

000 CARE-BN: PRECISE MOVING STATISTICS FOR STABI- 001 002 LIZING SPIKING NEURAL NETWORKS IN REINFORCE- 003 MENT LEARNING 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision-
014 making on neuromorphic hardware by mimicking the event-driven dynamics of
015 biological neurons. However, the discrete and non-differentiable nature of spikes
016 leads to unstable gradient propagation in directly trained SNNs, making Batch
017 Normalization (BN) an important component for stabilizing training. In online
018 Reinforcement Learning (RL), imprecise BN statistics hinder exploitation, re-
019 sulting in slower convergence and suboptimal policies. While Artificial Neural
020 Networks (ANNs) can often omit BN, SNNs critically depend on it, limiting the
021 adoption of SNNs for energy-efficient control on resource-constrained devices.
022 To overcome this, we propose Confidence-adaptive and Re-calibration Batch Nor-
023 malization (CaRe-BN), which introduces (i) a confidence-guided adaptive update
024 strategy for BN statistics and (ii) a re-calibration mechanism to align distributions.
025 By providing more accurate normalization, CaRe-BN stabilizes SNN optimization
026 without disrupting the RL training process. Importantly, CaRe-BN does not alter
027 inference, thus preserving the energy efficiency of SNNs in deployment. Exten-
028 sive experiments on both discrete and continuous control benchmarks demonstrate
029 that CaRe-BN improves SNN performance by up to 22.6% across different spiking
030 neuron models and RL algorithms. Remarkably, SNNs equipped with CaRe-BN
031 even surpass their ANN counterparts by 5.9%. These results highlight a new di-
032 rection for BN techniques tailored to RL, paving the way for neuromorphic agents
033 that are both efficient and high-performing.

034 1 INTRODUCTION 035

036 Spiking Neural Networks (SNNs) have emerged as a promising class of neural models that more
037 closely mimic the event-driven computation of biological brains (Maass, 1997; Gerstner et al., 2014).
038 This event-driven property makes SNNs particularly well suited for deployment on neuromorphic
039 hardware platforms (Davies et al., 2018; DeBole et al., 2019), enabling low-latency and energy-
040 efficient inference.

041 In parallel, Reinforcement Learning (RL) has achieved remarkable success across a wide range of
042 domains (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2018b). Among these, continuous
043 control tasks have received significant attention due to their alignment with real-world scenarios and
044 their strong connection to embodied AI and robotic applications (Kober et al., 2013; Gu et al., 2017;
045 Brunke et al., 2022). Combining the strengths of SNNs with RL (SNN-RL) offers the potential to
046 train agents that not only learn complex behaviors but also execute them with extremely low energy
047 consumption (Yamazaki et al., 2022). This makes SNN-RL particularly appealing for robotics and
048 autonomous systems deployed on resource-constrained edge devices.

049 However, training SNNs is challenging. Due to the discrete spike dynamics and the reliance on
050 surrogate gradients to approximate the backward pass, directly trained SNNs often suffer from un-
051 stable gradient propagation, including vanishing or exploding gradients (Zheng et al., 2021). Batch
052 Normalization (BN) (Ioffe & Szegedy, 2015) plays a crucial role in stabilizing SNN training by reg-
053 ularizing activation statistics and improving gradient flow, mitigates such instability and contributes
054 to state-of-the-art performance (Duan et al., 2022; Jiang et al., 2024).

Figure 1: Real and estimated input activation distributions in BN layers. **Between each gradient update iterations**, distributions change rapidly in (a) and (c), while remaining stable in (b) and (d).

While effective in supervised learning, BN suffers a severe breakdown in online RL because moving statistics cannot be estimated precisely under nonstationary dynamics. As shown in Figure 1, traditional BN struggles to track the true statistics: When distributions shift rapidly (Figure 1(a)), estimates lag behind; when distributions are relatively static (Figure 1(b)), estimates contain noise. These inaccuracies lead agents to select suboptimal actions and generate poor trajectories, which are then reused for training—further compounding the problem and hindering policy improvement.

This issue is especially critical for SNNs. Traditional online RL algorithms usually remove BN layers in their networks (Sutton & Barto, 2018; Fujimoto et al., 2018; Haarnoja et al., 2017; Schulman et al., 2017). Unlike ANNs that can train stably without BN, SNNs rely heavily on normalization to stabilize membrane potentials and surrogate-gradient backpropagation. Removing BN from SNN-based RL leads to severe gradient instability and substantial performance degradation.

In this work, we address this issue by proposing **Confidence-adaptive and Re-calibration Batch Normalization** (CaRe-BN), a BN strategy tailored for SNN-based RL. CaRe-BN introduces two complementary components: (i) **Confidence-adaptive update** (Ca-BN), a confidence-weighted moving estimator of BN statistics that ensures unbiasedness and optimal variance reduction; and (ii) **Re-calibration** (Re-BN), a periodic correction scheme that leverages replay buffer resampling to refine inference statistics. Together, these mechanisms enable precise, low-variance estimation of BN statistics under the nonstationary dynamics of SNN-RL (Figure 1). With more accurate moving statistics, CaRe-BN stabilizes SNN optimization **without disrupting the online RL process**.

We evaluate CaRe-BN on various continuous control tasks from MuJoCo (Todorov et al., 2012; Todorov, 2014b). The results show that CaRe-BN not only resolves the issue of imprecise BN statistics but also accelerates training and achieves state-of-the-art performance. Remarkably, SNN-based agents equipped with CaRe-BN even **outperform their ANN counterparts by 5.9%**, without requiring complex neuron dynamics or specialized RL frameworks.

2 RELATED WORKS

2.1 BATCH NORMALIZATION IN SPIKING NEURAL NETWORKS

Batch Normalization (BN) was originally proposed for ANNs to mitigate internal covariate shift during training (Ioffe & Szegedy, 2015), thereby accelerating convergence and improving performance (Santurkar et al., 2018). To address unstable training in SNNs, several extensions of BN have been developed (Zheng et al., 2021; Duan et al., 2022; Kim & Panda, 2021; Jiang et al., 2024). While these methods are effective in supervised tasks, they are designed under the assumption of static training–inference distributions. This assumption is violated in online RL, where distributions

108 shift continually as the agent interacts with the environment, making these BN variants ill-suited for
 109 SNN-RL.
 110

111 2.2 SPIKING NEURAL NETWORKS IN REINFORCEMENT LEARNING 112

113 Early work in SNN-RL primarily relied on synaptic plasticity rules, particularly reward-modulated
 114 Spike-Timing-Dependent Plasticity (R-STDP) and its variants (Florian, 2007; Frémaux & Gerstner,
 115 2016; Gerstner et al., 2018; Frémaux et al., 2013; Yang et al., 2024). Another research direction
 116 focused on ANN-to-SNN conversion: Patel et al. (2019); Tan et al. (2021); Kumar et al. (2025)
 117 converted Deep Q-Networks (DQNs) (Mnih, 2013; Mnih et al., 2015) into SNNs. To enable direct
 118 gradient-based training, Liu et al. (2022); Chen et al. (2022); Qin et al. (2022); Sun et al. (2022)
 119 applied Spatio-Temporal Backpropagation (STBP) (Wu et al., 2018) to train DQNs, while Bellec
 120 et al. (2020) introduced e-prop with eligibility traces to train policy networks using policy gradient
 121 methods (Sutton et al., 1999).

122 For continuous control tasks, hybrid frameworks have been extensively explored (Tang et al., 2020;
 123 2021; Zhang et al., 2022; Chen et al., 2024a; Zhang et al., 2024; Ding et al., 2022; Chen et al.,
 124 2024b; Xu et al., 2025). These approaches typically employ a Spiking Actor Network (SAN) co-
 125 trained with a deep ANN critic in the Actor–Critic framework (Konda & Tsitsiklis, 1999). However,
 126 none of these methods address the challenge of normalization in SNN-based RL. The absence of
 127 proper normalization often leads to unstable updates, slower convergence, or even divergence during
 128 training.

129 3 PRELIMINARIES 130

131 3.1 SPIKING NEURAL NETWORKS 132

133 Spiking Neural Networks (SNNs) communicate through discrete spikes rather than continuous acti-
 134 vations. The most widely used neuron model is the Leaky Integrate-and-Fire (LIF) neuron, whose
 135 membrane potential dynamics are described as:

$$136 \quad H_t = \lambda V_{t-1} + C_t, \quad S_t = \Theta(H_t - V_{th}), \quad V_t = (1 - S_t) \cdot H_t + S_t \cdot V_{\text{reset}}, \quad (1)$$

137 where C_t , H_t , S_t , and V_t denote the input current, the accumulated membrane potential, the binary
 138 output spike, and the post-firing membrane potential at time step t , respectively. The parameters
 139 V_{th} , V_{reset} , and λ represent the firing threshold, reset voltage, and leakage factor, respectively. $\Theta(\cdot)$
 140 is the Heaviside step function.

