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ABSTRACT

We introduce new differentially private (DP) mechanisms for gradient-based ma-
chine learning (ML) training involving multiple passes (epochs) of a dataset, sub-
stantially improving the achievable privacy-utility-computation tradeoffs. Our key
contribution is an extension of the online matrix factorization DP mechanism to
multiple participations, substantially generalizing the approach of Denisov et al.
(2022). We first give conditions under which it is possible to reduce the problem
with per-iteration vector contributions to the simpler one of scalar contributions.
Using this, we formulate the construction of optimal (in total squared error at each
iterate) matrix mechanisms for SGD variants as a convex program. We propose
an efficient optimization algorithm via a closed form solution to the dual function.
While tractable, both solving the convex problem offline and computing the neces-
sary noise masks during training can become prohibitively expensive when many
training steps are necessary. To address this, we design a Fourier-transform-based
mechanism with significantly less computation and only a minor utility decrease.
Extensive empirical evaluation on two tasks: example-level DP for image clas-
sification and user-level DP for language modeling, demonstrate substantial im-
provements over the previous state-of-the-art. Though our primary application is
to ML, we note our main DP results are applicable to arbitrary linear queries and
hence may have much broader applicability.

1 INTRODUCTION

Differentially private stochastic gradient descent (DP-SGD) is the de facto standard algorithm for
DP machine learning (ML) (Song et al., 2013; Abadi et al., 2016a). However, obtaining state-
of-the-art privacy-utility tradeoffs critically requires use of privacy amplification techniques like
shuffling (Erlingsson et al., 2019; Feldman et al., 2022) or (Poisson) subsampling (Bassily et al.,
2014; Zhu & Wang, 2019; Wang et al., 2019). These in turn require strong assumptions on the
manner in which data is processed that are rarely valid in applications of DP-SGD, as implementing
these procedures is often impractical (Kairouz et al., 2021).

Kairouz et al. (2021) recently proposed the DP-FTRL framework that avoids reliance on amplifica-
tion by sampling, through using DP streaming of prefix sums (Dwork et al., 2010; Chan et al., 2011;
Honaker, 2015). DP-FTRL can often match (or outperform) DP-SGD in privacy-utility tradeoffs.
Indeed, this algorithm enabled McMahan & Thakurta (2022) to train the first known provably DP
ML model on user data in a production setting.

Several works have since focused on this primitive as an instantiation of the streaming matrix mech-
anism; in particular, Denisov et al. (2022) showed that leveraging optimal matrix mechanisms led
to significant empirical improvements, though their work was restricted to the single-epoch setting.
Shown in Figs. 1 and 3, we achieve substantially improved privacy-utility tradeoffs, with compara-
ble computation. Our methods outperform all prior work, including DP-SGD with amplification,
to as low as ε ≈ 2. To accomplish this, we propose a formalism for measuring multi-participation
sensitivity, given in Section 2, a significant extension to the single-participation sensitivity used in
in Denisov et al. (2022). We show in Section 3 how one may compute matrix mechanisms optimized
for this multi-participation setting. This generalization enables application of optimized streaming
matrix mechanisms to settings where each example (or user) may contribute to multiple elements of
the data matrix (the matrix formed by stacking unnoised batch gradients in ML).
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Figure 1: Our optimal multi-epoch matrix and FFT-based mechanisms outperform all others,
including DP-SGD with amplification, as low as ε ≈ 4. Using our sensitivity calculation of
Theorem 2.1 and stamping (Section 5), we optimize a single pass (k = 1) matrix of Denisov et al.
(2022) but apply it here with > 1 pass. We use an online Honaker-based decoder equivalent to that
of Kairouz et al. (2021) except for a significant improvement to tree-completion in Appendix D.3.
Models trained for 20 epochs on CIFAR10 with a batch size of 500. We repeat each setting 12 times
and show 95% bootstrapped confidence intervals. Empirical setup is in Section 5.1.

We also explore the computational tradeoffs of our approaches. In particular, computing optimal
matrix factorizations may become intractable when large numbers of training steps n are required
, as we discuss in Section 4. While this is uncommon in the federated algorithms for user-level
DP, it can be a limitation when training with SGD for example-level privacy. To reduce this cost,
we propose and investigate an approach based on the Fast Fourier Transform (FFT) (Nussbaumer,
1981), which is near-optimal for the single-epoch setting and efficiently computable for most, if not
all, ML settings. Indeed, we find this approach still outperforms the mechanisms from the extant
literature, even under multiple participations.

