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ABSTRACT

Neural network pruning allows for significant reduction of model size and latency. How-1

ever, most of the current network pruning methods do not consider channel interdepen-2

dencies and a lot of manual adjustments are required before they can be applied to new3

network architectures. Moreover, these algorithms are often based on hand-picked, some-4

times complicated heuristics and can require thousands of GPU computation hours. In5

this paper, we introduce a simple neural network pruning and fine-tuning framework that6

requires no manual heuristics, is highly efficient to train (2-6 times speed up compared to7

NAS-based competitors) and produces comparable performance. The framework contains8

1) an automatic channel detection algorithm that groups the interdependent blocks of9

channels; 2) a non-iterative pruning algorithm that learns channel importance directly from10

feature maps while masking the coupled computational blocks using Gumbel-Softmax11

sampling and 3) a hierarchical knowledge distillation approach to fine-tune the pruned12

neural networks. We validate our pipeline on ImageNet classification, human segmentation13

and image denoising, creating lightweight and low latency models, easy to deploy on14

mobile devices. Using our pruning algorithm and hierarchical knowledge distillation for15

fine-tuning we are able to prune EfficientNet B0, EfficientNetV2 B0 and MobileNetV216

to 75% of their original FLOPs with no loss of accuracy on ImageNet. We release a set17

pruned backbones as Keras models - all of them proved beneficial when deployed in other18

projects.19

1 INTRODUCTION20

Efforts directed towards deployment of neural networks on low-performance devices such as mobile phones21

or TVs, created a demand for smaller and faster models. This has led to advances in neural network22

compression techniques, which allow us to minimize existing large-scale architectures and adjust them to23

fit specific hardware requirements. Some techniques have been especially successful in this area. Neural24

network quantization approaches (Nagel et al., 2021) not only decreased the size of the models, but also25

enabled us to utilize specialized computing accelerators like DSPs. Unfortunately, other techniques, such as26

network pruning (Liu et al., 2020), are not equally effective in low-resource environments.27

Early attempts of naive weight pruning introduced sparse computations, which render them inefficient in28

practical scenarios (Han et al., 2015; Guo et al., 2016). Channel pruning (Li et al., 2016; Liu et al., 2017;29

2021a; Herrmann et al., 2020; Liu et al., 2019b) delivers significant improvements in terms of both memory30

consumption and execution speed, and is the preferred approach if we want to deploy our models on mobile31

devices.32

However, the majority of existing approaches to channel pruning share several drawbacks:33

1. Little effort has been made to address channel interdependencies that occur in the majority of the34

architectures, with Liu et al. (2021a) being a notable exception. Many popular network architectures35

contain residual connections inspired by ResNet (He et al., 2015). Feature maps added in residual36

connections must hold the same shapes, which is likely to be violated when channels are removed37

independently. We refer to channels involved in this kind of dependency as coupled. Automating38

the process of adding pruning logic to the network in consideration of channel interdependencies is39

extremely important in practical considerations.40

2. Most methods require an expensive and time-consuming fine-tuning process after channels are41

removed. Some authors use an iterative approach, where channels are removed in a number of steps,42

and fine-tuning is performed between these steps. Either way, the fine-tuning process often requires43

a significant number of GPU hours to complete.44

3. Channels in any given convolution are being considered independently. However, some target45

platforms, e.g. SNPE (Qualcomm), are optimized for specific numbers of input and output channels46

and pruning channels independently can give little to no speed-up.47

In order to overcome these issues we introduce an end-to-end channel pruning pipeline which can be48

deployed on a wide array of neural networks in an automated way. Our main insights are that: (1) Channel49
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Figure 1: ImageNet accuracy of pruned EfficientNet B0 and B1. Considering FLOPs/accuracy trade-off the
some pruned models are better than FBNetV2, which to our knowledge has SOTA results in its FLOPs range.

importance can be learned from the feature maps using simple additional networks and no hand-crafted50

channel importance metric is needed. (2) Neural network computational graphs should be partitioned in a51

way which enables removing channels jointly if they are coupled, e.g., if they belong to convolutions whose52

outputs are later added (the case in point being skip connections). (3) Hierarchical knowledge distillation (a53

variant of classical knowledge distillation in which multiple teacher networks are used consecutively) is the54

preferred way of fine-tuning networks after channels are removed since it significantly speeds up training,55

results in better accuracy and can be used with little or no data augmentation.56