141 3.2 REINFORCEMENT LEARNING 142

143 Reinforcement Learning (RL) is a framework in which an agent learns to maximize cumulative
 144 rewards by interacting with an environment. The agent maps states (or observations) to actions,
 145 with the learning loop consisting of two steps: (i) the agent selects an action, receives a reward, and
 146 transitions to the next state; and (ii) the agent updates its policy by sampling mini-batches of past
 147 experiences.

148 Because the policy continuously evolves during training, the data distribution is inherently non-
 149 stationary. This poses challenges for batch normalization methods, which rely on the assumption of
 150 a stationary distribution.

151 3.3 BATCH NORMALIZATION 152

153 Batch Normalization (BN) (Ioffe & Szegedy, 2015) is a widely used technique to stabilize and
 154 accelerate the training of deep neural networks. Given an activation $x_i \in \mathbb{R}^d$ at iteration i , BN
 155 normalizes it using the mean and variance computed over a mini-batch $\mathcal{B} = \{x_i^1, \dots, x_i^N\}$:

$$156 \quad \mu_{\mathcal{B}} = \frac{1}{N} \sum_{j=1}^N x_i^j, \quad \sigma_{\mathcal{B}}^2 = \frac{1}{N} \sum_{j=1}^N (x_i^j - \mu_{\mathcal{B}})^2, \quad (2)$$

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}, \quad y_i = \gamma \hat{x}_i + \beta, \quad (3)$$

where ϵ is a small constant for numerical stability, and γ, β are learnable affine parameters. During inference, moving statistics $(\hat{\mu}_i, \hat{\sigma}_i^2)$ are used in place of batch statistics (μ_i, σ_i^2) .

In supervised learning, this discrepancy between training (mini-batch statistics) and inference (moving statistics) is usually tolerable, as imprecise moving estimates do not directly affect gradient updates. However, in online RL, inaccurate moving statistics degrade policy exploitation, leading to unstable training dynamics and even divergence.

4 METHODOLOGY

Figure 2: The statistics estimation scheme of CaRe-BN. In this framework, Ca-BN is applied at every update step, while Re-BN is performed periodically. Δ^2 denotes the squared error, **Var** represents the variance computed according to Eq. 9, **EMA** refers to the exponential moving average in Eq. 11, and **CA-EMA** denotes the confidence-adaptive update defined in Eqs. 5 and 6.

As illustrated in Figure 2, we propose Confidence-adaptive and Recalibration Batch Normalization (CaRe-BN) to address the challenge of approximating moving statistics in online RL. Section 4.1 analyzes the limitations of traditional BN in online RL, where statistics are often estimated imprecisely. Section 4.2 introduces the confidence-adaptive update mechanism (Ca-BN), which dynamically adjusts statistics estimation based on the reliability of the current approximation. Section 4.3 presents the recalibration mechanism (Re-BN), which periodically corrects accumulated estimation errors. Finally, Section 4.4 integrates these components into the full CaRe-BN framework and demonstrates its use in online RL algorithms.

4.1 ISSUES IN APPROXIMATING MOVING STATISTICS

Online RL introduces stronger distribution shifts. Unlike supervised learning, where the data distribution is typically assumed to be static, online RL involves continuous interaction between the agent and the environment. This results in a non-stationary data distribution, which in turn causes activation statistics to drift over time.

Inaccurate statistics degrade RL performance. Supervised learning only requires the final moving statistics to be accurate, as inference is performed after training. In contrast, online RL requires reliable statistics throughout training. When statistics are imprecise, the agent selects suboptimal actions during exploration and exploitation, generating poor trajectories that further degrades policy updates.

The key of the problem lies in accurately estimating inference-time statistics under shifting distributions. Hence, it is essential to design estimators that adapt to distributional changes while minimizing approximation error during training.

It is worth noting that most conventional ANN-based RL algorithms do not employ BN (Lillicrap, 2015; Sutton & Barto, 2018), as shallow ANNs can often learn stable representations without normalization. In contrast, BN is indispensable for stabilizing SNNs training. Therefore, addressing this issue is particularly critical for SNN-based RL.

216 4.2 CONFIDENCE-ADAPTIVE UPDATE OF BN STATISTICS (CA-BN)
217218 Conventional BN approximates population statistics using an exponential moving average (EMA)
219 of the batch mean and variance:

220
$$\hat{\mu}_i \leftarrow (1 - \alpha)\hat{\mu}_{i-1} + \alpha\mu_i, \quad \hat{\sigma}_i^2 \leftarrow (1 - \alpha)\hat{\sigma}_{i-1}^2 + \alpha\sigma_i^2, \quad (4)$$

221

222 where α is the momentum parameter. This update rule faces a fundamental **noise-delay trade-off**.
223 As shown in Figure 1, low momentum yields stable but slow adaptation to distribution shifts, while
224 high momentum adapts quickly but amplifies the noise from small-batch estimates. This trade-off is
225 particularly harmful in online RL, where accurate normalization is critical for stable policy learning.226 Inspired by the Kalman estimator (Kalman, 1960), we derive a confidence-guided mechanism that
227 adaptively reweights estimators to minimize the mean-squared error (MSE) of BN statistics.
228229 **Theorem 1** Let (μ_i, σ_i^2) and $(\hat{\mu}_{i|i-1}, \hat{\sigma}_{i|i-1}^2)$ be two unbiased estimators of the population parameters (μ_i^*, σ_i^{*2}) . Taking them as random variables, the optimal linear estimator is
230

231
$$\hat{\mu}_i = (1 - K_i^\mu)\hat{\mu}_{i|i-1} + K_i^\mu\mu_i, \quad K_i^\mu = \frac{\mathbb{D}(\mu_i^* - \hat{\mu}_{i|i-1})}{\mathbb{D}(\mu_i^* - \hat{\mu}_{i|i-1}) + \mathbb{D}(\mu_i^* - \mu_i)}, \quad (5)$$

232

233
$$\hat{\sigma}_i^2 = (1 - K_i^\sigma)\hat{\sigma}_{i|i-1}^2 + K_i^\sigma\sigma_i^2, \quad K_i^\sigma = \frac{\mathbb{D}(\sigma_i^{*2} - \hat{\sigma}_{i|i-1}^2)}{\mathbb{D}(\sigma_i^{*2} - \hat{\sigma}_{i|i-1}^2) + \mathbb{D}(\sigma_i^{*2} - \sigma_i^2)}, \quad (6)$$

235

236 where K_i^μ and K_i^σ are confidence-guided adaptive weights, and $\mathbb{D}(\cdot)$ denotes generalized variance¹.237 **Proof 1** Since both $\hat{\mu}_{i|i-1}$ and μ_i are unbiased for μ_i^* , any linear combination $\tilde{\mu}_i = (1 - K)\hat{\mu}_{i|i-1} + K\mu_i$ is also unbiased. The variance is
238

239
$$\mathbb{D}(\tilde{\mu}_i - \mu_i^*) = (1 - K)^2 \cdot \mathbb{D}(\hat{\mu}_{i|i-1} - \mu_i^*) + K^2 \cdot \mathbb{D}(\mu_i - \mu_i^*). \quad (7)$$

240

241 Minimizing over K yields the optimal $K = K_i^\mu$. The variance update (Eq. 6) follows analogously.242 **Assumption 1** The activations in iteration i are modeled as $x_i \sim \mathcal{N}(\mu_i^*, \sigma_i^{*2})$, following the standard Gaussianity assumption in BN.
243244 **Confidence of mini-batch statistics.** For a batch of size N , the sample mean μ_i and variance σ_i^2 satisfy
245

246
$$\mu_i \sim \mathcal{N}\left(\mu_i^*, \frac{\sigma_i^{*2}}{N}\right), \quad \frac{(N-1)\sigma_i^2}{\sigma_i^{*2}} \sim \chi_{N-1}^2. \quad (8)$$

247

248 Since μ_i^* and σ_i^{*2} are unknown, we adopt the common approximation using μ_i and σ_i^2 , thus:
249

250
$$\mathbb{D}(\mu_i^* - \mu_i) = \frac{\sigma_i^{*2}}{N} \approx \frac{\sigma_i^2}{N}, \quad \mathbb{D}(\sigma_i^{*2} - \sigma_i^2) = \frac{2\sigma_i^{*4}}{N-1} \approx \frac{2\sigma_i^4}{N-1}. \quad (9)$$

252

253 **Confidence of previous estimates.** Since the true statistics μ_i^* and σ_i^{*2} are unknown, direct computation of $\mathbb{D}(\mu_i^* - \hat{\mu}_{i|i-1})$ and $\mathbb{D}(\sigma_i^{*2} - \hat{\sigma}_{i|i-1}^2)$ is infeasible. To approximate them, we view the minibatch statistics μ_i and σ_i^2 as a stochastic sample drawn from the unknown hypothetical distributions induced by μ_i^* and σ_i^{*2} . Thus, the squared deviations $(\mu_i - \hat{\mu}_{i|i-1})^2$ and $(\sigma_i^2 - \hat{\sigma}_{i|i-1}^2)^2$ serve as unbiased but noisy probes of $\mathbb{D}(\mu_i^* - \hat{\mu}_{i|i-1})$ and $\mathbb{D}(\sigma_i^{*2} - \hat{\sigma}_{i|i-1}^2)$.
254255 Because these single-minibatch estimates exhibit high variance, we maintain smoothed recursive
256 estimators updated using an exponential moving average with momentum parameter α :
257

