
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/384543547

Al-Driven Automated Software Documentation Generation for Enhanced

Development Productivity

Conference Paper · July 2024

DOI: 10.1109/ICDSNS62112.2024.10691221

CITATIONS

0
READS

33

3 authors:

Sunil Raj Thota

Amazon

11 PUBLICATIONS 48 CITATIONS

SEE PROFILE

Saransh Arora

Amazon Web Services

11 PUBLICATIONS 45 CITATIONS

SEE PROFILE

Sandeep Gupta

Samrat Ashok Technological Institute

30 PUBLICATIONS 243 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sunil Raj Thota on 03 November 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/384543547_Al-Driven_Automated_Software_Documentation_Generation_for_Enhanced_Development_Productivity?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/384543547_Al-Driven_Automated_Software_Documentation_Generation_for_Enhanced_Development_Productivity?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sunil-Raj-Thota?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sunil-Raj-Thota?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Amazon?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sunil-Raj-Thota?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saransh-Arora-4?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saransh-Arora-4?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Saransh-Arora-4?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandeep-Gupta-117?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandeep-Gupta-117?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Samrat-Ashok-Technological-Institute?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sandeep-Gupta-117?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sunil-Raj-Thota?enrichId=rgreq-3cb455d3d9c2f0e20256f2cbdeff1f67-XXX&enrichSource=Y292ZXJQYWdlOzM4NDU0MzU0NztBUzoxMTQzMTI4MTI4ODMyNzcxNUAxNzMwNjczNTY4MjU1&el=1_x_10&_esc=publicationCoverPdf

2024 International Conference on Data Science and Network Security (ICDSNS)

979-8-3503-7311-0/24/$31.00 ©2024 IEEE

Al-Driven Automated Software Documentation
Generation for Enhanced Development Productivity

1st Sunil Raj Thota
Technology, Engineering

Andhra University

Visakhapatnam, India
thotasunilraj@gmail.com

2nd Saransh Arora
Jaypee Institute of information

Technology

Noida, India
saransha.1994@gmail.com

3rd Sandeep Gupta
Techieshubhdeep it Solutions Pvt. Ltd,

Gwalior, India
ceo.techies@gmail.com

Abstract—In the competitive software development

industry, effective and superior documentation is a must today.

Based on complicated AI models, automated code generation

solves this problem and helps produce documentation easily.

This work introduces a new approach to automatically

generating software documentation, focusing on fine-tuning

sophisticated AI models such as GPT-2 and RoBERTa by

leveraging a large existing dataset from the GitHub

CodeSearchNet challenge. The researchers indicate that

RoBERTa outperforms GPT-2 on both accuracy and loss

metrics, with an amazing accuracy score of 99.94% vs 74.37%

for GPT-2. RoBERTa also demonstrates much lower training

and validation losses to highlight its advantages. Another benefit

of RoBERTa is its significantly smaller training and validation

losses (0.010 and 0.002, respectively) than GPT-2 (1.407 and

1.268). The implication of the above is that quality of

documentation and more efficient development are achievable

with AI-driven automated documentation production.

Keywords—Documentation Generation, Software

development, Artificial Intelligence (AI), GPT-3, RoBERTa.

I. INTRODUCTION

The process of developing software is difficult and takes
time. Analysis and coding are its two primary stages [1]. The
requirements and software system architecture are established
during the analysis phase. Writing and testing source code to
satisfy the first phase's requirements takes place during the
coding phase. System maintenance is typically incorporated
as an extra stage during the cycle of software development,
whereas earlier stages can be modified to accommodate
evolving system user requirements. A flow diagram for
fundamental software development approach is displayed in
Fig. 1[1].

Fig. 1. Fundamental software development approach[1]

Fig. 1. Three phases, each with several steps, make up this
example software building model. Compared to the model
shown in this flowchart, the number of steps and order of
various software development models are different in real-
world applications.[1].

