
Under review as a conference paper at ICLR 2024

TOWARDS THE UNIVERSAL LEARNING PRINCIPLE FOR
GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are currently highly regarded in graph repre-
sentation learning tasks due to their significant performance. Although various
propagation mechanisms and graph filters were proposed, few works have consid-
ered the convergence and stability of graph filters under infinite-depth scenarios.
To address this problem, we elucidate the criterion for the graph filter formed by
power series and further establish a scalable regularized learning principle, which
can guide us on how to design infinite deep GNN. Following the framework, we
develop Adaptive Power GNN (APGNN), a deep GNN that employs exponentially
decaying weights to aggregate graph information of different orders so as to mine
the deeper neighbor information. Different from existing GNNs, APGNN can
be seamlessly extended to an infinite-depth network. Moreover, we analyze the
generalization of the proposed learning framework via uniform convergence and
present its upper bound in theory. Experimental results show that APGNN obtains
superior performance against the state-of-the-art GNNs.

1 INTRODUCTION

Recently, Graph Neural Networks (GNNs) have shown commendable performance on numerous
graph representation learning tasks. In addition, GNNs have been introduced in a variety of application
tasks, such as recommendation systems (Han et al., 2022; Zorzi et al., 2022; Giuliari et al., 2022),
computer vision (Deng et al., 2022; Pang et al., 2022; He et al., 2020), and traffic forecasting (Guo
et al., 2019; 2021). The fundamental part of GNN is the design of the propagation mechanism or the
graph filter (Xu et al., 2019; Feng et al., 2022; Wang and Zhang, 2022a; He et al., 2021; Sandryhaila
and Moura, 2013a). GNNs can be categorized into two groups based on the approach of formulation.
Spatial-based GNNs design propagation mechanisms through direct aggregation of spatial features.
For instance, Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) aggregate one-hop
information on the graph, Graph Attention Networks (GATs) (Veličković et al., 2018) learns node
relationships using an attention mechanism and GraphSAGE (Hamilton et al., 2017) employs various
pooling operations as aggregation functions.

Spectral-based GNN designs graph filters in graph Fourier domain to discover a proper transformation
of the graph spectrum. For example, ChebNet (Defferrard et al., 2016) constructs the localized graph
filter with Chebyshev polynomial, PPNP (Klicpera et al., 2019) employs Personalized PageRank
to design graph filter and GNN-LF/HF (Zhu et al., 2021) develops the graph filter through a graph
optimization framework. In recent years, there has been a growing interest in the notion of learnable
polynomial graph filters due to their ability to learn proper graph filters to address both heterophilic and
homophilic graphs. Therefore, numerous methods have been proposed utilizing various polynomial
bases such as monomial basis (Chien et al., 2021), Bernstein basis (He et al., 2021) and Jacobi basis
(Wang and Zhang, 2022b).

Although progress has been made, there are still some limitations on the depth of most GNNs. That
is, as the depth approaches infinity, the convergence of graph filters can not be guaranteed. Moreover,
no general rule has been explored in previous research to uncover the construction principle of an
infinite deep GNN. Motivated by the convergence of power series, we explore how to design a
graph filter for constructing an infinite deep GNN. A universal learning principle is then proposed
to summarize the rule for designing a graph filter. With this principle, we propose Adaptive Power
Graph Neural Network (APGNN), which adaptively learns the task-specific graph filter for node

1

Under review as a conference paper at ICLR 2024

MLP+ +

Convolution

Classifier

Observed samples

APGNN

 is converged and Lipschitz

Learning Principle
ideal graph filter

Instantiation

Figure 1: An illustration of the proposed APGNN that adheres to the learning principle. The model
incorporates the decay rate α to suppress the information from high-order neighbors while adaptively
learning bounded coefficients β. Furthermore, it aggregates information with P -hop to perceive the
higher-order neighborhoods. This design enables the seamless extension of APGNN to an infinite
deep network.

representation learning. The main idea of APGNN is depicted in Figure 1. The parameterized graph
filter is designed with regularization of the exponential decay rate, guaranteeing convergence of
the graph filter. A P -hop filter is applied to aggregate high-order neighbor information with fewer
parameters. Furthermore, the generalization bound of the proposed learning principle is presented
with the setting of the continuous graph, which guarantees the generalization ability theoretically.

Our key contributions are summarized as follows: 1) We propose a learning principle with Lip-
schitz constraints and convergence guarantee on graph filters, providing theoretical guidance for
constructing deeper GNN. Following this principle, APGNN is proposed with a graph filter employing
exponentially decaying weights along with the order. 2) To investigate the capacity of the proposed
framework, we present the generalization analysis and give the upper bound of generalization in
theory. 3) Experimental results demonstrate the superiority of the APGNN against the related SOTA
methods, showing the effectiveness of the proposed framework.

2 PRELIMINARIES

Notations. Suppose we have an undirected graph G = (V, E ,A) with node set V and |V| = n.
A ∈ Rn×n denotes the adjacency matrix indicating the edges in E . Assuming that the self-loops are
contained in the graph, i.e., aii = 1. Let X = [x1,x2, · · · ,xn]

⊤ ∈ Rn×d be the graph signals (or
features) of the nodes. We use notation [n] ≜ {1, 2, · · · , n} for n ∈ N+. Assume that the label of xi

is yi ∈ Y for all i ∈ [nl], where nl ≤ n is the number of labeled samples.

Graph Neural Networks. We introduce some essential concepts in GNNs. Let di =
∑n

j=1 Aij

be the degree of i-th node, so the degree matrix of A can be defined as D = diag(d1, d2, · · · , dn).
The symmetrically normalized Laplacian is L = I− Ã, where Ã ≜ D−1/2AD−1/2 is normalized
adjacency matrix. Consider the eigen-decomposition L = UΛU⊤, where Λ = diag(λ1, · · · , λn)
is the diagonal matrix of eigenvalues, and U = [u1, · · · ,un] represents the eigenvectors associated
with the eigenvalues. Note that Ã shares the same eigenvectors with L.

Spectral convolution on graphs is defined as the following transformation (Kipf and Welling, 2017;
Sandryhaila and Moura, 2013b):

g ∗X = Ug(Λ)U⊤X, (1)

where g(·) : [0, 2] 7→ R is called filter function and g(Λ) = diag(g(λ1), · · · , g(λn)). The common
approach in GNNs is to apply polynomial functions as the filters (Kipf and Welling, 2017; He et al.,
2021; Defferrard et al., 2016), which leads to Ug(Λ)U⊤ = g(L). Therefore, spectral convolution is
usually written as g ∗X = g(L)X. The graph representation paradigm in GNN is generally expressed

2

Under review as a conference paper at ICLR 2024

as follows:

Z = g(L)f(X), g(L) =

K∑
k=0

θk(I− L)k, (2)

where Z ∈ Rn×c denotes the node representation, and f(·) represents a feature extractor such as
multi-layer perceptions (MLPs).