258
$$\mathbb{D}(\mu_i^* - \hat{\mu}_{i|i-1}) \approx D_i^\mu, \quad \mathbb{D}(\sigma_i^{*2} - \hat{\sigma}_{i|i-1}^2) \approx D_i^\sigma, \quad (10)$$

259

260
$$D_i^\mu \leftarrow (1 - \alpha)D_{i-1}^\mu + \alpha(\mu_i - \hat{\mu}_{i|i-1})^2, \quad D_i^\sigma \leftarrow (1 - \alpha)D_{i-1}^\sigma + \alpha(\sigma_i^2 - \hat{\sigma}_{i|i-1}^2)^2. \quad (11)$$

261

262 Combining Eqs. 5–11, we obtain the confidence-adaptive update scheme². When distributional
263 shifts are rapid, D_i^μ and D_i^σ grow large, increasing K_i^μ and K_i^σ and accelerating adaptation. Con-
264 versely, when statistics are stable, these terms shrink, lowering K_i^μ and K_i^σ and reducing noise from
265 small mini-batches.
266267 ¹The confidence is defined as the inverse of the generalized variance: confidence score = $\frac{1}{\mathbb{D}}$.
268269 ²As BN statistics fluctuate without monotonic trends, we define $\hat{\mu}_{i|i-1} = \mu_{i-1}$ and $\hat{\sigma}_{i|i-1}^2 = \sigma_{i-1}^2$.
270

270 4.3 RE-CALIBRATION MECHANISM OF BN STATISTICS (RE-BN)
271272 While the confidence-adaptive update provides online estimates of BN statistics during training,
273 these estimates may still drift from the true population values due to stochastic mini-batch noise.
274 The most accurate approach would be to recompute exact statistics by forward-propagating the
275 entire dataset after each update (Wu & Johnson, 2021). However, this is computationally infeasible
276 in RL, as it would require processing millions of samples at every step.277 A more practical alternative is to periodically re-calibrate BN statistics using larger aggregated
278 batches. Specifically, at fixed intervals T_{cal} , we draw M calibration batches $\{\mathcal{B}_1, \dots, \mathcal{B}_M\}$ from
279 the replay buffer. For each batch \mathcal{B}_j , we compute its mean μ_j and variance σ_j^2 . The recalibrated BN
280 statistics are then given by:

281
$$\hat{\mu}_i = \frac{1}{M} \sum_{j=1}^M \mu_j, \quad \hat{\sigma}_i^2 = \frac{1}{M} \sum_{j=1}^M (\sigma_j^2 + \mu_j^2) - \hat{\mu}_i^2. \quad (12)$$

282
283

284 This recalibration requires additional forward passes, but the extra overhead is upper bounded by $\frac{M}{T_{\text{cal}}}$
285 times the total training cost. Since we set $T_{\text{cal}} \gg M$, the computational overhead remains negligible,
286 while significantly improving the accuracy of BN statistics.
287288 4.4 INTEGRATING WITH RL
289290 The proposed Confidence-adaptive and Re-calibration Batch Normalization (CaRe-BN) integrates
291 two complementary mechanisms: the confidence-adaptive update in Section 4.2, which provides an
292 online estimation of batch normalization (BN) statistics, and the re-calibration procedure in Sec-
293 tion 4.3, which corrects accumulated bias. The overall integration within an online RL framework
294 is outlined in Algorithm 1.
295296 **Algorithm 1** General RL Algorithm with CaRe-BN
297298 1: Initialize the agent networks and the replay buffer.
299 2: **for** each iteration **do**
300 3: Select an action and store the transition (**inference BN statistics**).
301 4: Update the agent by sampling a minibatch of N transitions (**mini-batch BN statistics**).
302 5: Update the moving BN statistics as:

303
$$D_i^\mu \leftarrow (1 - \alpha)D_{i-1}^\mu + \alpha(\mu_i - \hat{\mu}_{i-1})^2, \quad D_i^\sigma \leftarrow (1 - \alpha)D_{i-1}^\sigma + \alpha(\sigma_i^2 - \hat{\sigma}_{i-1}^2)^2,$$

304
$$\hat{\mu}_i = \frac{D_i^\mu \cdot \mu_i + \frac{\sigma_i^2}{N} \cdot \hat{\mu}_{i-1}}{D_i^\mu + \frac{\sigma_i^2}{N}}, \quad \hat{\sigma}_i^2 = \frac{D_i^\sigma \cdot \sigma_i^2 + \frac{2\sigma_i^4}{N-1} \cdot \hat{\sigma}_{i-1}^2}{D_i^\sigma + \frac{2\sigma_i^4}{N-1}}.$$

305
306

307 6: **if** Re-calibration **then**
308 7: Sample M minibatches of N transitions each and update BN statistics using Eq. (12).
309 8: **end if**
310 9: **end for**
311312 It is important to note that the inference procedure of CaRe-BN remains identical to that of conven-
313 tional BN. Consequently, the CaRe-BN layer is seamlessly fused into synaptic weights, introducing
314 no additional inference overhead during deployment.
315316 5 EXPERIMENTS
317318 5.1 EXPERIMENTAL SETUP
319320 We evaluate CaRe-BN on RL tasks covering both discrete and continuous action spaces. All envi-
321 ronments use default settings, and performance is evaluated by averaging the rewards in 10 trials.
322323 For discrete action spaces, we consider four widely used Atari 2600 games from the Arcade Learning
324 Environment (ALE) (Bellemare et al., 2013; Machado et al., 2018): *Pong*, *Breakout*, *SpaceInvaders*,

324 *Freeway*, and *Seaquest*. We adopt a deep Q-learning framework (Mnih et al., 2015) and train a deep
 325 Spiking Q-Network (Liu et al., 2022) that receives RAM-based observations and outputs state-action
 326 values.

327 For continuous control, we evaluate on five standard MuJoCo benchmarks (Todorov et al., 2012;
 328 Todorov, 2014b) provided in the OpenAI Gymnasium suite (Brockman, 2016; Towers et al.,
 329 2024): *InvertedDoublePendulum* (IDP) (Todorov, 2014a), *Ant* (Schulman et al., 2015), *HalfCheetah*
 330 (Wawrzynski, 2009), *Hopper* (Erez et al., 2012), and *Walker2d*. We employ a hybrid frame-
 331 work in which a spiking actor network is co-trained with a deep critic network using several RL
 332 algorithms, including Deep Deterministic Policy Gradient (DDPG) (Lillicrap, 2015), Twin Delayed
 333 DDPG (TD3) (Fujimoto et al., 2018), and Soft Actor-Critic (SAC) (Haarnoja et al., 2018a).

334 To evaluate the generality of CaRe-BN, we experiment with multiple spiking neuron models: the
 335 Leaky Integrate-and-Fire (LIF) neuron (Gerstner & Kistler, 2002), the Current-based LIF (CLIF)
 336 neuron (Tang et al., 2021), and the Dynamic Neuron (DN) model (Zhang et al., 2022), with detailed
 337 dynamics provided in the Appendix. All SNN agents are trained via Spatio-Temporal Backpropa-
 338 gation (STBP) (Wu et al., 2018), with the CaRe-BN module inserted between every pair of adjacent
 339 layers. For fair comparison, all models share the same hyperparameters, fully listed in the Appendix.

340 During each RL environment step, the SNN agent performs a single forward inference composed of
 341 5 simulation time steps, after which all neuron states are reset.

343 5.2 MORE PRECISE BN STATISTICS LEAD TO BETTER EXPLORATION

344 In online RL, the quality of explo-
 345 ration directly affects subsequent pol-
 346 icy updates. As discussed in Sec-
 347 tion 4.1, traditional BN methods strug-
 348 gle to maintain accurate moving stat-
 349 tistics, which can lead to suboptimal ex-
 350 ploration behavior.

351 To quantify this effect, we compute
 352 the Wasserstein distance between the
 353 true feature distribution and the
 354 Gaussian distribution estimated by BN.
 355 Figure 3 shows that CaRe-BN con-
 356 sistently reduces this discrepancy across
 357 all layers throughout training, produc-
 358 ing more precise normalization.

359 Figure 3: Wasserstein distance between estimated BN
 360 statistics and the true distribution across layers, mea-
 361 sured with CLIF neurons and the TD3 algorithm in the
 362 *InvertedDoublePendulum-v4* environment. Shaded areas
 363 denote half a standard deviation over five runs. Curves
 364 are uniformly smoothed for visual clarity.

365 Figure 4: Exploration returns of BN and CaRe-BN with CLIF neurons and the TD3 algorithm
 366 across five MuJoCo tasks. Shaded areas represent half a standard deviation across five random
 367 seeds. Curves are uniformly smoothed for visual clarity.