 Within Software Engineering (SE), developers frequently
attempt to ascertain the purpose and usage of a particular code
unit (such as a method). It can accomplish this by going
through the source code documentation. Effective software
development depends on well-written documentation.
However, the creation and upkeep of such documentation is
expensive and time-consuming. Furthermore, documentation
eventually becomes outdated when the system (i.e., code-
base) is continuously updated or modified.[2]This study only
focuses on automatically creating code-related
documentation. Coding documentation needs to be precise,
succinct, and unambiguous for the benefit of maintenance
process developers. Source code documentation is a crucial
procedure for managing and upkeep of software projects.
Expert human time and effort are always heavily invested in
the documentation process. There should be no ambiguity, and
software project documents should be precise and
straightforward.[3].

Many strategies have been investigated in Artificial
Intelligence (AI) to assist with software development. The
emergence of AI-driven code generation has sparked a vibrant
debate in the software development community. This
technology, which leverages advanced machine learning
models like[4][5][6][7]OpenAI's GPT-2, RoBERTa, promises
to transform the traditional coding process. Automated
software documentation generation powered by AI holds
significant promise for revolutionizing development
productivity by alleviating the burden of manual
documentation tasks. The AI techniques such as machine
learning, deep learning as well as the NLP algorithms can go
through the codebases effectively and extract the information
which is relevant and also, It can produce intelligible
documentation automatically. This also reduces the time spent
on documenting data automatically and enhances data quality,
accuracy, and integrity, significantly minimising errors and
inconsistencies. Aside from this, AI-infused documentation
creation also contributes to the transfer of knowledge and
collaboration among the team members, hence the higher
quality of software and development productivity.

It is widely known that implementing the software
developers' effective and precise documentation requirements
is critical and difficult. The highly recent development of
online work due to problems like the COVID-19 epidemic has
created an urgent need for technology-based solutions to
speed up paperwork processing. The technique aims to meet
this demand using Artificial Intelligence (AI) to automate
software documentation production. Integrating powerful AI
models, like GPT-2 and RoBERTa, revolutionises
development efficiency by substantially reducing the time and
effort necessary for documentation tasks. Unlike traditional
methodologies, AI-driven methodology provides unparalleled

20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

Sc
ie

nc
e

an
d

N
et

w
or

k
Se

cu
rit

y
(IC

DS
N

S)
 |

 9
79

-8
-3

50
3-

73
11

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DS
N

S6
21

12
.2

02
4.

10
69

12
21

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

accuracy, consistency, and efficiency, opening up
opportunities for improved software quality.

A. Paper Contribution

The primary contribution of this study to the field of
artificial intelligence automated software documentation
production is the application of two prominent AI models,
GPT-2 and RoBERTa, which were fined-tuned on a dataset
that generated by using Python component from the GitHub
CodeSearchNet Challenge. Considering the aim of boosting
the project results and enhancing the quality of documents,
this study trains and estimates the models using the dataset's
richness and flexibility. Automation of the documentation
generation process lets developers focus more willingly on
coding works as well as gives them perfect and correct
documents which leads to less errors and no human efforts.
The studies pick up already developed and enhanced models
and design a system that measures performance through
accuracy and loss indicators. Overall, this study shows great
promise for improving software development techniques and
increasing efficiency through AI-driven automation of
documentation activities. The following points provide the
paper contribution of this work:

• The research uses powerful AI models, such as
RoBERTa and GPT-2, to automate the process of
software documentation development.

• The study assures excellent accuracy and alignment
with real-world code and documentation patterns by
fine-tuning these models on a large-scale dataset
generated from the Python section of the GitHub
CodeSearchNet Challenge.

• By minimising manual documentation authoring,
developers can increase their efficiency and focus
more on coding and creativity.

• To increase the quality and consistency of software
documentation by correctly reading code semantics
and producing useful documentation, allowing for
greater understanding and reliability of codebases.

B. Organization of paper

The following paper arrange as: Section I provide the
introduction of the paper with significance, motivation, and
research contribution, then Section II provide the related work
on this topic, namely automatic software code document
generation based on AI models, Next Section III describes the
methodology for this document generation and Section IV
discuss the results and discussion of the AI models based on
accuracy and loss, while last section V provide the conclusion
and limitation with future work of this paper.

II. RELATED WORK

This section will examine current research on
automatically creating and evaluating software code
documents using a variety of tools and methods.

