i−1 = σ2

i−1.
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4.3 RE-CALIBRATION MECHANISM OF BN STATISTICS (RE-BN)

While the confidence-adaptive update provides online estimates of BN statistics during training,
these estimates may still drift from the true population values due to stochastic mini-batch noise.
The most accurate approach would be to recompute exact statistics by forward-propagating the
entire dataset after each update (Wu & Johnson, 2021). However, this is computationally infeasible
in RL, as it would require processing millions of samples at every step.

A more practical alternative is to periodically re-calibrate BN statistics using larger aggregated
batches. Specifically, at fixed intervals Tcal, we draw M calibration batches {B1, . . . ,BM} from
the replay buffer. For each batch Bj , we compute its mean µj and variance σ2

j . The recalibrated BN
statistics are then given by:

µ̂i =
1

M

M∑
j=1

µj , σ̂2
i =

1

M

M∑
j=1

(σ2
j + µ2

j )− µ̂2
i . (12)

This recalibration requires additional forward passes, but the extra overhead is upper bounded by M
Tcal

times the total training cost. Since we set Tcal ≫M , the computational overhead remains negligible,
while significantly improving the accuracy of BN statistics.

4.4 INTEGRATING WITH RL

The proposed Confidence-adaptive and Re-calibration Batch Normalization (CaRe-BN) integrates
two complementary mechanisms: the confidence-adaptive update in Section 4.2, which provides an
online estimation of batch normalization (BN) statistics, and the re-calibration procedure in Sec-
tion 4.3, which corrects accumulated bias. The overall integration within an online RL framework
is outlined in Algorithm 1.

Algorithm 1 General RL Algorithm with CaRe-BN
1: Initialize the agent networks and the replay buffer.
2: for each iteration do
3: Select an action and store the transition (inference BN statistics).
4: Update the agent by sampling a minibatch of N transitions (mini-batch BN statistics).
5: Update the moving BN statistics as:

Dµ
i ← (1− α)Dµ

i−1 + α(µi − µ̂i−1)
2, Dσ

i ← (1− α)Dσ
i−1 + α(σ2

i − σ̂2
i−1)

2,

µ̂i =
Dµ

i · µi +
σ2
i

N · µ̂i−1

Dµ
i +

σ2
i

N

, σ̂2
i =

Dσ
i · σ2

i +
2σ4

i

N−1 · σ̂
2
i−1

Dσ
i +

2σ4
i

N−1

.

6: if Re-calibration then
7: Sample M minibatches of N transitions each and update BN statistics using Eq. (12).
8: end if
9: end for

It is important to note that the inference procedure of CaRe-BN remains identical to that of conven-
tional BN. Consequently, the CaRe-BN layer is seamlessly fused into synaptic weights, introducing
no additional inference overhead during deployment.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate CaRe-BN on RL tasks covering both discrete and continuous action spaces. All envi-
ronments use default settings, and performance is evaluated by averaging the rewards in 10 trials.

For discrete action spaces, we consider four widely used Atari 2600 games from the Arcade Learning
Environment (ALE) (Bellemare et al., 2013; Machado et al., 2018): Pong, Breakout, SpaceInvaders,

6
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Freeway, and Seaquest. We adopt a deep Q-learning framework (Mnih et al., 2015) and train a deep
Spiking Q-Network (Liu et al., 2022) that receives RAM-based observations and outputs state-action
values.

For continuous control, we evaluate on five standard MuJoCo benchmarks (Todorov et al., 2012;
Todorov, 2014b) provided in the OpenAI Gymnasium suite (Brockman, 2016; Towers et al.,
2024): InvertedDoublePendulum (IDP) (Todorov, 2014a), Ant (Schulman et al., 2015), HalfChee-
tah (Wawrzyński, 2009), Hopper (Erez et al., 2012), and Walker2d. We employ a hybrid frame-
work in which a spiking actor network is co-trained with a deep critic network using several RL
algorithms, including Deep Deterministic Policy Gradient (DDPG) (Lillicrap, 2015), Twin Delayed
DDPG (TD3) (Fujimoto et al., 2018), and Soft Actor-Critic (SAC) (Haarnoja et al., 2018a).