Our contributions can be summarized as follows:57

1. New pruning algorithm. We introduce a new pruning algorithm in which channel importance is58

learned directly from the feature maps. The process of choosing channels is one-shot and requires59

just a couple of GPU hours.60

2. Automated method for grouping operations that should be pruned jointly, based on channel61

interdependencies. We introduce a relatively simple way of inserting the pruning logic into62

networks which allows to discard the error-prone process of manual inspection. This makes our63

solution easy to scale and be deployed for segmentation, detection or image denoising.64

3. Hierarchical knowledge distillation We employ a novel approach to fine-tuning pruned networks.65

The approach is related to the one presented in Mirzadeh et al. (2020). The major insight is to66

gradually increase the complexity of the teacher network. It leads to much quicker training, and67

yet, achieves much better final accuracy, while not requiring advanced and time-consuming data68

augmentation procedures.69

4. Up to 25% reduction if FLOPs with no loss in accuracy on ImageNet. We validate our channel70

pruning pipeline on:71

• EfficientNet (Tan & Le, 2019), MobileNetV2 (Sandler et al., 2018) and EfficientNetV2 (Tan &72

Le, 2021) models for classification on ImageNet;73

• a human segmentation model based on EfficientNet B0 with EfficientDet - like Tan et al. (2019)74

segmentation head;75

• PMRID (Wang et al., 2020) network for RawRGB image denoising.76

In Figure 1 we can see that for FLOPs between 200M and 300M our pruned models outperform77

FBNetV2 which used, among other things, superkernels to modify existing EfficientNet architecture78

and produced models that outperform EfficientNet itself. This shows that our pruning and fine-79

tuning pipeline (which is much simpler than the NAS algortithms used in Wan et al. (2020)) can80

generate better results. Moreover, EfficientNet B0 pruned to 75% of its original FLOPs has the81

same accuracy as the original model. Interestingly EfficientNet B1 pruned to match EfficientNet B082

outperforms B0 by approximately 1% in top-1 accuracy on ImageNet.83

The whole framework of pruning and fine-tuning we introduce in this paper requires little computational84

resources. The pruning algorithm usually only takes a couple of hours to complete on a single GPU. Using85

hierarchical knowledge distillation further speeds up the fine-tuning process.86

2 RELATED WORK87

Channel selection. Many channel pruning methods employ a greedy approach where channel removal is88

interleaved with expensive fine-tuning of the network (Luo et al., 2018; Liu et al., 2015; He et al., 2017).89
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Similar, but a more affordable approach, is to periodically prune channels throughout a single training90

procedure (Liu et al., 2021a; Guo et al., 2020; Chen et al., 2020). Ye et al. (2020) and Hou et al. (2021)91

point out flaws in the idea of greedy channel removal and propose to selectively restore channels in the92

pruned network. Liu et al. (2019b) trains an auxiliary neural network to quickly evaluate pruned networks93

and select the best one using an evolutionary algorithm. Other methods jointly train a neural network and94

learn importance scores for its channels using channel gating mechanism. In (Chen et al., 2020), this is95

achieved by randomly enable and disable channels during each iteration of the training. Gradient descent96

was used to update the importance scores in Herrmann et al. (2020); Lin et al. (2020); Ye et al. (2020) and is97

based on the idea for optimizing hyperparameters in neural architecture search in Liu et al. (2019a) and Xie98

et al. (2018). These gradient-based methods rely on Gumbel-Softmax reparametrization trick (Jang et al.,99

2016) to enable back-propagating through the gates distribution. Herrmann et al. (2020) proposes a variant100

of such a method where the logits of the channel gates are trainable parameters, as well as a variant where101

the logits are produced by an auxiliary neural network that accepts a feature map. Selecting channels based102

network input introduces an overhead that is unacceptable on resource-limited devices. Our solution contains103

a similar idea, but we ensured that the auxiliary networks can be safely removed after the training.104

Channel coupling. The channel coupling pattern occurs in many modern architectures inspired by ResNet105

(He et al., 2015), such as MobileNet (Sandler et al., 2018), EfficientNet (Tan & Le, 2019; 2021) or FBNet106

