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ABSTRACT

The paradigm of “pre-training and prompt-tuning”, with its effectiveness and
lightweight characteristics, has rapidly spread from the language field to the graph
field. Several pioneering studies have designed specialized prompt functions for
diverse downstream graph tasks based on various graph pre-training strategies.
These prompts concentrate on the compatibility between the pre-training pretext
and downstream graph tasks, aiming to bridge the gap between them. However,
designing prompts to blindly adapt to downstream tasks based on this concept ne-
glects crucial security issues. By conducting covert attacks on downstream graph
data, we find that even when the downstream task data closely matches that of the
pre-training tasks, it is still feasible to generate highly misleading prompts using
simple deceptive techniques. In this paper, we shift the primary focus of graph
prompts from compatibility to vulnerability issues in adversarial attack scenar-
ios. We design a highly extensible shield defense system for the prompts, which
enhances their robustness from two perspectives: Direct Handling and Indirect
Amplification. When downstream graph data exhibits unreliable biases, the for-
mer directly combats invalid information by adding hybrid multi-defense prompts
to the input graph’s feature space, while the latter employs a training strategy
that circumvents invalid part and amplifies valid part. We provide a theoretical
derivation that proves their feasibility, indicating that unbiased prompts exist un-
der certain conditions on unreliable data. Extensive experiments across various
adversarial attack (adaptive and non-adaptive attacks) scenarios indicate that the
prompts within our shield defense system exhibit enhanced resilience and superi-
ority. Our work explores new perspectives in the field of graph prompts, offering
a novel option for downstream robust prompt tuning. Our code is available at:
https://anonymous.4open.science/r/GPromptShield

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated impressive performance across various appli-
cations due to their unique ability to handle complex and irregular data, such as recommendation
systems (Liu et al., 2024), traffic prediction (Shao et al., 2022), and social computing (Sun et al.,
2023b). With the advancement of society, real-world scenarios typically align with three charac-
teristics: abundant data, sparse labels, and diverse task domains. Therefore, the approach has
shifted from designing specific models for particular problems to training general models that can
be fine-tuned for downstream tasks—referred to as “pre-training and fine-tuning”. This paradigm
effectively maximizes the benefits of the large volume of data and has led to the emergence of many
outstanding works (Zhu et al., 2021; 2020; Velickovic et al., 2019; Hou et al., 2022; 2023).

As pre-trained models in the language field have become increasingly powerful, prompt-based fine-
tuning has gradually emerged as a new research focus. Unlike fine-tuning which adjusts the param-
eters of pre-trained models, prompt-based methods directly freeze the parameters of the pre-trained
model and focus on adjusting the data space through input transformation. Prompts aim to nar-
row the gap between the pretext of pre-training and the objectives of various downstream tasks,
while avoiding the computational cost of retraining. “Pre-training, prompting, and fine-tuning” has
become the new paradigm.
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Figure 1: The prompts can be easily
misled by simple deceptive tactics. The
red edges represent the edges changed
by structural perturbations.
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StressTest: As a mathematics instructor, calculate the answer to the
following problem related to and false is not true {}:
DeepWordBug: As a mathematics iestructor, calculate the answex to the
following problem related to {}:
CheckList: As a mathematics instructor, calculate the answer to the
following problem related to KjPJJ2a7RB {}:

Clean Prompt:   As a mathematics instructor, calculate the 
answer to the
following problem related to {}:

Figure 2: The adversarial language
prompts generated by different attacks
inspire us to design graph prompts tai-
lored to various node scenarios.

This new paradigm has rapidly spread to the graph field due to its popularity. Although applying
prompt-based fine-tuning strategies on pre-trained GNN models poses greater challenges compared
to language prompts, many pioneering studies have attempted to propose viable prompts from dif-
ferent perspectives. (Sun et al., 2023a) has rephrased node-level and edge-level tasks as graph-
level tasks and proposed a structure-based prompt token. (Liu et al., 2023b) has transformed the
pre-training tasks and downstream tasks to follow the same template in order to achieve effective
knowledge transfer. (Fang et al., 2024) has noted that prompts only apply to specific pre-training
strategies, which limits their applicability, and has proposed a simple, universal prompt. (Yu et al.,
2024) has argued that relying on a single pretext task in pre-training is insufficient, prompts should
draw knowledge from various pre-training tasks to guide downstream tasks.

These studies have made outstanding contributions and they share a commonality in their concen-
trate on the compatibility between the pre-training pretext and downstream graph tasks, aiming to
bridge the gap between them. However, designing prompts to blindly adapt to downstream tasks
based on this compatibility neglects crucial security issues. As shown in Figure 1, effective prompts
often provide strong support for downstream tasks, but making certain interventions during the
prompt tuning phase, such as simple perturbations to the graph structure, can render the prompts
ineffective and lead to catastrophic consequences.

To illustrate this phenomenon more intuitively, we conduct an interesting experiment. For the node
classification task, we employ the well-known MetaAttack (Zügner & Günnemann, 2019) to attack
the downstream graph data, and we present the classification results of existing mainstream prompt
functions on clean and attacked graphs in Figure 3.
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(b) Citeseer

Figure 3: The performance of existing prompt functions on the node classification task on clean
graphs and graphs attacked by MetaAttack with a 20% attack ratio. The scale of the radar chart
represents classification accuracy.

we find that even when the downstream task data closely matches that of the pre-training tasks, it is
still feasible to generate highly misleading prompts using simple deceptive techniques. Therefore,
this inspires us to consider the safety issues of graph prompts.
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A recent study (Zhu et al., 2023) has proposed robustness PromptBench for language prompts, as
shown in Figure 2. For instance, there is a clean prompt “As a mathematics instructor, calculate
the answer to the following problem related to {}”, The pre-trained model can adapt to downstream
tasks based on its key terms. However, adversarial prompts can cause the pre-trained model to
focus on both the target text and the adversarial content, amplifying its sensitivity to adversarial
perturbations. In word-level attacks like DeepWordBug, introducing typos or altering specific words
diverts the model’s attention from key terms. In sentence-level attacks like StressTest and CheckList,
attackers attempt to distract the pre-trained model by adding irrelevant or unrelated sentences to the
input text, which may cause it to lose focus on the primary context. The robustness of language
prompts has led us to examine the robustness of graph prompts, and we aim to equip graph prompts
with certain adversarial perturbation capabilities.

Challenges. However, designing a robust graph prompt is a significant challenge, as graph prompts
are inherently more fragile than language prompts for two main reasons. First, the cost of perturbing
a graph is very low and the implementation is straightforward. Just simply adding a few irrelevant
edges to the graph structure can lead to catastrophic changes due to the message-passing mechanism,
reminiscent of the saying “a spark can start a prairie fire”. Second, the design of graph prompts
is complex and specialized. Prompts that are suited for a specific graph property or structure can
quickly become ineffective due to even slight alterations.

Contributions. To smoothly tackle these two challenges, we design a highly extensible shield
defense system for the prompts, which enhances their robustness from two perspectives: Direct
Handling and Indirect Amplification. When downstream graph data exhibits unreliable biases, the
former directly combats invalid information by adding hybrid multi-defense prompts to the input
graph’s feature space. We do not simply add a universal learnable prompt vector for all node fea-
tures like GPF (Fang et al., 2024), as we analyzed above, a prompt that works for one node may
not be suitable for all nodes. Instead, our hybrid multi-defense prompts will customize a individual
prompt for each node according to the diverse sensitive information associated with various per-
turbations. When attacks cause biased node distributions, customized prompts can provide context-
specific guidance tailored to nodes in different situations. While the latter employs a training strategy
that circumvents invalid part and amplifies valid part. We do not need to design new prompts. In-
stead, we can directly build upon existing prompts by providing a supplementary tool to address
their overlooked safety issues. To ensure the effectiveness of our proposed strategy, we provide a
theoretical analysis demonstrating that when the downstream graph data is under attack, there exists
at least one viable prompt that can yield results equivalent to those on clean graph.

