
Published as a conference paper at ICLR 2023

HYPER-DECISION TRANSFORMER FOR EFFICIENT ON-
LINE POLICY ADAPTATION

Mengdi Xu1, Yuchen Lu2, Yikang Shen3, Shun Zhang3, Ding Zhao1 & Chuang Gan3,4

1 Carnegie Mellon University, 2 University of Montreal, Mila,
3 MIT-IBM Watson AI Lab, 4 UMass Amherst

ABSTRACT

Decision Transformers (DT) have demonstrated strong performances in offline re-
inforcement learning settings, but quickly adapting to unseen novel tasks remains
challenging. To address this challenge, we propose a new framework, called
Hyper-Decision Transformer (HDT), that can generalize to novel tasks from a
handful of demonstrations in a data- and parameter-efficient manner. To achieve
such a goal, we propose to augment the base DT with an adaptation module,
whose parameters are initialized by a hyper-network. When encountering un-
seen tasks, the hyper-network takes a handful of demonstrations as inputs and
initializes the adaptation module accordingly. This initialization enables HDT to
efficiently adapt to novel tasks by only fine-tuning the adaptation module. We val-
idate HDT’s generalization capability on object manipulation tasks. We find that
with a single expert demonstration and fine-tuning only 0.5% of DT parameters,
HDT adapts faster to unseen tasks than fine-tuning the whole DT model. Finally,
we explore a more challenging setting where expert actions are not available, and
we show that HDT outperforms state-of-the-art baselines in terms of task success
rates by a large margin. Demos are available on our project page.1

1 INTRODUCTION

Building an autonomous agent capable of generalizing to novel tasks has been a longstanding goal
of artificial intelligence. Recently, large transformer models have shown strong generalization capa-
bility on language understanding when fine-tuned with limited data (Brown et al., 2020; Wei et al.,
2021). Such success motivates researchers to apply transformer models to the regime of offline re-
inforcement learning (RL) (Chen et al., 2021; Janner et al., 2021). By scaling up the model size
and leveraging large offline datasets from diverse training tasks, transformer models have shown
to be generalist agents successfully solving multiple games with a single set of parameters (Reed
et al., 2022; Lee et al., 2022). Despite the superior performance in the training set of tasks, directly
deploying these pre-trained agents to novel unseen tasks would still lead to suboptimal behaviors.

One solution is to leverage the handful of expert demonstrations from the unseen tasks to help policy
adaptation, and this has been studied in the context of meta imitation learning (meta-IL) (Duan
et al., 2017; Reed et al., 2022; Lee et al., 2022). In order to deal with the discrepancies between
the training and testing tasks, these works focus on fine-tuning the whole policy model with either
expert demonstrations or online rollouts from the test environments. However, with the advent of
large pre-trained transformers, it is computationally expensive to fine-tune the whole models, and it
is unclear how to perform policy adaptation efficiently (Figure 1 (a)). We aim to fill this gap in this
work by proposing a more parameter-efficient solution.

Moreover, previous work falls short in a more challenging yet realistic setting where the target
tasks only provide demonstrations without expert actions. This is similar to the state-only imitation
learning or Learning-from-Observation (LfO) settings (Torabi et al., 2019; Radosavovic et al., 2021),
where expert actions are unavailable, and therefore we term this setting as meta Learning-from-
Observation (meta-LfO). As a result, we aim to develop a more general method that can address
both meta-IL and meta-LfO settings.

1Project Page: https://sites.google.com/view/hdtforiclr2023/home.

1

https://sites.google.com/view/hdtforiclr2023/home

Published as a conference paper at ICLR 2023

Figure 1: Efficient online policy adaptation of pre-trained transformer models with few-shot demon-
strations. To facilitate data efficiency, we introduce a demonstration-conditioned adaptation module
that helps leverage prior knowledge in the demonstration and guide exploration. When adapting to
novel tasks, we only fine-tune the adaptation module to maintain parameter efficiency.

The closest work to ours is Prompt-DT (Xu et al., 2022), which proposes to condition the model
behavior in new environments on a few demonstrations as prompts. While the method is originally
evaluated for meta-IL, the flexibility of the prompt design also allows this method to be useful
for meta-LfO. However, we find that Prompt-DT hardly generalizes to novel environments (as is
shown empirically in Section 4), since the performance of the in-context learning paradigm, e.g.,
prompting, is generally inferior to fine-tuning methods (Brown et al., 2020). The lack of an efficient
adaptation mechanism also makes Prompt-DT vulnerable to unexpected failures in unseen tasks.

In order to achieve the strong performance of fine-tuning-based methods as well as maintain the
efficiency of in-context learning methods, we propose Hyper-Decision Transformer (HDT) for large
pre-trained Decision Transformers (DT) (Chen et al., 2021). HDT composes of three key compo-
nents: (1) a multi-task pre-trained DT model, (2) adapter layers that can be updated when solving
novel unseen tasks, and (3) a hyper-network that outputs parameter initialization of the adapter layer
based on demonstrations. The pre-trained DT model encodes shared information across diverse
training tasks and serves as a base policy. To mimic the performance of fine-tuning methods, we
introduce an adapter layer with a bottleneck structure to each transformer block (Houlsby et al.,
2019). The parameters in the adapter layers can be updated to adapt to a new task. Moreover, it only
adds a small fraction of parameters to the base DT model. The adapter parameters are initialized by
a single hyper-network conditioning on the demonstrations with or without actions. In such a way,
the hyper-network extracts the task-specific information from demonstrations, which is encoded into
the adapter’s initialized parameters.

We evaluate HDT in both meta-IL (with actions) and meta-LfO (without actions) settings. In meta-
IL, the adapter module could directly fine-tune in a supervised manner as few-shot imitation learn-
ing. In meta-LfO, the agent interacts with the environment and performs RL, while conditioning on
the expert states. We conduct extensive experiments in the Meta-World benchmark Yu et al. (2020),
which contains diverse manipulation tasks requiring fine-grind gripper control. We train HDT with
45 tasks and test its generalization capability in 5 testing tasks with unseen objects, or seen objects
with different reward functions. Our experiment results show that HDT demonstrates strong data
and parameter efficiency when adapting to novel tasks.

We list our contributions as follows:

1. We propose Hyper-Decision Transformer (HDT), a transformer-based model which generalizes
to novel unseen tasks maintaining strong data and parameter efficiency.

2. In the meta-IL setting with only one expert demonstration, HDT only fine-tunes a small fraction
(0.5%) of the model parameters and adapts faster than baselines that fine-tune the whole model,
demonstrating strong parameter efficiency.

3. In the meta-LfO setting with only 20-80 online rollouts, HDT can sample successful episodes
and therefore outperforms baselines by a large margin in terms of success rates, demonstrating
strong data efficiency.