368 The impact of improved statistics is reflected in exploration performance. As shown in Figure 4,
 369 CaRe-BN consistently achieves higher exploration returns. Since CaRe-BN does not directly modify
 370 the gradient update process, the observed improvement in exploration performance is solely due to
 371 its more precise estimation of BN statistics. This leads to better exploration policies, which in turn
 372 generate higher-quality trajectories for updating the agent. As a result, CaRe-BN forms a positive
 373 feedback loop: improved statistics → better exploration → higher-quality experiences → better
 374 policy.

378 5.3 ADAPTABILITY OF CARE-BN
379380 To evaluate the adaptability of CaRe-BN, we test it across different RL algorithms (DQN (Mnih
381 et al., 2015), DDPG (Lillicrap, 2015), TD3 (Fujimoto et al., 2018), and SAC³ (Haarnoja et al.,
382 2018a)) and spiking neuron models (LIF, CLIF (Tang et al., 2021), and DN (Zhang et al., 2022)).
383414 Figure 5: Learning curves of SNN-based agents in continuous control trained with TD3 (top)
415 and DDPG (bottom). Since the DDPG algorithm (in both ANN and SNN) diverges in the Ant-v4
416 environment, these curves are not shown. Shaded areas represent half a standard deviation across five
417 random seeds. Curves are uniformly smoothed for visual clarity.

418 **Better final return.** Figure 5 shows the learning curves for SNN models with and without CaRe-BN.
419 In most cases, CaRe-BN consistently outperforms standard SNNs, converging faster and achieving
420 higher final returns. These improvements are robust across different spiking neurons and RL algo-
421 rithms, confirming that CaRe-BN enhances performance in diverse settings.

422 **Lower variance.** Figure 6 (a) and (b) display the relative variance of the final policy. Compared to
423 standard SNNs, CaRe-BN significantly reduces the variance of SNN-RL training, and even achieves
424 lower variance than ANN baselines (i.e., 17.71% for DDPG and 21.24% for TD3). This indicates
425 that CaRe-BN not only enhances performance but also improves the stability and reproducibility.

426 **Generalizing across different RL domains.** Beyond continuous control, we also evaluate CaRe-
427 BN in discrete-action settings using the deep spiking Q-network. As shown in Figure 7, SNN agents
428 equipped with CaRe-BN achieve markedly improved performance across Atari tasks. These results
429 demonstrate the strong generalization capability of CaRe-BN across diverse RL domains.
430

431 ³Curves with SAC are shown in Figure 9 in the Appendix.

8

Figure 6: (a), (b) Relative variance percentage of final policy returns, computed by averaging the standard deviation ratio across five random seeds, for all environments. (c) Normalized maximum performance across all environments for the ablation study, using CLIF neurons and TD3 algorithm. (d) Normalized learning curves across all environments for ANNs implementing CaRe-BN. The dashed lines represent DDPG and the solid lines represent TD3. Performance and training steps are normalized linearly. Curves are uniformly smoothed for visual clarity.

Figure 7: Learning curves of SNN-based agents in discrete control. Shaded areas represent half a standard deviation across three random seeds. Curves are uniformly smoothed for visual clarity.

5.4 EXCEEDING SOTA

To further validate the effectiveness of CaRe-BN, we compare it with existing state-of-the-art (SOTA) SNN-RL methods and various batch normalization strategies for SNNs. The evaluation is conducted using the TD3 algorithm (Fujimoto et al., 2018) (a strong SOTA baseline for continuous control) and the CLIF neuron model (Tang et al., 2021) (the most commonly used neuron type in recent SNN-RL studies). The ANN-SNN conversion baseline follows the SOTA method proposed in Bu et al. (2025). For direct-trained SNNs, we include pop-SAN (Tang et al., 2021), MDC-SAN (Zhang et al., 2022), and ILC-SAN (Chen et al., 2024a). Additionally, we test several BN algorithms for SNNs, including tdbN (Zheng et al., 2021), BNTT (Kim & Panda, 2021), TEBN (Duan et al., 2022), and TABN (Jiang et al., 2024). The performance is summarized in Table 1, where the average performance gain (APG) is defined as:

$$APG = \left(\frac{1}{|\text{envs}|} \sum_{\text{env} \in \text{envs}} \frac{\text{performance}(\text{env})}{\text{baseline}(\text{env})} - 1 \right) \cdot 100\%, \quad (13)$$

where $|\text{envs}|$ denotes the total number of environments, and $\text{performance}(\text{env})$ and $\text{baseline}(\text{env})$ represent the performance of the evaluated algorithm and the ANN baseline in each environment, respectively.

Compared with other SNN-RL methods: CaRe-BN significantly outperforms previous SNN-RL approaches, demonstrating that normalization plays a more crucial role than architectural modifications in improving SNN-RL performance.

Compared with other BN methods: Compared to existing SNN-specific BN variants, CaRe-BN performs superior, establishing a new state-of-the-art normalization strategy for SNN-RL.

Compared with ANNs: Notably, CaRe-BN trained with TD3 outperforms its ANN counterparts by 5.9% on average⁴. This highlights that with proper normalization, SNNs can not only match but

⁴As shown in Figure 9 in the Appendix, SNNs equipped with CaRe-BN also outperform their ANN counterparts when trained with SAC (Haarnoja et al., 2018a).

486
 487 Table 1: Max average returns over 5 random seeds with CLIF spiking neurons, and the average per-
 488 formance gain (APG) against ANN baseline, where \pm denotes one standard deviation. **All modules**
 489 **are trained using the TD3 algorithm. All directly trained SNN modules have 5 simulation time steps.**

Method	IDP-v4	Ant-v4	HalfCheetah-v4	Hopper-v4	Walker2d-v4	APG
ANN	7503 \pm 3713	4770 \pm 1014	10857 \pm 475	3410 \pm 164	4340 \pm 383	0.00%
ANN-SNN	3859 \pm 4440	3550 \pm 963	8703 \pm 658	3098 \pm 281	4235 \pm 354	-21.11%
pop-SAN	9351 \pm 1	4590 \pm 1006	9594 \pm 689	2772 \pm 1263	3307 \pm 1514	-6.66%
MDC-SAN	9350 \pm 1	4800 \pm 994	9147 \pm 231	3446 \pm 131	3964 \pm 1353	0.37%
ILC-SAN	9352 \pm 1	5584 \pm 272	9222 \pm 615	3403 \pm 148	4200 \pm 717	4.64%
tdBN	9346 \pm 2	4403 \pm 1134	9402 \pm 527	3592 \pm 46	3464 \pm 970	-2.28%
BNTT	9347 \pm 1	4379 \pm 941	9466 \pm 659	3524 \pm 161	3689 \pm 1247	-1.62%
TEBN	9349 \pm 1	4408 \pm 1156	9452 \pm 539	3472 \pm 135	4235 \pm 381	0.69%
TABN	9348 \pm 2	4382 \pm 753	9784 \pm 169	3585 \pm 83	4537 \pm 398	3.25%
CaRe-BN	9348 \pm 2	5373 \pm 159	9563 \pm 442	3586 \pm 49	4296 \pm 268	5.90%

500
 501 exceed the performance of traditional ANN-based RL agents, while retaining their energy-efficient
 502 advantages.

505 5.5 ABLATION STUDIES

506
 507 We conduct ablation studies by separately evaluating the effects of the Confidence-adaptive update
 508 (Ca-BN) and the Re-calibration mechanism (Re-BN), as shown in Figure 6 (c). The results demon-
 509 strate that both the adaptive estimation and recalibration mechanisms are beneficial on their own.
 510 However, their combination provides the most significant improvement. Specifically, Ca-BN ad-
 511 dresses the mismatch between training and inference statistics, while Re-BN corrects accumulated
 512 errors, further stabilizing training. By integrating both components, CaRe-BN achieves more precise
 513 and consistent normalization, leading to superior overall performance.

515 5.6 SNN-FRIENDLY DESIGN

516
 517 Despite the stunning improvement in SNNs, we also evaluate CaRe-BN on standard ANNs trained
 518 with TD3 and DDPG, as shown in Figure 6 (d). The results indicate that ANNs with CaRe-BN
 519 perform similarly to their baseline counterparts without CaRe-BN. This outcome is expected for the
 520 following reasons: **(i)** Shallow ANNs can already train stably and effectively without normalization⁵,
 521 so adding CaRe-BN does not provide significant improvements. **(ii)** While CaRe-BN provides more
 522 precise estimates of BN statistics, this does not negatively impact the RL training process. These
 523 results further underscore that the improvements observed are not due to a stronger RL mechanism,
 524 but rather to the SNN-specific normalization strategies.

525 6 CONCLUSION

526
 527 In this work, we introduced CaRe-BN, the first batch normalization method specifically designed
 528 for SNNs in RL. By addressing the instability of conventional BN in online RL, CaRe-BN enables
 529 SNNs to outperform their ANN counterparts in continuous control tasks. Importantly, CaRe-BN is
 530 lightweight and easy to integrate, making it a seamless drop-in replacement for existing SNN-RL
 531 pipelines without introducing additional computational overhead.