Overall, the contributions of our work can be summarized as follows:

• We have opened up a new perspective on graph prompt tuning focused on robustness, we
shift the primary focus of graph prompts from compatibility to vulnerability issues in ad-
versarial attack scenarios.

• We propose a highly extensible shield defense system for the prompts. This system in-
cludes a hybrid multi-defense prompt and a robust prompt tuning strategy, and we provide
theoretical proof of its feasibility.

• We conduct extensive experiments in few-shot scenarios under various adversarial attacks
(including adaptive and non-adaptive attacks). The results indicate that our hybrid multi-
defense prompts and robust prompt tuning strategies significantly enhance the resilience of
prompt tuning in downstream biased tasks.

2 RELATED WORK

This article primarily focuses on advancements in the field of prompt tuning. Additionally, We also
provide a systematic description of graph pre-training strategies in Appendix A.1.

Graph Prompt-based Tuning Strategies

Prompt-based methods directly freeze the parameters of the pre-trained model and focus on adjust-
ing the data space through input transformation. Due to the parameter efficiency of prompts, they
have been widely used in the language domain (Liu et al., 2023a; Sivarajkumar et al., 2024; Greshake
et al., 2023; Mizrahi et al., 2024), but they are still in the early stages in the graph domain. However,
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some pioneering studies have already been conducted to explore this area. GPPT (Sun et al., 2022)
applies the pairwise token template (the task token for downstream problem and the structure token
containing the node information) to modify nodes. ProG (Sun et al., 2023a) reformulates node-level
and edge-level tasks as graph-level tasks, introducing meta-learning technique to learn a prompt.
GPF/GPF-plus (Fang et al., 2024) proposes a universal prompt-based tuning method by introducing
additional learnable parameter as a prompt in the feature space of the input graph. To achieve ef-
fective knowledge transfer from pre-training to a downstream task, GraphPrompt (Liu et al., 2023b)
proposes a unified framework based on subgraph similarity, aiming to retain graph properties that
are compatible with the given task during pre-training. MultiGPrompt (Yu et al., 2024) argues that a
single pretext task is not sufficient. Therefore, it designs a series of pretext tokens to collaboratively
address different pretext tasks during pre-training. It also introduces a dual-prompt mechanism that
uses both a composed prompt and an open prompt to leverage task-specific and global pre-training
knowledge. However, all of these prompts focus on the compatibility between pre-training and
downstream tasks, neglecting potential security issues.

3 PRELIMINARIES

In this paper, we primarily discuss the robustness of graph prompt tuning in downstream node clas-
sification tasks, as most mainstream attacks are centered around this scenario. We do not focus on
the compatibility between upstream and downstream tasks, as existing studies have already provided
excellent discussions on this aspect. Instead, we place greater emphasis on the resilience of prompts
when faced with biased data.

Notations. Let an undirected, unweighted graph G = (V, E) with N nodes, N = |V|. V =
{v1, v2, · · · , vN} and E ⊆ V × V represent the set of nodes and edges, respectively. Its feature
matrix X = [x1, x2, · · · , xn] ∈ RN×din , where xn is a din-dimensional feature vector of the n-
th node. A ∈ {0, 1}N×N is the symmetric adjacency matrix where Aij = 1 if (vi, vi) ∈ E .
Moreover, the labels of all nodes are denoted as y. Each node is associated with a label yi ∈ C,
where C = {c1, c2, · · · , cK}.

Fine-Tuning. Define a pre-trained GNN model f , a learnable projection head θ. Next, we re-
formulate the node task as a subgraph classification task and define a downstream task dataset
D = {(Sx1

, y1), · · · , (Sxm
, ym)}, where Sxi

= (Si, XnSi
) is the multi-hop neighbor subgraph

of node i extracted from G. Si is the structure of the node subgraph. nSi
is the set of nodes con-

tained in Si. XnSi
represents the features of the contained nodes. We adjust the parameters of the

pre-trained model f and the projection head θ to maximize the likelihood of predicting the correct
labels yi of the downstream local subgraph Sxi . Fine-Tuning aims to maximize the classification
likelihoods for all nodes in the graph, which can be expressed as follows:

max
f,θ

n∑
i=1

pf,θ(yi|XnSi
, Si) (1)

Prompt-Tuning. In prompt-tuning for downstream node classification tasks, the parameters of the
pre-trained model f are frozen, and instead introduces a lightweight graph prompt function ψ. ψ
can be attached in the form of structure or features, transforming the input subgraph into a prompt
subgraph for pre-trained model f input. The prompt subgraph can be expressed as follows:

S∗
xi

: (S∗
i , X

∗
nSi

) = ψ(Sxi
) (2)

Therefore, the process of prompt-tuning can be described as:

max
ψ,θ

n∑
i=1

pf,θ(yi|S∗
xi
) (3)

In the evaluation phase after prompt-tuning, by adding a prompt ψ to the subgraph of a test node,
the frozen model f can process it directly.

4
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Effectiveness Analysis. We discuss the effectiveness of the prompts from the perspective of data dis-
tribution and explain the reason for prompt failure in Figure 3. Drawing from the description in (Li
et al., 2022b), we define that the subgraph embedding output of the prompt graph S∗

xi
after passing

through the pre-trained model f and the projection head θ is Ŝ∗
xi

. We assume all the subgraph em-
beddings are sampled from p(S∗

x|y). Existing prompts are all focused on tuning a general template
that can be used across all subgraphs. GPF adds a general feature prompt, while ProG incorporates
a general structural prompt. A key factor in the effectiveness of these universal prompts is that the
data is unbiased during downstream tuning. Specifically, the training data distribution, testing data
distribution, and true data distribution are aligned, i.e., ptrain(S∗

x|y) = ptest(S
∗
x|y) = ptrue(S

∗
x|y).

(Li et al., 2022b) provides a detailed analysis of this issue, focusing on the robustness training of
GNNs. Although pre-trained models are frozen in the prompt domain, we have found that the dan-
gers of misleading prompts are greatly underestimated. Due to the consistency between the overall
data distribution and the training data distribution, even with few-shot training samples, the prompt
can seamlessly adapt to the test data and achieve satisfactory results. However, when attacks lead
to a bias between the training and testing distributions, they can significantly deviate from the true
data distribution, resulting in a misleading prompt function that overfits the biased training data, i.e.,
ptrain(S

∗
x|y) ̸= ptest(S

∗
x|y) ̸= ptrue(S

∗
x|y). This phenomenon is well reflected in Figure 3.

Attacks. In this paper, we mainly adopt two attack scenarios: the commonly used gray-box global
poisoning attack and the white-box adaptive attack. We only focus on attacks against the graph
structure. In the setting of the former scenario, attackers have visibility into the graph data and labels
but lacks visibility into the details of the model. MetaAttack (Zügner & Günnemann, 2019) as a
classic gray-box poisoning attack, utilizes a surrogate model for the attack, which can be formulated
mathematically as a bilevel optimization problem:

min
Ĝ∈Φ(G)

Latk(fθ∗(Ĝ)) s.t. θ∗ = argmin
θ

Ltrain(fθ(Ĝ)) (4)

Φ(G) represents a set of graphs that satisfies the disturbance budget constraint ∆. ∆ indicates a
limit on the number of changes ∥A − Â∥ ≤ ∆. Latk is the attack loss function, could be −Ltrain
or −Lself .