Contributions 1) We provide a framework for computing the sensitivity of matrix mechanisms
under general participation schemas. To do this, we prove a new theorem bounding sensitivity for
multi-dimensional data contributions. This allows us to reduce the problem to that of measuring sen-
sitivity for scalar contributions alone (Section 2). 2) We extend the results of Denisov et al. (2022)
to the optimization problems corresponding to these generalized notions of sensitivity, showing that
the algorithms proposed there can be applied in our setting (Section 3). 3) We propose and analyze
a computationally-efficient factorization based on the Fourier transform which is near optimal for
the single-epoch setting and can be efficiently extended to handle multiple epochs (Section 4). 4)
We perform detailed empirical comparisons of our mechanisms with both the prior matrix mecha-
nism approaches and DP-SGD. We show that the methods proposed here outperform all others (in
particular, DP-SGD with amplification), to privacy budgets as low as ε ≈ 2, and without any need
for privacy amplification (Section 5). 5) We will upload all code used in the final manuscript.

Related work The core privacy primitive here is the matrix mechanism (Li et al., 2015). Its long
history of study and application was mostly in the offline setting (McKenna et al., 2018; Edmonds
et al., 2020; Yuan et al., 2016; Hardt & Talwar, 2010). Fichtenberger et al. (2022); Denisov et al.
(2022) independently applied it to the adaptive streaming setting, where outputs are released one-
by-one and privacy analysis must account for an adversary adaptively defining the inputs. Denisov
et al. (2022) connected the matrix mechanism to DP ML, via the DP-FTRL algorithm of Kairouz
et al. (2021), and showed that computing optimal factorizations significantly improves the privacy-
utility-computation tradeoffs when needing only a single pass (epoch) over the training data.

Example- and user-level DP, and the connection to federated learning (FL) In addition to
example-level DP, we consider user-level DP. As observed by McMahan et al. (2018), private FL
algorithms are well suited to providing user-level DP or other multi-example units of privacy, e.g.
document-level, as bounding the sensitivity of a single user’s contribution to an aggregate update is
made straightforward by the per-user data processing pattern inherent in FL. However, our primary
application is to datacenter training, where user data can be processed in a fixed shuffled order,
unlike cross-device FL. We use the term ‘participation’ to denote the event that an example (user or
client in FL) contributes to the gradient sum (or a model update in FL) xi for a given step/iteration
(round in FL) i. Individual contributions to xi are scaled so their maximum `2 norm is ζ. Our
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mechanisms compute sums over individual clipped contributions, and then post-process by dividing
by the batch size (or clients/round) to compute an average gradient (or model update). We assume
ζ = 1, applying appropriate scaling as needed. Appendix A summarizes terminology and notation.

2 PRIVACY FOR ADAPTIVE STREAMS WITH MULTIPLE PARTICIPATIONS

We define and efficiently bound the sensitivity of the multi-participation adaptive streaming (con-
tinual release) setting, by generalizing Denisov et al. (2022, Sec. 2). We assume a database of m
examples (or users in FL, or records in a general DP application) that is processed as a stream over
n steps. A set of B examples is selected on each step i, and processed via an adaptively chosen
function (e.g., computing a gradient at the current model), producing a vector of `2 norm at most ζ.
These vectors are summed and provided to the DP mechanism as xi ∈ Rd, which then releases a
privatized function of [x1, . . . ,xi], the stream so far. When a particular example contributes to the
sum xi, we say it participates on step i. We are primarily interested in the case where m/B < n,
and hence each example is used on more than one step. This is the multiple epoch setting of ML.

Two data streams x and x̃ are said to be neighboring if they differ in the contributions derived
from a single example, either by zeroing out all of its contributions, or by replacing them arbitrarily
subject to the norm bound ζ. Thus, the participation pattern does not change (all records contribute
to the same steps in x and x̃, with only the vectors associated with one record changing). We
define a participation schema Π as the set of possible participation patterns π ∈ Π, with each
π ⊆ [n] indicating a set of steps in which a single example might participate. Assuming each record
contributes at most once (single-participation, Π =

{
{1}, {2}, . . . {n}

}
), recovers the standard

streaming setting. This captures, for example, training with minibatch SGD using a single pass
(epoch) over a training dataset. At the other extreme, we have every-step participation with Π =
{[n]} where each record contributes to every step. This captures learning with full gradient descent,
where we compute the gradient on the full training dataset on every iteration.

