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Abstract—In the competitive software development 

industry, effective and superior documentation is a must today. 

Based on complicated AI models, automated code generation 

solves this problem and helps produce documentation easily. 

This work introduces a new approach to automatically 

generating software documentation, focusing on fine-tuning 

sophisticated AI models such as GPT-2 and RoBERTa by 

leveraging a large existing dataset from the GitHub 

CodeSearchNet challenge. The researchers indicate that 

RoBERTa outperforms GPT-2 on both accuracy and loss 

metrics, with an amazing accuracy score of 99.94% vs 74.37% 

for GPT-2. RoBERTa also demonstrates much lower training 

and validation losses to highlight its advantages. Another benefit 

of RoBERTa is its significantly smaller training and validation 

losses (0.010 and 0.002, respectively) than GPT-2 (1.407 and 

1.268). The implication of the above is that quality of 

documentation and more efficient development are achievable 

with AI-driven automated documentation production. 

Keywords—Documentation Generation, Software 

development, Artificial Intelligence (AI), GPT-3, RoBERTa. 

I.   INTRODUCTION 

The process of developing software is difficult and takes 
time. Analysis and coding are its two primary stages [1]. The 
requirements and software system architecture are established 
during the analysis phase. Writing and testing source code to 
satisfy the first phase's requirements takes place during the 
coding phase. System maintenance is typically incorporated 
as an extra stage during the cycle of software development, 
whereas earlier stages can be modified to accommodate 
evolving system user requirements. A flow diagram for 
fundamental software development approach is displayed in 
Fig. 1[1]. 

 
Fig. 1. Fundamental software development approach[1] 

Fig. 1. Three phases, each with several steps, make up this 
example software building model. Compared to the model 
shown in this flowchart, the number of steps and order of 
various software development models are different in real-
world applications.[1]. 

 Within Software Engineering (SE), developers frequently 
attempt to ascertain the purpose and usage of a particular code 
unit (such as a method). It can accomplish this by going 
through the source code documentation. Effective software 
development depends on well-written documentation. 
However, the creation and upkeep of such documentation is 
expensive and time-consuming. Furthermore, documentation 
eventually becomes outdated when the system (i.e., code-
base) is continuously updated or modified.[2]This study only 
focuses on automatically creating code-related 
documentation. Coding documentation needs to be precise, 
succinct, and unambiguous for the benefit of maintenance 
process developers. Source code documentation is a crucial 
procedure for managing and upkeep of software projects. 
Expert human time and effort are always heavily invested in 
the documentation process. There should be no ambiguity, and 
software project documents should be precise and 
straightforward.[3]. 

Many strategies have been investigated in Artificial 
Intelligence (AI) to assist with software development. The 
emergence of AI-driven code generation has sparked a vibrant 
debate in the software development community. This 
technology, which leverages advanced machine learning 
models like[4][5][6][7]OpenAI's GPT-2, RoBERTa, promises 
to transform the traditional coding process.  Automated 
software documentation generation powered by AI holds 
significant promise for revolutionizing development 
productivity by alleviating the burden of manual 
documentation tasks. The AI techniques such as machine 
learning, deep learning as well as the NLP algorithms can go 
through the codebases effectively and extract the information 
which is relevant and also, It can produce intelligible 
documentation automatically. This also reduces the time spent 
on documenting data automatically and enhances data quality, 
accuracy, and integrity, significantly minimising errors and 
inconsistencies. Aside from this, AI-infused documentation 
creation also contributes to the transfer of knowledge and 
collaboration among the team members, hence the higher 
quality of software and development productivity. 

It is widely known that implementing the software 
developers' effective and precise documentation requirements 
is critical and difficult. The highly recent development of 
online work due to problems like the COVID-19 epidemic has 
created an urgent need for technology-based solutions to 
speed up paperwork processing. The  technique aims to meet 
this demand using Artificial Intelligence (AI) to automate 
software documentation production. Integrating powerful AI 
models, like GPT-2 and RoBERTa, revolutionises 
development efficiency by substantially reducing the time and 
effort necessary for  documentation tasks. Unlike traditional 
methodologies, AI-driven methodology provides unparalleled 
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accuracy, consistency, and efficiency, opening up 
opportunities for improved software quality. 