In Khan and Uddin, (2023), using documentation and
source code as input, produce code examples using Codex is
a model built on the GPT-3 architecture and pre-trained on
computer and natural languages. Based on the initial analysis
of 40 scikit-learn methods, this methodology produces high-
quality code examples: 82.5% of the code samples
appropriately addressed the target method and documentation
(relevance), while 72.5% of the code examples were

performed correctly (passability). Also discovered that
passability is further improved from 72.5% to 87.5% by
including error logs in the input.[8].

Nassif et al. (2022) present DScribe, a tool-supported
method that lets programmers integrate unit test and
documentation patterns to produce documentation and tests.
DScribe can automatically generate 97% of tests plus
documentation for 835 specs, 85% of which were lacking.[9].

Moser and Pichler (2021) describe the creation of six tools
that target various issue domains (like engineering, banking,
and insurance), programming languages (like COBOL, Java,
and C), and SE operations (like maintenance and migration).
They conducted an industry case study to assess the platform's
efficacy for tool creation. They discussed the findings
regarding possibilities for reuse, the adoption of novel
languages, and the application of a general-purpose temporary
depiction.[10].

Khan and Uddin, (2022), used Codex to generate code
documentation automatically. A model built on the GPT-3
architecture, Codex has been trained beforehand in both
programming and natural languages. Codex works better than
current methods, even in simple configurations like one-shot
learning (i.e., training with a single example). With six
different programming languages, Codex gets a total BLEU
score of 20.6 (an improvement of 11.2% over previous state-
of-the-art methods) [2].

Therefore, Xue, (2023), offer methods that will facilitate
the development of code generators and increase their
reusability. Use information formatted tree-to-tree mappings
and apply the "Code Generation by Example" (CGBE)
concepts. CGBE application to acquire a UML-to-Although
the Java code generator performs well in terms of training
dataset size and length[11].

Ren et al., (2023), first carry out an empirical investigation
and list the main issues that LLMs face when managing
exceptions: try-catch abuse, improper exception handling, and
incomplete exception handling. The KPC-based technique has
a great deal of promise to improve the code quality produced
by LLMs, as evidenced by extensive experimental results. It
does this by handling exceptions well, achieving impressive
gains of 109.86% and 578.57% with static assessment
techniques, and reducing.[12].

In Hashemi, Nayebi and Antoniol, (2020), Examine Stack
Overflow Q&As and categorise machine learning
documentation Q&As to determine issue kinds, causes, and
possible documentation changes. Will utilise findings to
improve on state-of-the-art automated documentation
generating approaches and expand software functionality
adoption, summary, and explanations[13].

In Arthur, (2020), employing the Natural Language
Generation methodology, this system is able to properly
provide documentation for a C program in addition to user-
defined and preset methods. According to comparison results,
small and medium-sized software projects can perform better
with the suggested system.[3].

Idrisov and Schlippe (2024) evaluate the consistency,
maintainability, and correctness of program code produced by
AI and humans. While CodeWhisperer was unable to answer
any of the 18 challenges, powered by Codex (GPT-3.0),
demonstrated best performance, solving 9 of the 18 problems
(50.0%). For seven difficulties (38.9%), BingAI Chat (GPT-

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

4.0) produced right program code; for four problems (22.2%),
ChatGPT (GPT-3.5) and Code Llama (Llama 2); and for just
one problem (5.6%), StarCoder and InstructCodeT5+. When
compared to developing the program code from scratch, there
is a time savings of 8.9% to even 71.3% when only minor code
changes are required to address the issues raised by 11 AI-
generated erroneous codes (8.7%)[14].

In Hu et al., (2022), BLEU, METEOR, ROUGE-L,
CIDEr, and SPICE methods employ deep learning to generate
code documentation from massive source code corpora. With
modest Pearson correlation r approximately 0.7, METEOR
correlates well to human assessment measures. However, it is
substantially lower than the connection among annotators
(with a strong Pearson correlation r around 0.8) and other task
correlations described in available research.[15].

In Sajji, Rhazali and Hadi, (2023), automates class
diagram generation from source code using Graph Neural
Networks (GNNs), an ML technique, in Model Driven
Architecture (MDA) and reverse engineering. The suggested
method shows how GNNs may automate class diagram
creation and improve software development as well as
documentation[16].