To evaluate the generality of CaRe-BN, we experiment with multiple spiking neuron models: the
Leaky Integrate-and-Fire (LIF) neuron (Gerstner & Kistler, 2002), the Current-based LIF (CLIF)
neuron (Tang et al., 2021), and the Dynamic Neuron (DN) model (Zhang et al., 2022), with detailed
dynamics provided in the Appendix. All SNN agents are trained via Spatio-Temporal Backpropa-
gation (STBP) (Wu et al., 2018), with the CaRe-BN module inserted between every pair of adjacent
layers. For fair comparison, all models share the same hyperparameters, fully listed in the Appendix.

During each RL environment step, the SNN agent performs a single forward inference composed of
5 simulation time steps, after which all neuron states are reset.

5.2 MORE PRECISE BN STATISTICS LEAD TO BETTER EXPLORATION
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Figure 3: Wasserstein distance between estimated BN
statistics and the true distribution across layers, mea-
sured with CLIF neurons and the TD3 algorithm in the
InvertedDoublePendulum-v4 environment. Shaded areas
denote half a standard deviation over five runs. Curves are
uniformly smoothed for visual clarity.

In online RL, the quality of explo-
ration directly affects subsequent pol-
icy updates. As discussed in Sec-
tion 4.1, traditional BN methods strug-
gle to maintain accurate moving statis-
tics, which can lead to suboptimal ex-
ploration behavior.

To quantify this effect, we compute
the Wasserstein distance between the
true feature distribution and the Gaus-
sian distribution estimated by BN. Fig-
ure 3 shows that CaRe-BN consis-
tently reduces this discrepancy across
all layers throughout training, produc-
ing more precise normalization.
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Figure 4: Exploration returns of BN and CaRe-BN with CLIF neurons and the TD3 algorithm
across five MuJoCo tasks. Shaded areas represent half a standard deviation across five random
seeds. Curves are uniformly smoothed for visual clarity.

The impact of improved statistics is reflected in exploration performance. As shown in Figure 4,
CaRe-BN consistently achieves higher exploration returns. Since CaRe-BN does not directly modify
the gradient update process, the observed improvement in exploration performance is solely due to
its more precise estimation of BN statistics. This leads to better exploration policies, which in turn
generate higher-quality trajectories for updating the agent. As a result, CaRe-BN forms a positive
feedback loop: improved statistics → better exploration → higher-quality experiences → better
policy.
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5.3 ADAPTABILITY OF CARE-BN

To evaluate the adaptability of CaRe-BN, we test it across different RL algorithms (DQN (Mnih
et al., 2015), DDPG (Lillicrap, 2015), TD3 (Fujimoto et al., 2018), and SAC3 (Haarnoja et al.,
2018a)) and spiking neuron models (LIF, CLIF (Tang et al., 2021), and DN (Zhang et al., 2022)).
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Figure 5: Learning curves of SNN-based agents in continuous control trained with TD3 (top) and
DDPG (bottom). Since the DDPG algorithm (in both ANN and SNN) diverges in the Ant-v4 envi-
ronment, these curves are not shown. Shaded areas represent half a standard deviation across five
random seeds. Curves are uniformly smoothed for visual clarity.

Better final return. Figure 5 shows the learning curves for SNN models with and without CaRe-BN.
In most cases, CaRe-BN consistently outperforms standard SNNs, converging faster and achieving
higher final returns. These improvements are robust across different spiking neurons and RL algo-
rithms, confirming that CaRe-BN enhances performance in diverse settings.

Lower variance. Figure 6 (a) and (b) display the relative variance of the final policy. Compared to
standard SNNs, CaRe-BN significantly reduces the variance of SNN-RL training, and even achieves
lower variance than ANN baselines (i.e., 17.71% for DDPG and 21.24% for TD3). This indicates
that CaRe-BN not only enhances performance but also improves the stability and reproducibility.

Generalizing across different RL domains. Beyond continuous control, we also evaluate CaRe-
BN in discrete-action settings using the deep spiking Q-network. As shown in Figure 7, SNN agents
equipped with CaRe-BN achieve markedly improved performance across Atari tasks. These results
demonstrate the strong generalization capability of CaRe-BN across diverse RL domains.

3Curves with SAC are shown in Figure 9 in the Appendix.
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Figure 6: (a), (b) Relative variance percentage of final policy returns, computed by averaging the
standard deviation ratio across five random seeds, for all environments. (c) Normalized maximum
performance across all environments for the ablation study, using CLIF neurons and TD3 algorithm.
(d) Normalized learning curves across all environments for ANNs implementing CaRe-BN. The
dashed lines represent DDPG and the solid lines represent TD3. Performance and training steps are
normalized linearly. Curves are uniformly smoothed for visual clarity.
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Figure 7: Learning curves of SNN-based agents in discrete control. Shaded areas represent half a
standard deviation across three random seeds. Curves are uniformly smoothed for visual clarity.