2 RELATED WORK

Transformers in Policy Learning. Transformer (Vaswani et al., 2017) has shown success in natu-
ral language tasks thanks to its strong sequence-modeling capacity. As generating a policy in RL is

2

Published as a conference paper at ICLR 2023

essentially a sequence prediction problem, Chen et al. (2021) propose Decision Transformer (DT)
that adapts the Transformer architecture to solve offline RL problems, achieving performances com-
parable to traditional offline RL algorithms. This work also inspires adaptions of Transformer in
different RL settings. Zheng et al. (2022) propose Online DT, which enables DT to explore online
and applies it in an online RL setting. Xu et al. (2022) use the prompt in Transformer to provide
task information, which makes the DT capable of achieving good performance in different tasks.
Reed et al. (2022) also exploit the prompt in Transformer and train one Transformer model to solve
different games or tasks with different modalities. Lee et al. (2022) propose multi-game DT which
shows strong performance in the Atari environment (Bellemare et al., 2013). Furuta et al. (2021)
identify that DT solves a hindsight information matching problem and proposed Generalized DT
that can solve any hindsight information matching problem.

One-shot and Meta Imitation Learning. Traditional imitation learning considers a single-task
setting, where the expert trajectories are available for a task and the agent aims the learn an opti-
mal policy for the same task. One-shot and meta-imitation learning aims to improve the sample
efficiency of imitation learning by learning from a set of training tasks and requires the agent to
generalize to different tasks. Duan et al. (2017) train a one-shot imitator that can generate optimal
policies for different tasks given the demonstrations of the corresponding task. Finn et al. (2017b)
enable a robot to learn new skills using only one demonstration with pixel-level inputs. James et al.
(2018) first learn task embeddings, and use the task embedding of the test task jointly with test task
demonstrations to find the optimal control policy in robotic tasks.

Learning from Observations. When deployed in a new environment or tested on a new task, it
may be challenging for an agent to achieve good performance without any information about the
task. Therefore, the agent can benefit from starting with imitating some expert trajectories (Argall
et al., 2009). Usually, expert trajectories consist of a sequence of state, action pairs rolled out from
an expert policy. However, assuming the availability of both states and actions can prevent the agent
from learning from many resources (for example, online video demonstrations). So we consider
a setting where such trajectories may only contain states and rewards rolled out from the expert
policies. This is considered as learning from observations in the literature (Torabi et al., 2019). Prior
work trains an inverse dynamics model and uses it to predict actions based on states (Radosavovic
et al., 2021) and enhances learning from observation methods by minimizing its gap to learning
from demonstrations (Yang et al., 2019). Transformers are also applied in this problem to achieve
one-shot visual imitation learning (Dasari & Gupta, 2020).

Hyper-networks. The idea of using one network (the hyper-network) to generate weights for an-
other (the target network) is first introduced in Ha et al. (2016). In the continuing learning setting,
Von Oswald et al. (2019) proposes generating the entire weights of a target network while condi-
tioned on the task information. In the robotic setting, Xian et al. (2021) considers a model-based
setting and uses hyper-networks to generate the parameters of a neural dynamics model according
to the agent’s interactions with the environment.

Parameter-efficient Adaptation. When modern neural network models become increasingly large,
generating or fine-tuning the full model becomes increasingly expensive. Lester et al. (2021) in-
troduces “soft prompts” to alternate the output of a pre-trained transformer model. Task-specific
soft prompts enable the transformer model to output answers for the given task. Liu et al. (2022)
proposes adding a few controlling vectors in the feedforward and the attention blocks to control the
behavior of a pre-trained transformer model. Mahabadi et al. (2021) uses a hyper-network to gen-
erate task-specific adaptation modules for transformer models from a task embedding. This method
enables efficient adaptation by just learning the task embedding vector.

3 HYPER DECISION TRANSFORMER

To facilitate the adaptation of large-scale transformer agents, we propose Hyper-Decision Trans-
former (HDT), a Transformer-based architecture maintaining data and parameter efficiency during
adaptation to novel unseen tasks. HDT consists of three key modules as in Figure 2: a base DT model
encoding shared knowledge across multiple tasks (Section 3.2), a hyper-network representing a task-
specific meta-learner (Section 3.4), and an adaptation module updated to solve downstream unseen
tasks (Section 3.3). After presenting the model details, we summarize the training and adaptation
algorithms in Section 3.5.

3

Published as a conference paper at ICLR 2023

3.1 PROBLEM FORMULATION: EFFICIENT ADAPTATION FROM OBSERVATIONS

We aim to improve the generalization capability of large transformer-based agents with limited
online interactions and computation budgets. Existing large transformer-based agents have demon-
strated strong performances in training tasks, and may have sub-optimal performances when directly
deployed in novel tasks (Reed et al., 2022; Lee et al., 2022; Xu et al., 2022). Although the discrep-
ancy between the training and testing tasks has been widely studied in meta RL (Finn et al., 2017a;
Duan et al., 2016), efficient adaptations of large transformer-based agents are still non-trivial. Be-
yond the data efficiency measured by the number of online rollouts, we further emphasize the pa-
rameter efficiency measured by the number of parameters updated during online adaptation.

We formulate the environment as an Markov Decision Process (MDP) represented by a 5-tuple
M = (S,A, P,R, µ). S and A are the state and the action space, respectively. P is the transition
probability and P : S × A × S → R. R is the reward function where R : S → R. µ is the initial
state distribution. Following Xu et al. (2022); Torabi et al. (2019), we consider efficient adaption
from demonstrations with a base policy pre-trained with a set of diverse tasks. Formally, we assume
access to a set of training tasks T train. Each task Ti ∈ T train is accompanied by a large offline
datasetDi and a few demonstrations Pi, where i ∈ [|T train|]. The datasetDi contains trajectories h
collected with an (unknown) behavior policy, where h = (s0, a0, r0, · · · , sH , aH , rH) with si ∈ S,
ai ∈ A, r as the per-timestep reward, and H as the episode length.

We consider the efficient adaptation problem in two settings: meta-imitation learning (meta-IL) and
meta-learning from observations (meta-LfO). In meta-IL, the demonstration dataset P consists of
full trajectories with expert actions, ĥ = (s0, a0, r0, · · · , sH , aH , rH). In contrast, in meta-LfO, the
demonstration dataset P consists of sequences of state and reward pairs, ho = (s0, r0, · · · , sH , rH).
We evaluate the generalization capability in a set of testing tasks T test, each accompanied with a
demonstration dataset P . Note that the testing tasks are not identical to the training tasks and may
not follow the same task distribution as the training ones. For instance, in manipulation tasks, the
agent may need to interact with unseen objects.

3.2 DECISION TRANSFORMER (DT) AS THE PRE-TRAINED AGENT

Large transformer-based agents are highly capable of learning multiple tasks (Lee et al., 2022; Reed
et al., 2022). They follow offline RL settings and naturally cast RL as sequence modeling problems
(Chen et al., 2021; Janner et al., 2021). By tasking a historical context as input, transformers could
leverage more adequate information than the observations in the current timestep, especially when
the dataset is diverse and the states are partially observable. In this work, we follow the formulation
of DT (Chen et al., 2021), which autoregressively generates actions based on recent contexts. At
each timestep t, DT takes the most recent K-step trajectory segment τ as input, which contains
states s, actions a, and rewards-to-go r̂ =

∑T
i=t ri.