Adaptive attacks (Gosch et al., 2024) are a type of white-box attack with stronger capabilities, where
the attacker possesses complete information, including the defender’s model features, graph struc-
ture, labels, and all details. It categorizes defense methods into seven types and designs adaptive
attacks for the most representative method in each category.

Problem Statement. This paper focuses on the robustness performance of prompt strategies in node
classification tasks. To better reflect real-world scenarios, we pretrain the GNN model on clean
graphs and freeze its parameters. Our goal is to design a robust prompt and prompt optimization
strategy. When the downstream task graph data is biased due to attacks, our prompt strategy can
utilize few-shot learning for robust optimization while enhancing the classification performance for
unlabelled nodes.

4 METHODS

In this section, we will introduce a highly extensible shield defense system designed for the prompts,
which enhances their robustness from two perspectives: Direct Handling and Indirect Amplifica-
tion. They provide viable solutions for enhancing the resilience of prompts at two different stages:
prompt design and robust optimization strategies.

4.1 DIRECT HANDLING

We have previously analyzed that when the data distribution is biased, prompts that are effective
for certain nodes may mislead others. Therefore, when the downstream graph is attacked, we do
not use a universal prompt like GPF. Instead, we designed a hybrid multi-defense prompt. Since
we cannot know in advance the tactics employed by attackers, we customize a specific prompt for
each node’s situation by organizing the commonalities of attacks and analyzing the focal points of
different attacks.

5
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Downstream unbiased subgraphs that share consistent properties with pre-trained graph data often
do not require complex prompts, such as those with high homogeneity similar to the pre-training
data, as they inherently exhibit strong compatibility. The nodes that truly require focused prompting
are the biased ones resulting from attacks. Using prompt consistent with unbiased nodes for these
nodes is clearly unreasonable. We aim for the prompts on these biased nodes capable of mitigating
the impact of biased information. Therefore, we propose several different node filtering strategies
based on various sensitive points that the attacks may target. These strategies identify potential
biased nodes with different attributes and apply attribute-specific prompts to each of them. For a
perturbed subgraph S̃xi

= (S̃i, XnSi
) in a few-shot training set, we will next demonstrate how to

add a hybrid multi-defense prompt to it.

Filtering Tip 1: Degree Some indiscriminate attacks, such as DICE (Waniek et al., 2018) and
Random, apply the same attack weight to all nodes. In this context, nodes with higher degrees
often exhibit more stable community features and maintain good consistency with the pre-trained
data. In contrast, the biased community features of low-degree nodes can be induced at a very low
attack cost. Therefore, we filter out the the set of nodes with low-degree, denoted as Nlow degree =
{u| |Nu| < τdegree}, where Nu is u’s neighbors and τdegree is the degree threshold. We provide
an auxiliary degree defense prompt pdegree ∈ Rdin applied to their feature space, where din is the
dimensionality of the node features. this process can be expressed as:

X∗
nSi

[Nlow degree] = XnSi
[Nlow degree] + pdegree (5)

Filtering Tip 2: Node Centrality Similarity. Most mainstream attacks aim to disrupt the homo-
geneity assumption in graphs, where nodes with the same label and similar features are often con-
nected. They utilize low-cost, high-reward tactics to increase the graph’s heterogeneity as much as
possible. This change in heterogeneity is typically reflected in the central similarity of nodes, where
the attacked biased nodes connect with nodes that have different labels and features, thus confusing
the assessment of their own community characteristics. Therefore, we filter out the set of nodes with
low central similarity, denoted as Nlow sim =

{
u| 1

|Nu|
∑
v∈Nu

sim(Xu,Xv) < τsim

}
, where τsim

is the similarity threshold. We provide an auxiliary similarity defense prompt psim ∈ Rdin applied
to their feature space. This process can be expressed as:

X∗
nSi

[Nlow sim] = XnSi
[Nlow sim] + psim (6)

Filtering Tip 3: Out-of-distribution nodes. (Li et al.) proposes a novel adversarial train-
ing paradigm that generates perturbations through adversarial attacks during training, using ad-
versarial edges as out-of-distribution samples and initial edges as in-distribution samples to train
multiple detectors fD =

{
f1d , f

2
d , · · ·

}
. Using this detector, we can identify out-of-distribution

edges generated by attacks when faced with a biased graph. More detailed description is pro-
vided in Appendix A.2. By detecting these edges, the nodes at both ends of the edges be-
come the focal points of the attack method. We add prompts to these nodes and denote them as
Nout dis = {u|∃fD(e) = 1, e ∈ E , u ∈ e}. We provide an auxiliary out-of-distribution defense
prompt pdetector ∈ Rdin applied to their feature space. This process can be expressed as:

X∗
nSi

[Nout dis] = XnSi
[Nout dis] + pdetector (7)

We have only provided a few feasible suggestions here. As attacks continue to evolve, node
sets can be selected based on a wider range of sensitive attributes. After we have ob-
tained different attribute node sets, the prompt selection for a node is actually included in set
{(), (pdegree, pdetector, psim), (pdegree, psim), (pdetector), · · · }. In the experiments, we also con-
sider adding a prompt pother ∈ Rdin for nodes that do not have any prompts added.

Since each node has a different number of prompts, integrating all the prompts that belong to each
node on graph is a challenge. Defining a node’s prompt set as PSeti, we propose two fusion strate-
gies: one is a simple weighted average Mean, and the other is the popular self-attention mechanism
SA (Vaswani, 2017) used in language models. Therefore, a node’s mixed muti defense prompt can
be expressed as:

6
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Figure 4: Robust Prompt Optimization Workflow for Hybrid Multi-Defense Prompts.

X∗
muti[i] = Mean(PSeti) or SA(PSeti) (8)

We present the fusion strategy of SA in Figure 4. Finally, the process of adding our mixed muti
defense prompt to the perturbed subgraph S̃xi

is described as follows:

S̃∗
xi

= (S̃i, XnSi
+X∗

muti[i]) (9)

Our prompts are applied in the feature space. We do not choose structural prompts like ProG due to
a lack of flexibility. Instead, feature-based prompts allow for real-time adjustments to the structure
of the disturbed subgraphs based on the current state of prompt training optimization.