A. Paper Contribution  

The primary contribution of this study to the field of 
artificial intelligence automated software documentation 
production is the application of two prominent AI models, 
GPT-2 and RoBERTa, which were fined-tuned on a dataset 
that  generated by using Python component from the GitHub 
CodeSearchNet Challenge. Considering the aim of boosting 
the project results and enhancing the quality of documents, 
this study trains and estimates the models using the dataset's 
richness and flexibility. Automation of the documentation 
generation process lets developers focus more willingly on 
coding works as well as gives them perfect and correct 
documents which leads to less errors and no human efforts. 
The studies pick up already developed and enhanced models 
and design a system that measures performance through 
accuracy and loss indicators. Overall, this study shows great 
promise for improving software development techniques and 
increasing efficiency through AI-driven automation of 
documentation activities. The following points provide the 
paper contribution of this work: 

• The research uses powerful AI models, such as 
RoBERTa and GPT-2, to automate the process of 
software documentation development. 

• The study assures excellent accuracy and alignment 
with real-world code and documentation patterns by 
fine-tuning these models on a large-scale dataset 
generated from the Python section of the GitHub 
CodeSearchNet Challenge. 

• By minimising manual documentation authoring, 
developers can increase their efficiency and focus 
more on coding and creativity.  

• To increase the quality and consistency of software 
documentation by correctly reading code semantics 
and producing useful documentation, allowing for 
greater understanding and reliability of codebases. 

B. Organization of paper 

The following paper arrange as: Section I provide the 
introduction of the paper with significance, motivation, and 
research contribution, then Section II provide the related work 
on this topic, namely automatic software code document 
generation based on AI models, Next Section III describes the 
methodology for this document generation and Section IV 
discuss the results and discussion of the AI models based on 
accuracy and loss, while last section V provide the conclusion 
and limitation with future work of this paper. 

II.   RELATED WORK 

This section will examine current research on 
automatically creating and evaluating software code 
documents using a variety of tools and methods. 

In Khan and Uddin, (2023), using documentation and 
source code as input, produce code examples using Codex is 
a model built on the GPT-3 architecture and pre-trained on 
computer and natural languages. Based on the initial analysis 
of 40 scikit-learn methods, this methodology produces high-
quality code examples: 82.5% of the code samples 
appropriately addressed the target method and documentation 
(relevance), while 72.5% of the code examples were 

performed correctly (passability). Also discovered that 
passability is further improved from 72.5% to 87.5% by 
including error logs in the input.[8]. 

Nassif et al. (2022) present DScribe, a tool-supported 
method that lets programmers integrate unit test and 
documentation patterns to produce documentation and tests. 
DScribe can automatically generate 97% of tests plus 
documentation for 835 specs, 85% of which were lacking.[9]. 

Moser and Pichler (2021) describe the creation of six tools 
that target various issue domains (like engineering, banking, 
and insurance), programming languages (like COBOL, Java, 
and C), and SE operations (like maintenance and migration). 
They conducted an industry case study to assess the platform's 
efficacy for tool creation. They discussed the findings 
regarding possibilities for reuse, the adoption of novel 
languages, and the application of a general-purpose temporary 
depiction.[10]. 

Khan and Uddin, (2022), used Codex to generate code 
documentation automatically. A model built on the GPT-3 
architecture, Codex has been trained beforehand in both 
programming and natural languages. Codex works better than 
current methods, even in simple configurations like one-shot 
learning (i.e., training with a single example). With six 
different programming languages, Codex gets a total BLEU 
score of 20.6 (an improvement of 11.2% over previous state-
of-the-art methods) [2]. 

Therefore, Xue, (2023), offer methods that will facilitate 
the development of code generators and increase their 
reusability. Use information formatted tree-to-tree mappings 
and apply the "Code Generation by Example" (CGBE) 
concepts. CGBE application to acquire a UML-to-Although 
the Java code generator performs well in terms of training 
dataset size and length[11]. 

Ren et al., (2023), first carry out an empirical investigation 
and list the main issues that LLMs face when managing 
exceptions: try-catch abuse, improper exception handling, and 
incomplete exception handling. The KPC-based technique has 
a great deal of promise to improve the code quality produced 
by LLMs, as evidenced by extensive experimental results. It 
does this by handling exceptions well, achieving impressive 
gains of 109.86% and 578.57% with static assessment 
techniques, and reducing.[12]. 