τ = (r̂t−K+1, st−K+1, at−K+1, . . . , r̂t, st, at). (1)

DT predicts actions at heads, where action at is the action the agent predicts in state st. The model
minimizes the mean squared error loss between the action predictions and the action targets. In
contrast to behavior cloning (BC) methods, the action predictions in DT additionally condition on
rewards-to-go and timesteps. The recent context contains both per-step and sequential interactions
with environments, and thus encodes task-specific information. Indeed, in Lee et al. (2022), recent
contexts could embed sufficient information for solving multiple games in the Atari environment
(Bellemare et al., 2013). While in situations where a single state has different optimal actions for
different tasks, additional task-specific information (eg. the demonstration in target tasks) injected
into the model further helps improve the multi-task learning performance (Xu et al., 2022).

In this work, we pre-train a DT model with datasets from multiple tasks as the base agent. It is worth
noting that the base DT model could be replaced by any other pre-trained transformer agent.

3.3 ADAPTATION MODULE

To enable parameter-efficient model adaptation, we insert task-specific adapter layers to transformer
blocks. Adapter-based fine-tuning is part of parameter-efficient fine-tuning of large language models
and generalizes well in NLP benchmarks (Mahabadi et al., 2021). The adapter layer only contains

4

Published as a conference paper at ICLR 2023

Figure 2: Model architecture of Hyper-Decision Transformer (HDT). Similar to DT, HDT takes
recent contexts as input and outputs fine-grind actions. To encode task-specific information, HDT
injects adapter layers into each decoder block. The adapter layer’s parameters come from a stand-
alone hyper-network that takes both demonstrations without actions and the decoder’s layer id.

a small number of parameters compared with the base DT policy. When fine-tuning on the down-
stream unseen tasks, HDT only updates the adapter layers with the base DT model’s parameters
frozen. Such a task-wise adaptation mechanism helps maintain parameter efficiency and avoid neg-
ative interference where adapting to a new task could lead to decreasing performances in other tasks.

Considering that DT is a decoder-only transformer model, we insert one adapter module into each
decoder block and place it before the final residual connection, as shown in Figure 2 (middle). Let
the hidden state be X ∈ RK×dx , where K is the context length and dx is the embedding dimension
for each token. For each decoder block with layer id l, its adapter layer contains a down-projection
layer Dl ∈ Rdx×dh , dh < dx, a GELU nonlinearity, an up-projection layer Ul ∈ Rdh×dx , and a
feature-wise linear modulation (FiLM) layer FiLMl (Perez et al., 2018). The bottleneck architec-
ture constructed by the down- and up-projection layers helps reduce the adapter’s parameters. The
FiLM layer consists of weights γl ∈ Rdx and feature-wise biases βl ∈ Rdx , which help selectively
manipulate features. Formally, the adapter layer transforms the hidden state X by

Adapterl(X) = (GELU(XDl)Ul)⊙ γl + βl, (2)
where ⊙ is the Hadamard product. For each task, we initialize the adapter layer with a shared
hyper-network across multiple tasks and encoder layers as described in Section 3.4.

3.4 HYPER-NETWORK

To promote data-efficient online adaptation, we propose to use a shared hyper-network to generate
the adapter layers’ initial parameters. The hyper-network captures common information across tasks
by multi-task training. It also encodes task-specific information for each task by taking the task
demonstration without actions ho as input, applicable for both meta-IL and meta-LfO settings. Given
an unseen task, T ∈ T test and its accompanied ho, the trained hyper-network could generate a good
parameter initialization that facilitates quick online rollouts. Motivated by Mahabadi et al. (2021),
HDT further utilizes a compact hyper-network for generating adapters of each block and takes the
layer id l as the additional input.

The hyper-network module consists of linear layers to get embeddings for each modality, a 1D
convolutional module Conv to get a shared task-specific encoding z ∈ RH·dz , where H is the
demonstration length, and a set of linear layers to get adapter parameters. Formally, let the weights
of linear embedding layers be Ls ∈ Rds×dh , Lr̂ ∈ R1×dh , Lt ∈ R1×dh , Ll ∈ R1×dh for the state,
rewards-to-go, timesteps, and layer id, respectively. Similar to timesteps representing temporal
positions, the layer id represents positional information of decoder blocks. Hence, we add layer id
embedding to state, action, and reward-to-go tokens. There are four types of parameter-generation
layers with weights, LD ∈ Rdxdh×dz for down-projection layers, LU ∈ Rdxdh×dz for up-projection
layers, and Lγ ∈ Rdx×dz , Lβ ∈ Rdx×dz for FiLM layers. Formally, the hyper-network conducts
the following operations.

Ul,Dl, γl, βl = Hyper-network(ho, l), where (3)
z = Conv(concat(Ls(ho) + Lt(h

o) + Ll(h
o), Lr̂(h

o) + Lt(h
o) + Ll(h

o))),

Ul = LUz, Dl = LDz, γl = Lγz, βl = Lβz.

5

Published as a conference paper at ICLR 2023

Algorithm 1 Hyper-network Training

1: Input: training tasks T train, HDTϕ with hyper-network parameters ϕ, training iterations N ,
offline dataset D = {h = (s0, a0, r0, · · · , sH , aH , rH)}, demonstrations P , per-task batch size
M , learning rate αϕ

2: for n = 1 to N do
3: for Each task Ti ∈ T train do
4: Sample M trajectory τi of length K from Di, and a demo. hoi from Pi
5: Get a minibatch BMi = {(hoi , τi,m)}Mm=1

6: Get a batch B = {BMi }
|T train|
i=1

7: apred = HDTϕ(hoi , τi,m), ∀(hoi , τi,m) ∈ B
8: ϕ← ϕ− αϕ∇ϕ 1

|B|
∑

(ho
i ,τi,m)∈B(a− apred)2, where a refers to actions in τi,m

Algorithm 2 Efficient Policy Adaptation without Expert Actions (meta-LfO)

1: Input: testing task T ∈ T test, HDTψ with adapter parameters ψ, online rollout budget Nepi,
one-shot demonstration without actions P , batch size M , learning rate αψ , exploration rate ϵ

2: Initialize adapter parameters ψ with trained hyper-network
3: Initialize empty data buffer D = {∅}
4: while episode number less than Nepi do
5: Collect one episodic trajectory h with ϵ-greedy
6: Relabel rewards-to-go of h with actual rewards and append h to data buffer D
7: Sample M segments τ of length K from D, and a demo. ho from P
8: Get a batch B = {(ho, τm)}Mm=1
9: apred ← HDTψ(ho, τm), ∀(hoi , τm) ∈ B