Prompt tuning. To optimize the learnable prompts, also known as prompt tuning, we propose three
auxiliary robustness constraints. Consider a biased node classification task t with a few-shot labeled
training set Tt. Under the few-shot setting, there are only m labeled examples for each class in
C, i.e., Tt =

{
(S̃x1 , y1), · · · , (S̃xm×|C| , ym×|C|)

}
. We refer to S̃xi that adds prompt as S̃∗

xi
. After

inputting S̃∗
xi

into the pre-trained model f , we define the output node embeddings obtained as H̃nS̃∗
i

,

and the graph embedding as G̃∗
i . To enhance the denoising capability of our prompt, we hope that

the output node embeddings better satisfy the first-order proximity. Therefore, we use hidden feature
smoothness as a regularizer, as shown below:

Ls =
m×|C|∑
i

∑
(m,n)∈S̃∗

i

∥H̃nS̃∗
i

[m]− H̃nS̃∗
i

[n]∥2 (10)

At the same time, in each filtering scenario, we hope that the output distribution of the bi-
ased nodes with added prompts can be similar to the output distribution of the remaining un-
biased nodes. In S̃∗

xi
, we define the set of prompted nodes in each filtering scenario as N t

p

and the set of remaining nodes as N t
np = nS̃∗

i
\Np. (N t

p, N
t
np) ∈ NP , where NP ={

(Nlow degree, nS̃∗
i
\Nlow degree), (Nlow sim, nS̃∗

i
\Nlow sim), · · ·

}
. Therefore, we utilize a distri-

bution loss to minimize the distribution differences of each training perturbation subgraph across all
filtering scenarios, allowing the prompt to better correct biased distributions in an unbiased manner.
This can be expressed as follows:

Lkl =
m×|C|∑
i

1

|NP |
∑

(Nt
p,N

t
np)∈NP

DKL(
1∣∣N t
np

∣∣ ∑ H̃nS̃i
[N t

np]||
1∣∣N t
p

∣∣ ∑ H̃nS̃i
[N t

p]) (11)

Additionally, to impose constraints on the correlation between different defense prompts, we pro-
pose a node overlap matrix E for each S̃∗

i . Assuming there are n filtering scenarios corresponding
to n defense prompts, E is an n×n symmetric matrix. Eij represents the degree of overlap between
the biased node sets of the two filtering scenarios. Take Nlow degree and Nlow sim for example, this
implies:
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Eij = Eji =
Nlow degree ∩Nlow sim

Nlow degree ∪Nlow sim
(12)

The matrix E indicates that defense prompts with a higher node overlap should be more similar,
while those with lower overlap should exhibit greater differences. Defining the defense prompt
matrix of S̃∗

i as Pi ∈ Rn×din , we obtain the following multi-prompt constraint loss.

Lo =
m×|C|∑
i

∥PiPTi − E∥2 (13)

With these three auxiliary robustness constraints, we perform robust prompt tuning by optimizing
the following expression:

min
θ,pdegree,psim,···

m×|C|∑
i

L(G̃∗
i , yi) + αLs + βLkl + γLo (14)

L is the downstream loss function (e.g., cross entropy). During the tuning process, we prune each
S̃∗
i in training set at each epoch using a tuning similarity threshold τtune, based on the intermediate

state of the current H̃nS̃∗
i

, denoted as

ˆ̃
S
∗

i =
{
(i, j) ∈ S̃∗

i |sim(H̃nS̃∗
i

[i], H̃nS̃∗
i

[j]) > τtune

}
. (15)

After the tuning process, during the evaluation phase, we add the tuned prompts to different biased
nodes of a biased test graph. Subsequently, we obtain the classification result using the frozen pre-
trained model f and the projection head θ. We clearly illustrate our hybrid multi-defense prompt
tuning workflow in Figure 4.

4.2 INDIRECT AMPLIFICATION

Following (Li et al., 2022b), since the local structure of the downstream task is contaminated while
the features maintain global distribution consistency, we first train a multi-layer perceptron (MLP)
without structural information using few-shot training samples. This trained MLP is then used to
obtain pseudo-labels for subgraphs. By comparing softmax scores, we select the highest confidence
predictions for each class and add them to a new label set Vpsu. We compute cross-entropy loss
using this Vpsu set to fine-tune the prompts while freezing the pre-trained model. This method
can be directly applied to any prompt template. By reducing the focus on biased components and
amplifying the understanding of unbiased aspects, it significantly alleviates the misleading effects
of irrelevant information during the prompt tuning phase.

4.3 THEORETICAL ANALYSIS

We extend the theory from GPF to prove our methods.

Theorem 1. Given a pre-trained GNN model f , an unbiased input graph G = (A,X). Define a
biased graph structure Ã resulting from an attack, where Ã can be expressed as Ã = C ◦ S, where
C = 11T − I − 2A, and the edge connecting nodes u and v is modified (added or removed) if
Sij = Sji = 1. We can simplify it to Ã = A + ∆A. Take f(A,X) as the reference for unbiased
output, there exists a hybrid muti prompt P = N ×M added in the feature space that satisfying the
following equation, where N ∈ RN×t is the prompt selection matrix, M ∈ Rt×din is the prompt
matrix, t is the number of prompts.

f(Ã,X + P ) = f(A,X) (16)
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We provide a proof in the Appendix A.3. Therefore, when applied to biased downstream tasks,
under certain assumptions, there exists a hybrid muti prompt that can provide unbiased outputs for
biased data.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

This paper primarily investigates the robust tuning of prompts on biased data in downstream node
tasks across various attack scenarios. Thus, we use several datasets that are the focus of most attacks,
including Cora-ML(McCallum et al., 2000), citation graph (Cora, Citeseer) (Sen et al., 2008). We
use a wide range of attacks for experiments. For non-adaptive attacks, we select four representative
attacks of different types, including gradient-based attack (MetaAttack (Zügner & Günnemann,
2019)), distribution-based attack (Heuristic attack (Li et al., 2022b)), heuristic-based attack (DICE
(Waniek et al., 2018)), and Random attack. We attack downstream graph data used for prompt
tuning with relatively large perturbation ratios, where MetaAttack is 25%, while the others are are
50%. For convenience, it is abbreviated as M-0.25 in the Tables. For adaptive attacks, (Mujkanovic
et al., 2022) proposes a unit test that includes 2,700 testable graphs. We select perturbed graphs
targeting four defenses, including GCNSVD (Entezari et al., 2020), GRAND (Feng et al., 2020),
GNNGuard (Zhang & Zitnik, 2020), and GCNJaccard (Wu et al., 2019), which basically cover
most of the design principles of defense models. We have also conducted a general exploration on
link prediction and graph classification tasks, with only the robustness-related results presented in
the main text. All detailed experimental data can be found in Appendix A.4.

5.2 PRE-TRAINING STRATEGIES AND PROMPT TUNING

To better showcase the applicability of the prompt function, we select the most representative genera-
tive method GraphMAE (Hou et al., 2022) and contrastive method GraphCL (You et al., 2020) in the
field of graph self-supervised learning as pre-training strategies. Additionally, we select the follow-
ing widely-used prompts to explore their robustness, including GPF/GPF-plus (Fang et al., 2024),
ProG (Sun et al., 2023a), GPPT (Sun et al., 2022), GraphPrompt (Liu et al., 2023b) and MultiG-
Prompt (Yu et al., 2024). GraphPrompt and MultiGPrompt require specific pre-training methods, so
we follow their templates. The implementations of all prompts are available in Appendix A.5.

Table 1: Performance of different prompts in 5-shot scenario under non-adaptive attacks.