In Hashemi, Nayebi and Antoniol, (2020), Examine Stack 
Overflow Q&As and categorise machine learning 
documentation Q&As to determine issue kinds, causes, and 
possible documentation changes. Will utilise findings to 
improve on state-of-the-art automated documentation 
generating approaches and expand software functionality 
adoption, summary, and explanations[13].  

In Arthur, (2020), employing the Natural Language 
Generation methodology, this system is able to properly 
provide documentation for a C program in addition to user-
defined and preset methods. According to comparison results, 
small and medium-sized software projects can perform better 
with the suggested system.[3]. 

Idrisov and Schlippe (2024)  evaluate the consistency, 
maintainability, and correctness of program code produced by 
AI and humans. While CodeWhisperer was unable to answer 
any of the 18 challenges, powered by Codex (GPT-3.0), 
demonstrated best performance, solving 9 of the 18 problems 
(50.0%). For seven difficulties (38.9%), BingAI Chat (GPT-
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4.0) produced right program code; for four problems (22.2%), 
ChatGPT (GPT-3.5) and Code Llama (Llama 2); and for just 
one problem (5.6%), StarCoder and InstructCodeT5+. When 
compared to developing the program code from scratch, there 
is a time savings of 8.9% to even 71.3% when only minor code 
changes are required to address the issues raised by 11 AI-
generated erroneous codes (8.7%)[14]. 

In Hu et al., (2022), BLEU, METEOR, ROUGE-L, 
CIDEr, and SPICE methods employ deep learning to generate 
code documentation from massive source code corpora. With 
modest Pearson correlation r approximately 0.7, METEOR 
correlates well to human assessment measures. However, it is 
substantially lower than the connection among annotators 
(with a strong Pearson correlation r around 0.8) and other task 
correlations described in available research.[15]. 

In Sajji, Rhazali and Hadi, (2023), automates class 
diagram generation from source code using Graph Neural 
Networks (GNNs), an ML technique, in Model Driven 
Architecture (MDA) and reverse engineering. The suggested 
method shows how GNNs may automate class diagram 
creation and improve software development as well as 
documentation[16]. 

The research on automatic software code document 
generation covers methods like NLP-based source code 
summarization, API documentation systems, tools for reverse 
engineering, model-driven development methodologies, 
GPT-3-based code example generation, and tools for API 
documentation systems. These studies present a variety of 
strategies meant to raise the correctness and efficiency of code 
documentation procedures. 

III.   METHODOLOGY 

The approach for AI-Driven Automated Software 
Documentation Generation for Enhanced Development 
Productivity makes use of a large-scale dataset, notably the 
Python portion of the CodeSearchNet Challenge dataset on 
GitHub, which contains 2 million (comment, code) 
combinations. This dataset was selected because it is widely 
used in source code and natural language processing studies. 
Preprocessing included auto-formatting in accordance with 
the PEP-8 Python style guide, as well as deleting the majority 
of code comments. Artificial intelligence was used to fine-
tune pre-trained models, such as RoBERTa, and GPT-2, on 
the CodeSearchNet dataset. Tokenization approaches were 
implemented using Google SentencePiece, which replaced the 
default Spacy tokenizer. Training made use of the FastAI 
package, which included techniques such as automated 
learning rate determination via lr_find and one-cycle policy 
(fit_one_cycle) to speed up convergence. Model fine-tuning 
entailed training on top of previously learned models, 
followed by unfreezing and prolonged training epochs. 
Additional training information and software specs are 
available in the related repository and FastAI documentation. 
To assess the accuracy and train/validation loss of AI models. 

A. Data Collection 

This study uses the Python part of the 2 million (comment, 
Python code) pairings in the GitHub CodeSearchNet 
Challenge dataset.1that are drawn from public libraries; this 
dataset was chosen because of its importance to NLP and 
source code study. It contains a wide range of Python code 

                                                           
1 https://github.com/github/CodeSearchNet 

samples and comments, giving adequate data for training and 
assessment.  

B. Data Preprocessing 

A number of preprocessing procedures were carried out 
before the data was fed into the models. This involved using 
the autopep8 tool for automatic formatting in accordance with 
the PEP-8 Python style guide and deleting code comments. 
The preprocessing will make it possible to standardize the 
format of the code snippets and comment out noises, preparing 
better input for the models. 

