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Figure 1. Interactive Exploration to Construct an Action-Conditioned Scene Graph (ACSG) for Robotic Manipulation. (a)
Exploration: The robot autonomously explores by interacting with the environment to generate a comprehensive ACSG. This graph is used
to catalog the locations and relationships of items. (b) Exploitation: Utilizing the constructed scene graph, the robot completes downstream
tasks by efficiently organizing the necessary items according to the desired spatial and relational constraints.

Abstract

Robots need to explore their surroundings to adapt to
and tackle tasks in unknown environments. Prior work has
proposed building scene graphs of the environment but typ-
ically assumes that the environment is static, omitting re-
gions that require active interactions. This severely limits
their ability to handle more complex tasks in household
and office environments: before setting up a table, robots

must explore drawers and cabinets to locate all utensils and
condiments. In this work, we introduce the novel task of
interactive scene exploration, wherein robots autonomously
explore environments and produce an action-conditioned
scene graph (ACSG) that captures the structure of the under-
lying environment. The ACSG accounts for both low-level
information, such as geometry and semantics, and high-level
information, such as the action-conditioned relationships be-
tween different entities in the scene. To this end, we present



the Robotic Exploration (RoboEXP) system, which incorpo-
rates the Large Multimodal Model (LMM) and an explicit
memory design to enhance our system’s capabilities. The
robot reasons about what and how to explore an object, ac-
cumulating new information through the interaction process
and incrementally constructing the ACSG. We apply our sys-
tem across various real-world settings in a zero-shot manner,
demonstrating its effectiveness in exploring and modeling
environments it has never seen before. Leveraging the con-
structed ACSG, we illustrate the effectiveness and efficiency
of our RoboEXP system in facilitating a wide range of real-
world manipulation tasks involving rigid, articulated objects,
nested objects like Matryoshka dolls, and deformable objects
like cloth.

1. Introduction
Imagine a future household robot designed to prepare break-
fast. This robot must efficiently perform various tasks such
as conducting inventory checks in cabinets, fetching food
from the fridge, gathering utensils from drawers, and spot-
ting leftovers under food covers. Key to its success is the abil-
ity to interact with and explore the environment, especially
to find items that aren’t immediately visible. Equipping it
with such capabilities is crucial for the robot to effectively
complete its everyday tasks.

Robot exploration and active perception have long been
challenging areas in robotics [1–16]. Various techniques
have been proposed, including information-theoretic ap-
proaches, curiosity-driven exploration, frontier-based meth-
ods, and imitation learning [1, 13–15, 17–25]. Nevertheless,
previous research has primarily focused on exploring static
environments by merely changing viewpoints in a navigation
setting or has been limited to interactions with a small set of
object categories, such as drawers, or a closed set of simple
actions like pushing [26].

In this work, we investigate the interactive scene explo-
ration task, where the goal is to efficiently identify all objects,
including those that are directly observable and those that can
only be discovered through interaction between the robot and
the environment (see Fig. 1). Towards this goal, we present
a novel scene representation called action-conditioned 3D
scene graph (ACSG). Unlike conventional 3D scene graphs
that focus on encoding static relations, ACSG encodes both
spatial relationships and logical associations indicative of
action effects (e.g., opening a fridge will reveal an apple
inside). We then show that interactive scene exploration can
be formulated as a problem of action-conditioned 3D scene
graph construction and traversal.

Tackling interactive scene exploration poses challenges:
how can we reason about which objects need to be explored,
choose the right action to interact with them, and main-
tain knowledge about our exploration findings? With these

challenges in mind, we propose a novel, real-world robotic
exploration framework, the RoboEXP system. RoboEXP
can handle diverse exploration tasks in a zero-shot manner,
constructing complex action-conditioned 3D scene graph
in various scenarios, including those involving obstructing
objects and requiring multi-step reasoning (Fig. 2). We eval-
uate our system across various settings, spanning simple,
single-object scenarios to complex environments, demon-
strating its adaptability and robustness. The system also
effectively manages different human interventions. More-
over, we show that our reconstructed action-conditioned 3D
scene graph demonstrates strong capacity in performing mul-
tiple complex downstream tasks. Action-conditioned 3D
scene graph advances LLM/LMM-guided robotic manipula-
tion and decision-making research [27, 28], extending their
operation domain from environments with known or observ-
able objects to complicated environments with unknown or
unobserved ones. To our knowledge, this is the first of its
kind.