10: ψ ← ψ − αψ∇ψ 1
|B|

∑
(ho

i ,τm)∈B(a− apred)2, where a refers to actions in τm

3.5 ALGORITHM

DT Pre-training. We first pre-train a DT model with datasets across multiple tasks. We assume
that the datasets do not contain trajectories collected in testing tasks. We defer the detailed training
algorithm in the appendix as in Algorithm 3.
Training Hyper-network. We train the hyper-networks as shown in Algorithm 1. For notation sim-
plicity, we denote hyper-network parameters as ϕ. During hyper-network training, the pre-trained
transformer agent’s parameters are frozen. HDT only updates hyper-network parameters ϕ to make
sure the hyper-network copes with the pre-trained agent as well as extracts meaningful task-specific
information from demonstrations ho. To stabilize training, each gradient update of ϕ is based on a
large batch containing trajectory segments in each task. Following Chen et al. (2021), we minimize
the mean-squared error loss between action predictions and targets.
Fine-tuning on Unseen Tasks. When fine-tuning in unseen target tasks, HDT first initializes adapter
parameters (denoted as ψ) with the pre-trained hyper-network and then only updates the adapter
parameters. When there only exist demonstrations without actions ho in the target task (meta-LfO),
HDT initializes an empty data buffer and collects online rollouts with ϵ-greedy as in Algorithm 2.
Following Zheng et al. (2022), we relabel the rewards-to-go of the collected trajectories. HDT
updates adapters with the same mean-squared error loss as training hyper-networks. When there
exist expert actions in the demonstration (meta-IL), HDT could omit the online rollout and directly
fine-tune the adapter with the expert actions following Algorithm 4 in appendix Section A.

4 EXPERIMENTAL SETUP
We conduct extensive experiments to answer the following questions:

• Does HDT adapt to unseen tasks while maintaining parameter and data efficiency?
• How is HDT compared with other prompt-fine-tuning and parameter-efficient fine-tuning methods

in the field of policy learning?
• Does the hyper-network successfully encode task-specific information across tasks?
• Does HDT’s adaptivity scale with training tasks’ diversity, the base DT policy’s model size, and

the bottleneck dimension?

6

Published as a conference paper at ICLR 2023

4.1 ENVIRONMENTS AND OFFLINE DATASETS

The Meta-World benchmark (Yu et al., 2020) contains table-top manipulation tasks requiring a
Sawyer robot to interact with various objects. With different objects, such as a drawer and a win-
dow, the robot needs to manipulate them based on the object’s affordance, leading to different reward
functions. At each timestep, the Sawyer robot receives a 4-dimensional fine-grind action, represent-
ing the 3D position movements of the end effector and the variation of gripper openness. We follow
the Meta-World ML45 benchmark. We use a training set containing 45 tasks for pre-training DT
and hyper-networks. The testing set consists of 5 tasks involving unseen objects or seen objects but
with different reward functions.

For each training task, we collect an offline dataset containing 1000 episodes with the rule-based
script policy provided in Yu et al. (2020) and increase the data randomness by adding random noise
to action commands. For each testing task, we collect one demonstration trajectory with the script
policy. Note that the expert rule-based script policy is tailored to each task and has an average
success rate of about 1.0 for each task in the training and testing sets. We set the episode length as
200. Each episode contains states, actions, and dense rewards at each timestep.

4.2 BASELINES

We compare our proposed HDT with six baselines to answer the questions above. For each method,
we measure the task performance in terms of the success rate in each testing task, the parameter
efficiency according to the number of fine-tuned parameters during adaptation, and the data efficiency
based on the top-2 number of online rollout episodes until a success episode. All methods except for
SiMPL utilize a base DT model with size [512, 4, 8], which are the embedding dimension, number
of blocks, and number of heads, respectively.

• PDT. Prompt Decision Transformer (PDT) (Xu et al., 2022) generates actions based on both the
recent context and pre-collected demonstrations in the target task. To ensure a fair comparison,
we omit the actions in the demonstration when training PDT with T train. During fine-tuning,
we conduct prompt-tuning by updating the demonstration with the Adam optimizer. PDT helps
reveal the difference between parameter-efficient tuning and prompt-tuning in policy learning.

• DT. We fine-tune the whole model parameters of the pre-trained DT model during online adapta-
tion. DT helps show the data- and parameter-efficiency of HDT.

• HDT-IA3. To show the effectiveness of the adapter layer in policy learning, we implement an-
other parameter-efficient fine-tuning method, HDT-IA3, motivated by Liu et al. (2022). HDT-
IA3 insert weights to rescale the keys and values in self-attention and feed-forward layers. Both
HDT-IA3 and HDT do not utilize position-wise rescaling. In other words, HDT-IA3 trains hyper-
network to generate rescaling weights shared by all positions in each block. During fine-tuning,
only the rescaling weights are updated. We detail HDT-IA3’s structure in Section A.3.

• SiMPL. Skill-based Meta RL (SiMPL) (Nam et al., 2022) follows SPiRL’s setting (Pertsch et al.,
2020) and uses online rollouts with RL to fine-tune on downstream unseen tasks. We pick this
additional baseline for the meta-LfO, since this setting can be thought of as meta-RL with obser-
vations. We aim to show the improvements when having access to expert observations.

• HDT-Rand. To reveal the effect of the adapter initialization with pre-trained hyper-networks, we
compare HDT with HDT-Rand, which randomly initializes adapter parameters during fine-tuning.
HDT-Rand only updates the adapter parameters similar to HDT.

5 RESULTS AND DISCUSSIONS

5.1 DOES HDT GENERALIZE TO UNSEEN TASKS WITH PARAMETER AND DATA EFFICIENCY?

When fine-tuning in unseen tasks with demonstrations containing no expert actions, HDT achieves
significantly better performance than baselines in terms of success rate, parameter efficiency (Ta-
ble 1), and rollout data efficiency (Table 2).
Success Rate. Without fine-tuning, HDT could only achieve a success rate of around 0.12 in testing
tasks. In the meta-LfO setting, after collecting a handful of episodes in each task, HDT demonstrates
a significant improvement to a success rate of around 0.8, as shown in Table 1. In the door-lock
and door-unlock tasks, where the object already shows up in the training tasks, HDT could fully

7

Published as a conference paper at ICLR 2023

HDT PDT DT HDT-IA3 SiMPL

(a) ML45 Train (b) ML45 Test (meta-IL) (c) ML45 Test (meta-LfO)

Figure 3: Qualitative results in Meta-World benchmark. Each curve is averaged across 5 seeds. We
show the training curves of our proposed HDT and baselines in (a), the adaptation performance with
a one-shot demonstration containing expert actions (meta-IL) in (b), and adaption performance with
a demonstration containing no expert actions (meta-LfO) in (c). When expert actions are unavail-
able, HDT outperforms baselines by a large margin.

Table 1: Quantitative results on Meta-World ML45 benchmarks.