3 RELATED WORKS

3.1 LEARNABLE POLYNOMIAL GRAPH FILTER

The establishment of a spectral-based GNN entails the construction of either a fixed graph filter or a
learnable graph filter. In the context of fixed graph filters, PPNP employs Personalised PageRank
to formulate the graph filter. GNN-LF/HF (Zhu et al., 2021) constructs the graph filter through a
graph optimization framework. In terms of the latter construction, GPR-GNN (Chien et al., 2021)
applies Generalized PageRank to define the graph filter, which can be seen as a learnable polynomial
graph filter. Several studies exhibit a similar idea, employing distinct polynomial bases and imposing
different constraints on the coefficients (Defferrard et al., 2016; He et al., 2021; Wang and Zhang,
2022b). These works perform well on both heterophilic and homophilic datasets and also demonstrate
the capability to learn appropriate graph filters. However, they did not specify the general principle
for constructing graph filters approximating infinite depth. Therefore, it is necessary for us to clarify
the universal principle to construct GNNs particularly when the depth approaches infinite.

3.2 GENERALIZATION ANALYSIS ON GNNS

Generalization analysis on GNNs has been extensively studied recently. (Esser et al., 2021) and
(Tang and Liu, 2023) present the generalization with transductive Rademacher complexity on node
classification tasks. Their generalization error is only measured over the testing set. In contrast,
(Cong et al., 2021) analyzes the transductive uniform stability of GNN (this is also related to (Verma
and Zhang, 2019)). Considering the stochastic hypothesis, (Ma et al., 2021) uses PAC-Bayesian
theorem to analyze the subgroup generalization bound of GNN. Moreover, (Li et al., 2022a) and
(Zhang et al., 2023) investigate the generalization guarantee of GNN via topology properties in the
graph. Different from the previous works, we explore the generalization from the perspective of the
continuous graph, which provides the generalization guarantee over the whole sample space.

4 LEARNING PRINCIPLE FOR GNNS

4.1 THE PRINCIPLE OF DEVISING GRAPH FILTERS

Current studies suggest a significant relationship between the performance of GNN and its graph
filter Klicpera et al. (2019); Liu et al. (2020). In general, the general graph filters are characterized
by polynomials associated with the adjacency matrix Ã (or Laplacian matrix L), i.e., g(L) =∑K

k=0 θkÃ
k. However, the existing methods still encounter the issue that the depth of GNN is

limited. The reason for this phenomenon is that these GNNs are inconsistent with their "infinite-
depth" version. That is, the corresponding graph filter can not even converge as the depth K → ∞.
Furthermore, it is also uncertain that the learned graph filter is stable. Consequently, the depth of
the models is restricted. To address this issue, it is necessary to study the properties of GNNs with
infinite depth. Therefore, we explore the graph filter formulated as power series:

g(Ã) =

∞∑
k=0

θkÃ
k =

∞∑
k=0

θk(I− L)k. (3)

First of all, a well-defined graph filter represented as equation (3) must be convergent. Therefore,
it becomes essential to investigate what kind of properties the coefficients θk should have. The
following lemma provides sufficient and necessary conditions for the coefficients of the graph filter.
Lemma 1. Let {ak} and {γk} be the real number sequences, where γ ∈ (−1, 1] and k ∈ N. Then∑∞

k akγ
k converges uniformly and absolutely if and only if the series

∑∞
k ak converges absolutely.

3

Under review as a conference paper at ICLR 2024

As a direct result, the coefficients of the graph filter (i.e., θk) should satisfy the following theorem.

Theorem 1. Let Ã = D−1/2AD−1/2 be the normalized adjacency matrix of a graph G with spectral
radius ∥Ã∥2 ≤ 1. The matrix series

∑∞
k=0 θkÃ

k converges uniformly and absolutely if and only if
the series

∑∞
k=0 θk converges absolutely.

The proofs of Lemma 1 and Theorem 1 are shown in Appendix. Theorem 1 offers a sufficient and
necessary condition for the convergence of graph filters formed by power series. Specifically, the
condition requires the existence of a finite real number M ≥ 0, such that

∥θ∥1 ≜
∞∑
k=0

|θk| ≤ M. (4)

Therefore, an arbitrary graph filter formed by power series should satisfy the above convergence
condition, which gives the first requirement when designing GNN. Apart from convergence, we expect
the graph filter to possess good analytic properties such as stability. To this end, Lipschitz continuity
should be considered as the second requirement of the graph filter. Let g(·) be an L-Lipschitz
continuous function, meaning that

|g(λ)− g(λ′)| ≤ L|λ− λ′|, ∀λ, λ′ ∈ [0, 2). (5)

This property indicates the stability or robustness of the model (Gama et al., 2020; Pauli et al., 2021).
If the graph is contaminated and its eigenvalues are perturbed by at most ϵ, Lipschitz continuity
ensures that the perturbation of the graph-filtered result is at most Lϵ. For instance, considering
g(λ) =

∑∞
k=0(1− λ)k/k2, which is convergent, yet the Lipschitz condition does not satisfy for λ

closed to zero. Therefore, this graph filter might be sensitive to the input graph. Subsequently, we
conclude the following criterion for designing GNN.

Z = gθ(L)f(X), with ∥θ∥1 ≤ M, gθ(·) is a Lipschitz function. (6)

To enhance the scalability of the model, we define θ as a learnable parameter (though its dimension
is infinite). In this way, (6) gives a regularized learning framework for GNN. Therefore, for any
sufficient large K ∈ N+ and the K-order polynomial graph filter gKθ (λ) =

∑K
k=0 θk(1− λ)k, the

condition (6) should be satisfied for some K-inpendent constant M > 0, which keeps the consistency
with its infinitely deep version g∞θ (λ) =

∑∞
k=0 θk(1− λ)k. We will present the applications of this

criterion in the following section, and further analyze its generalization in section 5.

4.2 CONNCECTIONS WITH EXISTING GNNS UNDER THE LEARNING PRINCIPLE

In this subsection, we investigate the relationship between our learning principle and several well-
known Graph Neural Networks (GNNs), focusing on the design of graph filters. Our findings indicate
that these GNNs are all special cases of our learning principle.

PPNP (Klicpera et al., 2019). PPNP uses Personalized PageRank as the graph filter, which balances
the local information preservation and the high-order neighbor information. The model of PPNP is
Z = α(I−(1−α)Ã)−1H = (I+βL)−1H, where H = f(X) is a two-layer MLPs and β = 1/α−1.
Hence, the graph filter of PPNP is gPPNP(L) = (I+ βL)−1. Considering its Taylor series, we have

gPPNP(L) = (I+ βL)−1 =
1

1 + β

∞∑
k=0

(
β

1 + β

)k

Ãk =

∞∑
k=0

θkÃ, (7)

where θk = βk/(1 + β)k+1. It is straightforward to validate that
∑∞

k=0 θk = 1, and thus the
convergence requirement (4) holds. Moreover, the Lipschitz condition is easily verified. Thus
PPNP satisfies the criterion of (6). However, the performance of PPNP is heavily dependent on the
hyperparameter β, which must be carefully tuned to achieve the optimal performance.

DAGNN (Liu et al., 2020). DAGNN adaptively adjusts the weight of information aggregation from
different neighbors to solve the over-smoothing problem. It designs a parameterized graph filter
formulated as a K-order polynomial:

gDAGNN(L) =

K∑
k=0

θkÃ
k, s.t. 0 ≤ θk ≤ 1, (8)

4

Under review as a conference paper at ICLR 2024

where θk is the learnable parameter with bounded constraint. Due to this adaptive learning strategy,
DAGNN is able to learn a graph filter more suitable for node classification. The empirical studies
suggest DAGNN works well with a proper K. However, as K → ∞, the constraint 0 ≤ θk ≤ 1
cannot guarantee the convergence of the graph filter. It indicates that DAGNN is “inconsistent” with
its infinitely deep version. Therefore, it can not be naturally extended to infinity deep GNN.