5.4 EXCEEDING SOTA

To further validate the effectiveness of CaRe-BN, we compare it with existing state-of-the-art
(SOTA) SNN-RL methods and various batch normalization strategies for SNNs. The evaluation
is conducted using the TD3 algorithm (Fujimoto et al., 2018) (a strong SOTA baseline for continu-
ous control) and the CLIF neuron model (Tang et al., 2021) (the most commonly used neuron type in
recent SNN-RL studies). The ANN-SNN conversion baseline follows the SOTA method proposed
in Bu et al. (2025). For direct-trained SNNs, we include pop-SAN (Tang et al., 2021), MDC-SAN
(Zhang et al., 2022), and ILC-SAN (Chen et al., 2024a). Additionally, we test several BN algorithms
for SNNs, including tdBN (Zheng et al., 2021), BNTT (Kim & Panda, 2021), TEBN (Duan et al.,
2022), and TABN (Jiang et al., 2024). The performance is summarized in Table 1, where the average
performance gain (APG) is defined as:

APG =

(
1

|envs|
∑

env∈envs

performance(env)
baseline(env)

− 1

)
· 100%, (13)

where |envs| denotes the total number of environments, and performance(env) and baseline(env)
represent the performance of the evaluated algorithm and the ANN baseline in each environment,
respectively.

Compared with other SNN-RL methods: CaRe-BN significantly outperforms previous SNN-RL
approaches, demonstrating that normalization plays a more crucial role than architectural modifica-
tions in improving SNN-RL performance.

Compared with other BN methods: Compared to existing SNN-specific BN variants, CaRe-BN
performs superior, establishing a new state-of-the-art normalization strategy for SNN-RL.

Compared with ANNs: Notably, CaRe-BN trained with TD3 outperforms its ANN counterparts
by 5.9% on average4. This highlights that with proper normalization, SNNs can not only match but

4As shown in Figure 9 in the Appendix, SNNs equipped with CaRe-BN also outperform their ANN coun-
terparts when trained with SAC (Haarnoja et al., 2018a).
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Table 1: Max average returns over 5 random seeds with CLIF spiking neurons, and the average per-
formance gain (APG) against ANN baseline, where ± denotes one standard deviation. All modules
are trained using the TD3 algorithm. All directly trained SNN modules have 5 simulation time steps.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

ANN 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
ANN-SNN 3859± 4440 3550± 963 8703± 658 3098± 281 4235± 354 −21.11%
pop-SAN 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514 −6.66%
MDC-SAN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353 0.37%
ILC-SAN 9352± 1 5584± 272 9222± 615 3403± 148 4200± 717 4.64%

tdBN 9346± 2 4403± 1134 9402± 527 3592± 46 3464± 970 −2.28%
BNTT 9347± 1 4379± 941 9466± 659 3524± 161 3689± 1247 −1.62%
TEBN 9349± 1 4408± 1156 9452± 539 3472± 135 4235± 381 0.69%
TABN 9348± 2 4382± 753 9784± 169 3585± 83 4537± 398 3.25%

CaRe-BN 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 5.90%

exceed the performance of traditional ANN-based RL agents, while retaining their energy-efficient
advantages.

5.5 ABLATION STUDIES

We conduct ablation studies by separately evaluating the effects of the Confidence-adaptive update
(Ca-BN) and the Re-calibration mechanism (Re-BN), as shown in Figure 6 (c). The results demon-
strate that both the adaptive estimation and recalibration mechanisms are beneficial on their own.
However, their combination provides the most significant improvement. Specifically, Ca-BN ad-
dresses the mismatch between training and inference statistics, while Re-BN corrects accumulated
errors, further stabilizing training. By integrating both components, CaRe-BN achieves more precise
and consistent normalization, leading to superior overall performance.