Model Sizes Meta-World ML45 Peformances
Adaptation Percentage Train Test (no-FT) Test (meta-IL, 1 shot) Test (meta-LfO)

HDT 69K 0.5% 0.89± 0.00 0.12± 0.01 0.93 ± 0.10 0.80 ± 0.16
PDT 6K 0.05% 0.88± 0.00 0.06± 0.05 0.04 ± 0.07 0.09 ± 0.01
DT 13M 100% 0.70 ± 0.04 0.08± 0.03 0.87 ± 0.15 0.46 ± 0.21

HDT-IA3 6K 0.05% 0.88± 0.00 0.04± 0.02 0.10 ± 0.01 0.16 ± 0.14

solve the tasks. In more challenging tasks where there exist unseen objects, including bin-picking,
box-close, and hand-insert, HDT still outperforms baselines by a large margin, as in Table 2 and
Figure 3. SiMPL, without utilizing the demonstrations, could achieve performance improvements
while still underperforming our proposed HDT. Such observations show the benefit of leveraging
prior information from demonstrations.
Parameter Efficiency. In meta-LfO, fine-tuning the whole parameters of the base DT model (de-
noted as DT) comes third in terms of the average success rate (Figure 3 (c)). However, it requires
a significantly larger amount of computation budget to fine-tune 13M parameters compared with
our proposed HDT, which fine-tunes 69K parameters (0.05% of 13M) as in Table 1. In the simpler
setting with expert actions (meta-IL), all baselines require no online rollouts and update with expert
actions. In this case, HDT converges faster than fine-tuning DT as in Figure 3 (b).
Data Efficiency. In meta-LfO, we set the online rollout budget as 4000 episodes. As in Table 2,
HDT could sample a successful episode in around 20 to 80 episodes, much smaller than the number
of episodes required by baselines. Such a comparison shows that the adapter module initialized by
the pre-trained hyper-network helps guide the exploration during online rollouts.

5.2 ADAPTER LAYERS V.S. OTHER EFFICIENT FINE-TUNING METHODS IN POLICY LEARNING

Prompt-tuning and parameter-efficient fine-tuning are two popular paradigms in tuning pre-trained
large language models Liu et al. (2021). We are interested in the effectiveness of methods in both
regimes when tuning pre-trained transformer agents. We treat PDT as the representative prompt-
tuning baseline and HDT-IA3 as another baseline in the regime of parameter-efficient fine-tuning.
We show that HDT outperforms both in terms of adaptation performances in both meta-IL and meta-
LfO settings. Although PDT could sample successful episodes quickly during online adaptation
(Table 2), purely updating the prompt input hardly improves success rates. We observe similar
trends when fine-tuning with expert actions (Figure 3 (b)). HDT-IA3 could sample success episodes
but may require a larger number of rollouts than PDT and HDT. As in Figure 3 (c), fine-tuning
HDT-IA3 could result in success rate improvements, which is much less than our proposed HDT.

5.3 DOES THE HYPER-NETWORK ENCODE TASK-SPECIFIC INFORMATION?

HDT relies on the hyper-network to extract task-specific information and utilizes the information
by generating the adapter’s parameters. We hope to investigate whether the hyper-network encodes
meaningful task-specific details. We visualize the adapter’s parameters initialized by the hyper-
network for each task in Figure 7. The detailed visualization process is deferred to Section B.2.
Figure 7 shows that the adapters’ parameters for different tasks could be distinguished from each

8

Published as a conference paper at ICLR 2023

Table 2: Per-task Quantitative results without expert actions (meta-LfO). For each testing task,
we present the success rate averages across episodes and measure the data efficiency based on the
average of the smallest and the second smallest numbers of online rollout episodes until collecting
a success episode. The symbol ”x” means that no successful episodes are sampled during online
rollouts. We highlight the best performances.

bin-picking box-close hand-insert door-lock door-unlock
success rate data eff. success rate data eff. success data eff. success data eff. success data eff.

HDT 0.60 ± 0.49 20 0.80 ± 0.34 30 0.60 ± 0.37 80 1.00 ± 0.00 20 1.00 ± 0.00 20
PDT 0.00 ± 0.00 40 0.06 ± 0.12 20 0.00 ± 0.00 20 0.59 ± 0.48 20 0.00 ± 0.00 170
DT 0.16 ± 0.37 1880 0.37 ± 0.31 1480 0.16 ± 0.37 640 0.38 ± 0.36 50 0.80 ± 0.40 20

HDT-IA3 0.00 ± 0.00 190 0.00 ± 0.00 950 0.00 ± 0.00 x 0.00 ± 0.38 x 0.75 ± 0.25 20
HDT-Rand 0.00 ± 0.00 x 0.07 ± 0.12 280 0.00 ± 0.00 2600 0.42 ± 0.45 110 0.25 ± 0.36 30

HDT-small-train 0.00 ± 0.00 440 0.00 ± 0.00 440 0.83 ± 0.29 800 0.17 ± 0.29 1220 0.67 ± 0.58 20
(a) Test (meta-IL) (b) Test (meta-LfO) (c) Test (meta-IL) (d) Test (meta-LfO)

Figure 4: Ablation results to show the effect of training tasks and model size. Decreasing the
adapter’s bottleneck hidden size would slow down the convergence when there are expert actions as
in (a), and cause a significant performance drop when no expert actions as in (b). Similar trends are
observed with decreased base DT’s model size as in (c) and (d). With 10 training tasks, HDT-small-
train underperforms HDT.

other, showing that the hyper-network indeed extracts task-specific information. To support the
argument, we further visualize the environment rollouts in the 5 testing tasks in Section B.1. Com-
pared with HDT-Rand, which randomly initializes adapter layers, HDT has much better adaptation
performance with a higher success rate and strong data efficiency (Table 2 and Figure 4).

5.4 DOES HDT’S PERFORMANCE SCALE WITH TRAINING TASKS AND MODEL SIZES?

Lee et al. (2022) show that the data diversity and model size are crucial when training large
transformer-based models in the multi-game setting. We hope to understand whether similar trends
show up when training HDT. The ablation results are summarized in Table 2 and Figure 4. To un-
derstand the effect of training task diversity, we compare HDT with HDT-small-train, which trains
the hyper-network and the base DT model with 10 training tasks. In meta-LfO, HDT-small-train
underperforms HDT in terms of success rates and efficiency when sampling successful episodes.
Such results show the importance of training task diversity. It is worth noting that with a smaller
DT model size, the transformer agent could hardly sample successful episodes in meta-LfO and
thus no improvements during online adaptation (Figure 4 (d)). The performances also drop with
smaller hidden sizes of the adapter layers. With expert actions in meta-IL, smaller DT model size
and bottleneck dimension lead to slower convergence.