GPR-GNN (Chien et al., 2021). GPR-GNN introduced truncated Generalized PageRank architecture,
which is equivalent to a K-order polynomial graph filter, for topological information extraction. That
is:

gGPR(L) =

K∑
k=0

θkÃ
k, s.t.

K∑
k=0

θk = 1. (9)

Under this constraint, the learned parameter θk is permitted to have negative values, which allows for
the preservation of relevant high frequencies and enables good performance on heterophilic graph
datasets. When K → ∞, gGPR is converged and the Lipschitz continuity can be verified. Therefore,
GPR-GNN adheres to 6 and can be extended to infinite depth.

4.3 INSTANTIATION: ADAPTIVE POWER GRAPH NEURAL NETWORK

We begin to introduce a novel GNN following the principle proposed in section 4.1, called Adaptive
Power GNN (APGNN). We first consider the following graph filter parameterized by β with the
form:

g∞β (λ) =

∞∑
k=0

βkα
k(1− λ)k, where |βk| ≤ 1, 0 < α < 1, (10)

where the coefficient of the power series θk = βkα
k, with hyper-parameter α ∈ (0, 1) ensuring the

convergence. Immediately, we check the condition of Lemma 1.

∥θ∥1 =

∞∑
k=0

∣∣βkα
k
∣∣ ≤ ∞∑

k=0

αk ≤ 1

1− α
. (11)

Hence, the power series converges on [0, 2] absolutely and uniformly. Similarly, the associated matrix
series g∞β (L) =

∑∞
k=0 βkα

kÃk also converges uniformly and absolutely by Theorem 1. Moreover,
g∞β (·) is α(1− α)−2-Lipschitz. To see this, for any |βk| ≤ 1 and 1− λ ∈ (−1, 1], we have

|∇g∞β (λ)| =

∣∣∣∣∣
∞∑
k=1

kβkα
k(1− λ)k−1

∣∣∣∣∣ ≤
∞∑
k=1

kαk =
α

(1− α)2
, (12)

which implies the Lipschitz continuous property. Thus, this graph filter fits the requirement of the
proposed criterion. However, the model with this graph filter is unavailable in practice as the number
of parameters to be learned is infinite. The K-order truncated polynomial is utilized for substitution,
i.e., gKβ (L) =

∑K
k=0 βkα

kÃk. We evaluate the approximation via the upper bound of K-order
truncation error:

|g∞β (λ)− gKβ (λ)| ≤
∞∑

k=K+1

∣∣βkα
k(1− λ)k

∣∣ ≤ ∞∑
k=K+1

αk =
αK+1

1− α
, (13)

which uniformly holds for ∀λ ∈ [0, 2]. Likewise, the approximation error of matrix series is given by∥∥g∞β (L)− gKβ (L)
∥∥
2
=
∥∥U (g∞β (Λ)− gKβ (Λ)

)
U⊤∥∥

2
= sup

i∈[n]

|g∞β (λi)−gKβ (λi)| ≤
αK+1

1− α
, (14)

where λi denotes the i-th eigenvalue of L. This upper bound is independent of the given graph, which
can be controlled via tuning α and K. The higher K and smaller α yield a better approximation to
the exact graph filter g∞β (·). Nevertheless, the small α tends to limit the capability of the graph filter.
Extremely, α → 0 gives a trivial function gKβ (λ) = β0. This suggests that α should be elaborately
tuned to improve the performance.

Though the aforementioned graph filter is primarily motivated via spectral analysis, we can still
present the spatial view explanation for its design. Existing GNNs aggregate the neighbor information

5

Under review as a conference paper at ICLR 2024

of different hops with certain weights, which could be either manually assigned or learned adaptively.
Typically, methods like GPR-GNN (Chien et al., 2021) and DAGNN (Liu et al., 2020), which can
learn the aggregation weight, tend to treat the neighbor’s information of different hops equally. That
is, the k-layer’s weight are assigned with θk = O(1) for each k ∈ [K]. However, it is shown in
the previous research that the propagation with the very high-order neighbor potentially leads to
the over-smoothing issue (Wu et al., 2019; Rong et al., 2020). The current methods magnify this
flaw of the high-order graph since they cannot distinguish the significance of the information of
different hops. This motivates the design of the decay rate in APGNN, i.e., we employ weights with
exponential decaying rate by assigning θk = O(αk) for some 0 < α < 1. This approach emphasizes
the contribution of lower-order neighbors and restricts the over-weighting of the information from
high-order neighbors due to θk → 0 with k → ∞. Therefore, it provides more effective aggregation
and thus enhances the model’s performance.

Furthermore, we discuss a general formulation of graph filter, i.e, gK,P
β (λ) =

∑K
k=0 βkα

k(1− λ)kP ,
called P -hop filter. It is obvious that it follows the proposed learning principle. Intuitively, the
P -hop filter tends to perceive deeper neighbor information (up to (KP)-th order graph). From the
spectral view, it provides an effective way to reduce the number of parameters K. There exists a
δ > 0 such that all non-zero eigenvalues of L satisfies λi ∈ [δ, 2− δ]. For these eigenvalues we have
|g∞,P

β (λi) − gK,P
β (λi)| < (α(1 − δ)P)K+1/(1 − α), where g∞,P

β (·) = limK→∞ gK,P
β (·). Thus,

we need K ≥ O(P−1 log1−δ ε) to reach the approximation precision ε. Compared with the uniform
bound (13) that implies K ≥ O(log(1/ε)), this result suggests that K can be reduced by increasing
P . Also note that the Lipschitz constant of g∞,P

β (·) is Pα/(1 − α)2. Therefore, P should not be
excessively large to ensure the stability of the graph filter. The empirical studies also demonstrate
that the P -hop filter enhances the performance of APGNN. See section 6.2 for details.

Summarizing the above analysis, we present the following comprehensive architecture of APGNN:

Z = gK,P
β (L)MLP(X), gK,P

β (L) =

K∑
k=0

βkα
kÃkP ,where |βk| ≤ 1, 0 < α < 1. (15)

In short, APGNN incorporates the benefits from the decay rate α that exponentially suppresses the
information of extremely high-order neighbors and the P -hop filter for enlarging the receptive field.
These approaches make it possible to realize a sufficiently deep GNN. The computational complexity
analysis is shown in Appendix.

5 GENERALIZATION ANALYSIS

The previous research focused on discussing the generalization of GNN within the discrete graph
with transductive Rademacher complexity (Cong et al., 2021; Verma and Zhang, 2019). In contrast,
we analyze the uniform generalization bound of the proposed GNN learning principle under the
continuous graph setup.