5.6 SNN-FRIENDLY DESIGN

Dispite the stunning improvement in SNNs, we also evaluate CaRe-BN on standard ANNs trained
with TD3 and DDPG, as shown in Figure 6 (d). The results indicate that ANNs with CaRe-BN
perform similarly to their baseline counterparts without CaRe-BN. This outcome is expected for the
following reasons: (i) Shallow ANNs can already train stably and effectively without normalization5,
so adding CaRe-BN does not provide significant improvements. (ii) While CaRe-BN provides more
precise estimates of BN statistics, this does not negatively impact the RL training process. These
results further underscore that the improvements observed are not due to a stronger RL mechanism,
but rather to the SNN-specific normalization strategies.

6 CONCLUSION

In this work, we introduced CaRe-BN, the first batch normalization method specifically designed
for SNNs in RL. By addressing the instability of conventional BN in online RL, CaRe-BN enables
SNNs to outperform their ANN counterparts in continuous control tasks. Importantly, CaRe-BN is
lightweight and easy to integrate, making it a seamless drop-in replacement for existing SNN-RL
pipelines without introducing additional computational overhead.

Beyond its technical contributions, CaRe-BN brings SNN-RL one step closer to practical deploy-
ment. By stabilizing training and improving exploration, it unlocks the potential of SNNs to act
as both energy-efficient and high-performance agents in real-world continuous control applications.
We believe this work underscores the importance of normalization strategies tailored to the unique
dynamics of SNNs and opens new avenues for bridging the gap between neuromorphic learning and
reinforcement learning at scale.

5In RL, networks typically consist of two hidden layers with 256 neurons.
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A ETHICS STATEMENT

Our submission follows the ICLR Code of Ethics. We do not identify any specific ethical concerns
in this work.

B REPRODUCIBILITY STATEMENT

Source code are provided in the supplementary materials. We also provide our full implementation
and experimental configurations in the Appendix. All experiments were conducted on a single
NVIDIA RTX 4090 GPU, but the code can also be executed on CPU-only devices, albeit with longer
training times. These materials ensure that the reported results can be reproduced and verified by
the community.

C USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used solely for polishing the presentation of this paper, such
as correcting typos, improving grammar. All ideas, derivations, algorithm design, and experiments
were conceived and implemented independently without reliance on LLMs.

D APPENDIX

D.1 SNN ARCHITECTURES

D.1.1 DEEP SPIKING Q-NETWORK ARCHITECTURE

The deep spiking Q-network consists of an SNN that receives the 128-dimensional RAM input using
direct coding. The network contains two hidden layers, each with 256 LIF neurons. The Q-values
are obtained by reading out the membrane potentials of the output layer, which uses non-leaky,
non-firing neurons to provide stable value estimates.

D.1.2 SPIKING ACTOR NETWORK ARCHITECTURE

The spiking actor network (SAN) consists of a population encoder with Gaussian receptive fields, a
multi-layer SNN with a population output, and a decoder with non-firing neurons.

Forward Propagation of the SAN. In the state encoder, each input dimension is represented by
Nin soft-reset IF neurons with Gaussian receptive fields. These fields have trainable parameters µ
and σ. The neurons receive stimulation AE at every time step and output spikes Sin according to:

AE = exp

[
−1

2

(s− µ)2

σ2

]
(14)

V in
t = V in

t−1 − Sin
t−1 +AE ,

Sin
t = Θ(V in

t − VE),
(15)

where VE is the threshold for the encoding populations.

The final layer of the SNN consists of Nout neurons, corresponding to each action dimension. The
decoder layer consists of non-spiking integrate-and-fire neurons connected to the last layer of the
SNN:

V out
t = V out

t−1 +W out · SL
t + bout, (16)

where W out and bout are the weights and biases, respectively. The final output action is determined
by the membrane potential at the last time step, a = V out

T . A detailed description of the forward
propagation in the spiking actor network is provided in Algorithm 2.
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Algorithm 2 Forward propagation of the Spiking Actor Network (SAN)
1: Input: Ms-dimensional observation s
2: Compute input population stimulation:

AE = exp
[
− 1

2
(s−µ)2

σ2

]
3: for t = 1, . . . , T do
4: Compute encoder membrane potential and spikes:

V in
t = V in

t−1 − Sin
t−1 +AE , Sin

t = Θ(V in
t − VE)

5: for l = 1, . . . , L do
6: Update neurons in layer l at timestep t
7: end for
8: Update decoder membrane potential:

V out
t = V out

t−1 +W out · SL
t + bout

9: end for
10: Output: Ma-dimensional action a = V out

T

Backpropagation of the SAN. The SAN parameters are optimized using gradients with respect
to the output action a = V out

T , given ∂L
∂a .