Our contributions are as follows: i) we propose action-
conditioned 3D scene graph and introduce the interactive
scene exploration task to address the challenging interaction
aspect of exploration; ii) we develop the RoboEXP system,
capable of exploring complicated environments with unseen
objects in a wide range of settings; iii) through extensive ex-
periments, we demonstrate our system’s ability to construct
complex and complete action-conditioned 3D scene graph,
demonstrating significant potential for various manipulation
tasks. Our experiments involve rigid and articulated ob-
jects, nested objects like Matryoshka dolls, and deformable
objects like cloth, showcasing the system’s generalization
ability across objects, scene configurations, and downstream
tasks.

2. Related Works
Scene graphs [29, 30] represent objects and their rela-
tions [31–33] in a scene via a graph structure. Previous
studies generate scene graphs from images [30, 34] or 3D
scenes [35] with hierarchical and semantic information,
and further with the assistance of large language models
(LLMs) [36]. They leverage scene graphs for image cap-
tioning [37, 38], image retrieval and generation [29, 39],
visual-language tasks [31, 40], navigation [41, 42] and task
planning [43–45]. While previous works model scene graphs
in static 2D or 3D scenes, we generate action-conditioned
scene graphs that integrate actions as core elements, depict-
ing interactive relationships between objects and actions.
This action-centric approach opens avenues for physical ex-
ploration and diverse downstream robotics tasks.

Robotic exploration aims to autonomously navigate, in-
teract with, and gather information from environments it
has never encountered before. It is applicable in search and
rescue [1, 2, 46–52], planetary exploration [3, 4, 53, 54], ob-
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Figure 2. Action-Conditioned 3D Scene Graph from Interactive Scene Exploration. To illustrate the construction process of our ACSG
in the interactive scene exploration, we depict a scenario wherein a robot arm explores a tabletop scene containing two cabinets and a
condiment obstructing the left door. (a) The robot arm actively interacts with the scene, completing the interactive scene exploration process.
(b) We showcase the corresponding low-level memory in our ACSG, which represents the geometry and semantic information of the scene.
The small graph within each visualization represents a segment of the final scene graph. (c) We present the high-level memory of our
action-conditioned scene graph. The graph reveals that picking up the condiment serves as a precondition for opening the door, and opening
the bottom drawer allows the observation of the concealed tape and banana.

ject goal navigation [5, 6, 55–72], and mobile manipulation
[7, 8, 73–76]. The primary guiding principle behind robotic
exploration is to reduce the uncertainty of the environment
[17–19, 46, 77, 78], making uncertainty quantification key
for robotic exploration tasks. Curiosity-driven exploration
has recently emerged as a promising approach, showing ef-
fective results in various contexts [15, 20, 21, 79]. Most past
works have focused on exploration in the context of mobility
[1, 2, 5–8, 46–50, 55–69, 73–76, 80], with the primary goal
of modeling and understanding the static environment to
complete specific tasks. Recently, exploration has also been
studied in the context of manipulation [16, 23, 81–84], aim-
ing to better understand the scene by changing the state of the
environment. Our work introduces a new active exploration
strategy for manipulation, uniquely defining a novel scene
graph-guided objective to guide the exploration process.

3. Problem Statement

We unfold this section with an introduction of action-
conditioned 3D scene graph, a novel scene representation
illustrating interactive object relationships (Sec. 3.1). We

then formulate interactive scene exploration as an action-
conditioned 3D scene graph construction and traversal prob-
lem (Sec. 3.2).