We first introduce some notations. Denote x ∈ X as any samples from the input space X (we
generally set X as a subset of Rd). Let p(·) be a probability measure defined over X . Assume xj is
the j-th coordinate of x ∈ X and E[x2

j] ≤ c2X for any j ∈ [d], where cX is a constant dependent on
data. To describe the graph relation between each pair (x,x′) over X × X , we define a continuous
graph function A(·, ·) : X × X 7→ R+, and its corresponding degree function is

d(x′) =

∫
X
A(x,x′)dp(x′). (16)

Different from the setting in (Rosasco et al., 2010; Li et al., 2022b), we assume 0 ≤ A(x,x′), and
0 ≤ d(x) for any x,x′ ∈ X . Therefore, we can define the symmetric normalized graph:

Ã(x,x′) =
A(x,x′)√
d(x)d(x′)

. (17)

Then the corresponding normalized Laplacian is L = I − Ã, where I indicates the identity operator
over X . For a graph filter function gθ(λ) =

∑K
k=0 θk(1− λ)k, graph convolution of the continuous

6

Under review as a conference paper at ICLR 2024

graph is defined as the following integral operator:

gθLf =

K∑
k=0

θkÃ
kf, Ãf =

∫
X
Ã(·,x)f(x)dp(x), (18)

where Ãk = Ãk−1 ◦ Ã denotes k-order composition of integral operator with Ã0 = I . Note we have∑K
k=0 θk∥Ã∥ ≤ ∥θ∥1 ≤ M for any K ∈ N, indicating

∑∞
k=0 θkÃ is absolutely summable. This

guarantees the existence of graph filter on the continuous graph when K → ∞. For convenience in
understanding, we provide the analysis on a simplified GNN, where we consider a semi-supervised
learning task with two classes, i.e., yi ∈ Y ≜ {−1, 1}, and utilize linear feature extractor f(X) =
w⊤X. Note that we can still extend our result for f(X) = MLP(X) and multi-class cases using the
techniques proposed in (Bartlett et al., 2017). With the above setting, the hypothesis set over X is
described as

HX = {h : h(x) = gθLf(x), f(x) = ⟨w,x⟩, ∥w∥2 ≤ B, ∥θ∥1 ≤ M}. (19)

However, the integral in each hypothesis h ∈ HX is intractable since the underlying graph function
and the data distribution are unknown. Therefore, we should use the “empirical version” of the
hypothesis to estimate h ∈ HX . For this reason, we introduce the hypothesis set defined over the
observed samples S and graph G:

HS =

h : h(xi) =

n∑
j=1

gθ(L)ijx
⊤
j w, ∥w∥2 ≤ B, ∥θ∥1 ≤ M

 . (20)

Define the generalization error and the empirical error Mohri et al. (2018) as follows

R(h) = E(x,y)[1yh(x)≤0], R̂(h) =
1

nl

nl∑
i=1

min(1,max(0, 1− yih(xi))). (21)

We have the following theorem on the generalization of the proposed learning paradigm.
Theorem 2. Suppose gθ(·) is LM -Lipschitz. Let hw,θ ∈ HX and hw,θ ∈ HS share the same
parameter (w,θ). Then there exists a constant C > 0 related to the graph function, with the
probability at least 1− δ, the following inequality holds.

R(hw,θ) ≲ R̂(ĥw,θ) + 2BMcX

√
2d log(2K + 2)

nl
+BCLMdcX

√
log(2/δ)

n
. (22)

The proof is given by excess risk decomposition, shown in Appendix. The notation "≲" denotes
"less than or approximately equal to the right-hand side" and guarantees an approximation error of

at most O(
√

log(1/τ)
nl

) with a probability of at least 1 − O(τ). We remind readers the important

difference between R(hw,θ) and R̂(ĥw,θ). The former term measures the population error over the
whole input space with the continuous graph filter gθL. In contrast, R̂(ĥw,θ) is the empirical risk
(i.e., training risk) on the sample set S with the discrete graph filter gθ(L). hw,θ shares the same
learning parameter with ĥw,θ . Therefore, the minimization of the right-hand-side of (22) w.r.t (w,θ)
reduces the upper bound of the population error.

We observe the first term of generalization bound is of order O((dn−1
l logK)1/2), which outlines the

model’s complexity. Although it becomes infinity when K → ∞, the growth of this term is extremely
slow as K increases. In practice, we generally set K < n since the neighbor information beyond
n-hops is redundant, restricting the complexity away from infinity. Therefore, the generalization of
the model is rigorously guaranteed for sufficiently large K, which allows us to construct significantly
deep GNN in the proposed principle. In the following proposition, we unveil the generalization of
APGNN as a direct application of Theorem 2.

Proposition 1. Let β ∈ RK and gKβ (λ) =
∑K

k=0 βkα
k(1− λ)k where 0 < α < 1 and ∥β∥∞ ≤ 1.

with the probability at least 1− δ, the following inequality holds.

R(hw,β) ≲ R̂(ĥw,β) +
2BcX (1− αK)

1− α

√
2d log(2K + 2)

nl
+

BCdcXα

(1− α)2

√
log(2/δ)

n
. (23)

7

Under review as a conference paper at ICLR 2024

Table 1: The average accuracy (%) and standard deviation (%) on eight benchmark datasets. The
highest accuracy in each column is shown in bold, while the second-best result is underlined.

DatasetModel Cora Citeseer Pubmed Wiki-CS MS-Academic Cornell Wisconsin Texas
MLP 57.79±0.11 61.20±0.08 73.23±0.05 65.66±0.20 87.79±0.42 83.54±3.83 84.54±2.34 86.22±3.64

ChebNet 79.92±0.18 70.90±0.37 76.98±0.16 63.24±1.43 90.76±0.73 79.42±3.83 86.08±2.67 84.32±3.13
GCN 82.03±0.27 71.05±0.33 79.26±0.18 72.05±0.45 92.07±0.13 59.34±2.85 63.89±3.02 70.08±3.53
SGC 81.89±0.26 72.18±0.24 78.58±0.15 72.76±0.35 89.01±0.40 61.32±2.32 62.54±2.56 72.56±3.15
GAT 82.82±0.36 71.96±0.39 79.15±0.34 74.36±0.58 91.86±0.27 76.47±2.35 60.73±1.91 76.47±2.16
PPNP 83.73±0.31 71.74±0.44 80.28±0.22 74.69±0.53 92.58±0.06 80.85±2.31 73.29±1.18 76.85±2.12

APPNP 83.73±0.21 71.70±0.21 80.07±0.21 74.91±0.61 92.81±0.12 80.27±2.50 72.79±1.91 76.65±2.31
GNN-LF(iter) 83.83±0.36 71.44±0.42 80.31±0.16 75.19±0.49 92.78±0.22 86.92±1.92 92.21±2.21 87.69±2.69
GNN-HF(iter) 83.68±0.31 71.58±0.36 79.99±0.22 74.71±0.55 92.72±0.31 88.85±1.54 92.94±1.62 89.62±1.35

DAGNN 82.70±0.17 71.90±0.06 80.06±0.30 75.63±0.48 93.24±0.21 77.83±2.83 86.27±2.95 76.81±2.32
GPRGNN 82.21±0.51 69.95±0.94 79.59±0.79 75.02±0.62 92.03±0.22 85.49±3.92 82.55±6.23 81.35±5.32
BernNet 80.99±1.27 70.01±0.57 79.05±1.01 75.32±0.54 92.52±0.47 90.39±1.96 91.18±1.47 91.74±2.34
APGNN 84.15±0.23 72.44±0.56 80.74±0.24 76.03±0.51 93.69±0.20 93.27±2.69 94.12±1.32 91.06±2.12

Proof. This is a direct result with M = (1−αK)/(1−α) and LM = α/(1−α)2 in Theorem 2.