Pre-Training
Strategies Prompts Cora Citeseer CoraML

Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5

GraphPrompt 57.68 34.06 36.01 42.68 35.19 67.20 40.22 34.24 34.29 31.68 67.17 41.96 36.75 44.68 44.32
MultiGPrompt 48.34 39.37 32.97 43.71 29.52 50.37 41.99 38.09 42.31 48.34 56.24 36.99 39.75 46.68 26.90

GraphCL

ProG 50.93 31.02 17.91 34.29 28.34 43.96 37.18 37.29 27.72 21.31 37.43 28.38 26.50 35.35 27.46
GPF 54.06 33.83 27.62 29.43 15.92 56.46 38.78 44.07 14.37 22.12 41.95 30.26 28.58 39.31 24.46

GPF-plus 66.39 36.83 30.52 42.22 26.53 66.19 45.30 38.68 31.68 14.37 71.30 35.43 38.59 30.74 26.30
GPPT 45.24 20.86 24.04 19.50 27.71 41.41 30.18 33.33 23.88 24.57 41.75 34.67 38.51 30.90 32.15

*MD-PT 49.39 48.06 40.15 44.94 44.67 54.86 53.69 48.02 43.70 54.38 67.45 52.84 50.44 55.24 59.81
*IA-PT 57.82 58.82 51.07 53.65 62.27 52.08 50.80 44.71 47.92 52.24 70.34 60.53 47.80 60.25 62.77

GraphMAE

ProG 44.67 29.75 30.25 35.83 29.98 67.84 55.36 40.38 44.71 39.00 45.20 32.43 13.21 24.50 28.82
GPF 66.71 38.82 33.15 48.53 39.27 73.24 53.31 41.45 41.61 29.38 61.01 15.73 20.42 10.57 16.65

GPF-plus 63.40 39.46 33.38 49.84 36.46 75.16 51.87 40.33 36.81 28.26 70.26 22.62 40.95 45.36 21.70
GPPT 67.79 43.17 47.71 42.40 35.46 61.70 46.90 49.11 43.86 50.05 71.62 41.55 48.08 54.84 41.59

*MD-PT 62.49 62.49 52.61 48.03 51.61 62.87 58.81 50.32 50.11 56.89 65.45 68.37 57.29 55.24 50.72
*IA-PT 68.93 68.30 61.90 67.30 66.62 59.72 60.63 57.26 59.40 61.22 75.90 57.85 54.32 66.41 64.65

5.3 PROMPT TUNING UNDER NON-ADAPTIVE ATTACKS

We conduct experiments in both 5-shot and 10-shot scenarios. 10-shot’s can be found in Appendix
A.6. We denote our hybrid multi-defense prompt as MD-PT and the indirect amplification prompt
as IA-PT. In Table 1, we can see that our prompts offer viable solutions to the potential security
issues of prompts from two different perspectives. When the data is biased due to attacks, our
tuning process can effectively avoid these invalid pieces of information to prevent the generation of
misleading prompts. Aside from individual cases, the data in the Table also shows that the robustness
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of our prompts generally remains within a range of ±10%, unlike other prompts, which can vary by
more than 40%. Notably, on clean unbiased tuning data, our prompts still maintain a state-of-the-art
performance in many cases, without sacrificing excessive accuracy for the sake of robustness.

5.4 PROMPT TUNING UNDER ADAPTIVE ATTACKS

We conduct experiments on adaptive poisoning attack graphs targeting classical defenses to demon-
strate the versatility of our prompt tuning process. We still present the 5-shot results, while the
10-shot results can be found in Appendix 8. In Figure 2, it can be seen that the defense capability
of MD-PT appears slightly inferior to that of IA-PT when facing more targeted attacks. This is
understandable, “as directly ignoring a problem is often easier than dealing with more challenging
issues”. However, our two strategies still remain highly competitive compared to other prompts.

Table 2: Performance of different prompts in 5-shot scenario under adaptive attacks.

Pre-Training
Strategies Prompts CoraML Citeseer

GCNSVD GRAND GNNGuard GCNJaccard GCNSVD GRAND GNNGuard GCNJaccard

GraphPrompt 47.66 35.24 37.64 41.90 48.72 34.99 40.71 38.25
MultiGPrompt 24.22 30.20 15.56 14.97 25.16 25.96 31.41 33.55

GraphCL

ProG 37.32 31.02 52.78 32.38 23.93 30.56 33.92 31.14
GPF 30.88 23.08 27.39 35.42 29.59 21.85 18.43 25.53

GPF-plus 52.29 28.93 41.41 38.37 24.95 21.85 24.95 18.38
GPPT 35.69 26.53 40.14 40.45 43.96 30.88 32.05 43.48

*MD-PT 47.85 45.54 49.67 41.35 51.60 51.60 51.01 53.90
*IA-PT 61.27 58.73 53.83 46.08 59.35 57.05 62.61 57.10

GraphMAE

ProG 17.05 23.22 27.62 23.45 34.35 27.14 39.05 44.34
GPF 48.56 25.12 50.84 41.00 45.83 31.46 50.37 44.98

GPF-plus 47.21 30.75 48.48 46.26 45.57 35.84 50.75 46.37
GPPT 29.52 20.32 32.06 29.80 44.76 33.01 46.85 36.43

*MD-PT 49.17 45.60 54.60 49.24 57.26 54.70 53.37 53.47
*IA-PT 66.17 63.54 63.17 63.49 65.54 64.21 64.42 65.60

5.5 ABLATION STUDY

Since IA-PT is nested within any prompt, we primarily discusses MD-PT. We compare MD-PT
with six prompt variants: “w/o pdegree” is a variant that does not use degree prompt. “w/o psim” is
a variant that does not use similarity prompt. “w/o pdetector” is a variant that does not use prompt
for out-of-distribution nodes. “w/o Lkl” indicates that no distribution alignment is used during
the tuning process. “w/o Lo” signifies that multi-prompt constraints are not employed. “w/o Ls”
indicates that feature smoother is not used. Table 3 illustrates the key modules of the robust prompt
tuning phase across different biased environments. Additionally, we have implemented a transfer
attack experiment in Appendix A.10 to validate the scalability and transferability of our system.

Table 3: Test accuracy of the proposed Hybrid Multi-Defense Prompt by ablating different modules.

Ablation Variants Cora 5-shot Citeseer 5-shot Cora 10-shot Citeseer 10-shot

Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5 Meta 0.25 DICE 0.5

MD-PT with all Prompts 60.12% 54.55 64.20% 52.39 71.02% 62.30% 67.04% 55.35
MD-PT w/o pdegree 62.31% 53.05% 63.68% 51.76% 67.87% 61.36% 66.67% 56.31%
MD-PT w/o psim 58.46% 52.02% 58.97% 53.21% 69.92% 59.48% 61.57% 54.39%
MD-PT w/o pdetector 59.32% 55.37% 60.42% 51.98% 69.09% 60.99% 65.69% 55.18%
MD-PT w/o Lkl 59.86% 55.28% 60.42% 52.14% 69.83% 60.81% 64.42% 54.23%
MD-PT w/o Lo 59.59% 51.20% 59.94% 50.00% 69.23% 58.33% 65.64% 55.01%
MD-PT w/o Ls 58.32% 56.46% 60.84% 51.50% 69.87% 60.72% 66.34% 54.58%

6 CONCLUSION

In this paper, we shift the primary focus of graph prompts from compatibility to vulnerability issues
in adversarial attack scenarios. We design a highly extensible shield defense system for the prompts.
Specifically, we design a hybrid multi-defense prompt based on the principle of direct handling and
an adaptable tuning strategy based on the principle of indirect amplification. We theoretically prove
the feasibility of our strategies and achieve outstanding robustness performance in both adaptive and
non-adaptive attack scenarios.
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A APPENDIX

A.1 GRAPH PRE-TRAINING STRATEGIES

The pre-training strategy aims to extract knowledge from the vast amount of data in the real world
to learn a general model, thereby reducing the costs associated with task-specific training. Most
graph pre-training strategies exist in a self-supervised form and can be broadly divided into con-
trastive strategies and generative strategies. Contrastive strategies train an encoder by maximizing
the mutual information between different graph views. The representative GraphCL (You et al.,
2020) minimizes the differences in graph representations from different views of the same graph.
DGI (Velickovic et al., 2019) follows the InfoMax principle (Linsker, 1988) by learning node rep-
resentations through local-global mutual information maximization. GRACE (Zhu et al., 2020)
proposes edge removal and feature masking augmentation, GCA (Zhu et al., 2021) adopts proba-
bilistic adaptive augmentation, while MVGRL (Hassani & Khasahmadi, 2020) employs diffusion
graph as augmentation view. Generative strategies use the reconstruction of input data as a pretext,
significantly lowering training costs. Currently, a popular paradigm is based on masking strategies
inspired by BERT (Devlin et al., 2018) and MAE (He et al., 2022) in the language domain. Graph-
MAE (Hou et al., 2022), as a representative example, reconstructs features using masking strategies
and designs scaled cosine error. GraphMAE2 (Hou et al., 2023) further extends this idea by design-
ing the strategies of multi-view random re-mask decoding and latent representation prediction for
feature reconstruction, aiming to reduce excessive reliance on feature discriminability. S2GAE (Tan
et al., 2023) proposes direction-aware graph masking and cross-correlation decoder. MaskGAE (Li
et al., 2022a) adopts edge-wise and path-wise random masking, also introduces a degree decoder to
alleviate the problem of structural information overfitting. Pre-training strategies have been studied
in great depth, with a wide range of pretext tasks extracting knowledge from multiple aspects.