The research on automatic software code document
generation covers methods like NLP-based source code
summarization, API documentation systems, tools for reverse
engineering, model-driven development methodologies,
GPT-3-based code example generation, and tools for API
documentation systems. These studies present a variety of
strategies meant to raise the correctness and efficiency of code
documentation procedures.

III. METHODOLOGY

The approach for AI-Driven Automated Software
Documentation Generation for Enhanced Development
Productivity makes use of a large-scale dataset, notably the
Python portion of the CodeSearchNet Challenge dataset on
GitHub, which contains 2 million (comment, code)
combinations. This dataset was selected because it is widely
used in source code and natural language processing studies.
Preprocessing included auto-formatting in accordance with
the PEP-8 Python style guide, as well as deleting the majority
of code comments. Artificial intelligence was used to fine-
tune pre-trained models, such as RoBERTa, and GPT-2, on
the CodeSearchNet dataset. Tokenization approaches were
implemented using Google SentencePiece, which replaced the
default Spacy tokenizer. Training made use of the FastAI
package, which included techniques such as automated
learning rate determination via lr_find and one-cycle policy
(fit_one_cycle) to speed up convergence. Model fine-tuning
entailed training on top of previously learned models,
followed by unfreezing and prolonged training epochs.
Additional training information and software specs are
available in the related repository and FastAI documentation.
To assess the accuracy and train/validation loss of AI models.

A. Data Collection

This study uses the Python part of the 2 million (comment,
Python code) pairings in the GitHub CodeSearchNet
Challenge dataset.1that are drawn from public libraries; this
dataset was chosen because of its importance to NLP and
source code study. It contains a wide range of Python code

1 https://github.com/github/CodeSearchNet

samples and comments, giving adequate data for training and
assessment.

B. Data Preprocessing

A number of preprocessing procedures were carried out
before the data was fed into the models. This involved using
the autopep8 tool for automatic formatting in accordance with
the PEP-8 Python style guide and deleting code comments.
The preprocessing will make it possible to standardize the
format of the code snippets and comment out noises, preparing
better input for the models.

In addition to auto-formatting and removing code
comments rendering to PEP-8 Python style guide,
preprocessing steps for AI-driven automated software
documentation generation project include tokenisation using
Google SentencePiece for subword tokenisation, noise
removal to eliminate extraneous characters and symbols,
standardisation of code snippet formats, handling special
tokens within the code or comments, and data augmentation
techniques to enrich the training data. These steps collectively
ensure the input data is clean, standardised, and conducive to
effective model training for generating accurate and coherent
software documentation.

C. Model Selection

For investigation, AI-based models were chosen: mention
some wake-sleep models, Transformer architectures—like
GPT-2—and the ones under the umbrella of RoBERTa.
[17]Transformer-style topologies are used, which offer stable
performance in NLP jobs that include generating text and
filling in the blanks. To adapt to the specific job of code
documentation, the models were further enhanced after pre-
training them on huge English text corpora.

1) AI-Based GPT-2 and RoBERTa Models: The

following section provide the AI-based GPT-2 and RoBERTa

Models for document generation.

a) GPT-2 model[18]: The study "Improving Language
Understanding through Generative Pre-Training" by OpenAI
introduced the Generative Pre-trained Transformer (GPT)
model. According to the authors' publication titled "Language
Models are Unsupervised Multitask Learners," OpenAI
unveiled the GPT-2 model after attaining this critical
juncture. These models have made a major contribution to the
field of NLP and have drawn a lot of interest due to their
capacity for producing and interpreting language. Though
GPT-2 employs a larger dataset for tests, the GPT and GPT-
2 have similar structures. There is an abundance of training
data for GPT-2. With up to 1.5 billion parameters, OpenAI's
GPT-2 was released. Consequently, GPT-2's pre-training
architectural options are limited and cannot properly integrate
context.[19].

b) RoBERTa model[20]: The RoBERTa model is a
substantially enhanced BERT pretraining methodology.
While the RoBERTa and BERT models have little
differences in structure, the pre-training approaches have
been altered. The RoBERTa model surpasses the BERT
model regarding training data, batch size, and parameter
values. Additionally, BERT's training methodology differs
from prior language representation models since it integrates
the Masked Language Model (MLM) and Next Sentence