We can also apply Theorem 2 on the existing method to find the upper bound of generalization error.
For DAGNN, we have M = K and the Lipschitz constant LM = K(K + 1)/2. For GPR-GNN,
M = 1, LM = K. Therefore, the final two terms of DAGNN and GPR-GNN in equation (22)
respectively rely on O(K

√
logK), O(K2) and O(

√
logK), O(K). Hense, it tends to show weaker

generalization in comparison to APGNN as K increases.

6 EXPERIMENT

0 2 4 6 8 10 12 14 16 18 20
Parameter K

60

65

70

75

80

85
Ac

cu
ra

cy
 (%

)

Cora ACC
Citeseer ACC
Pubmed ACC

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
Parameter

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

Max: 83.98%

Max: 72.90%

Max: 80.40%

Cora ACC
Citeseer ACC
Pubmed ACC

Figure 2: Accuracy with differ-
ent K in the figure above and dif-
ferent α in the figure below.

In this section, we conduct node classification experiments on var-
ious benchmark datasets to evaluate the performance of APGNN.
Specifically, we compare our method with state-of-the-art meth-
ods and display the corresponding learned graph filters on dif-
ferent datasets. Moreover, to validate the theoretical analysis,
the influence of parameters K, α, and P is also investigated in
experiments.

6.1 EXPERIMENT SETUP

Datasets. We perform experiments on eight benchmark datasets
commonly used in node classification tasks. 1). Cora, Citeseer,
Pubmed (Yang et al., 2016; Sen et al., 2008): These are three
homophilic benchmark datasets. 2). Cornell, Wisconsin, Texas
(Pei et al., 2020): Three widely used heterophilic benchmark
datasets. 3).Wiki-CS (Mernyei and Cangea, 2020): A dataset
driven from Wikipedia. This dataset defines the computer sci-
ence articles as nodes, while the hyperlinks are edges. 4). MS
Academic (Klicpera et al., 2019): A co-authorship Microsoft
Academic Graph, where the nodes are the bag-of-words represen-
tation of the papers’ abstract and edges are co-authorship. The
data statistics and their partitions are presented in Appendix.

Baselines. To evaluate the effectiveness of APGNN, we compare
it with the following baseline models: 1) MLP (Pal and Mitra, 1992), a traditional method that
does not use graphs, 2) GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), GraphSAGE
(Hamilton et al., 2017) and DAGNN (Liu et al., 2020) spatial methods that aggregate neighborhoods’
information, and 3) ChebNet (Defferrard et al., 2016), SGC (Wu et al., 2019), PPNP, APPNP(Klicpera
et al., 2019), GNN-LF (iteration form), GNN-HF (iteration form) (Zhu et al., 2021), GPR-GNN
(Chien et al., 2021) and BernNet (He et al., 2021) spectral methods analyzing GNNs with graph
Fourier transform.

Settings. We conducted 10 runs for each method on each dataset, with a hidden dimension of 64.
For all compared methods, their parameter settings follow the previous practices (Liu et al., 2020;
Zhu et al., 2021). We fix the polynomial order K to 10 in ChebNet, APPNP, GNN-LF, GNN-HF,

8

Under review as a conference paper at ICLR 2024

DAGNN, APPNP, GPR-GNN and BernNet. The best hyperparameters we choose for APGNN are
presented in Appendix. To ensure a fair comparison with the compared methods, we also applied our
optimal hyperparameters to them, selecting the maximum value to display.

1 2 3 4 5 6 7 8 9 10
Parameter P

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

Ac
cu

ra
cy

 (%
) Max: 93.27%

Max: 95.44%

Max: 91.06%

Cornell ACC
Wisconsin ACC
Texas ACC

(a)

1 2 3 4 5 6
Parameter P (fixing T)

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Min: 77.69%

Min: 93.24%

Min: 87.50%

Cornell ACC
Wisconsin ACC
Texas ACC

(b)

Figure 3: Parameter study on P in two scenarios: (a) fixing K , and (b) fixing T = KP .

6.2 EXPERIMENTAL ANALYSIS

Node Classification. Table 1 reports the average classification accuracy on different datasets, which
involves homophilic and heterophilic graphs. We can observe that APGNN achieves the highest
accuracy in most cases, demonstrating its superior performance. This reflects that APGNN obtains
more effective graph filters than the existing methods and exhibits better generalization ability.

Polynomial Order K. To gain insight into the role of polynomial order K, we conduct the
experiment tuning K in {1, 2, ..., 20} on Cora, Citeseer, and Pubmed dataset as in the above subfigure
within Figure 2. The results show that small K usually results in suboptimal performance, which is
because the low-order polynomial cannot sufficiently approximate the underlying ideal filters. It can
be observed that the accuracy rate has little promotion for K > 10. The reason is the truncation error
is adequately small and increasing K might not lead to significant performance enhancement.

Decay Rate α. The below subfigure within Figure 2 depicts the accuracy curve corresponding to
various α values ranging from 0.1 to 0.99. We observe that the optimal α generally lies in [0.6, 0.9].
The classification performance declines greatly while selecting underestimated α (e.g. α ≤ 0.5),
which tends to cause a trivial filter.

P -hop filter. We evaluate the influence of changes in P on performance. In Figure 3 (a), we can
see that, accuracy increases first and then decreases with the increase of P when fixing K. This
observation demonstrates that increasing P benefits performance, but a large P will affect stability,
consequently leading to accuracy degradation. Moreover, we investigate the accuracy associated
with varying parameters P taken from the set {1, 2, 3, 4, 5, 6} when fixing the maximum polynomial
order T = KP = 60. As illustrated in Figure 3 (b), the accuracy is significantly increased when the
value of P exceeds 1, particularly in the case of the Cornell dataset. A similar trend is also observed
in the datasets such as Cora, Citseer, and Pubmed, as shown in the Appendix. This phenomenon
suggests that using the P -hop filter enables the model to maintain or even increase its performance
while reducing computational costs.

7 CONCLUSION

In this work, we propose a universal learning principle for developing convergent and stable GNNs.
A practical model named APGNN is proposed to verify the effectiveness of the learning principle.
The theoretical analysis of the proposed principle is provided, indicating a stronger generalization
ability over the previous works, which is validated by the experimental results. In the future, it is
worth exploring diverse graph filters based on the proposed principle. As shown in the generalization
analysis, the upper bound of the model complexity relies on O(

√
logK). How to design the GNN

with complexity free of the hyperparameter K is a meaningful research direction. Lastly, establishing
a comprehensive theoretical analysis of the P -hop filter is also an important topic.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2017.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Proceedings of the International Conference on Learning Representations
(ICLR), 2021.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), volume 29, 2016.

Leyan Deng, Defu Lian, Chenwang Wu, and Enhong Chen. Graph convolution network based
recommender systems: Learning guarantee and item mixture powered strategy. In Proceedings of
the Annual Conference on Neural Information Processing Systems (NeurIPS), 2022.

Pascal Esser, Leena Chennuru Vankadara, and Debarghya Ghoshdastidar. Learning theory can
(sometimes) explain generalization in graph neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020.

Francesco Giuliari, Geri Skenderi, Marco Cristani, Yiming Wang, and Alessio Del Bue. Spatial
commonsense graph for object localisation in partial scenes. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

Kan Guo, Yongli Hu, Yanfeng Sun, Sean Qian, Junbin Gao, and Baocai Yin. Hierarchical graph
convolution network for traffic forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2021.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
2017.

Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang, and Enhua Wu. Vision GNN: An image is worth
graph of nodes. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2022.

Mingguo He, Zhewei Wei, zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary graph
spectral filters via bernstein approximation. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), 2021.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng Wang. LightGCN:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

10

Under review as a conference paper at ICLR 2024

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

Hongkang Li, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Generalization guarantee
of training graph convolutional networks with graph topology sampling. In Proceedings of the
International Conference on International Conference on Machine Learning (ICML), 2022a.

Shaojie Li, Sheng Ouyang, and Yong Liu. Understanding the generalization performance of spectral
clustering algorithms. arXiv preprint arXiv:2205.00281, 2022b.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD),
2020.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Péter Mernyei and Cătălina Cangea. Wiki-CS: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Sankar K Pal and Sushmita Mitra. Multilayer perceptron, fuzzy sets, and classification. IEEE
Transactions on neural networks, 3(5):683–697, 1992.

Yitong Pang, Lingfei Wu, Qi Shen, Yiming Zhang, Zhihua Wei, Fangli Xu, Ethan Chang, Bo Long,
and Jian Pei. Heterogeneous global graph neural networks for personalized session-based recom-
mendation. In Proceedings of the ACM International Conference on Web Search and Data Mining
(WSDM), 2022.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral operators. Journal
of Machine Learning Research (JMLR), 2010.

Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on graphs: Graph filters. In
Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2013a.

Aliaksei Sandryhaila and José M. F. Moura. Discrete signal processing on graphs: Graph fourier
transform. In Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, 2008.

Huayi Tang and Yong Liu. Towards understanding the generalization of graph neural networks. In
arXiv preprint arXiv:2305.08048, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

11

Under review as a conference paper at ICLR 2024

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD), 2019.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Proceedings
of the International Conference on International Conference on Machine Learning (ICML), 2022a.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Proceedings
of the International Conference on International Conference on Machine Learning (ICML), 2022b.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In Proceedings of the International Conference on International
Conference on Machine Learning (ICML), 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with
graph embeddings. In Proceedings of the International Conference on International Conference
on Machine Learning (ICML), 2016.

Shuai Zhang, Meng Wang, Pin-Yu Chen, Sijia Liu, Songtao Lu, and Miao Liu. Joint edge-model
sparse learning is provably efficient for graph neural networks. In arXiv preprint arXiv:2302.02922,
2023.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In Proceedings of The International World Wide Web
Conference (WWW), 2021.

Stefano Zorzi, Shabab Bazrafkan, Stefan Habenschuss, and Friedrich Fraundorfer. PolyWorld:
Polygonal building extraction with graph neural networks in satellite images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DATA STATISTICS

Table 2: Data statistics for the node classification task.
Dataset Nodes Edges Features Class Train Val Test Homophily level

cora 2708 5429 1433 7 140 500 1000 0.83
citeseer 3327 4732 3703 6 120 500 1000 0.72
pubmed 19717 44338 500 3 60 500 1000 0.39
wiki-cs 11701 216123 300 10 200 500 1000 0.65

ms academic 18333 81894 6805 15 300 500 1000 0.83
cornell 183 295 1703 5 48% 32% 20% 0.15

wisconsin 251 499 1703 5 48% 32% 20% 0.39
texas 183 309 1703 5 48% 32% 20% 0.1

The homophily level is evaluated by the way given in (Chien et al., 2021).

A.2 LEARNED GRAPH FILTERS

As shown in Figure 4, the prior selection of P affects the orientation of the graph filter. An even P
always imposes a graph filter with a symmetric pattern. When P is an even number, (1− λ) with the
same absolute value will be evaluated equally, resulting in a symmetric graph filter. In this sense,
the low-frequency and high-frequency will be treated equally. In contrast, the odd P tends to derive
either a high-pass or low-pass graph filter. Figure 5 and Figure 6 show the detail shape of the learned
graph filters.

0.0 0.3 0.6 0.9 1.1 1.4 1.7 2.0
0.0

1.3

2.6

3.9

5.1

6.4

g(
)

Cora
Citeseer
Pubmed
Wiki
MS
Cornell
Wisconsin
Texas

(a)

0.0 0.3 0.6 0.9 1.1 1.4 1.7 2.0
0.6

1.8

3.0

4.1

5.3

6.5

g(
)

Cora
Citeseer
Pubmed
Wiki
MS
Cornell
Wisconsin
Texas

(b)

Figure 4: The graph filters learned on different data sets, with the parameter P being odd in (a) and
even in (b).

0.0 0.5 1.0 1.5 2.0
0.0

0.9

1.7

2.6

g(
)

Cora's Filter

0.0 0.5 1.0 1.5 2.0
0.5

1.4

2.2

3.0

g(
)

Citeseer's Filter

0.0 0.5 1.0 1.5 2.0
0.0

1.5

2.9

4.3

g(
)

Pubmed's Filter

0.0 0.5 1.0 1.5 2.0
0.3

2.4

4.4

6.4

g(
)

Wiki's Filter

0.0 0.5 1.0 1.5 2.0
0.3

2.4

4.4

6.4

g(
)

MS's Filter

0.0 0.5 1.0 1.5 2.0
0.7

0.9

1.2

1.4

g(
)

Cornell's Filter

0.0 0.5 1.0 1.5 2.0
0.5

0.6

0.7

0.8

g(
)

Wisconsin's Filter

0.0 0.5 1.0 1.5 2.0
0.7

0.9

1.1

1.3

g(
)

Texas's Filter

Figure 5: The graph filters learned using different data sets, with parameter P being odd.

A.3 P-HOP FILTER

Figure 7 shows the performance associated with different P on Cora, Citeseer, and Pubmed datasets.

13

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
0.9

1.6

2.3

3.1

g(
)

Cora's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.7

2.4

3.1

g(
)

Citeseer's Filter

0.0 0.5 1.0 1.5 2.0
1.0

2.6

4.2

5.8

g(
)

Pubmed's Filter

0.0 0.5 1.0 1.5 2.0
1.0

2.2

3.4

4.5

g(
)

Wiki's Filter

0.0 0.5 1.0 1.5 2.0
1.0

2.8

4.6

6.5

g(
)

MS's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.3

1.5

1.8

g(
)

Cornell's Filter

0.0 0.5 1.0 1.5 2.0
0.6

0.8

0.9

1.1

g(
)

Wisconsin's Filter

0.0 0.5 1.0 1.5 2.0
1.0

1.0

1.1

1.2

g(
)

Texas's Filter

Figure 6: The graph filters learned using different data sets, with parameter P being even.

1 2 3 4 5 6 7 8 9 10
Parameter P

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

Max: 84.15%

Max: 72.44%

Max: 80.74%
Cora ACC
Citeseer ACC
Pubmed ACC

1 2 3 4 5 6
Parameter P (fixing T)

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

Min: 82.75%

Min: 70.78%

Min: 80.03% Cora ACC
Citeseer ACC
Pubmed ACC

Figure 7: Performance impact on Cora, Citeseer and Pubmed of increasing P in two scenarios (a)
when K is fixed, (b)when T = KP is fixed.

A.4 TREND OF LEARNABLE COEFFICIENTS

As shown in Figure 8, we can observe that the learned weight β tends to have the same sign on
homophilic datasets, but not on heterophilic datasets. That is because the graph filter can adaptively
learn an opposite coefficient for improper propagation. The tendency of the coefficient can further
gain insight into the homophily and heterophily of the graph.

