
Under review as a conference paper at ICLR 2022

IMAGE FUNCTIONS IN NEURAL NETWORKS: A PER-
SPECTIVE ON GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we show that training with SGD on ReLU neural networks gives
rise to a natural set of functions for each image that are not perfectly correlated
until later in training. Furthermore, we show experimentally that the intersec-
tion of paths for different images also changes during the course of training. We
hypothesize that this lack of correlation and changing intersection may be a fac-
tor in explaining generalization, because it encourages the model to use different
features at different times, and pass the same image through different functions
during training. This may improve generalization in two ways. 1) By encouraging
the model to learn the same image in different ways, and learn different com-
monalities between images, comparable to model ensembling. 2) By improving
algorithmic stability, as for a particular feature, the model is not always reliant on
the same set of images, so the removal of an image may not adversely affect the
loss.

1 INTRODUCTION

Determining why neural networks generalize remains an interesting open problem. Training
often succeeds even without the use of explicit regularizers like Dropout Srivastava et al. (2014),
and even when the model is trained all the way to 100% training accuracy, or in the presence
of over-parametrization Zhang et al. (2021). Existing bounds using capacity control Neyshabur
et al. (2019), e.g. Rademacher complexity or VC dimension are difficult to analyze when there
is zero label noise and zero empirical risk Belkin et al. (2018). Several interesting approaches
have been explored to explain the generalization phenomenon. These include approaches based on
applying algorithmic stability Bousquet & Elisseeff (2000) to SGD Hardt et al. (2016) Kuzborskij
& Lampert (2018) , PAC Bayes based bounds Dziugaite & Roy (2017) approaches exploring
properties of neural network functions like elasticity He & Su (2019). It has also been hypothesized
that neural networks have a spectral bias towards low frequency functions Rahaman et al. (2019) .
While discovering neural networks generalize on small datasets, Olson et al. (2018) introduced an
algorithm to decompose a neural network into a set of uncorrelated trees, possibly explaining their
ability to perform variance reduction.
For many machine learning models, boosting Schapire (2003) and bagging Breiman (1996) are
employed to improve generalization performance by either averaging over different trained models,
or resampling the dataset so it contains different distributions of data points. The underlying
intuition is that different models are unlikely to make the same mistake. One can also train models
on different subsets of features and take an average to reduce variance. Additionally, one promising
line of investigation surrounding neural network generalization is that of algorithmic stability, as
analyzed by Bousquet & Elisseeff (2000) and Hardt et al. (2016) for the case of SGD.

In this work, we consider ReLU networks trained using SGD on image data. We show that
training with SGD on ReLU neural networks gives rise to a natural set of functions for each image
that are not perfectly correlated until later in training. Furthermore, we show experimentally that the
intersection of paths for different images also changes during the course of training. We hypothesize
that this lack of correlation and changing intersection may be a factor in explaining generalization,
because it encourages the model to use different features at different times, and pass the same image
through different functions during training. This may improve generalization in two ways. 1) By

1

Under review as a conference paper at ICLR 2022

encouraging the model to learn the same image in different ways, and learn different commonalities
between images, comparable to model ensembling.

In particular, at time t, an image has access to a subset of features from image functions f t
j , and

this subset changes over time. Hence, f t
i may not be too correlated with the end-to-end function fk

j ,

k  t on the training set, allowing for generalization.

2) By improving algorithmic stability, as for a particular feature, the model is not always reliant on
the same set of images, so the removal of an image may not adversely affect the loss.

2 PRIOR WORK

Keskar et al. (2019) investigate the effect of sharpness and flatness of minima on generalization, and
find that flat minima generalize better. Dinh et al. (2017) find that if the network is re-parametrized,
sharp minima can also generalize well. Smith & Le (2018) give a bayesian perspective on gener-
alization and SGD. Dziugaite & Roy (2017) reveal a way to compute non-vacuous generalization
bounds using PAC-Bayes He & Su (2019) study the local elasticity of neural networks, where the
prediction at x is not significantly perturbed if a gradient update is performed on another dissimilar
point x0. Deng et al. (2021) use local elasticity to compute a generalization bound.Poggio et al.
(2020a) show that neural networks can avoid the curse of dimensionality. Poggio et al. (2020b)
show that neural networks have complexity control by analyzing the normalized gradient. Veit et al.
(2016) find that ResNets behave like ensembles of shallow networks by examining the paths the
data travels through.