A.2 ADAPTIVE ROBUSTNESS FROM THE PERSPECTIVE OF OUT-OF-DISTRIBUTION (OOD)
GENERALIZATION.

Adaptive attacks are a proposed new robustness evaluation standard and are a type of white-box
attack. They indicate that, with a thorough understanding of the defense model, attackers can bypass
defenses using corresponding strategies. Thus, existing defenses are not as robust as they were
evaluated in their papers. These defenses are vulnerable to adaptive attacks because most of them are
designed based on some specific properties that can be used to differentiate adversarial edges from
original edges. Adversarial modifications on graphs often violate some intrinsic properties shared by
the real-world graphs (e.g., increasing heterophily (Zügner & Günnemann, 2019) and focusing on
the high-frequency component (Chang et al., 2021)). The adversary can easily defeat the defenses
by imposing constraints on the same properties during the attack. Therefore, the key to enhancing
adaptive robustness is not relying on artificially defined properties. To overcome this dependence,
Li et al. proposed a new approach from the out-of-distribution perspective, arguing that adversarial
edges generated through attacks are inherently out-of-distribution compared to the original edges.
Thus, by modeling the entire out-of-distribution problem, an integrated out-of-distribution detector
is trained using adversarially generated edges to detect and remove perturbations.

A.3 PROOF FOR THEOREM 1

Theorem 1. Given a pre-trained GNN model f , an unbiased input graph G = (A,X). Define a
biased graph structure Ã resulting from an attack, where Ã can be expressed as Ã = C ◦ S, where
C = 11T − I − 2A, and the edge connecting nodes u and v is modified (added or removed) if
Sij = Sji = 1. With this definition, we can simplify it to Ã = A + ∆A. We take f(A,X) as the
reference for unbiased output, and there exists a prompt P added in the feature space that ensures
the following equation is satisfied:

f(Ã,X + P ) = f(A,X) (17)

We adopt the assumptions from GPF, and the specific structure of the pre-trained GNN model f can
be represented as:

14
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f(A,X) = H = (A+ (1 + ϵ) · I) ·X ·W (18)

We substitute f(Ã,X + P ) to obtain:

f(Ã,X + P ) = (A+∆A+ (1 + ϵ) · I) · (X + P ) ·W
= (A+∆A+ (1 + ϵ) · I) ·X ·W + (A+∆A+ (1 + ϵ) · I) · P ·W
= (A+ (1 + ϵ) · I) ·X ·W +∆A ·X ·W + (A+ (1 + ϵ) · I) · P ·W +∆A · P ·W
= H +∆A ·X ·W + (A+ (1 + ϵ) · I) · P ·W +∆A · P ·W

(19)

Therefore, to satisfy f(Ã,X + P ) = f(A,X) , we need to solve the equation:

H +∆A ·X ·W + (A+ (1 + ϵ) · I) · P ·W +∆A · P ·W = H (20)

In our hybrid multi-defense prompts, assuming there are t defense prompts, then P can be repre-
sented as N ×M , where N ∈ RN×t is the prompt selection matrix and M ∈ Rt×din is the prompt
matrix. Therefore, by replacing P with N and M in the equation, the problem is transformed into
solving for M . To solve the equation

H +∆A ·X ·W + (A+ (1 + ϵ) · I) ·N ·M ·W +∆A · P ·W = H (21)

First, move H to the right side of the equation:

∆A ·X ·W + (A+ (1 + ϵ) · I) ·N ·M ·W +∆A · P ·W = 0 (22)

Next, we rearrange the equation into a form that isolates M :

(A+ (1 + ϵ) · I) ·N ·M ·W = −(∆A ·X ·W +∆A · P ·W ) (23)

Define a new matrix B = −(∆A ·X ·W +∆A · P ·W ), Thus, the equation becomes:

(A+ (1 + ϵ) · I) ·N ·M ·W = B (24)

To proceed with the solution, we need to determine whether A + (1 + ϵ) · I is invertible. If it is
invertible, we can move on to the next step. Otherwise, further assumptions about the other variables
will be necessary.

AssumingA+(1+ϵ) ·I is invertible, we can solve forM , multiply both sides by (A+(1+ϵ) ·I)−1,
then:

N ·M ·W = (A+ (1 + ϵ) · I)−1B (25)

Assuming N and W are invertible, we can use matrix inverses to solve for M :

M = N−1(A+ (1 + ϵ) · I)−1BW−1 (26)

Thus, the final result is:

M = N−1(A+ (1 + ϵ) · I)−1(−(∆A ·X ·W +∆A · P ·W ))W−1 (27)

Therefore, under certain assumptions, there exists an M that can provide unbiased prompts for
biased data.
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A.4 DATASETS AND ATTACKS

A.4.1 DATASETS

For the attacked data, following the settings in Nettack (Zügner et al., 2018), we only consider the
largest connected component(LCC). The details of the datasets are presented in Table 4.

Table 4: Details of the largest connected component (LCC) for each dataset.

Datasets NLCC ELCC Features Classes

Citeseer 2110 3668 3703 6
Cora 2485 5069 1433 7

Cora-ML 2810 7981 2879 7

For node classification and link prediction tasks, we select homophilic datasets (Cora, Citeseer,
Pubmed) (Sen et al., 2008; Namata et al., 2012) and heterophilic datasets (Wisconsin) (Pei et al.,
2020) and explore the prompts on large graph (ogbn-arxiv) (Hu et al., 2020). We conduct experi-
ments under 5-shot and 10-shot settings, where the link prediction task includes 5,000 positive edges
and 5,000 negative edges. The details of the datasets are presented in Table 5. We present the per-
formance of the prompt functions on node classification and link prediction tasks for these datasets
in Appendix A.8.

Table 5: Statistics of all datasets for node classification and link prediction tasks.

Datasets Graphs Nodes Edges Features Classes Task Catagory

Cora 1 2708 5429 1433 7 N / L Homophilic
Pubmed 1 19717 88648 2879 3 N / L Homophilic
Citeseer 1 3327 9104 3703 6 N / L Homophilic

Wisconsin 1 251 515 1703 5 N / L Heterophilic
ogbn-arxiv 1 169343 1166243 128 40 N / L Homophilic & Large scale

For the graph classification task, in order to be more comprehensive, we chose the molecular dataset
MUTAG (Kriege & Mutzel, 2012), the social network dataset COLLAB (Yanardag & Vishwanathan,
2015a), the protein dataset PROTEINS (Wang et al., 2022), and the social network dataset IMDB-
BINARY (Yanardag & Vishwanathan, 2015b). We also conduct experiments under 5-shot and 10-
shot settings. The details of the datasets are presented in Table 6. We present the performance of the
prompt functions on graph classification tasks for these datasets in Appendix A.9.