1 2 3 4 5 6 7 8 9 10-1.1

-0.8

-0.5

-0.3

g(
)

Cora's Filter

1 2 3 4 5 6 7 8 9 10-1.0

-1.0

-0.9

-0.8

g(
)

Citeseer's Filter

1 2 3 4 5 6 7 8 9 10-0.9

-0.7

-0.6

-0.4

g(
)

Pubmed's Filter

1 2 3 4 5 6 7 8 9 10-1.1

-1.0

-0.9

-0.9

g(
)

Wiki's Filter

1 2 3 4 5 6 7 8 9 100.9

1.0

1.0

1.1

g(
)

MS's Filter

1 2 3 4 5 6 7 8 9 10-0.5

0.0

0.5

1.0

g(
)

Cornell's Filter

1 2 3 4 5 6 7 8 9 10-0.1

0.2

0.4

0.7

g(
)

Wisconsin's Filter

1 2 3 4 5 6 7 8 9 10-0.2

0.2

0.6

1.0

g(
)

Texas's Filter

(a) odd P

1 2 3 4 5 6 7 8 9 100.8

0.9

1.0

1.1

g(
)

Cora's Filter

1 2 3 4 5 6 7 8 9 100.8

0.9

1.0

1.1

g(
)

Citeseer's Filter

1 2 3 4 5 6 7 8 9 100.6

0.8

0.9

1.1

g(
)

Pubmed's Filter

1 2 3 4 5 6 7 8 9 10-1.0

-0.3

0.4

1.1

g(
)

Wiki's Filter

1 2 3 4 5 6 7 8 9 10-1.1

-1.0

-1.0

-0.9

g(
)

MS's Filter

1 2 3 4 5 6 7 8 9 10-0.9

-0.3

0.4

1.1

g(
)

Cornell's Filter

1 2 3 4 5 6 7 8 9 10-0.3

0.0

0.4

0.7

g(
)

Wisconsin's Filter

1 2 3 4 5 6 7 8 9 10-1.1

-0.6

-0.1

0.3

g(
)

Texas's Filter

(b) even P

Figure 8: The learned weights on different datasets when P is (a) odd or (b) even.

A.5 HYPERPARAMETERS SETTINGS

The hyperparameters settings for different parity of P are shown in Table 3 and Table 4.

A.6 PROOF FOR LEMMA 1

(⇒). We show the result by contradiction. If
∑∞

k |ak| is not convergent, then at γ = 1, we have∑∞
k |akγk| is not convergent, which occurs a contradiction. Therefore, series

∑∞
k |ak| converges.

(⇐). It is obvious that for ∀γ ∈ (−1, 1],
∑∞

k |akλk| ≤
∑∞

k |ak|. Therefore,
∑∞

k |akλk| uniformly
converges in λ ∈ (−1, 1].

14

Under review as a conference paper at ICLR 2024

Table 3: The hyperparameters of APGNN on various datasets when parameter P is odd.
Dataset K P α Weight decay Learning rate Dropout rate
Cora 10 3 0.7 0.005 0.01 0.8

Citeseer 10 5 0.7 0.00625 0.01 0.5
Pubmed 10 5 0.9 0.005 0.01 0.5
Wiki-CS 10 1 0.9 0.000525 0.03 0.4

MS-Academic 10 3 0.9 0.00525 0.02 0.4
Cornell 10 3 0.6 0.001 0.01 0.2

Wisconsin 10 3 0.2 0.001 0.01 0.2
Texas 10 3 0.1 0.001 0.01 0.2

Table 4: The hyperparameters of APGNN on various datasets when parameter P is even.
Dataset K P α Weight decay Learning rate Dropout rate
Cora 10 4 0.7 0.005 0.01 0.8

Citeseer 10 6 0.7 0.00625 0.01 0.5
Pubmed 10 6 0.9 0.005 0.01 0.5
Wiki-CS 10 2 0.9 0.000525 0.03 0.4

MS-Academic 10 2 0.9 0.00525 0.02 0.4
Cornell 10 2 0.6 0.001 0.01 0.2

Wisconsin 10 2 0.2 0.001 0.01 0.2
Texas 10 2 0.1 0.001 0.01 0.2

A.7 PROOF FOR THEOREM 1

Ã is an adjacency matrix of a graph, which is a real symmetric matrix. Since we can decompose Ã
as Ã = UΓU⊤, where U is a matrix composed of the eigenvectors of Ã and Γ = diag(γ1, · · · , γn)
is the diagonal matrix of the corresponding eigenvalues. Therefore, we have

g(L) =

∞∑
k=1

θkÃ
k = Udiag

(∞∑
k=1

θkγ
k
1 , · · · ,

∞∑
k=1

θkγ
k
n

)
U⊤ (24)

Therefore, the g(L) converges absolutely and uniformly if and only if
∑∞

k=1 θkγ
k
i converges abso-

lutely and uniformly for all i ∈ [n]. Then apply Lemma 1 and we can obtain the result.

A.8 PROOF OF THEOREM 2

We first introduce some definitions and Lemma for assisting with the proof.
Definition 1. Consider the sample set S = {x1, · · · ,xn} and function set F , where f(x) is bounded
for any f ∈ F . Then the empirical Rademacher complexity is defined as:

RS(F) =
1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi)

]
, (25)

where σi is i.i.d. Rademacher random variable defined by Pr(σi = −1) = Pr(σi = 1) = 0.5.
Lemma 2. Consider the hypothesis set

HX = {h : h(x) = gθLf(x), f(x) = ⟨w,x⟩, ∥w∥2 ≤ B, ∥θ∥1 ≤ M}, (26)

where θ = [θ0, θ1, · · · , θK]. Let xj denote the j-th element of x ∈ X , and E[x2
j] ≤ cX for any

j ∈ [d]. Then for any sample set S = {x1, · · · ,xnl
} ⊂ X we have

RS(FX) ≲ 2BMcX

√
2 log(2K + 2)

nl
. (27)

15

Under review as a conference paper at ICLR 2024

Lemma 3 (Massart’s Lemma (Mohri et al., 2018)). Let X ⊂ Rn be a finite set and supx∈X ∥x∥2 ≤
r
√
n, then the following inequality holds:

Eσ

[
1

n
⟨σ,x⟩

]
≤ r

√
2 log |X |

n
, (28)

where σ = [σ1, · · · , σn] denote the vector of Rademacher random variables.