532
 533 Beyond its technical contributions, CaRe-BN brings SNN-RL one step closer to practical deploy-
 534 ment. By stabilizing training and improving exploration, it unlocks the potential of SNNs to act
 535 as both energy-efficient and high-performance agents in real-world continuous control applications.
 536 We believe this work underscores the importance of normalization strategies tailored to the unique
 537 dynamics of SNNs and opens new avenues for bridging the gap between neuromorphic learning and
 538 reinforcement learning at scale.

539 ⁵In RL, networks typically consist of two hidden layers with 256 neurons.

540 REFERENCES
541

542 Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
543 and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neu-
544 rons. *Nature communications*, 11(1):3625, 2020.

545 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
546 ment: An evaluation platform for general agents. *Journal of artificial intelligence research*, 47:
547 253–279, 2013.

548 G Brockman. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

549 Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
550 Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
551 learning. *Annual Review of Control, Robotics, and Autonomous Systems*, 5(1):411–444, 2022.

552 Tong Bu, Maohua Li, and Zhaofei Yu. Inference-scale complexity in ann-snn conversion for high-
553 performance and low-power applications. In *Proceedings of the Computer Vision and Pattern
554 Recognition Conference*, pp. 24387–24397, 2025.

555 Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Deep reinforcement learning with
556 spiking q-learning. *arXiv preprint arXiv:2201.09754*, 2022.

557 Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Fully spiking actor network with in-
558 tralayer connections for reinforcement learning. *IEEE Transactions on Neural Networks and
559 Learning Systems*, 36(2):2881–2893, 2024a.

560 Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Noisy spiking actor network for explo-
561 ration. *arXiv preprint arXiv:2403.04162*, 2024b.

562 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
563 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
564 manycore processor with on-chip learning. *IEEE Micro*, 2018.

565 Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P
566 Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al.
567 TrueNorth: Accelerating from zero to 64 million neurons in 10 years. *Computer*, 2019.

568 Jianchuan Ding, Bo Dong, Felix Heide, Yufei Ding, Yunduo Zhou, Baocai Yin, and Xin Yang.
569 Biologically inspired dynamic thresholds for spiking neural networks. *Advances in neural infor-
570 mation processing systems*, 35:6090–6103, 2022.

571 Chaoteng Duan, Jianhao Ding, Shiyuan Chen, Zhaofei Yu, and Tiejun Huang. Temporal effective
572 batch normalization in spiking neural networks. *Advances in Neural Information Processing
573 Systems*, 35:34377–34390, 2022.

574 Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control for periodic
575 tasks with contacts. *Robotics: Science and Systems VII*, 2012.

576 Răzvan V Florian. Reinforcement learning through modulation of spike-timing-dependent synaptic
577 plasticity. *Neural computation*, 19(6):1468–1502, 2007.

578 Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
579 theory of three-factor learning rules. *Frontiers in neural circuits*, 9:85, 2016.

580 Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Reinforcement learning using a con-
581 tinuous time actor-critic framework with spiking neurons. *PLoS computational biology*, 9(4):
582 e1003024, 2013.

583 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
584 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

585 Wulfram Gerstner and Werner M Kistler. *Spiking neuron models: Single neurons, populations,
586 plasticity*. Cambridge university press, 2002.

594 Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. *Neuronal dynamics: From*
 595 *single neurons to networks and models of cognition*. Cambridge University Press, 2014.
 596

597 Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
 598 traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
 599 learning rules. *Frontiers in neural circuits*, 12:53, 2018.

600 Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
 601 robotic manipulation with asynchronous off-policy updates. In *2017 IEEE international confer-*
 602 *ence on robotics and automation (ICRA)*, pp. 3389–3396. IEEE, 2017.
 603

604 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 605 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
 606 PMLR, 2017.

607 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 608 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*
 609 *ence on machine learning*, pp. 1861–1870. PMLR, 2018a.
 610

611 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 612 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*
 613 *ence on machine learning*, pp. 1861–1870. Pmlr, 2018b.

614 Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. *IEEE Transactions on*
 615 *Neural Networks and Learning Systems*, 34(8):5200–5205, 2021.
 616

617 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 618 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 619 pmlr, 2015.

620 Haiyan Jiang, Vincent Zonnekynd, Giulia De Masi, Bin Gu, and Huan Xiong. Tab: Temporal accu-
 621 mulated batch normalization in spiking neural networks. In *The Twelfth International Conference*
 622 *on Learning Representations*, 2024.

623

624 Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

625

626 Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
 627 deep spiking neural networks from scratch. *Frontiers in neuroscience*, 15:773954, 2021.

628

629 Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. *The*
 630 *International Journal of Robotics Research*, 32(11):1238–1274, 2013.

631 Vijay Konda and John Tsitsiklis. Actor-critic algorithms. *Advances in neural information processing*
 632 *systems*, 12, 1999.

633

634 Aakash Kumar, Lei Zhang, Hazrat Bilal, Shifeng Wang, Ali Muhammad Shaikh, Lu Bo, Avinash
 635 Rohra, and Alisha Khalid. Dsqn: Robust path planning of mobile robot based on deep spiking
 636 q-network. *Neurocomputing*, 634:129916, 2025.

637

638 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 639 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 640 *preprint arXiv:1509.02971*, 2015.

641 TP Lillicrap. Continuous control with deep reinforcement learning. *arXiv preprint*
 642 *arXiv:1509.02971*, 2015.

643

644 Guisong Liu, Wenjie Deng, Xiurui Xie, Li Huang, and Huajin Tang. Human-level control through
 645 directly trained deep spiking q-networks. *IEEE transactions on cybernetics*, 53(11):7187–7198,
 646 2022.

647 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 648 *Neural networks*, 10(9):1659–1671, 1997.

648 Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
 649 Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
 650 problems for general agents. *Journal of Artificial Intelligence Research*, 61:523–562, 2018.

651

652 Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Philipp
 653 Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
 654 neuron integrated circuit with a scalable communication network and interface. *Science*, 345
 655 (6197):668–673, 2014.

656 Volodymyr Mnih. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*,
 657 2013.

658

659 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 660 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 661 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

662 Devdhar Patel, Hananel Hazan, Daniel J Saunders, Hava T Siegelmann, and Robert Kozma. Im-
 663 proved robustness of reinforcement learning policies upon conversion to spiking neuronal network
 664 platforms applied to atari breakout game. *Neural Networks*, 120:108–115, 2019.

665

666 Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumislawska,
 667 and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic processor com-
 668 prising 256 neurons and 128K synapses. *Frontiers in Neuroscience*, 9:141, 2015.

669 Lang Qin, Rui Yan, and Huajin Tang. A low latency adaptive coding spiking framework for deep
 670 reinforcement learning. *arXiv preprint arXiv:2211.11760*, 2022.

671

672 Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
 673 ization help optimization? *Advances in neural information processing systems*, 31, 2018.

674

675 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 676 dimensional continuous control using generalized advantage estimation. *arXiv preprint
 677 arXiv:1506.02438*, 2015.

678

679 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 680 optimization algorithms. *ArXiv*, abs/1707.06347, 2017.

681

682 Yinqian Sun, Yi Zeng, and Yang Li. Solving the spike feature information vanishing problem in
 683 spiking deep q network with potential based normalization. *Frontiers in Neuroscience*, 16:953368,
 684 2022.

685

686 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

687

688 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 689 ods for reinforcement learning with function approximation. *Advances in neural information
 690 processing systems*, 12, 1999.

691

692 Weihao Tan, Devdhar Patel, and Robert Kozma. Strategy and benchmark for converting deep q-
 693 networks to event-driven spiking neural networks. In *Proceedings of the AAAI conference on
 694 artificial intelligence*, volume 35, pp. 9816–9824, 2021.

695

696 Guangzhi Tang, Neelesh Kumar, and Konstantinos P Michmizos. Reinforcement co-learning of deep
 697 and spiking neural networks for energy-efficient mapless navigation with neuromorphic hardware.
 698 In *2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 6090–
 699 6097. IEEE, 2020.

700

701 Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos Michmizos. Deep reinforcement
 702 learning with population-coded spiking neural network for continuous control. In *Conference on
 703 Robot Learning*, pp. 2016–2029. PMLR, 2021.

Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints: The-
 704 ory and implementation in mujoco. In *2014 IEEE International Conference on Robotics and
 705 Automation (ICRA)*, pp. 6054–6061. IEEE, 2014a.

702 Emanuel Todorov. Convex and analytically-invertible dynamics with contacts and constraints: The-
 703 ory and implementation in mujoco. In *2014 IEEE International Conference on Robotics and*
 704 *Automation (ICRA)*, pp. 6054–6061. IEEE, 2014b.

705 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 706 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 707 IEEE, 2012.

708 Mark Towers, Ariel Kwiatkowski, Jordan K Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 709 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, KG Arjun, et al. Gymnasium: A standard
 710 interface for reinforcement learning environments. *CoRR*, 2024.