For the decoder:
∂L

∂W out = ∂L
∂a ·

∂V out
T

∂W out ,
∂L

∂bout = ∂L
∂a ·

∂V out
T

∂bout .
(17)

The main SNN is trained using spatio-temporal backpropagation (STBP) (Wu et al., 2018), with the
rectangular surrogate gradient function defined as:

Θ′(x) =

{
1
2ω , −ω ≤ x ≤ ω,

0, otherwise,
(18)

where ω denotes the window size.

Next, we derive the gradient of the encoder stimulation AE , as shown in Eq. 19. For simplicity,
the term ∂Sin

t

∂AE
is manually set to 1, which is a common surrogate assumption to simplify gradient

computation:
∂L

∂AE
=

T∑
t=1

∂L

∂Sin
t

· ∂S
in
t

∂AE
=

T∑
t=1

∂L

∂Sin
t

. (19)

Finally, the trainable parameters µ and σ of the encoder can be updated as:
∂L
∂µ = ∂L

∂AE
· ∂AE

∂µ = ∂L
∂AE
· s−µ

σ2 AE ,

∂L
∂σ = ∂L

∂AE
· ∂AE

∂σ = ∂L
∂AE
· (s−µ)2

σ3 AE .
(20)

D.2 SPIKING NEURON MODELS

Section 3.1 introduced the LIF neuron model. Here, we provide the detailed dynamics of the spiking
neuron models used in our experiments.

D.2.1 LIF NEURON MODEL

The dynamics of the LIF neuron are defined in Eq. 1, where the input current is computed as:

Cl
t = W lSl−1

t + bl, (21)
where W and b denote the synaptic weights and biases, respectively.
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D.2.2 CURRENT-BASED LIF (CLIF) NEURON MODEL

In the current-based LIF (CLIF) neuron proposed in Tang et al. (2021), the input current in Eq. 21
is modified as:

Cl
t = λcI

l
t−1 +W lSl−1

t + bl, (22)

where λc is the current leakage parameter. All other dynamics of CLIF neurons are identical to those
of standard LIF neurons.

D.2.3 DYNNAMIC NEURON MODEL

The second-order Dynamic Neuron (DN) model proposed in (Zhang et al., 2022) is designed to
capture richer temporal dynamics for continuous control. Each DN maintains a membrane potential
V and a resistance variable U to model hyperpolarization effects. The neuron dynamics are governed
by:

dV l
t

dt
= (V l

t )
2 − V l

t − U l
t + I lt, (23)

dU l
t

dt
= θvV

l
t − θuU

l
t , (24)

where θv and θu denote the conductance parameters of V and U , respectively. When the neuron
fires, the membrane potential V is reset to Vreset, and the resistance variable U is incremented by θs.
Using a first-order Taylor expansion, the iterative update of the DN model can be written as:

Cl
t = α · Cl

t−1 +W lSl−1
t + bl;

V l
t =

(
1− Sl

t−1

)
· V l

t−1 + Sl
t−1 · Vreset;

U l
t = U l

t−1 + Sl
t−1 · θu;

Vdelta = V l2

t − V l
t − U l

t + Cl
t;

Udelta = θv · V l
t − θu · U l

t ;
V l
t = V l

t + Vdelta ;
U l
t = U l

t + Udelta ;
Sl
t = Θ

(
V l
t − Vth

)
.

(25)

D.3 EXPERIMENT DETAILS

D.3.1 COMPUTE RESOURCES

All experiments were conducted on an RTX 4090 GPU (except for the training time study in Ap-
pendix D.5.1).

D.3.2 SPIKING NEURON PARAMETERS

The parameters for the LIF and CLIF neurons are listed in Table 2. These are the same as those used
in Tang et al. (2021), except that the LIF neuron does not include a current leakage parameter.