(Wan et al., 2020). Many studies seem to ignore this issue (Herrmann et al., 2020; Lin et al., 2020; Ye et al.,107

2020); other resolve this issue by manually grouping interdependent layers or providing model-specific108

heuristics (Shao et al., 2021; Hou et al., 2021; Guo et al., 2020; Liu et al., 2021b). Independently to our109

efforts, an automated solution for grouping channels has been proposed in Liu et al. (2021a). We propose a110

similar algorithm (see section 4), and additionally offer an extension for handling concatenations.111

Measuring speed-up. Many pruning methods are parametrised by a fraction of channels to prune, either112

globally or per-layer (Lin et al., 2020; Ye et al., 2020; Herrmann et al., 2020). Overall network FLOPs1113

better corresponds to the usual business requirements. In Chen et al. (2020) and Liu et al. (2021a), the114

maximal FLOPs parameter is included in their stopping criteria and importance scores of channels are115

adjusted according to their computation cost. Similarly to Guo et al. (2020), we construct a loss function that116

introduce a penalty for exceeding the provided FLOPs budget and use it as a part differentiable importance117

optimization.118

Knowledge distillation. It has been noted that Knowledge distillation can perform poorly when there is119

a large discrepancy in complexity between student and teacher networks (Cho & Hariharan, 2019). Cho120

& Hariharan (2019) evaluate a step-wise approach, in which the intermediate teacher networks are trained121

by distilling knowledge from the original large teacher and then find it ineffective. Mirzadeh et al. (2020)122

propose using a teacher assistant to bridge the complexity gap. Hou et al. (2021) apply knowledge distillation123

to fine-tune pruned network, but do not address aforementioned issues. We propose an inverted version of124

the step-wise approach from Cho & Hariharan (2019), and train train our pruned network with increasingly125

larger teachers. Such chains can be naturally formed for model families like EfficientNet (Tan & Le, 2019)126

and EfficientNetV2 (Tan & Le, 2021). We also observe that in case of generic knowledge distillation, the127

final results can be improved by (even slightly) disturbing the student model with channel pruning before128

starting the distillation.129

3 PRUNING METHOD130

The basic idea behind our channel pruning algorithm is to set up a scheme in which the importance of131

channels is being learned from the feature maps generated by convolutions in neural networks. We assign132

each channel a score corresponding to its importance that is updated at each training step and used to133

approximate behavior of the pruned network by appropriate masking (Liu et al., 2017; Herrmann et al.,134

2020). Similarly to Herrmann et al. (2020) we apply a probabilistic approach where channels in feature135

maps are masked with samples from random variables with values in (0, 1). This is a continuous relaxation136

approach to solving a discrete problem. The distributions of these random variables depend on the values of137

corresponding logits (which can be though of as proxies for channel scores and have values in R). These138

logits are learned during the pruning stage. More precisely, given a feature map of size (B,H,W,C) (B139

is batch size, H and W are spatial dimension and C is the number of channels) and a logits variable, for140

each channel separately we sample — using Gumbel-Softmax (Jang et al., 2016) — the random variable141

parametrized by the corresponding logit in logits. We mask the feature map by multiplying it by the142

sampled values.143

We do not consider each feature map individually — instead, we extend our understanding of channels from144

a single feature map to a series of operations occurring within a network. The intuition is that element-wise145

operations, like activation functions, propagate channels forward throughout the network, while convolutional146

layers consume their input channels and create new ones. Pruning sequential models is trivial but in more147

complicated cases, like models with residual connections, there exist additional couplings between channels,148

introduced by operations that accept multiple inputs, e.g. element-wise sum, multiplication (Fig. 2). Because149

1a number of floating-point operations
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coupled channels must be pruned jointly to ensure valid shapes, we use a single random variable to mask150

each set of coupled channels (see Section 4 for details about automatic detection of coupled channels).151

Although logits can be treated as standalone trainable variables, we choose to learn them from the feature152

maps in a feedback-loop mechanism. This is because the latter approach is faster to train, results in logits153

which (once converted to probabilities) have lower entropy and produces better results. Once we decide on154

the feature maps from which we will learn the optimal logits values, we place simple neural networks called155

logit predictor modules that take these feature maps as inputs. These modules are build of 3x3 depthwise156

convolution followed by 1x1 convolution and global mean pooling along spatial dimensions. The output157

output vector of each such module is later used to update the value of the corresponding logits variable158