6 CONCLUSION

We propose Hyper-Decision Transformer (HDT), a transformer-based agent that generalizes to un-
seen novel tasks with strong data and parameter efficiency. HDT fine-tunes the adapter layers in-
troduced to each transformer block during fine-tuning, which only occupies 0.5% parameters of the
pre-trained transformer agent. We show that in the Meta-World benchmark containing fine-grind
manipulation tasks, HDT converges faster than fine-tuning the overall transformer agent with expert
actions. Moreover, HDT demonstrates strong data efficiency by initializing adapter layers’ param-
eters with a hyper-network pre-trained with diverse tasks. When expert actions are unavailable,
HDT outperforms baselines by a large margin in terms of success rates. We attribute the strong
performance to good initializations of the adapter layers, which help HDT achieve successful online
rollouts quickly. We hope that this work will motivate future research on how to optimally fine-
tune large transformer models to solve downstream novel tasks. Interesting future directions include
scaling HDT up to handle embodied AI tasks with high-dimensional egocentric image inputs.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This project was supported by the DARPA MCS program, MIT-IBM Watson AI Lab, National
Science Foundation under grant CAREER CNS-2047454, and gift funding from MERL, Cisco, and
Amazon.

REFERENCES

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009. 3

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013. 3, 4

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1, 2

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021. 1, 2, 3,
4, 6

Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. arXiv preprint
arXiv:2011.05970, 2020. 3

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.
4

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
neural information processing systems, 30, 2017. 1, 3

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR,
2017a. 4

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imi-
tation learning via meta-learning. In Conference on robot learning, pp. 357–368. PMLR, 2017b.
3

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020. 17

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021. 17

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021. 3

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.
3

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019. 2

Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control networks for
few-shot imitation learning. In Conference on robot learning, pp. 783–795. PMLR, 2018. 3

10

Published as a conference paper at ICLR 2023

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021. 1,
4

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021. 17

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020. 17

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
ers. arXiv preprint arXiv:2205.15241, 2022. 1, 3, 4, 9

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021. 3

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
ing. arXiv preprint arXiv:2205.05638, 2022. 3, 7, 14

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021. 8

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021. 3, 4, 5

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J Lim. Skill-based meta-
reinforcement learning. arXiv preprint arXiv:2204.11828, 2022. 7

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018. 5

Karl Pertsch, Youngwoon Lee, and Joseph J Lim. Accelerating reinforcement learning with learned
skill priors. arXiv preprint arXiv:2010.11944, 2020. 7

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning
for dexterous manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7865–7871. IEEE, 2021. 1, 3

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022. 1, 3, 4

Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021 Offline
Reinforcement Learning Workshop, December 2021. 17

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from obser-
vation. arXiv preprint arXiv:1905.13566, 2019. 1, 3, 4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 2

Johannes Von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019. 3

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021. 1

11

Published as a conference paper at ICLR 2023

Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and Katerina Fragkiadaki.
Hyperdynamics: Meta-learning object and agent dynamics with hypernetworks. arXiv preprint
arXiv:2103.09439, 2021. 3

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International Con-
ference on Machine Learning, pp. 24631–24645. PMLR, 2022. 2, 3, 4, 7

Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang, and Chuang
Gan. Imitation learning from observations by minimizing inverse dynamics disagreement. Ad-
vances in neural information processing systems, 32, 2019. 3

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020. 2, 7

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. arXiv preprint
arXiv:2202.05607, 2022. 3, 6

12

Published as a conference paper at ICLR 2023

A ADDITIONAL ALGORITHM DESCRIPTIONS

We present the algorithms for pre-training DT models in Section A.1, efficient adaptation of HDT
when there exist expert actions in Section A.2, the model architecture of HDT-IA3 in Section A.3.

A.1 DT PRE-TRAINING

We pre-train a base DT model with large offline datasets collected from training tasks. Each gradient
update of the DT model considers information from each training task.

Algorithm 3 DT pre-training

1: Input: training tasks T train, training task size T train = |T train|, DTθ, training iterations N ,
offline dataset D, demonstrations P , per-task batch size M , learning rate αθ

2: for n = 1 to N do
3: for Each task Ti ∈ T train do
4: Sample M trajectory τi of length K from Di
5: Get a minibatch BMi = {τi,m)}Mm=1

6: Get a batch B = {BMi }T
train

i=1

7: apred = DTθ(τi,m), ∀(τi,m) ∈ B
8: LMSE = 1

|B|
∑
hinput∈B(a− apred)2

9: θ ← θ − αθ∇θLMSE

A.2 EFFICIENT ADAPTION WITH EXPERT ACTIONS (META-IL)

With expert actions, the transformer model does not need to conduct online rollouts and updates by
fine-tuning with the expert actions.

Algorithm 4 Efficient Policy Adaptation with expert actions (meta-IL)

1: Input: testing task T ∈ T test, HDTψ with adapter parameters ψ, one-shot demonstration with
actions P , batch size M , learning rate αψ , iteration N

2: Initialize adapter parameters ψ with trained hyper-network
3: for n = 1 to N do
4: Sample M segments τ of length K from P , and a demo. ho by omitting the actions
5: Get a batch B = {(ho, τm)}Mm=1
6: apred ← HDTψ(ho, τm), ∀(hoi , τm) ∈ B
7: ψ ← ψ − αψ∇ψ 1

|B|
∑

(ho
i ,τm)∈B(a− apred)2

A.3 HDT-IA3

Figure 5: Model Architecture of HDT-IA3.

We show the model architecture of HDT-IA3 in Figure 5. Compared with our proposed HDT, HDT-
IA3 has a hyper-network that takes the same encoding of demonstrations as HDT but outputs IA3

13

Published as a conference paper at ICLR 2023

parameters instead. The parameter efficient fine-tuning method, IA3, proposed by (Liu et al., 2022),
adds position-wise scaling weights to the self-attention and activations between feedforward layers.
Considering that the transformer block in DT only contains one feedforward layer, we rescale the
outputs of the feedforward layer instead. Moreover, to make a fair comparison, we use one set of
IA3 parameters for all positions, similar to the position-agnostic rescaling of HDT.

Formally, the IA3 parameters include lk ∈ Rdx , lv ∈ Rdx , lff ∈ Rdx . The key K and the value v of
the self-attention module are rescaled by lk and lv , respectively. The feedforward output is rescaled
by lff .

A.4 MODEL SIZES

In this section, we describe the model size of different methods to help compare parameter efficiency.

Table 3: Detailed Model sizes for experiments with a large base DT model.

Base model Hypernet Adaptation fine-tune type Percentage

HDT 13M 2.3M 69K Adapter layer parameters 0.5%
HDT-IA3 13M 0.2M 6K IA3 parameters 0.05%

PDT 13M - 6K demonstrations 0.05%
DT 13M - 13M full model parameters 100%

Table 4: Model sizes when different base DT models and adapter’s bottleneck sizes.