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

Prediction (NSP) techniques. Furthermore, the RoBERTa
model employs distinct pre-training techniques. Initially, the
NSP duty is removed. It also makes use of dynamic masks.
During data preprocessing, a static mask is given to the BERT
model. Dynamic masks are used in the RoBERTa model,
where several mask modalities are utilized in various data
sequences. By using this technique, the RoBERTa model may
be trained on a vast quantity of data to learn various masking
techniques for various language forms.[19]. In Fig. 2, the
RoBERTa model has been organised to transform words into
low-dimensional vectors, record text semantic information
with the 12-layer transformer, as well as output trained
sentence and character vectors via the RoBERTa model. This
equation generates text embedding discussed as (1):

�� = ������_�	

+ ���
_�	

+ �����	�′ … … … .. (1)

Et indicates the embedding representation of the t-th
character, Etoken_emb represents the token embedding of the
character, Eseg_emb provides the segment embedding of the
character, as well as Epos_emb defines the position
embedding of the character.

Fig. 2. The model of RoBERTa[21].

Subsequently, the RoBERTa model's middle layer
receives the embedding representation and uses an encoder
within the 12-layer transformers to extract semantic data. The
multi-head attention system, comprised of many self-attention
layers, is a crucial component in the transformer. The dot
product of attention determines the equivalent output of a
single self-attention process; therefore, merging all heads
yields multiple self-attention. The computation for multi-head
attention can be obtained by using a linear transformation.

Lastly, the following equations may derive self-attention
and multi-head attention in (2) and (3):

ℎ���� = ��������� ����
� , ���

� , ��
!" … . (2)

#$%��&���'�, �, (=
)��*��'ℎ���+, ℎ���,, … … … … . . , ℎ���-(�. …

(3)

Q, K, and V are the input vectors to the attention
mechanism, while WO, WQi, WKi, and WVi are its weight
matrices.

Lastly, the RoBERTa model's output layer includes a
sentence vector (CLS) that includes global semantic and
contextual data. This data may be used to check whether the
candidate item's short text and descriptive text have identical
semantic contexts.

D. Fine-Tuned of AI models

Model selection for GPT-2 and RoBERTa involves
understanding their architectural differences and the fine-
tuning process crucial for adapting them to specific tasks like
document generation. It is used the AI pre-trained models to
refine the models for the chosen tasks with the help of the
CodeSearchNet dataset on GitHub. It is used 30 epochs for
fine-tuning both models since, as discovered throughout
experiments, that's when every model generated its most
noticeable improvement. In a similar vein, spent 10 epochs
honing the transformers before calling it quits. Fine-tuning
typically the involves adjusting hyperparameters and
employing specific training strategies to optimize model
performance. For GPT-2, hyperparameters like number of
epochs 10 to 30 and Average Stochastic Gradient Descent
(ASGD) optimizer. At the same time, after 10 epochs of fine-
tuning the models, the Transformer networks were trained for
one epoch to match the head. It is also possible to use methods
like domain-specific data augmentation and transfer learning
from models that have been trained Similarly, for RoBERTa,
fine-tuning involves hyperparameters. Techniques such as
dynamic masking and multi-task learning can also enhance
model performance.

E. Model Evaluation

To check how the models handle the performance-in-
documentation-generation the models were evaluated in terms
of accuracy for produced documentation and the
training/validation loss to measure the learning dynamics and
the possibility of overfitting.

The research validates itself by filling the gap of efficient
and accurate documentary software in the software
development sector where remote work is increasingly
common. Furthermore, the proposed method employs AI
models, such as GPT-2 and RoBERTa, to automatically
generate documentation. In this way, the method saves time
and effort and guarantees high quality. The stringent
experimental procedures and analysis validate the approach
and further increase the development process while improving
documentation quality.

IV. RESULTS ANALYSIS

The results achieved through machines learning training
comprehensively for the chosen AIs such as GPT-2,
RoBERTa on CodeSearchNet Challenge dataset. These two
AI models show their performance in terms of accuracy,
training, and validation loss.