(using exponential moving average) as in Figure 2.159

The masking operations should always be placed just before the convolution operations that absorb the160

channels (see Figure 2). The placement of logit predictors is more involved and in cases more complicated161

than the relatively simple one presented in Figure 2, we choose to follow a simple heuristic to place them162

after convolutions with largest kernel sizes.163

During the pruning phase we augment the task-specific loss with an auxiliary latency-based loss. It is based164

on the expected number of FLOPs in the pruned network, which is computed by using all the logits we have165

attached to the network. We train network weights and logit predictor modules jointly so that the network166

can adjust to channels being phased out.167

Activ.

Activ.
Sum Conv

Conv

Conv
Gumbel-
Softmax
masking

channel
logitsmoving

average
update

Logit
Predictor

Figure 2: An subset of a network with logit predictor and masking. The colors indicate the correspondence
between channels. The logit predictor takes a feature map produced by the sum operation and use it to
predict an update for the channel logits.

3.1 PRUNING LARGER BLOCKS OF CHANNELS168

We allow for blocks of channels (instead of just individual channels) to be treated jointly, so that blocks169

of a predefined size will be chosen or discarded together. This is especially important for platforms where170

convolutions are optimized with a specific block size o channels in mind, e.g., for SNPE (Qualcomm) this171

number is 32 and pruning individual channels often makes little sense.172

4 LAYER GROUPING ALGORITHM173

Although channel coupling has been observed in the literature, relevant groups of operations seem to be174

usually established via network-specific heuristics or manual annotation. A notable exception is Liu et al.175

(2021a) where the problem is described at length and an algorithm for finding the groups is derived. The176

algorithm is then tested on architectures based on ResNet. However, unlike our solution, it does not support177

concatenation operations. For clarity, we focus on convolutional neural networks, but the proposed strategy178

can be extended to other kinds of architectures.179

4.1 SOLUTION180

To overcome the issues delineated in Section 3 and make channel pruning available for most off-the-181

shelf architectures we have developed an algorithm that is capable of automatically detecting channel182

interdependencies between feature maps generated by operations in the network.183

To keep track of all the places where channels have to be considered in a synchronised way, we introduce the184

concept of an orbit. An orbit can be thought as subset of operations that are interdependent from the point of185

view of channel pruning. Operations in the same orbit need to be considered jointly when removing channels.186

Naively removing channels without taking into account these interdependencies may result in an invalid187

network. For example, if we remove an output channel from one of the convolutions on the left in Figure 2,188
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(b) final orbits (red and blue)

Figure 3: Breaking up an extended orbit. An extended orbit is broken up into two final orbits. Nodes C1 and
C2 must have their channels pruned jointly. Node C3 can be pruned separately.

the number of channels will no longer match for the Sum operation. A typical network has multiple orbits.189

It is easiest to understand this concept by seeing how orbits are build, which we delineate in Algorithm 1190

below.191

First, we fix some notation to make matters more intuitive. All the operations in a typical convolutional192

neural network can be described as being of the following types:193

1. sources are the operation where new channels are being created, namely regular convolution layers194

(not depthwise!) and dense layers;195

2. sinks are the operation where channels are being absorbed, namely regular convolution layers (not196

depthwise!) and dense layers;197

3. continuators are all the operations with a single input tensor that simply pass on the channels198

forward, e.g., batch normalization, mean pooling, resize, activations;199

4. joiners are operations with multiple input tensors of the same shape which join these tensors200

without altering the shape, namely element-wise addition and multiplication;201

Typically, continuator operations are not problematic since they do not alter the channels structure and have202

a single predecessor and a single output. It is the joiner operations that introduce interdependencies between203

channels. For brevity, from now on we will only speak of convolutions as sources and sinks, but everything204

applies just as well to dense layers.205

Note that some sources can be sinks at the same time and vice versa. We refer to operations that are either206

sinks or sources as source-sinks. To identify all the subgraphs in the network where channels have to be207

considered jointly we run an exhaustive-search type algorithm which has two distinct phases:208