Algorithmic stability Bousquet & Elisseeff (2000) use McDiarmid’s method to show that
algorithmic stability implies good generalization error. Hardt et al. (2016) analyze the algorithmic
stability of SGD.

Studies on the gradient Sankararaman et al. (2020) study the impact of gradient confusion
on the speed of neural network optimization concluding that SGD is fast when gradient confusion
is low. Yin et al. (2018) Jain et al. (2018) study the effect of gradient diversity on the speed of
optimization and show that greater gradient diversity leads to large mini-batches more effectively
speeding up SGD. Fort et al. (2019) investigate the stiffness of neural networks and measure the
cosine similarity between gradients as an approximation of how much one data point reduces loss on
another. Chatterjee (2019) connects gradient averaging to algorithmic stability and generalization.
Jacot et al. (2018) study generalization in the case that the network width reaches infinity, in which
case dynamics are governed by the Neural Tangent Kernel. Arora et al. (2019) find that in practice,
finite width CNTKs generalize better than infinite width models, indicating there may be some
advantage to finite width. Novak et al. (2018) empirically study sensitivity measures such as the
input output jacobian, and find that this correlates with generalization. Arpit et al. (2017) study
memorization in neural networks. One quantity they consider is the gradient of the loss with respect
to a particular input sample.

Variance reduction A key idea in traditional machine learning is that of variance reduction.
Boosting and bagging are employed as techniques to reduce variance by averaging over different
(uncorrelated) models.

SGD as noisy GD Mandt et al. (2016) show that SGD can be interpreted as an Ornstein-
Uhlenbeck process. Another line of work has investigated the anisotropic noise of SGD as
compared to GD. Since the SGD update samples a minibatch to calculate the gradient instead of
using the whole training set, they view the SGD update as a noisy version of the GD update. Zhu
et al. (2019) explore the effectiveness of the anisotropic noise in SGD at escaping bad minima of
the loss function.

Assessing Layerwise Convergence Raghu et al. (2017) Morcos et al. (2018) use canonical
correlation analysis to reveal insights into the convergence across different neural networks. They
consider each neuron to be a vector, with each entry corresponding to the neuron value on a training
data point, and each layer to be a subspace spanned by its neurons’ vectors.

2

Under review as a conference paper at ICLR 2022

Assessing Activation Patterns Hanin & Rolnick (2019) investigated activation patterns in
ReLU networks and found that they use surprisingly few such patterns. Cogswell et al. (2016) im-
proved generalization of neural networks by introducing a regularizer that de-correlated activations.

Dropout Neural networks may be explicitly regularized using techniques such as dropout.
Dropout imposes regularization by dropping nodes in a way that is typically sampled from a
Bernoulli distribution. The resulting model can be considered an ensemble. Gao et al. (2019)
investigate the effects of separating the forward from the backward pass.

3 ON FUNCTIONS

Mathematically, a function is a binary relation between two sets that associates each element of the
first set with exactly one of the other set. ReLU functions clearly satisfy this definition, and all
images pass through the same ReLU function. Yet, we will argue that each image is more accurately
considered to have its own function, because the overall ReLU function is not particularly smooth,
and does not, for example, satisfy the nice properties of polynomials use in function analysis. Al-
though each image function is calculated on the same weights, we find that the varying ReLU paths
make them sufficiently different.

4 GENERALIZATION

At the start of training, both the training data and test data are assumed to be drawn from some
distribution D. However, during training, input data are sampled uniformly from T , the training set,
call this distribution U . The key question behind generalization is why optimizing over EU results
in low loss over ED. In this work, we show that neural networks learn different functions for the
same image during training, and that this function diversity may contribute to generalization.