Table 2: Parameters of LIF and CLIF (Tang et al., 2021) neurons
Parameter LIF CLIF (Tang et al., 2021)

Membrane leakage parameter λ 0.75 0.75
Threshold voltage Vth 0.5 0.5
Reset voltage Vreset 0 0
Current leakage parameter α - 0.5

The parameters of the DN model are listed in Table 3. All values are obtained using the pre-learning
procedure described in Zhang et al. (2022).
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Table 3: Parameters of the DN (Zhang et al., 2022)
Parameter Value

SNN time steps 5
Threshold voltage Vth 0.5
Current leakage parameter α 0.5
Conductivity of membrane potential θv −0.172
Conductivity of hidden state θu 0.529
Reset voltage Vreset 0.021
spike effect to hidden state θs 0.132

D.3.3 SPECIFIC PARAMETERS FOR CARE-BN

Table 4 lists the hyperparameters of CaRe-BN. The recalibration frequency Tre is set equal to the
evaluation frequency used in the RL algorithms. All hyperparameters are kept consistent across
different spiking neuron models and RL algorithms.

Table 4: Hyper-parameters of the CaRe-BN
Parameter Value

Momentum α 0.8
Recalibration frequency Tre 5000
Recalibration batchs M 100

D.3.4 SPIKING ACTOR NETWORK PARAMETERS

All hyper-parameters of the spiking actor network are listed in Table 5. These settings are consistent
with those used in a wide range of previous studies (Tang et al., 2021; Zhang et al., 2022; Chen et al.,
2024a).

Table 5: Hyper-parameters of the spiking actor network
Parameter Value

Encoder population per dimension Nin 10
Encoder threshold VE 0.999
Network hidden units (256, 256)
Decoder population per dimension Nout 10
Surrogate gradient window size ω 0.5

D.3.5 RL ALGORITHM PARAMETERS

The experiments are conducted using DQN (Mnih et al., 2015)), DDPG (Lillicrap, 2015), TD3
(Fujimoto et al., 2018), and the SAC (Haarnoja et al., 2018a) algorithms, with their respective hy-
perparameters listed in Tables 6, 7, 8, and 9.

D.3.6 EXPERIMENT ENVIRONMENTS IN CONTINUOUS CONTROL

Figure 8 illustrates various MuJoCo environments (Todorov et al., 2012; Todorov, 2014b) from
the OpenAI Gymnasium benchmarks (Brockman, 2016; Towers et al., 2024), including Inverted-
DoublePendulum (IDP) (Todorov, 2014a), Ant (Schulman et al., 2015), HalfCheetah (Wawrzyński,
2009), Hopper (Erez et al., 2012), and Walker. All environments used the default configurations
without modification.

Note that the state vectors, which can range from −∞ to ∞, are normalized to (−1, 1) using a
tanh function. Similarly, since the actions have minimum and maximum limits, the outputs of the
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Table 6: Hyper-parameters of the implemented DQN algorithm (Mnih et al., 2015)
Parameter Value

Learning rate 1 · 10−4

Network architecture (256, 256)
Optimizer Adam
Target update interval 2000
Batch size N 128
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Max epsilon 1
Min epsilon 0.1
Epsilon decay steps 20000

Table 7: Hyper-parameters of the implemented DDPG algorithm (Lillicrap, 2015)
Parameter Value

Actor learning rate 1 · 10−4

Actor regularization None
Critic learning rate 1 · 10−3

Critic regularization weight decay =0.01
Critic architecture (400, 300)
Critic activation Relu
Optimizer Adam
Target update rate τ 5 · 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Exploration niose N (0, σ) N (0, 0.2)

(a) IDP-v4 (b) Ant-v4 (c) HalfCheetah-v4 (d) Hopper-v4 (e) Walker2d-v4

Figure 8: Several continuous control tasks of the MuJoCo environments on OpenAI Gymnasium.
(a) InvertedDoublePendulum-v4, (b) Ant-v4, (c) HalfCheetah-v4, (d) Hopper-v4, (e) Walker2d-v4.
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Table 8: Hyper-parameters of the implemented TD3 algorithm (Fujimoto et al., 2018)
Parameter Value

Actor learning rate 3 · 10−4

Actor regularization None
Critic learning rate 3 · 10−4

Critic regularization None
Critic architecture (256, 256)
Critic activation Relu
Optimizer Adam
Target update rate τ 5 · 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Exploration niose N (0, σ) N (0, 0.1)
Actor update interval d 2
Target policy noise N (0, σ̃) N (0, 0.2)
Target policy noise clip c 0.5

Table 9: Hyper-parameters of the implemented SAC algorithm (Haarnoja et al., 2018a)
Parameter Value

Actor learning rate 3 · 10−4

Actor regularization None
Critic learning rate 3 · 10−4

Critic regularization None
Critic architecture (256, 256)
Critic activation Relu
Optimizer Adam
Target update rate τ 10−3

Batch size N 256
Discount factor γ 0.99
Iterations per time step 1.0
Reward scaling 1.0
Gradient clipping None
Replay buffer size 106

Actor update interval d 1
Entropy target −dim(A)
Alpha learning rate 3 · 10−4
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actor network are first normalized to (−1, 1) via a tanh function and then linearly scaled to the
corresponding (Min action,Max action) range.