711 Paweł Wawrzyniński. A cat-like robot real-time learning to run. In *Adaptive and Natural Computing
 712 Algorithms: 9th International Conference, ICANNGA 2009, Kuopio, Finland, April 23-25, 2009,
 713 Revised Selected Papers 9*, pp. 380–390. Springer, 2009.

714 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
 715 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

716 Yuxin Wu and Justin Johnson. Rethinking” batch” in batchnorm. *arXiv preprint arXiv:2105.07576*,
 717 2021.

718 Zijie Xu, Tong Bu, Zecheng Hao, Jianhao Ding, and Zhaofei Yu. Proxy target: Bridging the gap be-
 719 tween discrete spiking neural networks and continuous control. *arXiv preprint arXiv:2505.24161*,
 720 2025.

721 Kashu Yamazaki, Viet-Khoa Vo-Ho, Darshan Balsara, and Ngan Le. Spiking neural networks and
 722 their applications: A review. *Brain sciences*, 12(7):863, 2022.

723 Zhile Yang, Shangqi Guo, Ying Fang, Zhaofei Yu, and Jian K Liu. Spiking variational policy
 724 gradient for brain inspired reinforcement learning. *IEEE Transactions on Pattern Analysis and
 725 Machine Intelligence*, 2024.

726 Duzhen Zhang, Tielin Zhang, Shuncheng Jia, and Bo Xu. Multi-sacle dynamic coding improved
 727 spiking actor network for reinforcement learning. In *Proceedings of the AAAI conference on
 728 artificial intelligence*, volume 36, pp. 59–67, 2022.

729 Duzhen Zhang, Qingyu Wang, Tielin Zhang, and Bo Xu. Biologically-plausible topology improved
 730 spiking actor network for efficient deep reinforcement learning. *arXiv preprint arXiv:2403.20163*,
 731 2024.

732 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
 733 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 734 volume 35, pp. 11062–11070, 2021.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A ETHICS STATEMENT**
757758 Our submission follows the ICLR Code of Ethics. We do not identify any specific ethical concerns
759 in this work.
760761 **B REPRODUCIBILITY STATEMENT**
762764 Source code are provided in the supplementary materials. We also provide our full implementation
765 and experimental configurations in the Appendix. All experiments were conducted on a single
766 NVIDIA RTX 4090 GPU, but the code can also be executed on CPU-only devices, albeit with longer
767 training times. These materials ensure that the reported results can be reproduced and verified by
768 the community.
769770 **C USE OF LARGE LANGUAGE MODELS**
771772 Large Language Models (LLMs) were used solely for polishing the presentation of this paper, such
773 as correcting typos, improving grammar. All ideas, derivations, algorithm design, and experiments
774 were conceived and implemented independently **without** reliance on LLMs.
775776 **D APPENDIX**
777779 **D.1 SNN ARCHITECTURES**
780781 **D.1.1 DEEP SPIKING Q-NETWORK ARCHITECTURE**
782783 The deep spiking Q-network consists of an SNN that receives the 128-dimensional RAM input using
784 direct coding. The network contains two hidden layers, each with 256 LIF neurons. The Q-values
785 are obtained by reading out the membrane potentials of the output layer, which uses non-leaky,
786 non-firing neurons to provide stable value estimates.
787788 **D.1.2 SPIKING ACTOR NETWORK ARCHITECTURE**
789790 The spiking actor network (SAN) consists of a population encoder with Gaussian receptive fields, a
791 multi-layer SNN with a population output, and a decoder with non-firing neurons.
792793 **Forward Propagation of the SAN.** In the state encoder, each input dimension is represented by
794 N_{in} soft-reset IF neurons with Gaussian receptive fields. These fields have trainable parameters μ
795 and σ . The neurons receive stimulation A_E at every time step and output spikes S^{in} according to:
796

797
$$A_E = \exp \left[-\frac{1}{2} \frac{(s - \mu)^2}{\sigma^2} \right] \quad (14)$$

798

799
$$V_t^{in} = V_{t-1}^{in} - S_{t-1}^{in} + A_E, \quad (15)$$

800
$$S_t^{in} = \Theta(V_t^{in} - V_E),$$

801

802 where V_E is the threshold for the encoding populations.
803804 The final layer of the SNN consists of N_{out} neurons, corresponding to each action dimension. The
805 decoder layer consists of non-spiking integrate-and-fire neurons connected to the last layer of the
806 SNN:
807

808
$$V_t^{out} = V_{t-1}^{out} + W^{out} \cdot S_t^L + b^{out}, \quad (16)$$

809

810 where W^{out} and b^{out} are the weights and biases, respectively. The final output action is determined
811 by the membrane potential at the last time step, $a = V_T^{out}$. A detailed description of the forward
812 propagation in the spiking actor network is provided in Algorithm 2.
813

810 **Algorithm 2** Forward propagation of the Spiking Actor Network (SAN)

```

811 1: Input:  $M_s$ -dimensional observation  $s$ 
812 2: Compute input population stimulation:
813
814 
$$A_E = \exp \left[ -\frac{1}{2} \frac{(s-\mu)^2}{\sigma^2} \right]$$

815
816 3: for  $t = 1, \dots, T$  do
817 4:   Compute encoder membrane potential and spikes:
818
819 
$$V_t^{in} = V_{t-1}^{in} - S_{t-1}^{in} + A_E, \quad S_t^{in} = \Theta(V_t^{in} - V_E)$$

820
821 5:   for  $l = 1, \dots, L$  do
822 6:     Update neurons in layer  $l$  at timestep  $t$ 
823 7:   end for
824 8:   Update decoder membrane potential:
825
826 
$$V_t^{out} = V_{t-1}^{out} + W^{out} \cdot S_t^L + b^{out}$$

827
828 9: end for
829 10: Output:  $M_a$ -dimensional action  $a = V_T^{out}$ 
830

```

831 **Backpropagation of the SAN.** The SAN parameters are optimized using gradients with respect
 832 to the output action $a = V_T^{out}$, given $\frac{\partial L}{\partial a}$.

833 For the decoder:

$$\begin{aligned} \frac{\partial L}{\partial W^{out}} &= \frac{\partial L}{\partial a} \cdot \frac{\partial V_T^{out}}{\partial W^{out}}, \\ \frac{\partial L}{\partial b^{out}} &= \frac{\partial L}{\partial a} \cdot \frac{\partial V_T^{out}}{\partial b^{out}}. \end{aligned} \quad (17)$$

837 The main SNN is trained using spatio-temporal backpropagation (STBP) (Wu et al., 2018), with the
 838 rectangular surrogate gradient function defined as:

$$\Theta'(x) = \begin{cases} \frac{1}{2\omega}, & -\omega \leq x \leq \omega, \\ 0, & \text{otherwise,} \end{cases} \quad (18)$$

842 where ω denotes the window size.

843 Next, we derive the gradient of the encoder stimulation A_E , as shown in Eq. 19. For simplicity,
 844 the term $\frac{\partial S_t^{in}}{\partial A_E}$ is manually set to 1, which is a common surrogate assumption to simplify gradient
 845 computation:

$$\frac{\partial L}{\partial A_E} = \sum_{t=1}^T \frac{\partial L}{\partial S_t^{in}} \cdot \frac{\partial S_t^{in}}{\partial A_E} = \sum_{t=1}^T \frac{\partial L}{\partial S_t^{in}}. \quad (19)$$

849 Finally, the trainable parameters μ and σ of the encoder can be updated as:

$$\begin{aligned} \frac{\partial L}{\partial \mu} &= \frac{\partial L}{\partial A_E} \cdot \frac{\partial A_E}{\partial \mu} = \frac{\partial L}{\partial A_E} \cdot \frac{s-\mu}{\sigma^2} A_E, \\ \frac{\partial L}{\partial \sigma} &= \frac{\partial L}{\partial A_E} \cdot \frac{\partial A_E}{\partial \sigma} = \frac{\partial L}{\partial A_E} \cdot \frac{(s-\mu)^2}{\sigma^3} A_E. \end{aligned} \quad (20)$$

855 **D.2 SPIKING NEURON MODELS**

856 Section 3.1 introduced the LIF neuron model. Here, we provide the detailed dynamics of the spiking
 857 neuron models used in our experiments.

859 **D.2.1 LIF NEURON MODEL**

861 The dynamics of the LIF neuron are defined in Eq. 1, where the input current is computed as:

$$C_t^l = W^l S_t^{l-1} + b^l, \quad (21)$$

863 where W and b denote the synaptic weights and biases, respectively.