3.1. Action-Conditioned 3D Scene Graph

An action-conditioned 3D scene graph (ACSG) is an action-
able, spatial-topological representation that models objects
and their interactive and spatial relations in a scene. For-
mally, ACSG is a directed acyclic graph G = (V,E) where
each node represents either an object (e.g., a door) or an
action (e.g., open), and edges E represent their interaction
relations. The object node oi = (si,pi) ∈ V encodes the
semantics and geometry of each object (e.g., the semantic
embedding of a fridge si, and its shape in the form of a point
cloud pi), whereas the action node ak = (ak,Tk) ∈ V
encodes high-level action type ak and low-level primitives
Tk to perform the actions. Between the nodes are edges
encoding their relations, which we categorize into four types:
1) between objects eo→o (e.g., the door handle belongs to
the fridge), 2) from objects to actions eo→a (e.g., toy can be
picked up), 3) from action to objects ea→o (e.g., a banana



can be reached if we open the cabinet), or 4) from one action
to another ea→a (e.g., the cabinet can be opened only if
we move away the condiment). Our action-conditioned 3D
scene graph greatly enhances existing 3D scene graphs, as it
explicitly models the action-conditioned relations between
objects. Fig. 2 depicts a complete action-conditioned 3D
scene graph of a tabletop scene.

One advantage of our interaction-aware scene graph lies
in its simplicity for retrieving and taking actions on an object.
Regardless of how complicated the scene is, given our scene
graph and a target object, an agent merely needs to sequen-
tially execute all the actions on the paths from the root to the
object node in a topological order to retrieve the object. For
example, in Fig. 2, to reach the tape inside a cabinet whose
door is blocked by a condiment, according to the graph, one
simply needs to: 1) pick up the condiment on the table that
blocks the cabinet door, and 2) open the cabinet through the
door handle.

3.2. Interactive Exploration

This subsection describes how we can construct a complete
action-conditioned scene graph of a real-world scene. This
is a challenging problem due to partial observability. For
instance, a banana cannot be populated without opening the
cabinet. To solve this task, we formulate the scene graph
construction as an active perception and exploration problem
using POMDP-inspired notations. Formally, at each time t,
based on our past graph estimation Gt−1, and past sensor
observations Ot−1, our agent takes an action At, which
causes the environment to transition to a new state, and
the agent receives a new observation Ot, which is used to
update its current inferred graph Gt. This update might
include adding new nodes to the graph or updating the state
of an existing node. We will then continue with exploration
and keep updating the set of remaining unexplored nodes
U ⊂ V (see Algorithm 1).

The goal of the exploration is simple: discover and ex-
plore all the nodes of the scene graph in as little time as
possible. Towards this, we formulate a reward function with
three terms:

Rt = Rt
graph +Rt

explore +Rt
time

where Rt
graph = |Vt|−|Vt−1| is the graph construction term,

which promotes our agent to discover as many nodes as pos-
sible to the graph, Rt

explore = max(0, |Ut−1| − |Ut|) gives
positive reward to actions that reduce unexplored node set,
which prioritize the agent to explore previously unexplored
nodes, and immediate reward Rt

time = −λ, 0 < λ < 1 is a
negative time reward that optimizes the time efficiency and
allows the exploration to terminate when there is no more
node to explore.

Intuitively, to maximize this reward at each discrete times-
tamp, we should prioritize exploring the unexplored nodes

Algorithm 1 Interactive Exploration

1: input: O0, G0 = (V0,E0),U0 ← V0

2: while |Ut−1| ̸= 0 do
3: if choose object oi ∈ Ut−1 then % explore object
4: add spatial relations % memory
5: obtain action a to explore oi % decision-making
6: if action a /∈ Vt−1 then
7: Vt,Ut = Vt−1 ∪ {a},Ut−1 ∪ {a} % add node
8: Et = Et−1 ∪ {eoi→a} % add edge
9: Ut = Ut \ oi % mark as explored