In the fist phase we search for extended orbits, where the coupled operations are brought together. In209

Algorithm 1 we describe how extended orbits are created. The input is a neural network directed acyclic210

graph (DAG). The algorithm amounts to removing all inbound edges from convolution nodes and finding all211

weakly connected components in the resulting graph. The extended orbits are then these weakly connected212

components once we restore the inbound edges in convolution nodes.213

The second phase is similar to the first one. For all extended orbits found in phase one we do the following:214

take the extended orbit and then mark concatenation nodes (which play a special role, since they group215

channels from separate sources) inside as sinks and repeat the process. Most notably, we discard extended216

orbits in which there are concatenation nodes followed by joiner nodes, as it makes the whole process much217

more difficult to implement. We do not prune channels within such orbits. In Figure 3 we give an example of218

an extended orbit and how is broken up into final orbits.219

Algorithm 1 Searching for extended orbits
Input: network DAG with layers represented as nodes

1: P := {p : p is a path starting and ending with a convolution with no convolutions inside the path }
2: for each path p in P remove the last node
3: for every distinct node ni on paths in P , create an empty color set for the node Cni

= {}
4: X := {x : x is the initial node of a path in P }
5: for x in X do
6: pick an unused color c
7: add color c to color sets of all the nodes on all the paths in P starting in x
8: end for
9: while there exist nodes with multiple colors do

10: pick a node with multiple colors {c1, c2, . . . , ck} at random
11: if any node in the DAG has a color in {c2, . . . , ck} switch the color to c1
12: end while
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5 PRUNING, FINE-TUNING AND HIERARCHICAL KNOWLEDGE DISTILLATION220

5.1 PRUNING STAGE221

The pruning workflow is the same for all types of tasks. We first find all final orbits in the network and attach222

logit predictors. Final orbits determine both: which parts of the network are being pruned and which of them223

are pruned jointly. The FLOPs per pixel can be automatically computed (and are differentiable with respect224

to the channel logits as in (Fig. 2). We can compute FLOPs for the original network and then set some225

FLOPs target. In practice we compute kFPP (FLOPs per pixel of the input tensor divided by 1000), to have226

a value that is independent of the input size. The latency loss is then given by ReLU(kFPP/target_kFPP−1).227

We add this loss to the quality loss related to the task, e.g., cross entropy in classification. To avoid an228

overly aggressive reduction of kFPP , we anneal the loss using exponential decay so that at the beginning of229

training the annealing multiplier is 0. and approaches 1. as the training progresses.230

Once the pruning phase is over we retain or discard output channels in convolutions based on channel231

interdependence discovered by applying Algorithm 1 and the values of logits variables learned by logit232

predictors.233

5.2 FINE-TUNING AND HIERARCHICAL KNOWLEDGE DISTILLATION234

We propose to fine-tune pruned models with a method we call hierarchical knowledge distillation. This235

approach relies on increasing the complexity of the teacher network in discrete steps. Given a fine-tuning236

budget of K GPU hours, and N teacher networks we train the network for K/N GPU hours with each of237

these teacher networks, starting with the smallest one. Our loss is Lce + 5Lkd where Lce is the standard238

cross entropy loss and Lkd is the distillation loss. Using higher weight term for the Lkd is crucial to prevent239

overfitting and produce better results.240

Hierarchical knowledge distillation consistently performs much better than just using the original model as241

the teacher. The comparisons can be seen in Section 6.2. Given an array of models with increasing FLOPs242

requirements, like EfficientNet Tan & Le (2019) and EfficientNetV2 Tan & Le (2021), it is possible to cheaply243

train new models for missing FLOPs values. This may produce better results in terms of FLOPs/accuracy244

trade-off and require less computational resources.245

It is perplexing that trying to use hierarchical knowledge distillation on an unpruned network does not work246

anywhere near as well. Our intuition is that pruning provides some kind of initial perturbation to network247

weights and architecture which prove beneficial from the point of view of gradient descent optimization.248