864 D.2.2 CURRENT-BASED LIF (CLIF) NEURON MODEL
865866 In the current-based LIF (CLIF) neuron proposed in Tang et al. (2021), the input current in Eq. 21
867 is modified as:

868
$$C_t^l = \lambda_c I_{t-1}^l + W^l S_t^{l-1} + b^l, \quad (22)$$

869

870 where λ_c is the current leakage parameter. All other dynamics of CLIF neurons are identical to those
871 of standard LIF neurons.872 D.2.3 DYNAMIC NEURON MODEL
873874 The second-order Dynamic Neuron (DN) model proposed in (Zhang et al., 2022) is designed to
875 capture richer temporal dynamics for continuous control. Each DN maintains a membrane potential
876 V and a resistance variable U to model hyperpolarization effects. The neuron dynamics are governed
877 by:

878
$$\frac{dV_t^l}{dt} = (V_t^l)^2 - V_t^l - U_t^l + I_t^l, \quad (23)$$

879

880
$$\frac{dU_t^l}{dt} = \theta_v V_t^l - \theta_u U_t^l, \quad (24)$$

881

882 where θ_v and θ_u denote the conductance parameters of V and U , respectively. When the neuron
883 fires, the membrane potential V is reset to V_{reset} , and the resistance variable U is incremented by θ_s .
884 Using a first-order Taylor expansion, the iterative update of the DN model can be written as:
885

886
$$\begin{aligned} C_t^l &= \alpha \cdot C_{t-1}^l + W^l S_t^{l-1} + b^l; \\ V_t^l &= (1 - S_{t-1}^l) \cdot V_{t-1}^l + S_{t-1}^l \cdot V_{\text{reset}}; \\ U_t^l &= U_{t-1}^l + S_{t-1}^l \cdot \theta_u; \\ V_{\text{delta}} &= V_t^{l^2} - V_t^l - U_t^l + C_t^l; \\ U_{\text{delta}} &= \theta_v \cdot V_t^l - \theta_u \cdot U_t^l; \\ V_t^l &= V_t^l + V_{\text{delta}}; \\ U_t^l &= U_t^l + U_{\text{delta}}; \\ S_t^l &= \Theta(V_t^l - V_{th}). \end{aligned} \quad (25)$$

887

888 D.3 EXPERIMENT DETAILS
889890 D.3.1 COMPUTE RESOURCES
891892 All experiments were conducted on an RTX 4090 GPU (except for the training time study in Ap-
893 pendix D.5.1).
894895 D.3.2 SPIKING NEURON PARAMETERS
896897 The parameters for the LIF and CLIF neurons are listed in Table 2. These are the same as those used
898 in Tang et al. (2021), except that the LIF neuron does not include a current leakage parameter.
899900 Table 2: Parameters of LIF and CLIF (Tang et al., 2021) neurons
901

Parameter	LIF	CLIF (Tang et al., 2021)
Membrane leakage parameter λ	0.75	0.75
Threshold voltage V_{th}	0.5	0.5
Reset voltage V_{reset}	0	0
Current leakage parameter α	-	0.5

910 The parameters of the DN model are listed in Table 3. All values are obtained using the pre-learning
911 procedure described in Zhang et al. (2022).
912

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 3: Parameters of the DN (Zhang et al., 2022)

Parameter	Value
SNN time steps	5
Threshold voltage V_{th}	0.5
Current leakage parameter α	0.5
Conductivity of membrane potential θ_v	-0.172
Conductivity of hidden state θ_u	0.529
Reset voltage V_{reset}	0.021
spike effect to hidden state θ_s	0.132

D.3.3 SPECIFIC PARAMETERS FOR CARE-BN

Table 4 lists the hyperparameters of CaRe-BN. The recalibration frequency T_{re} is set equal to the evaluation frequency used in the RL algorithms. All hyperparameters are kept consistent across different spiking neuron models and RL algorithms.

Table 4: Hyper-parameters of the CaRe-BN

Parameter	Value
Momentum α	0.8
Recalibration frequency T_{re}	5000
Recalibration batchs M	100

D.3.4 SPIKING ACTOR NETWORK PARAMETERS

All hyper-parameters of the spiking actor network are listed in Table 5. These settings are consistent with those used in a wide range of previous studies (Tang et al., 2021; Zhang et al., 2022; Chen et al., 2024a).

Table 5: Hyper-parameters of the spiking actor network

Parameter	Value
Encoder population per dimension N_{in}	10
Encoder threshold V_E	0.999
Network hidden units	(256, 256)
Decoder population per dimension N_{out}	10
Surrogate gradient window size ω	0.5

D.3.5 RL ALGORITHM PARAMETERS

The experiments are conducted using DQN (Mnih et al., 2015), DDPG (Lillicrap, 2015), TD3 (Fujimoto et al., 2018), and the SAC (Haarnoja et al., 2018a) algorithms, with their respective hyperparameters listed in Tables 6, 7, 8, and 9.

D.3.6 EXPERIMENT ENVIRONMENTS IN CONTINUOUS CONTROL

Figure 8 illustrates various MuJoCo environments (Todorov et al., 2012; Todorov, 2014b) from the OpenAI Gymnasium benchmarks (Brockman, 2016; Towers et al., 2024), including Inverted-DoublePendulum (IDP) (Todorov, 2014a), Ant (Schulman et al., 2015), HalfCheetah (Wawrzynski, 2009), Hopper (Erez et al., 2012), and Walker. All environments used the default configurations without modification.

Note that the state vectors, which can range from $-\infty$ to ∞ , are normalized to $(-1, 1)$ using a tanh function. Similarly, since the actions have minimum and maximum limits, the outputs of the

972
973974 Table 6: Hyper-parameters of the implemented DQN algorithm (Mnih et al., 2015)
975

Parameter	Value
Learning rate	$1 \cdot 10^{-4}$
Network architecture	(256, 256)
Optimizer	Adam
Target update interval	2000
Batch size N	128
Discount factor γ	0.99
Iterations per time step	1.0
Reward scaling	1.0
Gradient clipping	None
Replay buffer size	10^6
Max epsilon	1
Min epsilon	0.1
Epsilon decay steps	20000

989

990

991

992

993

994 Table 7: Hyper-parameters of the implemented DDPG algorithm (Lillicrap, 2015)
995

Parameter	Value
Actor learning rate	$1 \cdot 10^{-4}$
Actor regularization	None
Critic learning rate	$1 \cdot 10^{-3}$
Critic regularization	weight decay =0.01
Critic architecture	(400, 300)
Critic activation	Relu
Optimizer	Adam
Target update rate τ	$5 \cdot 10^{-3}$
Batch size N	256
Discount factor γ	0.99
Iterations per time step	1.0
Reward scaling	1.0
Gradient clipping	None
Replay buffer size	10^6
Exploration noise $\mathcal{N}(0, \sigma)$	$\mathcal{N}(0, 0.2)$

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1023 Figure 8: Several continuous control tasks of the MuJoCo environments on OpenAI Gymnasium.
1024 (a) InvertedDoublePendulum-v4, (b) Ant-v4, (c) HalfCheetah-v4, (d) Hopper-v4, (e) Walker2d-v4.
1025

Table 8: Hyper-parameters of the implemented TD3 algorithm (Fujimoto et al., 2018)

Parameter	Value
Actor learning rate	$3 \cdot 10^{-4}$
Actor regularization	None
Critic learning rate	$3 \cdot 10^{-4}$
Critic regularization	None
Critic architecture	(256, 256)
Critic activation	Relu
Optimizer	Adam
Target update rate τ	$5 \cdot 10^{-3}$
Batch size N	256
Discount factor γ	0.99
Iterations per time step	1.0
Reward scaling	1.0
Gradient clipping	None
Replay buffer size	10^6
Exploration noise $\mathcal{N}(0, \sigma)$	$\mathcal{N}(0, 0.1)$
Actor update interval d	2
Target policy noise $\mathcal{N}(0, \tilde{\sigma})$	$\mathcal{N}(0, 0.2)$
Target policy noise clip c	0.5

Table 9: Hyper-parameters of the implemented SAC algorithm (Haarnoja et al., 2018a)

Parameter	Value
Actor learning rate	$3 \cdot 10^{-4}$
Actor regularization	None
Critic learning rate	$3 \cdot 10^{-4}$
Critic regularization	None
Critic architecture	(256, 256)
Critic activation	Relu
Optimizer	Adam
Target update rate τ	10^{-3}
Batch size N	256
Discount factor γ	0.99
Iterations per time step	1.0
Reward scaling	1.0
Gradient clipping	None
Replay buffer size	10^6
Actor update interval d	1
Entropy target	$-\dim(A)$
Alpha learning rate	$3 \cdot 10^{-4}$

1080 actor network are first normalized to $(-1, 1)$ via a tanh function and then linearly scaled to the
 1081 corresponding (Min action, Max action) range.
 1082

1083 D.4 ADDITIONAL EXPERIMENTAL RESULTS

1085 D.4.1 ADDITIONAL RESULTS WITH SAC

1087 In the main text, we demonstrated that CaRe-BN surpass its ANN counterparts using the TD3 al-
 1088 gorithm. We further train the SNN agent using SAC, a stronger modern off-policy RL algorithm.
 1089 As shown in Figure 9, SNNs equipped with CaRe-BN also have the potential to surpass their ANN
 1090 counterparts under SAC.