10: end if
11: else choose action ak ∈ Ut−1

12: if no obstruction then % decision-making
13: take action ak % action
14: obtain new observation Ot % perception
15: if found new objects O ̸⊂ Vt−1 then
16: Vt,Ut = Vt ∪ {O},Ut−1 ∪ {O} % add nodes
17: Et = Et ∪ {eak→O} % add edges
18: Ut = Ut \ ak % mark as explored
19: end if
20: else
21: add action preconditions % memory
22: end if
23: end if
24: end while
25: output: Gt % final scene graph

in the current scene graph that are likely to lead to the dis-
covery of new nodes (e.g., opening a cabinet that has not
been opened, or lifting a piece of clothing that might cover a
small object). The key challenge lies in how we can perceive
the objects in the scene, infer possible actions and their rela-
tions from the sensory data, and take actions with the current
scene graph. In the next section, we will comprehensively
describe our system implementation to achieve this goal.

4. Method

To tackle the task outlined in Section Sec. 3, we present
our RoboEXP system, designed to autonomously explore
unknown environments by observing and interacting with
them. The system comprises four key components: percep-
tion, memory, decision-making, and action modules (see
Fig. 3). Raw RGBD images are captured through the wrist
camera in different viewpoints and processed by the percep-
tion modules to extract scene semantics, including object
labels, 2D bounding boxes, segmentations, and semantic
features. The obtained semantic information is then trans-
mitted to the memory module, where the 2D data is merged
into the 3D representation. Such 3D information serves as a
valuable guide for the decision module, aiding in the selec-
tion of appropriate actions to further interact or observe the
environment and unveil hidden objects. The action module
is activated to execute the planned action, generating new
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Figure 3. Overview of Our RoboEXP System. We present a comprehensive overview of our RoboEXP system, comprised of four modules.
(a) Our perception module takes RGBD images as input and produces the corresponding 2D bounding boxes, masks, object labels, and
associated semantic features as output. (b) The memory module seamlessly integrates 2D information into the 3D space, achieving more
consistent 3D instance segmentation. Additionally, it constructs the high-level graph of our ACSG through the merging of instances. (c) Our
decision-making module serves dual roles as a proposer and verifier. The proposer suggests various actions, such as opening doors and
drawers, while the verifier assesses the feasibility of each action, considering factors like obstruction. (d) The action module executes the
proposed actions, enabling the robot arm to interact effectively with the environment.

observations for the perception modules. This closed-loop
system ensures the thoroughness of our task in interactive
scene exploration.

Perception Module. Given multiple RGBD observations
from different viewpoints, the objective of the perception
module (Fig. 3a) is to detect and segment objects while
extracting their semantic features. To enhance generality,
we opt for the open-vocabulary detector GroundingDINO
[85] and the Segment Anything in High Quality (SAM-HQ)
[86], an advanced version of SAM [87]. For the extraction
of semantic features used in subsequent instance merging
within the memory module, we employ CLIP [88]. To obtain
per-instance CLIP features, we implement a strategy similar
to the one proposed by Jatavallabhula et al. [89]. Specifically,
we extend the local-global image feature merging approach
by incorporating additional label text features to augment
the semantic CLIP feature for each instance. Furthermore,
we exclusively focus on instance-level features, disregarding
pixel-level features, thereby accelerating the entire semantic
feature extraction process.

Memory Module. The memory module (Fig. 3b) is
designed to construct our ACSG of the environment by as-
similating observations over time. For the low-level memory,
to ensure stable instance merging from 2D to 3D, we em-
ploy a similar instance merging strategy as presented in Lu
et al. [90], consolidating observations from diverse RGBD
sources across various viewpoints and time steps. In contrast
to the original algorithm, which considers only 3D IoU and

semantic feature similarity we additionally incorporate label
similarity and instance confidence. To enhance algorithm ef-
ficiency, we represent low-level memory using a voxel-based
representation, which allows for more efficient computation
and memory updates. Meanwhile, given the crowded na-
ture of objects in our tabletop setting, we have implemented
voxel-based filtering designs to obtain a cleaner and more
complete representation of the objects for storage in our
memory.