D.4 ADDITIONAL EXPERIMENTAL RESULTS

D.4.1 ADDITIONAL RESULTS WITH SAC

In the main text, we demonstrated that CaRe-BN surpass its ANN counterparts using the TD3 al-
gorithm. We further train the SNN agent using SAC, a stronger modern off-policy RL algorithm.
As shown in Figure 9, SNNs equipped with CaRe-BN also have the potential to surpass their ANN
counterparts under SAC.
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Figure 9: Learning curves of the SNN-based agents using SAC algorithm. Shaded areas represent
half a standard deviation across five random seeds. Curves are uniformly smoothed for visual clarity.

D.4.2 ADDITIONAL RESULTS ON ADAPTABILITY

In the main text, we demonstrated that CaRe-BN improves performance across various spiking neu-
ron models and RL algorithms. Additionally, Tables 10, 11, 12, 13, 14, and , 15 report the maximum
average returns and the average performance gains of CaRe-BN compared to vanilla SNNs across
different spiking neurons and RL algorithms.

Table 10: Max average returns over 5 random seeds in DDPG with LIF neurons.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9352± 1 7954± 356 3035± 127 2931± 1395 0.00%
CaRe-BN 9351± 1 8199± 305 3512± 79 3347± 321 8.24%

Table 11: Max average returns over 5 random seeds in DDPG with CLIF neurons.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9352± 2 8205± 376 2566± 1270 2224± 1607 0.00%
CaRe-BN 9352± 0 7972± 245 3247± 100 3709± 321 22.62%

Table 12: Max average returns over 5 random seeds in DDPG with DNs.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9351± 3 8069± 897 3134± 134 3238± 633 0.00%
CaRe-BN 9351± 2 7731± 457 3418± 159 3438± 399 2.76%

D.4.3 ADDITIONAL COMPARISON WITH ANNS

Fig.10 shows the normalized learning curves of our CaRe-BN within different spiking neurons.
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Table 13: Max average returns over 5 random seeds in TD3 with LIF neurons.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9347± 1 4243± 949 9073± 946 3507± 85 2807± 1834 0.00%
CaRe-BN 9346± 1 5083± 356 8813± 533 3489± 118 4556± 497 15.74%

Table 14: Max average returns over 5 random seeds in TD3 with CLIF neurons.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9351± 1 4590± 1006 9594± 689 2772± 1263 3307± 1514 0.00%
CaRe-BN 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 15.20%
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Figure 10: Normalized learning curves across all environments of the TD3 algorithm with different
spiking neurons across all environments. The performance and training steps are normalized linearly
based on ANN performance. Curves are uniformly smoothed for visual clarity.

D.4.4 ADDITIONAL COMPARISON WITH OTHER SNN-BN MECHANISMS

Tab. 16, shows the performance of different BN variants and CaRe-BN with the LIF neuron model
in TD3 algorithm.

Table 16: Max average returns over 5 random seeds with LIF neuron, and the average performance
gain (APG) against ANN baseline, where ± denotes one standard deviation.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

ANN (TD3) 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
Vanilla LIF 9347± 1 4243± 949 9073± 946 3507± 85 2807± 1834 −7.08%
tdBN 9346± 1 4876± 577 8845± 526 3601± 29 4098± 408 1.65%
BNTT 9348± 1 5244± 321 9339± 874 3593± 62 3480± 1450 1.22%
TEBN 9347± 1 4408± 1156 9452± 539 3472± 135 4235± 381 0.69%
TABN 9347± 1 4431± 1353 9173± 595 3474± 183 3818± 1133 −1.64%
CaRe-BN 9346± 1 5083± 356 8813± 533 3489± 118 4556± 497 3.92%

Table 15: Max average returns over 5 random seeds in TD3 with DNs.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 9350± 1 4800± 994 9147± 231 3446± 131 3964± 1353 0.00%
CaRe-BN 9349± 2 5444± 161 9581± 638 3470± 115 4084± 362 4.37%
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D.4.5 ADDITIONAL RESULTS IN ANN

We shows the normalized learning curves of the CaRe-BN with ANN in Fig.6 (d). Here, we show the
detailed learning curves and maximum average returns of 5 environments in Fig.11, Fig.12, Tab.18
and Tab. 19, respectively.