1101 Figure 9: Learning curves of the SNN-based agents using SAC algorithm. Shaded areas represent
 1102 half a standard deviation across five random seeds. Curves are uniformly smoothed for visual clarity.
 1103

1104 D.4.2 ADDITIONAL RESULTS ON ADAPTABILITY

1107 In the main text, we demonstrated that CaRe-BN improves performance across various spiking neu-
 1108 ron models and RL algorithms. Additionally, Tables 10, 11, 12, 13, 14, and , 15 report the maximum
 1109 average returns and the average performance gains of CaRe-BN compared to vanilla SNNs across
 1110 different spiking neurons and RL algorithms.

1112 Table 10: Max average returns over 5 random seeds in DDPG with LIF neurons.

Method	IDP	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9352 ± 1	7954 ± 356	3035 ± 127	2931 ± 1395	0.00%
CaRe-BN	9351 ± 1	8199 ± 305	3512 ± 79	3347 ± 321	8.24%

1119 Table 11: Max average returns over 5 random seeds in DDPG with CLIF neurons.

Method	IDP	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9352 ± 2	8205 ± 376	2566 ± 1270	2224 ± 1607	0.00%
CaRe-BN	9352 ± 0	7972 ± 245	3247 ± 100	3709 ± 321	22.62%

1126 Table 12: Max average returns over 5 random seeds in DDPG with DNs.

Method	IDP	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9351 ± 3	8069 ± 897	3134 ± 134	3238 ± 633	0.00%
CaRe-BN	9351 ± 2	7731 ± 457	3418 ± 159	3438 ± 399	2.76%

1132 D.4.3 ADDITIONAL COMPARISON WITH ANNS

1133 Fig.10 shows the normalized learning curves of our CaRe-BN within different spiking neurons.

1134

1135 Table 13: Max average returns over 5 random seeds in TD3 with LIF neurons.

Method	IDP	Ant	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9347 \pm 1	4243 \pm 949	9073 \pm 946	3507 \pm 85	2807 \pm 1834	0.00%
CaRe-BN	9346 \pm 1	5083 \pm 356	8813 \pm 533	3489 \pm 118	4556 \pm 497	15.74%

1139

1140

1141

1142 Table 14: Max average returns over 5 random seeds in TD3 with CLIF neurons.

Method	IDP	Ant	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9351 \pm 1	4590 \pm 1006	9594 \pm 689	2772 \pm 1263	3307 \pm 1514	0.00%
CaRe-BN	9348 \pm 2	5373 \pm 159	9563 \pm 442	3586 \pm 49	4296 \pm 268	15.20%

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

Figure 10: Normalized learning curves across all environments of the TD3 algorithm with different spiking neurons across all environments. The performance and training steps are normalized linearly based on ANN performance. Curves are uniformly smoothed for visual clarity.

1164

1165

D.4.4 ADDITIONAL COMPARISON WITH OTHER SNN-BN MECHANISMS

1166

1167

Tab. 16, shows the performance of different BN variants and CaRe-BN with the LIF neuron model in TD3 algorithm.

1168

1169

1170

1171

Table 16: Max average returns over 5 random seeds with LIF neuron, and the average performance gain (APG) against ANN baseline, where \pm denotes one standard deviation.

Method	IDP-v4	Ant-v4	HalfCheetah-v4	Hopper-v4	Walker2d-v4	APG
ANN (TD3)	7503 \pm 3713	4770 \pm 1014	10857 \pm 475	3410 \pm 164	4340 \pm 383	0.00%
Vanilla LIF	9347 \pm 1	4243 \pm 949	9073 \pm 946	3507 \pm 85	2807 \pm 1834	-7.08%
tdBN	9346 \pm 1	4876 \pm 577	8845 \pm 526	3601 \pm 29	4098 \pm 408	1.65%
BNTT	9348 \pm 1	5244 \pm 321	9339 \pm 874	3593 \pm 62	3480 \pm 1450	1.22%
TEBN	9347 \pm 1	4408 \pm 1156	9452 \pm 539	3472 \pm 135	4235 \pm 381	0.69%
TABN	9347 \pm 1	4431 \pm 1353	9173 \pm 595	3474 \pm 183	3818 \pm 1133	-1.64%
CaRe-BN	9346 \pm 1	5083 \pm 356	8813 \pm 533	3489 \pm 118	4556 \pm 497	3.92%

1181

1182

1183

1184

Table 15: Max average returns over 5 random seeds in TD3 with DNs.

Method	IDP	Ant	HalfCheetah	Hopper	Walker2d	APG
Vanilla SNN	9350 \pm 1	4800 \pm 994	9147 \pm 231	3446 \pm 131	3964 \pm 1353	0.00%
CaRe-BN	9349 \pm 2	5444 \pm 161	9581 \pm 638	3470 \pm 115	4084 \pm 362	4.37%

1188
1189

D.4.5 ADDITIONAL RESULTS IN ANN

1190
1191
1192

We shows the normalized learning curves of the CaRe-BN with ANN in Fig.6 (d). Here, we show the detailed learning curves and maximum average returns of 5 environments in Fig.11, Fig.12, Tab.18 and Tab. 19, respectively.

1193
1194

D.4.6 ADDITIONAL RESULTS WITH DIFFERENT SNN SIMULATION TIME STEPS.

1196
1197
1198
1199
1200

We future study the impact of SNN simulation time steps. As shown in Table 17, SNNs generally benefit from larger simulation time steps, and CaRe-BN achieves even stronger results when using 8 SNN simulation steps (up to 6.32% improvement over ANNs). However, we report the main results using an SNN simulation time step of 5, following the standard configuration adopted in prior SNN-based RL studies (Tang et al., 2021; Zhang et al., 2022; Chen et al., 2024a).

1201
12021203
1204
1205

Table 17: Max average returns over 5 random seeds of CaRe-BN with CLIF spiking neurons trained using the TD3 algorithm, and the average performance gain (APG) against ANN baseline, where \pm denotes one standard deviation.

SNN time steps	IDP-v4	Ant-v4	HalfCheetah-v4	Hopper-v4	Walker2d-v4	APG
2	953 \pm 247	4924 \pm 171	7635 \pm 392	3588 \pm 10	3885 \pm 1365	-23.80%
3	9285 \pm 100	5078 \pm 325	8190 \pm 567	3522 \pm 89	4391 \pm 282	2.03%
5	9348 \pm 2	5373 \pm 159	9563 \pm 442	3586 \pm 49	4296 \pm 268	5.90%
8	9354 \pm 1	5417 \pm 421	9989 \pm 278	3479 \pm 95	4311 \pm 348	6.32%

1211
1212
1213

1223

Figure 11: Learning curves of utilizing CaRe-BN in ANN with DDPG algorithm. The shaded region represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual clarity.

1224
1225
1226
1227
12281238
1239
1240
1241

Figure 12: Learning curves of utilizing CaRe-BN in ANN with TD3 algorithm. The shaded region represents half a standard deviation over 5 different seeds. Curves are uniformly smoothed for visual clarity.

1242

1243

Table 18: Max average returns over 5 random seeds in DDPG with ANN.

1244

1245

1246

1247

1248

1249

Table 19: Max average returns over 5 random seeds in TD3 with ANN.

1250

1251

1252

1253

1254

1255

1256

D.5 ENERGY CONSUMPTIONS

1257

1258

To assess the computational overhead introduced by CaRe-BN, we measure the training time and GPU memory usage on an RTX 3090 GPU paired with an Intel(R) Xeon(R) Platinum 8358P CPU. The results are summarized in Table 20. As shown, CaRe-BN does not introduce significant additional training time or memory consumption compared with other BN variants.

1263

1264

1265

1266

Table 20: Training costs of different BN mechanisms on the Ant-v4 environment, trained with TD3 algorithm and CLIF neurons. Training time corresponds to the total wall-clock time required for 5000 RL steps, including exploration, replay sampling, target computation, and gradient updates.

1267

1268

1269

1270

Training costs	tdBN	BNTT	TEBN	TAB	CaRe-BN
Training time for 5000 updates (s)	242	266	251	264	247
GPU memory (MiB)	437	437	441	441	437

1271

1272

1273

D.5.2 INFERRING COSTS

1274

1275

1276

Table 21: Energy consumption per inference (in nJ) for the spiking actor network with CLIF neurons, trained using TD3 across various tasks.

1277

1278

1279

1280

1281

We evaluate the energy consumption of SNNs equipped with CaRe-BN during inference. Energy is estimated following the methodology of Merolla et al. (2014), where each floating-point operation (FLOP) is assumed to consume 12.5 pJ and each synaptic operation (SOP) consumes 77 fJ (Qiao et al., 2015; Hu et al., 2021). As shown in Table 21, the ANN baselines require substantially more energy per inference. In contrast, the SNN models with CaRe-BN demonstrate dramatically reduced energy consumption across all evaluated tasks. These results highlight the strong energy efficiency of SNNs and underscore their potential for deployment on resource-constrained platforms.

1289

1290

1291

1292

1293

1294

1295