Table 6: Statistics of all datasets for graph classification tasks.

Datasets Graphs Avg. Nodes Avg. Edges Features Classes Task Catagory

MUTAG 188 17.9 19.8 7 2 G small molecule
COLLAB 5000 74.5 2457.8 0 3 G social network

PROTEINS 1113 39.1 72.8 3 2 G proteins
IMDB-BINARY 1000 19.8 96.53 0 2 G social network

The data recording format for all node classification, link prediction, and graph tasks datasets follows
the approach used in (Zi et al., 2024).

Through generalization experiments on these datasets, we find that our auxiliary robust system does
not sacrifice accuracy in favor of robustness. In fact, it maintains strong competitiveness on many
task datasets, which is a pleasant surprise during the expansion of the experiments. We speculate
that the original datasets might already contain some inherent noise, and our robustness enhancement
tool further purifies the data during the training process.
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A.4.2 UNIT TEST AND ATTACKS

To provide a more comprehensive evaluation of robustness, (Mujkanovic et al., 2022) presents an
interesting research point: almost all defenses are evaluated against non-adaptive attacks, leading
to overly optimistic robustness estimates. Therefore, they categorize 49 defense methods and select
the most representative method from each category to design targeted adaptive attack methods. The
adversarial graphs generated by these attacks can be bundled together to test other defenses and can
be considered a minimal standard for evaluating the adaptive robustness of defense models. In the
unit test, the datasets are centered around Citeseer and Cora-ML. for each representative model, there
are 5 random data splits, each containing poisoning and evasion attacks. The attack budget ranges
from 0% to 15%, resulting in approximately 2700 testable graphs in total. The unit test module
used in this paper is adapted from the following repository: https://github.com/LoadingByte/are-
gnn-defenses-robust

The code implementation for attacking the graph using different attacks can be found at the following
links.

• Metattack: https://github.com/danielzuegner/gnn-meta-attack

• Heuristic attack: https://github.com/likuanppd/STRG/tree/main

• DICE: https://github.com/DSE-MSU/DeepRobust/tree/master/examples/graph/test dice.py

• Random: https://github.com/DSE-MSU/DeepRobust/tree/master/examples/graph/test random.py

A.5 BASELINES FOR PROMPT

The code implementation for all prompts can be found at the following links. Additionally, ProG is
a library built upon PyTorch to easily conduct single or multi-task prompting for pre-trained Graph
Neural Networks (GNNs). You can easily use this library to conduct various graph workflows.

• GPPT: https://github.com/MingChen-Sun/GPPT/tree/main

• GPF/GPF-plus: https://github.com/zjunet/GPF

• All-in-one: https://github.com/sheldonresearch/ProG/tree/zcy

• GraphPrompt: https://github.com/Starlien95/GraphPrompt

• MutiGPrompt: https://github.com/Nashchou/MultiGPrompt

• ProG: https://github.com/sheldonresearch/ProG

A.6 RESULTS OF FEW-SHOT NODE CLASSIFICATION UNDER NON-ADAPTIVE ATTACKS

The results for 10-shot scenarios under non-adaptive attacks. Table 7 shows the robustness
performance of 10-shot graph prompt tuning under different non-adaptive attacks.

Table 7: Performance of different prompts in 10-shot scenario under non-adaptive attacks..

Pre-Training
Strategies Prompts Cora Citeseer CoraML

Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5 Clean M-0.25 D-0.5 R-0.5 H-0.5

GraphPrompt 72.15 40.48 39.83 52.30 39.79 73.44 49.21 30.84 41.73 32.57 64.80 42.21 39.01 41.08 39.78
MultiGPrompt 52.53 46.88 41.08 49.22 33.44 50.24 47.59 38.16 42.84 45.47 48.99 37.31 33.86 46.76 24.98

GraphCL

ProG 69.78 45.26 14.03 11.64 18.95 67.05 42.17 34.04 45.75 17.40 49.68 27.09 19.10 32,08 24.21
GPF 60.99 35.65 35.05 39.37 29.85 73.66 41.63 42.17 37.40 21.90 44.48 15.98 30.45 34.71 24.49

GPF-plus 70.61 41.63 37.21 51.01 36.89 69.16 42.38 42.60 45.58 26.02 65.69 34.83 36.01 24.70 31.63
GPPT 40.71 28.98 30.86 29.44 32.75 51.84 40.38 32.95 32.63 32.25 43.51 37.10 33.17 35.20 29.40

*MD-PT 53.73 47.01 41.77 44.11 47.84 64.50 58.81 55.28 56.42 64.28 71.29 56.12 62.08 55.31 52.76
*IA-PT 65.96 63.52 55.34 57.96 62.70 62.66 62.82 52.20 57.45 56.31 79.08 70.52 64.64 65.13 74.74

GraphMAE

ProG 50.55 35.46 30.04 36.89 32.24 69.97 59.73 43.41 50.73 42.28 46.19 20.48 28.75 21.57 21.98
GPF 71.62 43.56 44.43 55.84 44.39 77.07 59.24 45.80 45.20 27.26 68.17 34.06 29.32 22.95 29.24

GPF-plus 69.09 44.48 41.49 55.66 40.06 76.59 56.48 40.49 38.75 29.76 71.21 21.82 36.86 11.68 24.66
GPPT 77.69 45.26 58.05 63.72 47.65 66.2 57.51 53.06 57.02 54.42 68.57 37.96 44.40 47.28 32.20

*MD-PT 72.22 69.41 59.34 64.40 58.23 63.96 64.99 55.45 58.16 61.90 78.26 67.72 62.49 65.17 50.16
*IA-PT 73.05 73.32 65.23 71.16 71.11 67.43 64.66 59.84 62.49 59.30 72.42 71.37 67.40 72.87 69.95
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A.7 RESULTS OF FEW-SHOT NODE CLASSIFICATION UNDER ADAPTIVE ATTACKS

The results for 10-shot scenarios under adaptive attacks. Table 8 shows the robustness perfor-
mance of 10-shot graph prompt tuning under different adaptive attacks.

Table 8: Performance of different prompts in 10-shot scenario under adaptive attacks.

Pre-Training
Strategies Prompts CoraML Citeseer

GCNSVD GRAND GNNGuard GCNJaccard GCNSVD GRAND GNNGuard GCNJaccard

GraphPrompt 53.77 38.78 51.01 35.60 55.99 32.25 45.64 53.77
MultiGPrompt 29.99 32.38 19.09 13.25 31.49 25.04 34.20 33.39

GraphCL

ProG 40.48 25.44 36.71 21.90 41.25 33.06 37.13 42.33
GPF 40.80 43.79 16.65 26.91 38.59 37.78 18.92 26.29

GPF-plus 38.96 36.02 45.77 40.39 45.47 22.49 53.17 22.49
GPPT 36.11 30.68 35.33 36.52 48.83 41.03 44.23 39.89

*MD-PT 41.45 50.25 44.62 45.72 58.37 57.72 63.14 57.72
*IA-PT 63.25 57.91 57.91 60.81 65.96 66.61 66.07 66.61

GraphMAE

ProG 20.47 24.24 30.73 23.92 43.20 28.40 44.61 45.15
GPF 53.59 37.03 54.83 44.25 62.82 34.15 54.96 56.75

GPF-plus 53.96 38.22 53.77 45.35 58.43 33.55 51.33 53.93
GPPT 50.74 31.51 34.82 36.52 63.69 31.49 56.42 47.48

*MD-PT 44.20 43.88 45.77 48.34 60.38 60.25 60.76 63.52
*IA-PT 68.12 65.92 67.11 67.99 67.86 66.23 64.82 65.91

A.8 PERFORMANCE OF PROPOSED HYBRID MULTI-DEFENSE PROMPT ON NODE
CLASSIFICATION AND LINK PREDICTION TASKS

The results for 5-shot scenarios under Node Classification and Link Prediction Tasks. Table
9 shows theperformance of 5-shot graph prompt tuning under different node classification and link
prediction tasks.