Are there any other types of model perturbations which boost the effectiveness of this type of knowledge249

distillation? These are the questions we could try to address as our future research. It would be also250

interesting to see how this approach performs when applied to recent state-of-the-art methods based on251

neural architecture search Wang et al. (2021).252

6 EXPERIMENTS253

All the experiments we perform adhere to the same schedule: (1) We first run the pruning algorithm with254

additional latency losses (usually 1-10 epochs, depending on the task). (2) We then fine-tune the pruned255

model (without resetting its weights). The experiments for classification on ImageNet are presented in256

Section 6.2. Experiments for image denoising and human segmentation are presented in Sections A.2.1 and257

A.2.2, respectively.258

6.1 HYPERPARAMETERS FOR THE PRUNING PHASE259

For the pruning phase, during which channels to be removed are being chosen, the setup is roughly the same260

for each task. The logits predictor is always a two layer network with 3× 3 depthwise convolution followed261

by 1× 1 convolution and global mean pooling. We set the batch size to 16 and run the training updating the262

channel gates distributions as described in section 3. The initial value of channel logits is set to 3.0 so that263

initially there little to no masking. There is an additional loss that penalizes the entropy of all the logits so264

that at the end of the pruning phase the channel enabling probabilities (which we get by applying softmax to265

logits) are far away from 0.5. The temperature for Gumbel-Softmax is constant - 0.5.266

6.2 CLASSIFICATION ON IMAGENET267

We prune EfficientNet B0, EfficientNet B1 (Tan & Le, 2019), MobileNetV2 (Sandler et al., 2018), and268

EfficientNetV2 (Tan & Le, 2021). We choose these since they are already highly optimized for mobile devices269

and relatively small. EfficientNetV2 is a recent state-of-the-art architecture optimized for mobile GPUs and270

DSPs. All the models are taken from their official Keras implementations2 except for EfficientNetV2. Larger271

2https://www.tensorflow.org/api_docs/python/tf/keras/applications
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Table 1: Top 1 ImageNet accuracy and FLOPs for for EfficientNet B0 and B1 pruned

(a) B0 pruned

Model Standard
training B0 teacher B1 teacher

(after using B0 first) FLOPs (G)

original 77.30 - - 0.393
m6 - 73.49 73.72 0.156
m8 - 74.88 75.00 0.197
m10 - 76.01 76.56 0.248
m12 - 76.54 77.30 0.299

NPRR Hou et al. (2021) - 77.00 - 0.346

(b) B1 pruned

Model Standard
training B1 teacher B2 teacher

(after using B1 first) FLOPs (G)

original 79.10 - - 0.700
m12 - 77.02 76.99 0.299
m14 - 77.26 77.74 0.348
m16 - 77.66 78.35 0.400

networks like the VGG19 or the ResNet family has been predominant in channel pruning literature, but are272

rarely suitable for resource-limited devices, where the need for optimization is biggest. The phase where273

channels are chosen usually lasts a little more than a single epoch on ImageNet. We split the ImageNet train274

data into two parts, leaving about 5% of the data for early-stopping.275

Following Section 5.2 we use multiple teacher networks. The details are as follows:276

• EfficientNet B0: fine-tune the models for 40 epochs with B0 as teacher and then we further277

fine-tune with a B1 for another 40 epochs;278

• EfficientNet B1: fine-tune the models for 25 epochs with B1 as teacher and then we further279

fine-tune with a B2 for another 25 epochs.280

• MobileNetV2: fine-tune the models for 40 epochs with MobileNetV2 as teacher and then we281

further fine-tune with a EfficientNet B0 for another 40 epochs.282

• EfficientNetV2 B0: fine-tune the models for 16 epochs with B0V2 as, then fine-tune the models283

for 16 epochs with B1V2 as teacher and finally fine-tune the models for 16 epochs with B2V2 as284

teacher.285

The interesting thing we noticed is that using knowledge distillation without pruning does not help at all.286

For example we tried fine-tuning MobileNetV2 with EfficientNet B0 teacher right away and top 1 Imagenet287

accuracy fell from 71.52% to 71.12%. We conjecture that some kind of initial perturbation is needed for288

knowledge distillation to work. In our case this perturbation is channel pruning.289

Batch size is set to 192 for B0 and MobileNetV2 fine-tuning. For B1 and EfficientNetV2 B0 batch size is290