In addition to auto-formatting and removing code 
comments rendering to PEP-8 Python style guide, 
preprocessing steps for AI-driven automated software 
documentation generation project include tokenisation using 
Google SentencePiece for subword tokenisation, noise 
removal to eliminate extraneous characters and symbols, 
standardisation of code snippet formats, handling special 
tokens within the code or comments, and data augmentation 
techniques to enrich the training data. These steps collectively 
ensure the input data is clean, standardised, and conducive to 
effective model training for generating accurate and coherent 
software documentation. 

C. Model Selection 

For investigation, AI-based models were chosen: mention 
some wake-sleep models, Transformer architectures—like 
GPT-2—and the ones under the umbrella of RoBERTa. 
[17]Transformer-style topologies are used, which offer stable 
performance in NLP jobs that include generating text and 
filling in the blanks. To adapt to the specific job of code 
documentation, the models were further enhanced after pre-
training them on huge English text corpora. 

1) AI-Based GPT-2 and RoBERTa Models: The 

following section provide the AI-based GPT-2 and RoBERTa 

Models for document generation.  

a) GPT-2 model[18]: The study "Improving Language 
Understanding through Generative Pre-Training" by OpenAI 
introduced the Generative Pre-trained Transformer (GPT) 
model. According to the authors' publication titled "Language 
Models are Unsupervised Multitask Learners," OpenAI 
unveiled the GPT-2 model after attaining this critical 
juncture. These models have made a major contribution to the 
field of NLP and have drawn a lot of interest due to their 
capacity for producing and interpreting language. Though 
GPT-2 employs a larger dataset for tests, the GPT and GPT-
2 have similar structures. There is an abundance of training 
data for GPT-2.  With up to 1.5 billion parameters, OpenAI's 
GPT-2 was released. Consequently, GPT-2's pre-training 
architectural options are limited and cannot properly integrate 
context.[19]. 

b) RoBERTa model[20]: The RoBERTa model is a 
substantially enhanced BERT pretraining methodology. 
While the RoBERTa and BERT models have little 
differences in structure, the pre-training approaches have 
been altered. The RoBERTa model surpasses the BERT 
model regarding training data, batch size, and parameter 
values. Additionally, BERT's training methodology differs 
from prior language representation models since it integrates 
the Masked Language Model (MLM) and Next Sentence 
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Prediction (NSP) techniques. Furthermore, the RoBERTa 
model employs distinct pre-training techniques. Initially, the 
NSP duty is removed. It also makes use of dynamic masks. 
During data preprocessing, a static mask is given to the BERT 
model. Dynamic masks are used in the RoBERTa model, 
where several mask modalities are utilized in various data 
sequences. By using this technique, the RoBERTa model may 
be trained on a vast quantity of data to learn various masking 
techniques for various language forms.[19]. In Fig. 2, the 
RoBERTa model has been organised to transform words into 
low-dimensional vectors, record text semantic information 
with the 12-layer transformer, as well as output trained 
sentence and character vectors via the RoBERTa model. This 
equation generates text embedding discussed as (1): 

�� = ������_�	

+ ���
_�	


+ �����	�′ … … … ..        (1) 

Et indicates the embedding representation of the t-th 
character, Etoken_emb represents the token embedding of the 
character, Eseg_emb provides the segment embedding of the 
character, as well as Epos_emb defines the position 
embedding of the character. 

 
Fig. 2. The model of RoBERTa[21]. 

Subsequently, the RoBERTa model's middle layer 
receives the embedding representation and uses an encoder 
within the 12-layer transformers to extract semantic data. The 
multi-head attention system, comprised of many self-attention 
layers, is a crucial component in the transformer. The dot 
product of attention determines the equivalent output of a 
single self-attention process; therefore, merging all heads 
yields multiple self-attention. The computation for multi-head 
attention can be obtained by using a linear transformation. 

Lastly, the following equations may derive self-attention 
and multi-head attention in (2) and (3): 

ℎ���� = ��������� ����
� , ���

� ,  ��
!" … .         (2) 

#$%��&���'�, �,  ( =
 )��*��'ℎ���+, ℎ���,, … … … … . . , ℎ���-(�. …    

(3) 

Q, K, and V are the input vectors to the attention 
mechanism, while WO, WQi, WKi, and WVi are its weight 
matrices. 

Lastly, the RoBERTa model's output layer includes a 
sentence vector (CLS) that includes global semantic and 
contextual data. This data may be used to check whether the 
candidate item's short text and descriptive text have identical 
semantic contexts. 