5 FULLY CONNECTED NETWORK GRADIENTS

We use [N] := {1, 2, ..., N}. SGD computes the following update on neural network parameters
wt+1 = wt � ⌘rwtL (1)

where rwtL denotes the gradient of the loss with respect to the weight parameters, and ⌘ the learn-
ing rate. We focus on the case of minibatch SGD, where the gradient update is computed over a
batch of data. For a particular node n evaluated on an image xi, it will have incoming backpropa-
gated gradient at time t of z(t,n)i . Let N be the number of nodes in the network and L the number
of layers. We assume each node has an index, n, in [N], and furthermore for the sake of notation
that all nodes in the first layer are indexed {1, ...`1}, that the second layer is indexed {`1, ..., `2} etc.
with `L = N . We will also write {`�1, ..., `0} to denote the coordinates of the input. Let �!ai (t,`j :`k)
be the vector of activations for image xi at time t from nodes in layers j to k. We define a function
pti : [N] ! {0, 1} that takes the index of the neural network’s N nodes, and returns 1 if it is on
for image i at time t according to the ReLU activation function and returns 0 otherwise. With some
abuse of notation, if we omit the function argument and write pti, we define this as the vector of
length N containing pti(n) as each entry. Let Bt be the minibatch sampled at time t. So the gradient
update for a particular node n in layer `k, k 2 [L] at time t is

X

i2Bt

z(t,n)i · pti(n) ·
�!ai

(t,`k�2:`k�1) (2)

for the weight parameter and
P

i2Bt
z(t,n)i for the bias parameter.

Let
f (t,n)
i (x) =

⇣
z(t,n)i · pti(n) ·

�!ai
(t,`k�2:`k�1)

⌘
· x+ z(t,n)i (3)

Then the overall function a fully connected node n computes at time t for input x is

f (t,n)(x) =

X

t

X

i2Bt

f (t,n)
i (x)

!
· ptx(n) (4)

3

Under review as a conference paper at ICLR 2022

where ptx(n) denotes the path function for image x (not necessarily in the training set), and the layer
activations are given by

f (t,1:`1)(x) := [f (t,1)(x), f (t,2)(x), ..., f (t,`1)(x)] (5)
where the square braces denote concatenation and the layer function for `j may be defined recur-
sively.

F (t,`j)(x) = f (t,`j�1:`j)
⇣
· · ·f (t,1:`1)(x)

⌘
(6)

We will define the history of the neural network as

HT = {

X

i2B1

f (1,[N])
i , ...,

X

i2BT

f (T,[N])
i } (7)

The activations �!ai (t,n) for an input image xi are found by projecting the image onto the history of
the network, e.g.

�!ai
(t,1:`1) = f (t,1:`1)(xi) (8)

We will use the notation

pti|Ht (9)
to project the path pti onto the history, i.e. to run the forward pass for F (t,`L) fixing ptx(n) in Equation
4 to be equal to pti for all n. Once enough updates have occurred, Equation 4 contains a term f (t,n)

i
for all i in the training set. It is therefore not obvious why continuing to update using only the i in
the training set does not yield a function that is very correlated on the training set and only produces
low values of the loss on those points (and not on the test set). The gradient of neural networks
is sometimes treated as a black-box in terms of generalization. However, we can exploit the fact
that many neural networks use some form of dot product for each neuron to write the ai terms in
Equation 4. Experimentally, we will measure the normalized dot products of these activations, as
well as path overlap.

Evaluating the same point using different functions Let t be the current time, xi 2 Bt and
xj /2 Bt. At time t, data point xi is evaluated using Equation 6 which contains f (t,n)

j as in Equation
4. One main observation is that f (t,n)

j and f (t�k,n)
j for 1  k  t � 1 may have different ptx(n)

terms in Equation 4 (i.e. ptx(n) · pt�k
x (n) may not have high normalized dot product). That is to say,

the same image at different times in training may follow a different evaluation path, i.e. the set of
nodes activated for that image may be different.)