128. The input image resolution is (224, 224). We use only random crop and flip as augmentations. For291

training we use one NVidia RTX3090 GPU. For the pruning phase we set the batch size to 16 and, quite292

importantly, we freeze all batch normalization layers. We use Adam optimizer for all the training runs.293

During mask-learning phase the learning rate is set to 0.0001. For fine-tuning we use exponential decay with294

learning rate initially set to 0.0001 and the decay rate set to 0.001.295

6.2.1 COMPARISONS AND DISCUSSION296

Few authors have attempted to prune EfficientNet (Tan & Le, 2019). We can compare our results with Hou297

et al. (2021), where only one model is presented, which was also fine-tuned with knowledge distillation. We298

provide a much wider FLOPs spectrum for B0 and prune B1 as well. It is interesting to see that B1 pruned to299

the FLOPs level of B0 outperforms B0 by a wide margin. The results are in Table 1.300

Comparisons for MobileNetV2 are quite difficult due the inconsistencies between different versions of the301

model taken by different authors as their baseline. For instance in Hou et al. (2021) the authors first take an302

over-pruned backbone which they proceed to prune. In Liu et al. (2019b) the largest version of MobileNetV2303

is taken (585M FLOPs) and then pruned. Some of the authors run the fine-tuning for much longer than we do.304

Notably, in Ye et al. (2020) the fine-tuning is run on 4 GPUs with batch size 512 and for 250 epochs which is305

considerably more expensive than our approach. Detailed results are in Table 2 and Figure 5a. Again using306

hierarchical knowledge distillation we are able to fine-tune the model pruned to 75% of original FLOPs so307

that it has 0.7% higher accuracy than the original.308
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(a) EfficientNet B0 pruned (b) EfficientNet B1 pruned

Figure 4: ImageNet accuracy of pruned EfficientNet B0 and B1. Considering FLOPs/accuracy trade-off the
some pruned models are better than FBNetV2.

Table 2: Top 1 ImageNet accuracy and FLOPs for MobileNetV2 pruned

Model Standard
training

MobileNetV2
teacher

B0 teacher
(after using

MobileNetV2 first)
FLOPs (G)

original 71.52 - - 0.301
m5 - 67.58 67.99 0.135

GSPE Ye et al. (2020) 68.8 - - 0.138
m6 - 67.08 68.76 0.140

META Liu et al. (2019b) 68.2 - - 0.140
GFP Liu et al. (2021a) 69.16 - - 0.150
GSPE Ye et al. (2020) 69.7 - - 0.152

m7 - 69.79 70.05 0.170
GSPE Ye et al. (2020) 70.4 - - 0.170

m8 - 69.47 71.28 0.199
GSPE Ye et al. (2020) 71.2 - - 0.201
GSPE Ye et al. (2020) 71.6 - - 0.220

m9 - 70.92 72.22 0.228

When it comes to EfficientNetV2, we are able to outperform the original model’s results on ImageNet with309

the help of hierarchical EKD, inasmuch as the pruned version of B0 (70% of the FLOPs of the original310

model) has higher top 1 accuracy than the original. See Table 3 and Figure 5b.311

7 CONCLUSION312

Using an automated solution to process coupled channels in neural network architectures and a simple313

scheme to learn channel importance, we are able to prune models with varying architectures for different314

underlying tasks. For fine-tuning pruned classification networks we use hierarchical knowledge distillation315

which produces much better results than just using the original model as a teacher. The whole pruning316

pipeline requires much less computational resources than some of the state-of-the-art NAS based solutions317

for finding efficient FLOPs / accuracy trade-offs like Wang et al. (2021).318

(a) ImageNet accuracy of pruned MobileNetV2. For finetun-
ing we use knowledge-distillation with both original model
and EfficientNet B0 as teachers. (b) EfficientNetV2 B0 pruned

Figure 5: Pruning results for MobileNetV2 and EfficientNetV2
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Table 3: Top 1 ImageNet accuracy and FLOPs for EfficientNetV2 B0 pruned

Model Standard training B0 teacher hierarchical teachers FLOPs (G)
original 78.67 - - 0.722
m20 - 77.59 78.93 0.506
m17 - 77.25 78.37 0.431
m15 - 76.70 77.64 0.379
m12 - 75.59 76.36 0.299
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A APPENDIX408