The memory module handles merging across different
viewpoints and time steps. To merge across different view-
points, we project 2D information (RGBD, semantic fea-
tures, mask, bounding box) to 3D and leverage the instance
merging strategy mentioned earlier to attain consistent 3D
information. Addressing memory updates across time steps
presents a challenge due to dynamic changes in the envi-
ronment. For instance, a closed door in the previous time
step may be opened by our robot in the current time step.
To accurately reflect such changes, our algorithm evaluates
whether elements within our memory have become outdated,
primarily through depth tests based on the most recent ob-
servations. This process ensures that the memory accurately
represents the environment’s current state, effectively man-
aging scenarios where objects may change positions or states
across different time steps.

For the high-level graph of our ACSG, the memory mod-
ule analyzes the relationships between objects and the logi-
cal associations between actions and objects. Depending on



Table 1. Quantitative Results on Different Tasks. We compare the performance of both the GPT-4V baseline and our system across
various tasks. We assess the outcomes using five distinct metrics to illustrate diverse facets of the interactive exploration process. Our system
consistently outperforms the baseline across all tasks and metrics.

Task (10 variance for each) Drawer-Only Door-Only Drawer-Door Recursive Occlusion

Metric GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours GPT-4V Ours

Success % ↑ 20±13.3 90±10.0 30±15.2 90±10.0 10±10.0 70±15.3 0±0.0 70±15.3 0±0.0 50±16.7
Object Recovery % ↑ 83±11.0 97±3.3 50±16.7 100±0.0 62±10.7 91±4.7 20±13.3 80±11.7 17±11.4 67±14.9
State Recovery % ↑ 60±16.3 100±0.0 80±13.3 100±0.0 70±15.3 100±0.0 70±15.3 100±0.0 10±10.0 70±15.3
Unexplored Space % ↓ 15±7.6 0±0.0 40±14.5 0±0.0 25±6.5 0±0.0 63±15.3 15±8.9 85±7.6 30±15.3
Graph Edit Dist. ↓ 2.8±1.04 0.2±0.20 4.4±1.42 0.1±0.10 5.6±1.46 0.5±0.27 8.8±2.06 2.1±1.49 7.3±0.97 2.5±1.15
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Figure 4. Visualization of Quantitative Results. (a) The action-object graph captures the change in the number of discovered objects
relative to the number of actions taken. Our RoboEXP efficiently discovers all objects. Sometimes, the object count doesn’t increase during
actions due to the absence of objects in storage after opening. Additionally, some actions are employed to restore the scene state (e.g., closing
the door after exploration). (b) The error breakdown of all our quantitative experiments includes 5 task settings with 10 variations each.
We categorize errors into perception, decision, action, and no-error cases. For the GPT-4V baseline, manual assistance in action execution
eliminates failure cases, serving as an upper bound for baseline performance. Even in this scenario, our RoboEXP largely outperforms the
baseline.

changes in low-level memory and relationships, the memory
module is tasked with updating the graph. This involves
adding, deleting, or modifying nodes and edges within our
graph.

Decision-Making Module. The primary goal of the de-
cision module (Fig. 3c) is to identify the appropriate object
and corresponding skill to enhance the effectiveness and ef-
ficiency of interactive scene exploration. In the context of
our task, distinct objects may necessitate distinct exploration
strategies. While humans can easily discern the most suit-
able skill to apply (e.g., picking up the top Matryoshka doll
to inspect its contents), achieving such decisions through
heuristic-based methods is challenging. The utilization of a
Large Multi-Modal Model (LMM), such as GPT-4V [91, 92],
shows instrumental in addressing this difficulty, as it captures
commonsense knowledge that facilitates decision-making.