This also means that although each f (t,n)
i may be correlated with the history Ht of the network,

and hence be correlated with the other previous f (t�k,n)
j for 1  k  t � 1, the ReLU activation

causes pj to be new enough that the network may not already correlated with f (t,n)
j at the current

time t (until xj next updates.) This encourages generalization, as the network, despite having seen
xj before, does not pass it through a function too correlated with xj . This means that although the
network has seen image xj before, it learns it using a different function, encouraging generalization.
In summary, we show experimentally that Neural networks learn differing functions for the same

image during training

Earlier functions are destroyed by subsequent ones In an ensemble, typically an average of func-
tions is taken to be the final predictor of the form wigi. In the setup described above, although image
xi may follow pti at time t, it may subsequently not be assigned that same path again. Hence, it can-
not use all of f t

i in future rounds. We believe this also means that having extremely low correlation
or independence is not as important as it is in ensembles. Rather, there is a tradeoff; more simi-
larity may mean easier optimization, while somewhat less similarity may lead to more algorithmic
stability, due to not re-using the same set of features.

Which functions are optimized We use pti|Ht to be the function found projecting the path pti
onto the history Ht. Each data point xi at time t will have loss L(pti|Ht) where L is some loss

4

Under review as a conference paper at ICLR 2022

function (e.g. the cross entropy loss). Suppose xi is in the updating batch at time t, i.e. i 2 Bt,
then rL(pti|Ht) is directly calculated, and a gradient step is taken to descend on this loss function.
Furthermore, since the function pti|Ht depends on all previous images xj after the first epoch in
training, it is not obvious why while descending on L(pti|Ht), the functions L(ptj |Ht) are not also
optimized for images xj in the training set only. We hypothesize that even if the network tries to
optimize L(pti|Ht) in terms of prior pkj |Hk for k < t, this does not correspond to optimizing xj in
terms of its current function ptj |Ht.

From the last time xj updated, the network cannot re-run the forward pass on xj , and ptj will
be reassigned according to the ReLU function and the current history Ht. So the i 2 Bt do not
have access to the end to end back-propagated gradient along the updated ptj and instead calculate
gradients along their own paths pti for i 2 Bt. Each of these pti have some intersection with the
previous pkj for k < t, typically pti · p

k
j > 0. These paths pti serve to collectively update along

ptj , but not by simple averaging or by linear combination of the whole paths. The sum of fi
in Equation 4 do not correspond to a single back-propagated function, and are instead separate
functions (Equation 3) stitched together according to the ReLU gate. When re-assigning xj to its
new path, the z(t,n)i in Equation 3 may not correspond to the evaluation path ahead in the network
that xj will actually follow (because ptj is unknown). The function xj follows at evaluation time is
hence a sort of ’franken-function’ which is constructed on the fly and is not explicitly optimized.
It also does not correspond to simply adding together the fi, as the px term in Equation 4 must be
applied. Additionally, the previous path that xj was following is likely to be destroyed; we find
experimentally that the image does not follow pkj at a later time t. Also, either all gradient updates
to a node are applied (if it is on) or none are (if it is off), so data points may not selectively pick
some functions to follow end-to-end.

Additionally, we find that training images xi and xj intersect in different places (along different
paths) at different times in training, and that xi has highest dot product with different images
throughout training. We interpret this to mean that The ReLU gate encourages the use of different

features at different times.

We show experimentally that:

• For a particular previous fk
i k < t, each current updating f t

j have only partial path intersec-
tion with fk

i . (They do not have complete access to all previous activations). Furthermore,
they intersect on different nodes at different times. (Indicating they may learn from each
other in different ways at different times)

• The f t
i at different times t for some fixed image index i are different. (Self similarity is not

perfect.)

• The overall layer function, Equation 6 is not too smooth, supporting the case for consider-
ing f t

i for various i as different functions.

• For a particular image i, the ranking of which functions f t
j are most path similar, for various

times t, changes, indicating that which images are most similar to each other changes. This
is in contrast, e.g., with K nearest neighbors, where the identity of the nearest neighbor
remains fixed for fixed training data.