A.1 LAYER WIDTHS VISUALIZATION409

It is quite interesting to see how layer width looks like after pruning. The pattern that emerge are quite410

telling. EfficientNets are build of a series of meta-blocks, .e.g, 2, 3, . . . , 7 in EfficientNet B0, where each411

meta-block consists of a number of MBCONV blocks at the same spatial resolution. It appears that in each412

such meta-block the most important block is usually the first one, and block importance decays proportionally413

to the depth of the block inside the meta-block. See Figure 6 in the Appendix.414

(a) EfficientNet B0 pruned (b) EfficientNet B1 pruned

Figure 6: Visualisation of the layer width after channels are removed. There is a noticeable patter in which
the first block in a series of residual blocks at the same spatial resolution is the most important one and the
algorithm is reluctant to remove the channels. Later blocks seem to be less informative, proportionally to
their depth.

A.2 FURTHER RESULTS415

A.2.1 RAWRGB IMAGE DENOISING416

We prune a recent state-of-the-art network for RawRGB image denoising on mobile devices introduced417

in Wang et al. (2020). We train the models on SIDD Medium dataset https://www.eecs.yorku.418

ca/~kamel/sidd/dataset.php. We first extract 256x256 patches for training and validation and419

then test the networks on SIDD validation dataset https://www.eecs.yorku.ca/~kamel/sidd/420

benchmark.php. The batch size is set to 16, learning rate is 0.0001 and we use Adam optimizer. The421

loss is mean absolute error. We train the original model for 150 epochs, prune it and then train the original422

model for another 150 epochs. The pruned models are fine-tuned for 150 epochs as well. For comparison we423

also train from scratch smaller (linearly scaled down) versions of the original model. The results can be seen424

in Table 4 and Figure 7.425

A.2.2 HUMAN SEGMENTATION426

For semantic segmentation we use a private dataset for training human segmentation models for real time427

prediction in video bokeh task. This is dictated by the need to have superior edge quality which is missing428

in publicly available data for segmentation. The dataset consists of 120k real image/mask pair and 50k429

synthetic ones. Apart from IoU we also compute edge IoU, which pays attention only to the edges of the430

masks and can be thought of as a proxy for edge quality. The baseline architecture consists of an EfficientNet431

Table 4: Pruning results for image denoising and human segmentation.

(a) PSNR and kFPP for pruned PM-
RID model

Model PSNR kFPP
baseline 51.84 29.9
m25 51.84 25.4
m22 51.79 22.1
m20 51.80 19.6
m15 51.67 15.1
m12 51.41 12.3

(b) Pruning results for pruned human segmentation model.

Model IoU Edge IoU kFPP (G)
baseline 0.9414 0.4039 40.8
m30 0.9440 0.3977 30.3
m25 0.9423 0.3848 25.4
m22 0.9431 0.3816 22
m19 0.9420 0.3574 19.3
m15 0.9372 0.3354 14.6
m11 0.9295 3213 11.3
m8 0.9253 0.2939 7.5
m5 0.9050 0.2265 4.5
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Figure 7: Validation results for pruned RawRGB denoising models.

(a) IoU (b) Edge IoU

Figure 8: Validation results for pruned human segmentation.

B0 (Tan & Le, 2019) backbone, EfficientDet (Tan et al., 2019) (modified slightly to allow for easier channel432

pruning) fusion block and a detail branch (Siam et al., 2018) to preserve edge quality. The backbone network433

is pretrained on ImageNet. We train the original model for 70 epochs, prune and then fine-tune the pruned434

models for 50 epochs. The validation results are presented in Table 4. The validation dataset is a split of a435

modified version of LIP dataset (Gong et al., 2017), where objects belonging to people (such as handbags,436

etc.) are also considered part of these people. This is done, so that we can train models for video bokeh437

effect. The results are in Table 4b and are visualized in Figures 8a and 8b.438

Notice that the smallest pruned model is compressed to around 10% of the size of the original one. Even in439

these extreme compression scenario our approach produces a model with IoU higher than 90%. IoU starts440

dropping only after we have removed more than 60% of the original FLOPs. This is an observation which, in441

our experience, is true for many more architectures for segmentation, the one being presented here is just442

one example. Edge IoU starts falling much more quickly, perhaps beacause we employ no edge-specific loss.443
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