A. Accuracy

The percentage of correctly predicted cases among all the
examples in the dataset is known as accuracy, calculated as
equation 4. The Accuracy of code documentation is
determined by the number of clear documents that explain the
purpose or meaning of a given snippet with related code. It

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

offers a broad indicator of how well the model interprets the
intended meaning of code.

Accuracy = 56 7 58

56 7 58 7 98 7 96
… … (4)

To conduct the measurements, this has employed four
variables: “true negative (TN), false negative (FN), true
positive (TP), and false positive (FP)”. These variables can be
measured as follows using target and prediction matrices:

i) TP: forecast positive and it’s true.
ii) TN: forecast negative and it’s true.
iii) FN: forecast negative and it’s false.
iv) FP: forecast positive and it’s false.

Training and Validation Loss: Loss functions are used in
training and validation to quantify the difference between the
values in a dataset that are expected to be there and the actual
values. Within the framework of training a model, loss is
computed at each training iteration and utilised to adjust the
model's parameters in order to reduce errors. The error on
training dataset is represented by training loss, and error on a
different validation dataset is measured by validation loss.

The following Table I shows the performance of both
models, with train and validation losses of 1.40% and 1.26%
with the GPT-2 model and RoBERTa training loss of 0.010
and validation loss of 0.002%, respectively. Also, the
RoBERTa model achieved 99% accuracy, while GPT-2
achieved only 74% accuracy.

TABLE I. COMPARISON BETWEEN BOTH AI-BASED MODELS FOR

DOCUMENT GENERATION

Models Accuracy Train Loss Validation Loss

GPT-2 74.37 1.407 1.268

RoBERTa 99.94 0.010 0.002

Fig. 3. Bar graph of accuracy performance

Fig. 3 compares the accuracy performance of two artificial
intelligence (AI) models for document generation: GPT-2 and
RoBERTa. The graph shows that RoBERTa greatly beats
GPT-2 in terms of accuracy, with a stated accuracy of 99.94%
vs GPT-2's 74.37%. This suggests that RoBERTa is better
capable of producing documents with more adherence to
intended content or context than GPT-2.

Fig. 4. Bar graph of train and validation loss performance

Fig. 4 represents the combined training success and
validation loss performance of both models. The RoBERTa
has considerably small value of loss with a training loss of
0.010 and the validation loss of 0.002, which show that the
model of training having improved end convergence and
better generalization to new data. On the contrary, GPT-2
shows bigger losses with 1.268 and 1.407 the validation and
the training, so the performance needs improvement and a
higher caution against the overfitting.

On average, these figures explain that RoBERTa beats
GPT-2 in terms of accuracy and loss, and hence, RoBERTa
would be the perfect AI-driven auto software documentation
generator to enhance productivity during production since
RoBERTa features higher precision and its capability to
generalize much better than GPT-2.

B. Comparative Analysis

The following table II shows the accuracy comparison
between various AI models (GPT-2[17], CodeNet [22] and
RoBERTa) for code generation.

TABLE II. ACUURACY COMPARISON BETWEEN AI-BASED MODELS

FOR DOCUMENT GENERATION

Models Accuracy (%)

GPT-2 74.37

CodeNet 98.5

RoBERTa 99.94

Fig. 5. Bar graph of Accuracy comparison between AI models

There are noticeable differences in the performance of AI-
based models used for generating automated software
documentation, shows in Fig. 5. GPT-2 achieves a reasonable
accuracy of 74.37%, however CodeNet surpasses it greatly
with an impressive accuracy of 98.5%. RoBERTa
demonstrates excellent accuracy of 99.94%, highlighting its
ability to understand complex software environments.
RoBERTa's potential to revolutionise automated

74.37
99.94

GPT-2 ROBERTA

in
%

AI-Models

Accuracy comparison between different AI-

Models

0

0.5

1

1.5

Train Loss Validation Loss

1.407
1.268

0.01 0.002IN
%

Train and Test comparison between

dif ferent AI-Models

GPT-2 RoBERTa

74.37

98.5 99.94

0

50

100

150

GPT-2 CodeNet RoBERTa

in
%

AI-Based Models

Accuracy (%)

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

documentation processes is shown by this comparison. It
provides developers with extremely accurate and contextually
appropriate documentation, considerably improving
development efficiency.