CNN layers the update for CNN networks may be computed comparably, with Equation 3 modified
to contain a sum over patches cj of the original image

f (t,n)
i (x) =

0

@
X

j

z(t,n)i · pti(n) ·
�!cj

(t,`k�2:`k�1)

1

A · x+
X

j

z(t,n)j (10)

5

Under review as a conference paper at ICLR 2022

6 EXPERIMENTS BETWEEN DATA POINTS

Equation 4 involves three terms; a zi term, an ai term (the activations of the layer before), and a
path term pi. In our experiments, we first focus on the pi term, as it reveals which nodes are on
or off for a particular function. We use the usual definition of pi and allow the ReLU function on
the current history Ht to determine if a node is on or off. Since the ai term in Equation 4 is dotted
with x, which would be the activations of input x at the layer before, we also graph dot products
between activations at the same layer. We concatenate all activations into a single vector for a layer.
We also conduct experiments on the whole function f t

i applied in isolation in Appendix Section C.
Experimental details for training the model can be found in Appendix Section B.

6.1 ALEXNET CROSS PATH ALIGNMENT

We let � denote the elementwise product. We omit the argument for pti and assume that it is

(`k�1 : `k) We measure the quantity
(pt

i�pt
j)·(p

t�1
i �pt�1

j)

|(pt
i�pt

j)||(p
t�1
i �pt�1

j)| , which determines the overlap between

the intersection of paths pti and ptj at the current epoch t versus the previous epoch t � 1. This an-
swers the question, does image xi always have access to the same set of activations from xj? We see
in Figure 1 that the answer is no. We hypothesize that this is the ReLU gate and SGD optimization
encourages xi to use a different set of previous features from other images xj , and this this diversity
could encourage generalization.

Figure 1: Cross path similarity
(pt

i�pt
j)·(p

t�1
i �pt�1

j)

|(pt
i�pt

j)||(p
t�1
i �pt�1

j)| for AlexNet trained on CIFAR-10 data in the

left column and the quantity
(at

i�at
j)·(a

t�1
i �at�1

j)

|(at
i�at

j)||(a
t�1
i �at�1

j)| in the right column. The top row depicts the 4th
layer of the network and the bottom row the 1rst layer of the network. We find that for a majority of
training, there is not a perfect correlation for either quantity, indicating images intersect each other
on different features at different points in training.

6.2 RESNET 18 ON CIFAR 10 CROSS PATH ALIGNMENT

For ResNet-18 trained on the CIFAR 10 dataset, we plot the normalized path overlap as we did
for AlexNet. We plot our results in Figure 2. We find that in general, the correlations are higher
than those found in AlexNet, but still not perfectly correlated until late in training. ResNet is also
significantly deeper than AlexNet, and a small difference in each layer cumulatively leads to a
different overall path. VGG-19 on CIFAR 10 cross path similarity We have similar findings for
VGG-19 in Appendix Figure 16

6

Under review as a conference paper at ICLR 2022

Figure 2: Cross path similarity
(pt

i�pt
j)·(p

t�1
i �pt�1

j)

|(pt
i�pt

j)||(p
t�1
i �pt�1

j)| for ResNet-18 trained on CIFAR-10 data. Bot-
tom row depicts layer 2, top row depicts layer 6.

Figure 3: Cross path similarity
(pt

i�pt
j)·(p

t�1
i �pt�1

j)

|(pt
i�pt

j)||(p
t�1
i �pt�1

j)| for ResNet-18 trained on ImageNet data.

6.3 RESNET 18 ON IMAGENET CROSS PATH ALIGNMENT

For ResNet trained on the ImageNet dataset, we plot the normalized distribution of
(pt

i�pt
j)·(p

t�1
i �pt�1

j)

|(pt
i�pt

j)||(p
t�1
i �pt�1

j)| We plot our results in Figure 3. We find that this distribution is not perfectly
correlated, though it becomes more correlated later in training.

6.4 ALEXNET CIFAR 10 PATH DISTANCES

We run experiments to asses how different the f t
i are for different i. We try to asses whether the

overlap between path vectors is related to the distance between original points in data space. We
plot our results in Figure 4. We find that there is not a clean linear relationship between distance in
original space and overlap in path vectors, supporting the case for considering each image update
as its own function, and again indicating that there is a kind of function diversity present in ReLU
network training.