Table 9: Performance of Proposed Hybrid Multi-Defense Prompts and Mainstream Prompting Meth-
ods on 5-shot Node Classification and Link Prediction Tasks.

Methods
Datasets Cora Citeseer Pubmed Wisconsin ogbn-arxiv

Node Link Node Link Node Link Node Link Node Link

Pre-train & Fine-tune 42.73 68.79 52.92 55.14 51.07 54.04 20.95 45.15 10.92 53.34
GPPT 35.96 65.13 49.79 56.56 55.42 43.88 16.99 77.65 6.52 73.52
ProG 50.06 74.68 51.11 60.15 44.76 64.99 26.21 78.85 4.54 80.34

Gprompt 68.03 67.25 75.25 58.83 59.93 62.57 44.92 61.13 21.27 53.31
GPF 64.52 58.92 52.56 57.06 57.05 62.95 35.82 39.45 15.81 49.23

GPF-plus 70.55 62.45 74.51 58.47 40.94 82.20 39.45 45.85 22.40 72.43
*MD-PT 71.76 69.95 75.38 78.24 64.00 64.75 50.49 52.49 18.92 65.42

The results for 10-shot scenarios under Node Classification and Link Prediction Tasks. Table
10 shows theperformance of 10-shot graph prompt tuning under different node classification and
link prediction tasks.

Table 10: Performance of Proposed Hybrid Multi-Defense Prompt and Mainstream Prompting
Methods on 10-shot Node Classification and Link Prediction Tasks.

Methods
Datasets Cora Citeseer Pubmed Wisconsin ogbn-arxiv

Node Link Node Link Node Link Node Link Node Link

Pre-train & Fine-tune 52.23 67.55 58.82 60.57 50.35 59.23 29.12 65.49 14.38 55.41
GPPT 47.77 65.47 54.09 74.48 48.91 55.35 22.43 59.13 7.74 52.86
ProG 65.90 77.23 53.24 65.95 49.33 74.03 41.76 82.35 5.25 80.50

Gprompt 70.81 66.45 76.46 50.46 60.10 61.58 43.96 50.43 24.31 75.55
GPF 69.93 73.35 53.82 60.37 39.26 50.08 31.72 57.75 10.36 63.03

GPF-plus 72.79 88.24 78.46 73.02 42.45 88.75 32.26 59.57 14.12 81.40
*MD-PT 73.45 74.55 75.85 77.49 62.34 62.98 35.65 54.42 20.45 68.45
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A.9 PERFORMANCE OF PROPOSED HYBRID MULTI-DEFENSE PROMPT ON GRAPH
CLASSIFICATION TASKS

The results for 5-shot and 10-shot scenarios under Graph Classification Tasks. Table 11 shows
the performance of graph prompt tuning under different graph classification tasks.

Table 11: Performance of Proposed Hybrid Multi-Defense Prompt and Mainstream Prompting
Methods on Graph Classification Tasks.

Methods
Datasets MUTAG COLLAB PROTEINS IMDB-B

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

Pre-train & Fine-tune 68.00 68.00 61.28 62.77 53.37 65.51 63.00 67.00
GPPT 64.00 68.67 50.48 51.97 59.55 60.33 51.25 54.48
ProG 70.00 66.67 63.60 54.70 62.92 67.22 61.12 66.12
Gprompt 72.67 70.67 64.53 64.25 61.24 58.65 60.50 69.50
GPF 64.67 65.33 61.80 62.45 64.61 66.29 60.17 66.75
GPF-plus 68.00 72.00 62.20 63.75 65.17 63.26 60.75 67.12
*MD-PT 74.67 74.35 65.07 65.63 67.39 66.52 63.13 62.57

A.10 PERFORMANCE OF PROPOSED PROMPTS ON TRANSFER TASKS

The results for Proposed Prompts and GPF/GPF-plus on Different Attack Transfer Scenarios.

Table 12 shows the performance of graph prompt tuning under different attack transfer scenarios.
As seen, our IA-PT method still demonstrates excellent robustness, while MD-PT is slightly less
effective, but still consistently improves the robustness of GPF/GPF-plus. This aligns well with what
we describe: avoiding difficulties is often much easier than facing them head-on. This transferability
experiment has been instrumental in helping us validate the scalability and transferability of the
designed system.

Table 12: Performance of Proposed Prompts and GPF/GPF-plus on Different Attack Transfer Sce-
narios.

Prompts Attacks Cora Citeseer CoraML
M-0.25 D-0.5 R-0.5 H-0.5 M-0.25 D-0.5 R-0.5 H-0.5 M-0.25 D-0.5 R-0.5 H-0.5

GPF

M-0.25 31.44 32.47 20.23 26.26 20.26 20.85 32.80 35.79 28.99 32.07 33.07 30.42
D-0.5 33.97 23.38 28.21 32.70 36.22 25.37 25.37 20.75 36.75 33.79 34.79 31.71
R-0.5 36.92 36.37 36.24 34.37 25.37 21.96 21.96 21.96 34.63 34.47 39.31 39.95
H-0.5 29.16 35.85 29.30 29.02 31.26 25.37 20.15 19.86 31.39 21.74 34.19 32.54

GPF-plus

M-0.25 35.56 35.51 34.92 36.33 25.37 24.46 38.76 40.48 33.15 35.67 35.15 36.75
D-0.5 37.19 36.87 38.19 37.10 26.98 28.77 29.49 27.40 34.35 33.99 32.31 32.03
R-0.5 42.26 40.35 40.26 44.35 34.29 35.71 35.34 35.68 38.11 37.67 36.03 37.83
H-0.5 33.56 30.79 35.92 32.79 20.20 33.12 34.78 33.07 40.03 40.45 37.11 39.95

*MD-PT

M-0.25 47.06 42.40 43.11 47.89 42.81 39.62 40.46 44.85 53.82 43.57 42.17 47.51
D-0.5 47.08 40.15 42.81 47.13 42.18 36.72 36.32 38.88 43.44 44.55 40.02 51.25
R-0.5 48.04 45.82 50.34 53.52 40.46 37.82 37.77 38.75 52.76 41.57 45.24 50.80
H-0.5 50.15 41.45 44.67 47.48 41.82 38.39 35.55 41.08 41.35 41.34 39.45 52.36

*IA-PT

M-0.25 65.22 49.50 60.16 62.53 55.66 48.76 55.04 58.35 61.61 54.89 59.96 65.57
D-0.5 64.54 52.24 57.60 61.57 57.41 55.34 51.24 53.61 58.19 52.52 53.02 57.56
R-0.5 57.85 48.04 54.69 60.46 56.52 54.03 48.96 54.21 62.19 49.13 54.00 61.92
H-0.5 60.41 53.62 55.13 62.55 57.94 52.73 50.47 58.55 62.10 52.71 59.48 58.77
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