D. Fine-Tuned of AI models 

Model selection for GPT-2 and RoBERTa involves 
understanding their architectural differences and the fine-
tuning process crucial for adapting them to specific tasks like 
document generation. It is used the AI pre-trained models to 
refine the models for the chosen tasks with the help of the 
CodeSearchNet dataset on GitHub. It is used 30 epochs for 
fine-tuning both models since, as discovered throughout 
experiments, that's when every model generated its most 
noticeable improvement. In a similar vein, spent 10 epochs 
honing the transformers before calling it quits. Fine-tuning 
typically the involves adjusting hyperparameters and 
employing specific training strategies to optimize model 
performance. For GPT-2, hyperparameters like number of 
epochs 10 to 30 and Average Stochastic Gradient Descent 
(ASGD) optimizer. At the same time, after 10 epochs of fine-
tuning the models, the Transformer networks were trained for 
one epoch to match the head. It is also possible to use methods 
like domain-specific data augmentation and transfer learning 
from models that have been trained Similarly, for RoBERTa, 
fine-tuning involves hyperparameters. Techniques such as 
dynamic masking and multi-task learning can also enhance 
model performance. 

E. Model Evaluation 

To check how the models handle the performance-in-
documentation-generation the models were evaluated in terms 
of accuracy for produced documentation and the 
training/validation loss to measure the learning dynamics and 
the possibility of overfitting. 

The research validates itself by filling the gap of efficient 
and accurate documentary software in the software 
development sector where remote work is increasingly 
common. Furthermore, the proposed method employs AI 
models, such as GPT-2 and RoBERTa, to automatically 
generate documentation. In this way, the method saves time 
and effort and guarantees high quality. The stringent 
experimental procedures and analysis validate the approach 
and further increase the development process while improving 
documentation quality. 

IV.   RESULTS ANALYSIS  

The results achieved through machines learning training 
comprehensively for the chosen AIs such as GPT-2, 
RoBERTa on CodeSearchNet Challenge dataset. These two 
AI models show their performance in terms of accuracy, 
training, and validation loss. 

A. Accuracy  

The percentage of correctly predicted cases among all the 
examples in the dataset is known as accuracy, calculated as 
equation 4. The Accuracy of code documentation is 
determined by the number of clear documents that explain the 
purpose or meaning of a given snippet with related code. It 
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offers a broad indicator of how well the model interprets the 
intended meaning of code. 

Accuracy = 56 7 58

56 7 58 7 98 7 96
… …                     (4) 

To conduct the measurements, this has employed four 
variables: “true negative (TN), false negative (FN), true 
positive (TP), and false positive (FP)”. These variables can be 
measured as follows using target and prediction matrices:  

i) TP: forecast positive and it’s true. 
ii) TN: forecast negative and it’s true. 
iii) FN: forecast negative and it’s false. 
iv) FP: forecast positive and it’s false. 

Training and Validation Loss: Loss functions are used in 
training and validation to quantify the difference between the 
values in a dataset that are expected to be there and the actual 
values. Within the framework of training a model, loss is 
computed at each training iteration and utilised to adjust the 
model's parameters in order to reduce errors. The error on 
training dataset is represented by training loss, and error on a 
different validation dataset is measured by validation loss.  

The following Table I shows the performance of both 
models, with train and validation losses of 1.40% and 1.26% 
with the GPT-2 model and RoBERTa training loss of 0.010 
and validation loss of 0.002%, respectively. Also, the 
RoBERTa model achieved 99% accuracy, while GPT-2 
achieved only 74% accuracy.  

TABLE I.  COMPARISON BETWEEN BOTH AI-BASED MODELS FOR 

DOCUMENT GENERATION  

Models Accuracy Train Loss Validation Loss 

GPT-2 74.37 1.407 1.268 

RoBERTa 99.94 0.010 0.002 

 
Fig. 3. Bar graph of accuracy performance 

Fig. 3 compares the accuracy performance of two artificial 
intelligence (AI) models for document generation: GPT-2 and 
RoBERTa. The graph shows that RoBERTa greatly beats 
GPT-2 in terms of accuracy, with a stated accuracy of 99.94% 
vs GPT-2's 74.37%. This suggests that RoBERTa is better 
capable of producing documents with more adherence to 
intended content or context than GPT-2. 