The LMM brings commonsense knowledge to our
decision-making process and serves in two pivotal roles.
Firstly, it functions as an action proposer. Given the current
digital environment from the memory module, GPT-4V is
tasked with selecting the appropriate skill for unexplored
objects in our system. For instance, when presented with

a visual prompt of an object within a green bounding box
from various viewpoints, GPT-4V can discern the suitable
“pick up” skill for the Matryoshka doll in the environment.
For unexplored objects, our ACSG includes the attribute of
whether each object node is explored or unexplored. GPT-4V,
in its role as the proposer, also functions to assess whether
the object holds value for further exploration. If not, the
corresponding node is marked as explored, indicating that
no further actions are needed.

Secondly, the LMM also serves as the action verifier. For
the proposer role, it analyzes the object-centric attributes
and doesn’t consider surrounding information when choos-
ing the proper skill. For example, if the proposed action
involves opening a door, the proposer alone may struggle
with cases where obstructions exist in front of the door (e.g.,
a condiment bottle). To address this, we use another LMM
program to verify the feasibility of the action and identify
any objects in the scene that may impede the action based
on information from our ACSG.

In summary, the decision module, with its dual roles,
effectively guides our system to choose efficient actions that
minimize uncertainty in the environment and successfully
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Figure 5. Qualitative Results on Different Scenarios. We visualize the interactive exploration process and the corresponding constructed
ACSG. (a) This scenario involves a tabletop environment with two articulated objects, accompanied by additional items either on the table
or concealed in storage space. The constructed scene graph demonstrates the success of our system in identifying all objects within the
environment through a series of physical interactions. (b) This scenario includes nested objects, five Matryoshka dolls, with only the top one
being directly observable. Our system autonomously decides to explore the contents through a recursive reasoning process, showcasing
its ability to construct deep ACSG. (c) This scenario involves a fabric covering a mouse, showcasing exploration scenarios that involve a
deformable object. Our system interacts with the fabric and successfully uncovers what lies beneath it.

locate all relevant objects.

Action Module. In the action module (Fig. 3d), our
primary focus is on autonomously constructing the ACSG
through effective and efficient interaction with the environ-
ment. We employ heuristic-based action primitives within
our action module, leveraging the geometry cues in our
ACSG. These primitives encompass seven categories: “open
the door”, “open the drawer”, “close the door”, “close the
drawer”, “pick object to idle space”, “pick back object”,
“move wrist camera to position”. Strategic utilization of
these skills plays a pivotal role in accomplishing intricate
tasks seamlessly within our system (more details in the Ap-
pendix).

5. Experiments

In this section, we assess the performance of our system
across a variety of tabletop scenarios in the interactive scene
exploration setting. Our primary objective is to address two
key questions through experiments: 1) How does our system
effectively and efficiently deal with diverse exploration sce-
narios and successfully construct comprehensive ACSG? 2)
What is the utility of our ACSG in facilitating downstream
tasks?

5.1. Interactive Exploration and Scene Graph
Building

To assess our system’s efficacy across various exploration
scenarios, we compared it with a strong baseline by augment-



ing GPT-4V with ground truth actions. We designed five
types of experiments, each with 10 different settings varying
in object number, type, and layout. Our quantitative analysis
reveals that our RoboEXP system consistently surpasses the
baseline across various tasks. Furthermore, we validate the
performance of our system in constructing ACSG through
qualitative demonstrations. Check the Appendix and our
supplementary video for more details.

Evaluation. To thoroughly assess the efficacy of our sys-
tem compared to the baseline, we have designed five key met-
rics (Success, Object Recovery, State Recovery, Unexplored
Space, Graph Edit Distance) to measure its performance. It
is crucial to note that the output of our task, represented by
ACSG, aligns precisely with the format of ACSG for our
system. Conversely, for the baseline, we manually construct
ACSG based on its actions and the new observations it un-
covers. Due to the unstructured nature of the raw scene
graph from the baseline, we carefully refine it according to
the observable objects, providing an upper-bound baseline
for comparison during evaluation.