Resnet-18 on CIFAR-10: We have similar findings for Resnet -18 trained on CIFAR-10 in Ap-
pendix D

7 EXPERIMENTS ON SELF SIMILARITY

In this section, we seek to asses how different the paths and representations are for a single image
throughout the course of training.

7

Under review as a conference paper at ICLR 2022

Figure 4: Path overlap pti · p
t
j versus distance in original space ||xi � xj ||2 for AlexNet trained on

CIFAR 10. Layer 6 shown on the left and Layer 2 shown on the right. We find that there is not a
clean linear relationship between distance in original space and overlap in path vectors, supporting
the case for considering each image update as its own function.

7.1 ALEXNET ON CIFAR 10

Figure 5: Self similarity pt�1
i ·pt

i

||pt�1
i ||||pt

i||
for AlexNet trained on CIFAR 10 data. Bottom row depicts

layer 1, top row depicts layer 4.

For AlexNet trained on the CIFAR 10 dataset, we plot the normalized distribution of pti([`k�1 :
`k]) · p

t�1
i ([`k�1 : `k]). We plot our results in Figure 5. We find that especially in the beginning

of training, pti and pt�1
i are not perfectly correlated, indicating that the same image xi is passing

through different nodes at different times t.

8 THE IDENTITY OF THE MOST SIMILAR IMAGE CHANGES

For three images we rank 128 other data points and restrict the resulting plot to the nearest 6 neigh-
bors, where rank of 0 means it is the nearest neighbor. We use AlexNet on CIFAR 10 layer 2. We
plot our results in Figure 6. Result using activation similarity We present analogous results to
above using normalized activation similarity for layer 4 and 2 of AlexNet in Appendix E

TAKEWAY FROM EXPERIMENTS

We find that in all the architectures we examined, the self similarity and the intersection similarity
between data points changed throughout (especially the early part) of training. These variations
may lead to generalization for the similar reasons to ensembling over different models. Unlike in
ensembling, we see that f t

i is destroyed at a later time f t+k
i , because xi may not pass through the

whole pti and instead may only use part of it (the part that intersects with pt+k
i). Furthermore, each

8

Under review as a conference paper at ICLR 2022

Figure 6: Plotting closeness to baseline image xj for j = 5, 10, 15. Closeness defined as path
overlap ptj · p

t
i for other image i. AlexNet trained on CIFAR 10 data. We find that images xj can

have different nearest neighbors at different times during training.

other image function f t
j is only correlated with parts of f t

i (on certain nodes.) This may explain why
averaging is not necessary for variance reduction.

Figure 7: Early to mid cross path overlap ratio versus generalization.

Ratio of early to mid cross path overlap Finally, we can utilize the idea of cross path overlap in
an attempt to predict generalization error. We hypothesize that higher (but not perfect) cross path
overlap early is good, as typically the learning rate is high and this reflects a large number of shared
features in the data On the other hand, high cross path overlap after decay may be bad, as diverse
features are no longer being learnt. We plot (averaged over training data) the ratio of early (average
over epochs before first decay) to mid (averaged over second stage of training) cross path overlap for
various models against their generalization error in Figure 7. There is a roughly linear relationship,
and improving such predictions could be an interesting avenue for future work.

CONCLUSION

We have studied neural networks from the perspective of considering each image, updating at a
particular time, as a different function. We have highlighted some properties of practical neural
networks, namely that they learn varying representations for a single image, and that each image
intersects each other image in different places during training. We hypothesize that this diversity of
representation could lead to better generalization, by encouraging the model to learn the same image
in different ways (akin to model ensembling) and by improving algorithmic stability.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Proceedings of the 33rd International

Conference on Neural Information Processing Systems, pp. 8141–8150, 2019.

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In International Conference on Machine Learning, pp.
233–242. PMLR, 2017.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for
classification and regression rules that interpolate. Advances in Neural Information Processing

Systems, 31:2300–2311, 2018.