 
Fig. 4. Bar graph of train and validation loss performance 

Fig. 4 represents the combined training success and 
validation loss performance of both models. The RoBERTa 
has considerably small value of loss with a training loss of 
0.010 and the validation loss of 0.002, which show that the 
model of training having improved end convergence and 
better generalization to new data. On the contrary, GPT-2 
shows bigger losses with 1.268 and 1.407 the validation and 
the training, so the performance needs improvement and a 
higher caution against the overfitting. 

On average, these figures explain that RoBERTa beats 
GPT-2 in terms of accuracy and loss, and hence, RoBERTa 
would be the perfect AI-driven auto software documentation 
generator to enhance productivity during production since 
RoBERTa features higher precision and its capability to 
generalize much better than GPT-2. 

B. Comparative Analysis 

The following table II shows the accuracy comparison 
between various AI models (GPT-2[17], CodeNet [22] and 
RoBERTa) for code generation. 

TABLE II.  ACUURACY COMPARISON BETWEEN AI-BASED MODELS 

FOR DOCUMENT GENERATION  

Models Accuracy (%) 

GPT-2 74.37 

CodeNet 98.5 

RoBERTa 99.94 

 
Fig. 5. Bar graph of Accuracy comparison between AI models 

There are noticeable differences in the performance of AI-
based models used for generating automated software 
documentation, shows in Fig. 5. GPT-2 achieves a reasonable 
accuracy of 74.37%, however CodeNet surpasses it greatly 
with an impressive accuracy of 98.5%. RoBERTa 
demonstrates excellent accuracy of 99.94%, highlighting its 
ability to understand complex software environments. 
RoBERTa's potential to revolutionise automated 
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documentation processes is shown by this comparison. It 
provides developers with extremely accurate and contextually 
appropriate documentation, considerably improving 
development efficiency. 

C. Discussion  

The research involves applying big data analytics and 
sophisticated AI models like GPT-2 and RoBERTa to 
automated software documentation creation. Gaining from the 
remote work increase, the project proposes enhancing the 
software documenting with proper data pretreatment and a 
good model choice. The results provide a great insight into the 
efficiency differences of the models. The high accuracy of a 
Roberta 99.94% also outperforms that of a GPT-2, whose 
score is 74.37%. RoBERTa also minimizes training and 
validation losses according to which convergence efficiency 
gets enhanced and generalisation improves. As opposed to 
BERT, Robert is more precise and adjusts to disparate facts, 
which is why it will be more suitable for software 
documentation. Unlike GPT-2 and CodeNet, which have an 
excellent 98.5% correct predictions, RoBERTa performs 
better and beats them. It demonstrates that the RoBERTa 
algorithm can revolutionize documentation automation by 
giving developers the highly accurate and contextually 
relevant documentation thus increasing the development 
productivity. It would be worth mentioning that this study's 
focus on the Python code and the comments does not present 
other software development contexts. Although RoBERTa 
produces good results, more study can be useful to train it 
better and make it easier to work across different 
environments. The tests resulted in the fact that RoBERTa can 
change software documentation creation since it gives 
developers a very strong tool to apply to process optimization 
and improve productivity. Developers can augment their 
software documentation work by employing adequate AI 
model such as RoBERTa, improving software development 
procedures. 

V. CONCLUSION  AND FUTURE WORK  

This uses GPT-2 and RoBERTa as AI models to generate 
the software documentation automatically, so trying to fill the 
vacancy of ensuring efficient and correct documentation in the 
modern software creation. Rigorous experimentation and 
analysis were performed on these models initially and the 
performance of each model was evaluated after being trained 
on a large-scale dataset from the GitHub CodeSearchNet 
Challenge. The performance of RoBERTa over GPT-2 is 
proven: its accuracy (99.94%) very close to the perfect, and 
the training and validation loss metrics nearly two times 
lower. This is evidence of the effectiveness of the production 
practice of RoBERTa by creating documentation aligned with 
the code patterns existing in the real world to increase 
productivity and quality of code development. With the 
research making notable progress in automating 
documentation generation and confirming the excellent 
performance of RoBERTa, it is still necessary to look farther 
to deal with complex code structures and provide the model 
with the generalist characteristic. In the future, it is imperative 
to continue improving the accuracy of existing models and 
assessment techniques so that AI-assisted documentation 
generation can fulfil its promise of improving software 
development practices and quality. 
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