Comparison. The quantitative findings presented in Ta-
ble 1 underscore the superior performance of our system
compared to the baseline method. Our approach showcases
a notable enhancement across all metrics, outperforming the
baseline by a considerable margin. The collective assess-
ment of success rate, object recovery, and unexplored space
metrics unequivocally validates the efficacy of our system in
exploring unfamiliar scenes through interactive processes. It
is essential to highlight that in the case of object recovery, the
baseline method may occasionally choose to randomly open
certain drawers or doors to unveil objects. This randomness
contributes to a seemingly higher object recovery rate for
the baseline, which may not necessarily correlate with its
overall success. The unexplored space metric shows that our
system is much more stable in exploring all need-to-explore
spaces.

Moreover, both the success rate and graph edit distance
underscore the close alignment of our system with human
actions, highlighting the efficiency of our approach across di-
verse scenarios. The state recovery metric assesses whether
the final state post-exploration resembles the initial state.
Our system consistently shows effective state recovery; how-
ever, the baseline may trick this metric by opting not to
take any action, resulting in an artificially high score in this
aspect.

Fig. 4a provides additional insights, illustrating that as
the number of actions increases, so does the number of
objects. Specifically, we present the ground truth object
number alongside the directly-observable object number that
can be represented by the traditional 3D scene graph. These
results underscore our system’s ability to achieve robust and
efficient exploration throughout the exploration process. Our
system excels in efficiently discovering all concealed objects,

whereas the baseline fails either due to a lack of early-stage
actions or an inability to explore all need-to-explore spaces
even upon completion. The analysis of errors (Fig. 4b) in
both our system and the baseline reveals the specific failure
cases encountered by the baselines. In contrast, our system
demonstrates enhanced robustness in both perception and
decision-making.

Fig. 5 further illustrates various exploration scenarios
along with their corresponding ACSG. These scenarios en-
compass ACSG with varying width or depth, highlighting
our system’s adaptive capability across diverse objects such
as rigid, articulated objects, nested objects, and deformable
objects. In addition, the scenario in Fig. 2 shows that our
system is able to deal with the scenario with obstruction.

5.2. Utility of our ACSG

The scenarios depicted in Fig. 1 exemplify the efficacy of
our generated output (ACSG) in manipulation tasks. Con-
sider the table-rearranging scenario: without our ACSG, the
robot struggles to swiftly prepare the table due to the lack of
precise prior knowledge about the location of objects (e.g.,
the fork stored in the top-left drawer of the wooden cabinet).
Beyond comprehensive layout guidance, our ACSG also ad-
dresses a crucial question regarding task feasibility for the
robot. For instance, if there is no spoon in the scene, the
robot recognizes its inability to perform the task and asks for
human help.

In addition to enhancing downstream manipulation tasks,
our ACSG possesses the capability to autonomously adapt
to environmental changes. In the human intervention setting,
our system seamlessly explores newly added components,
such as a cabinet, ensuring continuous adaptability. Check
our Appendix and supplemental video for more details.

6. Conclusion
We introduced RoboEXP, a foundation-model-driven robotic
exploration framework capable of effectively identifying all
objects in a complex scene, both directly observable and
those revealed through interaction. Central to our system is
action-conditioned 3D scene graph, an advanced 3D scene
graph that goes beyond traditional models by explicitly mod-
eling interactive relations between objects. Experiments
have shown RoboEXP’s superior performance in interac-
tive scene exploration across various challenging scenar-
ios, significantly outperforming a strong GPT4V-based base-
line. Notably, the reconstructed action-conditioned 3D scene
graph is crucial for guiding complex downstream manip-
ulation tasks, like preparing breakfast in a mock-kitchen
environment with fridges, cabinets, and drawer sets. Our
system and its action-conditioned scene graph lay the ground-
work for practical robotic deployment in complex settings,
especially in environments like households and offices, facil-
itating their everyday use.
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