Fixed-epoch-order participation We focus on generalization of the above two, (k, b)-
participation, where each example participates at most k times, with any adjacent participations
exactly b steps apart: formally, Π is the set of all π such that |π| ≤ k, and if π = {i1, . . . , ik}, we
have ∀j ∈ {2, . . . , k}, ij − ij−1 = b. Note (k=1, b=n)-participation recovers the single-epoch set-
ting, and (k=n, b=1)-participation recovers every-step participation, and for example (k=3, b=2)-
participation has Π = {{1, 3, 5}, {2, 4, 6}}. We focus on this participation schema because: 1) It
encompasses multi-epoch SGD training using a data processing pattern well-supported by modern
ML infrastracture.1 The only requirement is that rather than shuffling the dataset for each epoch,
the dataset is shuffled once and the same order of minibatches is used for each epoch. With this
setup, k epochs of training on a dataset of size m with a batch size B gives n = mk/B total train-
ing steps, and satisfies (k,m/B)-participation. 2) We show (e.g., Eq. (3)) in importance cases this
participation schema allows for the efficient computation of sensitivity. 3) We will see in Section 3
that the more possible participation patterns π, the more constrained the problem of finding optimal
mechanisms becomes. Hence, a relatively restrictive (but practical) schema like (k, b)-participation
yields more favorable privacy-utility tradeoffs.

Sensitivity of linear queries on multi-participation adaptive streams Consider a full-rank
square query (or workload) matrix A ∈ Rn×n; we wish to compute the function x 7→ Ax in a
differentially private manner, where we consider inputs x and outputs Ax to be elements of Rn×d,
under geometry inherited from the Frobenius inner product. We utilize the matrix mechanism (Li
et al., 2015), which, provided a factorization A = BC, computes the estimate

Âx = B (Cx + z) , (1)

where z is a sample from appropriately scaled isotropic Gaussian noise. The scale is determined by
the sensitivity of the mapping x 7→ Cx; roughly, how much outputs of this mapping can vary (in `2

1This is in contrast to Poisson, or independent fixed-sized batch sampling, with replacement across steps,
as is assumed by many works (Abadi et al., 2016a; Bassily et al., 2014; Zhu & Wang, 2019; Wang et al.,
2019). Many works in fact process batches in a shuffled order without replacement and then incorrectly apply
DP analysis for, e.g., Poisson sampling. Indeed, we perform this same—incorrect—analysis for our DP-SGD
baseline because it reproduces the previous state-of-the-art results for DP-SGD.
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norm) when we swap the input stream x for a neighboring one x̃. We refer to this matrix C as the
“encoder”, as it encodes x as Cx before adding Gaussian noise. Similarly, we call B the “decoder”.

Let N be the set of all pairs of neighboring streams x and D := {x− x̃ | (x, x̃) ∈ N} represent
the set of all possible deltas between neighboring x, x̃. The definition of D implies it is symmetric
(u ∈ D ⇒ −u ∈ D). We will say a D satisfies the participation schema Π if the indices of all
nonzero elements in each vector u ∈ D corresponds some π ∈ Π. Critically, for linear queries D
fully captures the sensitivity of the query:
Definition 1. The sensitivity of the matrix factorization mechanism Eq. (1) is defined as

sensD(C) = sup
(x,x̃)∈N

‖Cx−Cx̃‖F = sup
u∈D
‖Cu‖F . (2)

Convexity of ‖Cu‖F in u implies that supu∈D ‖Cu‖F = supu∈conv(D) ‖Cu‖F , and hence with-
out loss of generality (wlog), we take D to be convex as needed. It is illustrative to consider some
specific Ds for scalar per-step contributions with ζ = d = 1. Single-participation corresponds to
D = conv{αei|α ∈ [−1, 1], i ∈ [n]} where ei for i ∈ [n] are the standard basis vectors. Noting
‖Cu‖ = ‖−Cu‖ and convexity of ‖Cu‖, we see the maximum will be achieved at some ei, recov-
ering the ‘max-`2-norm-over-columns’ measurement of sensitivity of Li et al. (2015, Proposition 3).
Every-step participation corresponds to the `∞ ball, D = {x | ‖x‖∞ ≤ 1}.