C. Discussion

The research involves applying big data analytics and
sophisticated AI models like GPT-2 and RoBERTa to
automated software documentation creation. Gaining from the
remote work increase, the project proposes enhancing the
software documenting with proper data pretreatment and a
good model choice. The results provide a great insight into the
efficiency differences of the models. The high accuracy of a
Roberta 99.94% also outperforms that of a GPT-2, whose
score is 74.37%. RoBERTa also minimizes training and
validation losses according to which convergence efficiency
gets enhanced and generalisation improves. As opposed to
BERT, Robert is more precise and adjusts to disparate facts,
which is why it will be more suitable for software
documentation. Unlike GPT-2 and CodeNet, which have an
excellent 98.5% correct predictions, RoBERTa performs
better and beats them. It demonstrates that the RoBERTa
algorithm can revolutionize documentation automation by
giving developers the highly accurate and contextually
relevant documentation thus increasing the development
productivity. It would be worth mentioning that this study's
focus on the Python code and the comments does not present
other software development contexts. Although RoBERTa
produces good results, more study can be useful to train it
better and make it easier to work across different
environments. The tests resulted in the fact that RoBERTa can
change software documentation creation since it gives
developers a very strong tool to apply to process optimization
and improve productivity. Developers can augment their
software documentation work by employing adequate AI
model such as RoBERTa, improving software development
procedures.

V. CONCLUSION AND FUTURE WORK

This uses GPT-2 and RoBERTa as AI models to generate
the software documentation automatically, so trying to fill the
vacancy of ensuring efficient and correct documentation in the
modern software creation. Rigorous experimentation and
analysis were performed on these models initially and the
performance of each model was evaluated after being trained
on a large-scale dataset from the GitHub CodeSearchNet
Challenge. The performance of RoBERTa over GPT-2 is
proven: its accuracy (99.94%) very close to the perfect, and
the training and validation loss metrics nearly two times
lower. This is evidence of the effectiveness of the production
practice of RoBERTa by creating documentation aligned with
the code patterns existing in the real world to increase
productivity and quality of code development. With the
research making notable progress in automating
documentation generation and confirming the excellent
performance of RoBERTa, it is still necessary to look farther
to deal with complex code structures and provide the model
with the generalist characteristic. In the future, it is imperative
to continue improving the accuracy of existing models and
assessment techniques so that AI-assisted documentation
generation can fulfil its promise of improving software
development practices and quality.

REFERENCES

[1] E. Dehaerne, B. Dey, S. Halder, S. De Gendt, and W. Meert, “Code
Generation Using Machine Learning: A Systematic Review,” IEEE
Access. 2022. doi: 10.1109/ACCESS.2022.3196347.

[2] J. Y. Khan and G. Uddin, “Automatic Code Documentation Generation
Using GPT-3,” in ACM International Conference Proceeding Series,
2022. doi: 10.1145/3551349.3559548.

[3] M. P. Arthur, “Automatic Source Code Documentation using Code
Summarization Technique of NLP,” in Procedia Computer Science,
2020. doi: 10.1016/j.procs.2020.04.273.

[4] F. Harrag, M. Dabbah, K. Darwish, and A. Abdelali, “Bert Transformer
model for Detecting Arabic GPT2 Auto-Generated Tweets,” ArXiv,
vol. abs/2101.0, 2021.

[5] A. S. Hassan Younas, Zohaib Ur Rehman Afridi, Kaleem Ullah, Sahib
Gul Afridi, “Development of Photocatalytic Ultrafiltration Membranes
Technology for Enhanced Removal of Carbamazepine: Optimization,
Mechanistic Insights, and Engineering Applications”.

[6] M. Hämäläinen, K. Alnajjar, and T. Poibeau, “Modern French Poetry
Generation with RoBERTa and GPT-2,” Proc. 13th Int. Conf. Comput.
Creat. ICCC 2022, no. Veale 2016, pp. 12–16, 2022.