Embedding blocks heads bottleneck size total DT updated

HDT 512 4 8 16 15.5M 13.1M 69K
HDT-medium 128 6 4 16 2.0M 1.3M 26K

HDT-small 128 3 1 16 1.4M 0.7M 13K
HDT-hidden-8 512 4 8 8 14.4M 13.1M 37K
HDT-hidden-4 512 4 8 4 13.9M 13.1M 20K
HDT-hidden-2 512 4 8 2 13.6M 13.1M 12K

A.5 HYPER-PARAMETERS

Table 5: Hyperparameters for DT-related models

Hyperparameters Value

K (length of context τ) 20
demonstration length 200
training batch size for each task M 16
pre-training iterations 4000
number of gradient updates in each iteration 10
number of evaluation episodes for each task 10
learning rate αθ, αϕ, αψ , 1e-4
learning rate decay weight 1e-4
activation GELU

online rollout budget Nepi 4000
online rollout budget in each training iteration 20
fine-tuning iterations 200
exploration ϵ 0.2

SiMPL learning rate 5e-5

14

Published as a conference paper at ICLR 2023

B ADDITIONAL RESULTS IN META-WORLD BENCHMARK

B.1 THE EFFECT OF HYPER-NETWORKS THROUGH ENVIRONMENT VISUALIZATION

We aim to show the quality of the adapter’s parameter initialization by visualizing the environment
rollouts. The comparisons between our proposed HDT and the baseline HDT-Rand show that initial-
izing the adapter layer with hyper-networks provides a strong prior helping guide online exploration.

Figure 6: Environment Visualization. We provide key screenshots of three testing environment roll-
outs to compare the initialization of our proposed HDT and HDT-Rand, which randomly initialize
the adapter layers.

B.2 T-SNE VISUALIZATION OF ADAPTERS’ PARAMETERS INITIALIZED BY THE
HYPER-NETWORK

To show whether the hyper-network extract task-specific information, we visualize the adapters’ pa-
rameters initialized by the hyper-network in Figure 7. For each task, we randomly sample 100 expert
demonstrations without actions, which serves as input to the hyper-network, and collect 100 samples
of the adapters’ parameters as the output of the hyper-network. Considering that the adapters con-
tain around 69k parameters which form a high-dimensional vector, we first reduce the dimension to
1000 via principle component analysis (PCA). We then project the PCA results to a 2-dimensional
space using t-Distributed Stochastic Neighbor Embedding (t-SNE). We use sklearn to conduct PCA
and t-SNE. We change the perplexity to 10, considering that we use a relatively small number of
samples. All the other hyperparameters except the perplexity are the same as the default parameters
for PCA and t-SNE.

In Figure 7, we show the transformed 2D features for both the training and testing tasks. The training
tasks are labeled with black text and circle markers. The testing tasks are labeled with red text and

15

Published as a conference paper at ICLR 2023

Figure 7: T-SNE visualization of the initialized adapter layers based on pre-trained hyper-network.
The cross marker and red text represent testing tasks. The dot marker and black text represent
training tasks.

cross markers. We can see that the adapters’ parameters for different tasks could be distinguished
from each other, showing that the hyper-network indeed extracts task-specific information.

B.3 TESTING PERFORMANCES

We provide the quantitative per-task results in the 5 testing tasks in Table 6 and Table 7. More
concretely, Table 6 shows the results for HDT with different base DT model sizes and adapter
hidden sizes when there exist no expert actions. Table 7 shows the results for all methods when the
expert actions are available.

Table 6: Per-task Quantitative results for ablation studies without expert actions (meta-LfO).

bin-picking box-close hand-insert door-lock door-unlock
success rate rollouts success rate rollouts success rate rollouts success rate rollouts success rate rollouts

HDT-medium 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 x
HDT-small 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 x 0.83 ± 0.24 30 0.00 ± 0.00 x

HDT-hidden-8 0.25 ± 0.43 1170 0.13 ± 0.22 240 0.00 ± 0.00 3160 0.38 ± 0.41 40 0.50 ± 0.50 2140
HDT-hidden-4 0.00 ± 0.00 x 0.25 ± 0.43 1180 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 3020
HDT-hidden-2 0.00 ± 0.00 x 0.13 ± 0.22 3710 0.00 ± 0.00 x 0.00 ± 0.00 x 0.00 ± 0.00 180

16

Published as a conference paper at ICLR 2023

Table 7: Per-task Quantitative results with expert actions (meta-IL).

bin-picking box-close hand-insert door-lock door-unlock

HDT 1.00 ± 0.00 0.63 ± 0.41 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.04
PDT 0.25 ± 0.43 0.25 ± 0.17 0.00 ± 0.00 0.33 ± 0.41 0.50 ± 0.50
DT 0.67 ± 0.47 0.80 ± 0.28 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

HDT-IA3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.12

HDT-medium 0.67 ± 0.47 0.17 ± 0.24 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
HDT-small 0.16 ± 0.24 0.29 ± 0.24 0.00 ± 0.00 0.83 ± 0.24 0.17 ± 0.24

HDT-hidden-8 1.00 ± 0.00 0.28 ± 0.22 1.00 ± 0.25 0.00 ± 0.00 1.00 ± 0.00
HDT-hidden-4 0.00 ± 0.00 0.38 ± 0.31 0.84 ± 0.27 1.00 ± 0.00 0.69 ± 0.42
HDT-hidden-2 0.00 ± 0.00 0.16 ± 0.27 0.00 ± 0.00 1.00 ± 0.00 0.69 ± 0.23

B.4 ADDITIONAL BASELINES ON META-WORLD WITH 45 TRAINING TASKS

We train baselines on the 45 training tasks of the Meta-World ML45 benchmark. We implement
CQL Kumar et al. (2020), IQL Kostrikov et al. (2021), BC and TD3BC Fujimoto & Gu (2021)
based on the d3rlpy package Takuma Seno (2021). The main results are in Figure 8. Note that CQL
and IQL do not incorporate offline demonstrations when interacting with the environments. Thus it
is expected that CQL and IQL would perform worse than our proposed HDT.

From Figure 8 and Table 8, we can see that in the meta-IL setting, BC and IQL could have perfor-
mance improvement but still underperform HDT. In the meta-LfO setting, CQL and IQL are trained
in an online manner and underperform HDT. It is also worth noting that all four baselines here will
suffer from the forgetting problem since all the model parameters are modified.

Figure 8: Qualitative results in Meta-World ML45 benchmark

Table 8: Quantitative results of baselines on Meta-World ML45 benchmarks.

Baselines in Meta-World ML45
Train Test (no-FT) Test (meta-IL, 1 shot) Test (meta-LfO)

HDT 0.89± 0.00 0.12± 0.01 0.93 ± 0.10 0.80 ± 0.16
BC 0.70 ± 0.01 0.10 ± 0.06 0.51± 0.22 -

TD3+BC 0.53 ± 0.00 0.00 ± 0.00 0.12± 0.13 -
CQL 0.06 ± 0.01 0.04 ± 0.07 0.32± 0.19 0.53± 0.21
IQL 0.62 ± 0.00 0.13 ± 0.18 0.53± 0.20 0.31± 0.17

B.5 ADDITIONAL EXPERIMENTS ON D4RL POINTMAZE ENVIRONMENTS

We hope to show the performance of HDT in another domain beyond manipulation tasks and thus
add another set of locomotion tasks based on D4RL’s pointmaze environment Fu et al. (2020). We
train all the methods with 50 training tasks and test in 10 testing tasks. The detailed description of
the environment and tasks are deferred to Section C.2.