Olivier Bousquet and André Elisseeff. Algorithmic stability and generalization performance. In
Proceedings of the 13th International Conference on Neural Information Processing Systems, pp.
178–184, 2000.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient
descent-based optimization. In International Conference on Learning Representations, 2019.

Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing over-
fitting in deep networks by decorrelating representations. ICLR, 2016.

Zhun Deng, Hangfeng He, and Weijie Su. Toward better generalization bounds with locally elastic
stability. In International Conference on Machine Learning, pp. 2590–2600. PMLR, 2021.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint

arXiv:1703.11008, 18, 2017.

Stanislav Fort, Paweł Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness: A
new perspective on generalization in neural networks. arXiv e-prints, pp. arXiv–1901, 2019.

Hongchang Gao, Jian Pei, and Heng Huang. Demystifying dropout. In International Conference on

Machine Learning, pp. 2112–2121. PMLR, 2019.

Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
NeuRIPS, 2019.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, pp. 1225–1234. PMLR,
2016.

Hangfeng He and Weijie Su. The local elasticity of neural networks. In International Conference

on Learning Representations, 2019.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and gen-
eralization in neural networks. In Proceedings of the 32nd International Conference on Neural

Information Processing Systems, pp. 8580–8589, 2018.

Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing
stochastic gradient descent for least squares regression: mini-batching, averaging, and model
misspecification. Journal of Machine Learning Research, 18, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. Journal

of Machine Learning Research, 18, 2019.

10

Under review as a conference paper at ICLR 2022

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
International Conference on Machine Learning, pp. 2815–2824. PMLR, 2018.

Stephan Mandt, Matthew Hoffman, and David Blei. A variational analysis of stochastic gradient
algorithms. In International conference on machine learning, pp. 354–363. PMLR, 2016.

Ari S Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. NeuRIPS, 2018.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. In Interna-

tional Conference on Learning Representations (ICLR), 2019.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein.
Sensitivity and generalization in neural networks: an empirical study. In International Conference

on Learning Representations, 2018.

Matthew Olson, Abraham J Wyner, and Richard Berk. Modern neural networks generalize on small
data sets. In Proceedings of the 32nd International Conference on Neural Information Processing

Systems, pp. 3623–3632, 2018.

Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. Proceed-

ings of the National Academy of Sciences, 117(48):30039–30045, 2020a.

Tomaso Poggio, Qianli Liao, and Andrzej Banburski. Complexity control by gradient descent in
deep networks. Nature communications, 11(1):1–5, 2020b.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. NeuRIPS, 2017.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-

ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Karthik Abinav Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and Tom Goldstein. The
impact of neural network overparameterization on gradient confusion and stochastic gradient de-
scent. In International Conference on Machine Learning, pp. 8469–8479. PMLR, 2020.

Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear estimation

and classification, pp. 149–171, 2003.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. Journal of Machine Learning Research, 18, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine

learning research, 15(1):1929–1958, 2014.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29:550–558,
2016.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter
Bartlett. Gradient diversity: a key ingredient for scalable distributed learning. In International

Conference on Artificial Intelligence and Statistics, pp. 1998–2007. PMLR, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochas-
tic gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
International Conference on Machine Learning, pp. 7654–7663. PMLR, 2019.

11

	Introduction
	Prior work
	On Functions
	Generalization
	Fully connected network gradients
	Experiments between data points
	AlexNet cross path alignment
	ResNet 18 on CIFAR 10 cross path alignment
	ResNet 18 on ImageNet cross path alignment
	AlexNet CIFAR 10 path distances

	Experiments on self similarity
	Alexnet on CIFAR 10

	The identity of the most similar image changes
	Appendix
	AlexNet Architecture and experimental details

	Experimental details
	AlexNet on CIFAR 10
	ResNet-110 on CIFAR 10
	ResNet-18 on ImageNet

	Experiments using the whole fit
	ResNet CIFAR 10 path distances
	AlexNet Similarity
	VGG-19 Cross path similarity