D.4.6 ADDITIONAL RESULTS WITH DIFFERENT SNN SIMULATION TIME STEPS.

We future study the impact of SNN simulation time steps. As shown in Table 17, SNNs generally
benefit from larger simulation time steps, and CaRe-BN achieves even stronger results when using
8 SNN simulation steps (up to 6.32% improvement over ANNs). However, we report the main
results using an SNN simulation time step of 5, following the standard configuration adopted in
prior SNN-based RL studies (Tang et al., 2021; Zhang et al., 2022; Chen et al., 2024a).

Table 17: Max average returns over 5 random seeds of CaRe-BN with CLIF spiking neurons trained
using the TD3 algorithm, and the average performance gain (APG) against ANN baseline, where ±
denotes one standard deviation.

SNN time steps IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 APG

2 953± 247 4924± 171 7635± 392 3588± 10 3885± 1365 −23.80%
3 9285± 100 5078± 325 8190± 567 3522± 89 4391± 282 2.03%
5 9348± 2 5373± 159 9563± 442 3586± 49 4296± 268 5.90%
8 9354± 1 5417± 421 9989± 278 3479± 95 4311± 348 6.32%
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Figure 11: Learning curves of utilizing CaRe-BN in ANN with DDPG algorithm. The shaded region
represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual
clarity.
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Figure 12: Learning curves of utilizing CaRe-BN in ANN with TD3 algorithm. The shaded region
represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual
clarity.
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Table 18: Max average returns over 5 random seeds in DDPG with ANN.
Method IDP HalfCheetah Hopper Walker2d APG

Vanilla SNN 9357± 4 8604± 241 3486± 162 3385± 408 0.00%
CaRe-BN 9360± 0 8887± 408 3475± 135 3328± 882 0.33%

Table 19: Max average returns over 5 random seeds in TD3 with ANN.
Method IDP Ant HalfCheetah Hopper Walker2d APG

Vanilla SNN 7503± 3713 4770± 1014 10857± 475 3410± 164 4340± 383 0.00%
CaRe-BN 9360± 0 5014± 1122 10458± 1271 3436± 114 3021± 1360 −0.69%

D.5 ENERGY CONSUMPTIONS

D.5.1 TRAINING COSTS

To assess the computational overhead introduced by CaRe-BN, we measure the training time and
GPU memory usage on an RTX 3090 GPU paired with an Intel(R) Xeon(R) Platinum 8358P CPU.
The results are summarized in Table 20. As shown, CaRe-BN does not introduce significant addi-
tional training time or memory consumption compared with other BN variants.

Table 20: Training costs of different BN mechanisms on the Ant-v4 environment, trained with TD3
algorithm and CLIF neurons. Training time corresponds to the total wall-clock time required for
5000 RL steps, including exploration, replay sampling, target computation, and gradient updates.

Training costs tdBN BNTT TEBN TAB CaRe-BN

Training time for 5000 updates (s) 242 266 251 264 247
GPU memory (MiB) 437 437 441 441 437

D.5.2 INFERRING COSTS

Table 21: Energy consumption per inference (in nJ) for the spiking actor network with CLIF neurons,
trained using TD3 across various tasks.

Method IDP-v4 Ant-v4 HalfCheetah-v4 Hopper-v4 Walker2d-v4 Average

ANN 1715.20 1862.40 1785.60 1728.00 1785.60 1775.36
SNN with CaRe-BN 12.94 17.36 17.37 16.59 18.13 16.48

We evaluate the energy consumption of SNNs equipped with CaRe-BN during inference. Energy is
estimated following the methodology of Merolla et al. (2014), where each floating-point operation
(FLOP) is assumed to consume 12.5 pJ and each synaptic operation (SOP) consumes 77 fJ (Qiao
et al., 2015; Hu et al., 2021). As shown in Table 21, the ANN baselines require substantially more
energy per inference. In contrast, the SNN models with CaRe-BN demonstrate dramatically reduced
energy consumption across all evaluated tasks. These results highlight the strong energy efficiency
of SNNs and underscore their potential for deployment on resource-constrained platforms.
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