The main results for the pointmaze environment are in Figure 9 and Table 9. We can see that HDT
still outperforms baselines in terms of adaptation capability to unseen tasks in both meta-IL and
meta-LfO settings. The results in the navigation domain help validate the main results presented in
the original submission.

17

Published as a conference paper at ICLR 2023

Figure 9: Qualitative results in Pointmaze benchmark

Table 9: Quantitative results on Pointmaze environments.

Pointmaze Peformances
Train Test (no-FT) Test (meta-IL, 1 shot) Test (meta-LfO)

HDT 0.97 ± 0.00 0.73 ± 0.00 0.83 ± 0.10 0.89 ± 0.08
PDT 0.95 ± 0.00 0.63 ± 0.01 0.54 ± 0.20 0.11 ± 0.10
DT 0.94 ± 0.00 0.51 ± 0.03 0.46 ± 0.21 0.79 ± 0.16

HDT-IA3 0.97 ± 0.00 0.55 ± 0.00 0.37 ± 0.16 0.33 ± 0.15

C ENVIRONMENT DETAILS

C.1 META-WORLD EXPERIMENTS

C.1.1 SUCCESS CRITERION

We utilize the success signal feedback from the environment to calculate the success score, which is
the sum of the success signals within one episode. To avoid false positive success identifications, we
define a successful episode if the success score is larger than 5 and the total episode return is larger
than 300.

C.2 POINTMAZE EXPERIMENTS

C.2.1 DATA GENERATION

For each task in the training set, we use the expert rule-based controller provided in the D4RL
package to generate 100 episodes. We use the medium-maze as the maze layout. For each testing
task, we also use the expert controller provided but only generate one episode.

C.2.2 SUCCESS CRITERION

To avoid false positive success identifications, we define a successful episode if the accumulated
sparse reward is larger than 5.

C.2.3 TRAINING AND TESTING TASKS

Each task corresponds to different start and goal positions.

The list of 50 training tasks:

• Task index: 0, start: [3,3], goal: [1,1]
• Task index: 1, start: [3,3], goal: [1,2]
• Task index: 2, start: [3,3], goal: [1,5]
• Task index: 3, start: [3,3], goal: [1,6]
• Task index: 4, start: [3,3], goal: [2,1]
• Task index: 5, start: [3,3], goal: [2,2]
• Task index: 6, start: [3,3], goal: [2,4]

• Task index: 7, start: [3,3], goal: [2,5]
• Task index: 8, start: [3,3], goal: [2,6]
• Task index: 9, start: [3,3], goal: [3,2]
• Task index: 10, start: [3,3], goal: [3,4]
• Task index: 11, start: [3,3], goal: [4,1]
• Task index: 12, start: [3,3], goal: [4,2]
• Task index: 13, start: [3,3], goal: [4,4]

18

Published as a conference paper at ICLR 2023

• Task index: 14, start: [3,3], goal: [4,5]
• Task index: 15, start: [3,3], goal: [4,6]
• Task index: 16, start: [3,3], goal: [5,1]
• Task index: 17, start: [3,3], goal: [5,3]
• Task index: 18, start: [3,3], goal: [5,4]
• Task index: 19, start: [3,3], goal: [5,6]
• Task index: 20, start: [3,3], goal: [6,1]
• Task index: 21, start: [3,3], goal: [6,2]
• Task index: 22, start: [3,3], goal: [6,3]
• Task index: 23, start: [3,3], goal: [6,5]
• Task index: 24, start: [3,3], goal: [6,6]
• Task index: 25, start: [4,4], goal: [1,1]
• Task index: 26, start: [4,4], goal: [1,2]
• Task index: 27, start: [4,4], goal: [1,5]
• Task index: 28, start: [4,4], goal: [1,6]
• Task index: 29, start: [4,4], goal: [2,1]
• Task index: 30, start: [4,4], goal: [2,2]
• Task index: 31, start: [4,4], goal: [2,4]

• Task index: 32, start: [4,4], goal: [2,5]
• Task index: 33, start: [4,4], goal: [2,6]
• Task index: 34, start: [4,4], goal: [3,2]
• Task index: 35, start: [4,4], goal: [3,3]
• Task index: 36, start: [4,4], goal: [3,4]
• Task index: 37, start: [4,4], goal: [4,1]
• Task index: 38, start: [4,4], goal: [4,2]
• Task index: 39, start: [4,4], goal: [4,5]
• Task index: 40, start: [4,4], goal: [4,6]
• Task index: 41, start: [4,4], goal: [5,1]
• Task index: 42, start: [4,4], goal: [5,3]
• Task index: 43, start: [4,4], goal: [5,4]
• Task index: 44, start: [4,4], goal: [5,6]
• Task index: 45, start: [4,4], goal: [6,1]
• Task index: 46, start: [4,4], goal: [6,2]
• Task index: 47, start: [4,4], goal: [6,3]
• Task index: 48, start: [4,4], goal: [6,5]
• Task index: 49, start: [4,4], goal: [6,6]

The list of 10 testing tasks:

• Task index: 50, start: [3,2], goal: [1,1]
• Task index: 51, start: [3,2], goal: [4,4]
• Task index: 52, start: [3,2], goal: [2,5]
• Task index: 53, start: [3,4], goal: [4,6]
• Task index: 54, start: [3,4], goal: [1,6]

• Task index: 55, start: [3,4], goal: [2,2]
• Task index: 56, start: [4,5], goal: [6,5]
• Task index: 57, start: [4,5], goal: [3,2]
• Task index: 58, start: [4,5], goal: [5,3]
• Task index: 59, start: [5,4], goal: [3,2]

19

	Introduction
	Related Work
	Hyper Decision Transformer
	Problem Formulation: Efficient Adaptation from Observations
	Decision Transformer (DT) as the Pre-trained agent
	Adaptation Module
	Hyper-network
	Algorithm

	Experimental Setup
	Environments and Offline Datasets
	Baselines

	Results and Discussions
	Does HDT generalize to unseen tasks with parameter and data efficiency?
	Adapter layers v.s. other efficient fine-tuning methods in policy learning
	Does the hyper-network encode task-specific information?
	Does HDT's performance scale with training tasks and model sizes?

	Conclusion
	Additional Algorithm Descriptions
	DT pre-training
	Efficient Adaption with expert actions (meta-IL)
	HDT-IA3
	Model sizes
	Hyper-parameters

	Additional results in Meta-World benchmark
	The effect of hyper-networks through environment Visualization
	t-SNE visualization of adapters' parameters initialized by the hyper-network
	Testing Performances
	Additional baselines on Meta-World with 45 training tasks
	Additional Experiments on D4RL pointmaze environments

	Environment Details
	Meta-World Experiments
	Success Criterion

	Pointmaze Experiments
	Data Generation
	Success Criterion
	Training and Testing tasks