[7] S. G. Kumar et al., “Chronic Reductive Stress Modifies Ribosomal
Proteins in Nrf2 Transgenic Mouse Hearts,” Free Radic. Biol. Med.,
2022, doi: 10.1016/j.freeradbiomed.2022.10.125.

[8] J. Y. Khan and G. Uddin, “Combining Contexts from Multiple Sources
for Documentation-Specific Code Example Generation,” in
Proceedings - 2023 IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER 2023, 2023. doi:
10.1109/SANER56733.2023.00071.

[9] M. Nassif, A. Hernandez, A. Sridharan, and M. P. Robillard,
“Generating Unit Tests for Documentation,” IEEE Trans. Softw. Eng.,
2022, doi: 10.1109/TSE.2021.3087087.

[10] M. Moser and J. Pichler, “Eknows: Platform for Multi-Language
Reverse Engineering and Documentation Generation,” in Proceedings
- 2021 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2021, 2021. doi:
10.1109/ICSME52107.2021.00057.

[11] Q. Xue, “Automating Code Generation for MDE using Machine
Learning,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion),
2023, pp. 221–223. doi: 10.1109/ICSE-Companion58688.2023.00060.

[12] X. Ren, X. Ye, D. Zhao, Z. Xing, and X. Yang, “From Misuse to
Mastery: Enhancing Code Generation with Knowledge-Driven AI
Chaining,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2023, pp. 976–987. doi:
10.1109/ASE56229.2023.00143.

[13] Y. Hashemi, M. Nayebi, and G. Antoniol, “Documentation of Machine
Learning Software,” in SANER 2020 - Proceedings of the 2020 IEEE
27th International Conference on Software Analysis, Evolution, and
Reengineering, 2020. doi: 10.1109/SANER48275.2020.9054844.

[14] B. Idrisov and T. Schlippe, “Program Code Generation with Generative
AIs,” Algorithms, vol. 17, no. 2, p. 62, 2024, doi: 10.3390/a17020062.

[15] X. Hu, Q. Chen, H. Wang, X. Xia, D. Lo, and T. Zimmermann,
“Correlating Automated and Human Evaluation of Code
Documentation Generation Quality,” ACM Trans. Softw. Eng.
Methodol., 2022, doi: 10.1145/3502853.

[16] A. Sajji, Y. Rhazali, and Y. Hadi, “A methodology of automatic class
diagrams generation from source codeusing Model-Driven
Architecture and Machine Learning to achieve Energy Efficiency,” in
E3S Web of Conferences, 2023. doi: 10.1051/e3sconf/202341201002.

[17] J. Cruz-Benito, S. Vishwakarma, F. Martin-Fernandez, and I. Faro,
“Automated Source Code Generation and Auto-Completion Using
Deep Learning: Comparing and Discussing Current Language Model-
Related Approaches,” AI, 2021, doi: 10.3390/ai2010001.

[18] Radford Alec, Wu Jeffrey, Child Rewon, Luan David, Amodei Dario,
and Sutskever Ilya, “Language Models are Unsupervised Multitask
Learners | Enhanced Reader,” OpenAI Blog, 2019.

[19] H. Zhang and M. O. Shafiq, “Survey of transformers and towards
ensemble learning using transformers for natural language processing,”
J. Big Data, vol. 11, no. 1, p. 25, 2024, doi: 10.1186/s40537-023-
00842-0.

[20] S. V. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis
M, Zettlemoyer L, “RoBERTa: a robustly optimized BERT pretraining
approach,” CoRR, 2019.

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

[21] L. Gao, L. Zhang, L. Zhang, and J. Huang, “RSVN: A RoBERTa
Sentence Vector Normalization Scheme for Short Texts to Extract
Semantic Information,” Appl. Sci., 2022, doi: 10.3390/app122111278.

[22] R. Puri et al., “CodeNet: A Large-Scale AI for Code Dataset for
Learning a Diversity of Coding Tasks,” no. NeurIPS, pp. 1–13, 2021.

Authorized licensed use limited to: Northeastern University. Downloaded on November 03,2024 at 22:37:20 UTC from IEEE Xplore. Restrictions apply.

View publication stats

https://www.researchgate.net/publication/384543547