Proof. Based on the definition, we can write

RS(HX) =
1

nl
Eσ

[
sup

hw,θ∈HX

nl∑
i=1

σihw,θ(xi)

]

=
1

nl
Eσ

[
sup

∥w∥2≤B, ∥θ∥1≤M

nl∑
i=1

σigθLf(xi)

]

=
1

nl
Eσ

[
sup

∥w∥2≤B, ∥θ∥1≤M

nl∑
i=1

σi

∫
X

K∑
k=0

θkÃ
k(xi,x)x

⊤wdp(x)

]

≤ B

nl
Eσ

[
sup

∥θ∥1≤M

∥∥∥∥∥
nl∑
i=1

σi

∫
X

K∑
k=0

θkÃ
k(xi,x)xdp(x)

∥∥∥∥∥
2

]

=
B

nl
Eσ

[
sup

{vi}n
i=1∈V

∥∥∥∥∥
nl∑
i=1

σivi

∥∥∥∥∥
2

]
where the inequality follows from the Cauchy-Schwarz inequality, and the set V is defined as

V ≜

{
{vi}ni=1 : vi =

∫
X

K∑
k=0

θkÃ
k(xi,x)xdp(x), ∥θ∥1 ≤ M

}
. (29)

Define qj(x) = xj returning the j-th coordinate of the input. Hence, the j-th coordinate of vi can be
rewritten as

vij =

∫
X

K∑
k=0

θkÃ
k(xi,x)xjdp(x) =

∫
X

K∑
k=0

θkÃ
k(xi,x)qj(x)dp(x) =

K∑
k=0

θkÃ
kqj(xi). (30)

Since ∥u∥2 ≤
√
d∥u∥∞ for any u ∈ Rd, we have

RS(HX) ≤ B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

∥∥∥∥∥
nl∑
i=1

σivi

∥∥∥∥∥
∞

]

≤ B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

max
j∈[d]

∣∣∣∣∣
nl∑
i=1

σivij

∣∣∣∣∣
]

≤ 2B
√
d

nl
Eσ

[
sup

{vi}n
i=1∈V

max
j∈[d]

nl∑
i=1

σivij

]

≤ 2B
√
d

nl
Eσ

[
sup

∥θ∥1≤M

nl∑
i=1

σi

K∑
k=0

θkÃ
kqj(xi)

]

=
2B

√
d

nl
Eσ

[
sup

∥θ∥1≤M

K∑
k=0

θk

nl∑
i=1

σiÃ
kqj(xi)

]

=
2BM

√
d

nl
Eσ

[
sup
θ∈Θ

K∑
k=0

θk

nl∑
i=1

σiÃ
kqj(xi)

]
= 2BM

√
dRS(H′),

16

Under review as a conference paper at ICLR 2024

where Θ =
⋃K

k=0{−ek, ek} and ek denote k-th vector with k-th entry as one and others are zero.
The set H′ = {h(x) =

∑K
k=0 θkA

kqj(x) : θ ∈ Θ} is a finite set with |H′| = 2(K + 1). We bound
RS(H′) with Lemma 3:

Since H′ is a finite set and for any h ∈ H′,

1

nl

nl∑
i=1

h(xi)
2 =

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
≈
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dp(x) ≤ ∥qj∥2 ≤ c2X .

where we use ∥Ãkqj∥ ≤ ∥Ãk∥∥qj∥ and ∥Ãk∥ ≤ 1 for any k ∈ [n], and

∥qj∥2 =

∫
X
qj(x)

2dp(x) =

∫
X
x2
jdp(x) = E[x2

j] ≤ c2X . (31)

Therefore we finally obtain

RS(FX) ≲ 2BMcX

√
2d log(2K + 2)

nl
(32)

As a remark, we can present a more precise bound through McDiarmid’s inequality. consider the
convergence

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
→
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dp(x). (33)

With the probability of at least 1− δ,

1

nl

nl∑
i=1

sup
k∈[n]

[
Ãkqj(xi)

]2
≤
∫
X

sup
k∈[n]

[
Ãkqj(x)

]2
dp(x)−O

√ log 1/δ

nl

 . (34)

The details are omitted since it is not the major part of the analysis.

Proof. We first write the excess risk decomposition:

R(hw,θ)− R̂(ĥw,θ) = R(hw,θ)− R̂(hw,θ)︸ ︷︷ ︸
A part

+ R̂(hw,θ)− R̂(ĥw,θ)︸ ︷︷ ︸
B part

(35)

For the A part, we first apply Theorem 5.8 in (Mohri et al., 2018). With probability at least 1− δ,

R(hw,θ)− R̂(hw,θ) ≤ RS(HX) + 3

√
log(2/δ)

2nl
. (36)

Since the last term is of order O(
√
log(1/δ)n−1

l), which is significantly smaller than RS(HX), we
rewrite the above inequality as

R(hw,θ) ≲ R̂(hw,θ) + 2BMcX

√
2d log(2K + 2)

nl
, (37)

where we replace the Rademacher complexity with its upper bound by Lemma 2.

For the B part, we first define the empirical operator over S = {x1, · · · ,xn},

Lnf =
1

n

n∑
i=1

A(xi, ·)√
dn(xi)dn(·)

f(xi), dn =
1

n

n∑
i=1

A(xi, ·) (38)

and gθLn =
∑K

k=0 θkL
k
n. Then we have

R̂(hw,θ)− R̂(ĥw,θ) ≤
∣∣∣R̂(hw,θ)− R̂(ĥw,θ)

∣∣∣
17

Under review as a conference paper at ICLR 2024

≤ 1

nl

∣∣∣∣∣
nl∑
i=1

hw,θ(xi)− ĥw,θ(xi)

∣∣∣∣∣
=

1

nl

∣∣∣∣∣
nl∑
i=1

gθLf(xi)− gθLnf(xi)

∣∣∣∣∣
≤ 1

nl

[
nl∑
i=1

(gθLf(xi)− gθLnf(xi))
2

]1/2
≈ ∥gθLf − gθLnf∥
≤ ∥gθL− gθLn∥∥f∥.

where the second inequality follows from the Lipschitz property. With Cauchy-Schwarz inequality,

∥f∥2 =

∫
X
⟨w,x⟩dp(x) ≤ B · Ex[∥x∥2] ≤ BdcX . (39)

According to Theorem 15 of (Rosasco et al., 2010), there exists a proper constant C > 0 related to
A(·, ·), such that

∥L− Ln∥ ≤ ∥L− Ln∥HS ≤ C

√
log(2/δ)

n
. (40)

with probability at least 1− δ. Since the polynomial gθ is LM -Lipschitz, we have

∥gθL− gθLn∥ ≤ LMC

√
log(2/δ)

n
(41)

Combining the above results, one can conclude that for any (hw,θ, ĥw,θ) ∈ HX ×HS ,

R(hw,θ) ≲ R̂(ĥw,θ) + 2BMcX

√
2d log(2K + 2)

nl
+BCLMdcX

√
log(2/δ)

n
. (42)

with probability at least 1− δ.

A.9 COMPUTATIONAL COMPLEXITY

Denote N as the number of nodes, E as the set of edges, d as the hidden layer of MLP, and c as
the number of classes. The adjacency matrix is stored in sparse format (i.e., only the edge will be
stored), so the space complexity is O(|E|). In our implementation, we use a 2-layer MLP for feature
extraction and K-order polynomial graph filter. Therefore, the time complexity of MLP and graph
convolution is O(NdcL) and O(Kc|E|), respectively. Therefore, the complexity grows linearly as
the number of samples increases, and it also depends on the number of edges in the graph.

18

	Introduction
	Preliminaries
	Related Works
	Learnable polynomial graph filter
	Generalization analysis on GNNs

	Learning Principle for GNNs
	The principle of devising graph filters
	Conncections with Existing GNNs under the learning principle
	Instantiation: Adaptive Power Graph Neural Network

	Generalization analysis
	Experiment
	Experiment Setup
	Experimental Analysis

	Conclusion
	Appendix
	Data statistics
	Learned graph filters
	P-hop filter
	Trend of learnable coefficients
	Hyperparameters settings
	Proof for Lemma 1
	Proof for Theorem 1
	Proof of Theorem 2
	Computational complexity