Conditions allowing the reduction to per-iterate scalar contributions In ML, examples are
used to calculate gradients of d > 1 dimensions, and so we wish to consider x ∈ Rn×d, with rows
xi ∈ Rd corresponding to the sum of gradients for examples participating in step i. In order to
compute sensitivity, one may hope that the sensitivity for each xi ∈ Rd can be bounded by only
considering some appropriately worst-case xi ∈ R. More formally, consider a fixed participation
schema Π, and further assume (wlog) ζ = 1. Then, for vector-valued contributions we have

Dd
Π = conv

{
G ∈ Rn×d | ∃π ∈ Π s.t. ‖G[i,:]‖2 ≤ 1 for i ∈ π and G[i,:] = 0 for i 6∈ π

}
.

In the d = 1 case, we have a much simpler polytope, D1
Π = conv(D1

Π) where

D1
Π =

⋃
π∈Π

{
u ∈ Rn | ui ∈ {−1, 1} if i ∈ π, 0 otherwise

}
.

One might hope to show sensDd
Π

(C) ≤ sensD1
Π

(C), and the authors in fact initially conjectured
this to be true. To our surprise, while this inequality holds under a variety of assumptions, it does
not hold in general (Appendix H.2 gives a counterexample).2 Empirically we have observed that
for various query matrices A and (k, b)-participation with d = 1, the optimal C satisfy (or almost
satisfy) the condition C>C ≥ 0 (element-wise non-negativity). In this case, we can show:
Corollary 2.1. When per-step contributions bounded by ζ = 1, for any participation schema Π and
dimensionality d ≥ 1, when C>C ≥ 0 elementwise, we have sensDd

Π
(C) = sensD1

Π
(C).

In particular, this implies that if C is optimal in the d = 1 case and satisfies C>C ≥ 0, it is also
optimal in the d > 1 case. This result is a corollary of Theorem H.1, which establishes additional
conditions under which sensDd

Π
(C) ≤ sensD1

Π
(C) holds. All proofs are in Appendix H onwards.

Difficulty of computing sens(C) In general, computing sens(C) is a convex quadratic maximiza-
tion problem over a convex set, which can be NP-hard. Even the simple case of computing the
sensitivity for an arbitrary matrix C under every-step participation with scalar (d = 1) contributions
is NP-hard—it is exactly the problem of computing the `∞−̀ 2 operator norm (Tropp, 2004). (In fact,
it is useful to observe sensD(·) can always be viewed as an operator norm, see Appendix B). This
hardness is in stark contrast to the single-participation setting, where calculating sensitivity is trivial.
However, we can in some cases compute sensitivity exactly by brute force. Take d = 1. Observe
D1

Π is a finite set and so a direct calculation by using Eq. (2) is often possible. But, |D1
Π| = |Π|2k,

and observing the symmetry ‖Cu‖ = ‖C(−u)‖ can reduce the computational cost only by half. In
general |Π| may be exponential in k, but in the special case of (k, b)-participation, we have |Π| = b

2We conjecture it is “almost” true; tightly bounding the necessary error term is an interesting open question.
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(the number of steps in one epoch). Hence, for modest numbers of epochs k, directly computing sen-
sitivity is possible, e.g., in our StackOverflow experiments in Section 5.2, we can reduce u ∈ D1

Π to
only 342 · 25 = 10, 944 vectors. Theorem H.1 can be used to translate bounds from scalar to higher
dimensions, though without such a translation it is not clear how to generalize a brute-force method.

Computing sensitivity when C>C ≥ 0 Let X = C>C.When X has only nonnegative elements,
one may reduce the problem of computing sensD1

Π
(C) to

sensDd
Π

(C) = max
u∈D1

Π

‖Cu‖F = max
u∈D1

Π

√
u>Xu = max

π∈Π

√
1>X[π,π]1, (3)

where X[π,π] ∈ Rk×k is the submatrix of X formed from the rows and columns selected by π,
|π| = k and 1 ∈ Rk. The first equality follows from Corollary 2.1, and then the max must be
achieved by the maximum-magnitude nonnegative vector u, specifically 1k. As noted above, the
matrices we consider satisfy this property, and hence we can compute the exact sensitivity efficiently
for (k, b)-participation.

Upper-bounding sensitivity As an alternative to structural conditions on C or X allowing effi-
cient exact computation of sensitivity for d > 1, we can look to (reasonably tight) upper bounds
on the sensitivity of C. In the case of (k, b)-participation, one efficient method of computing upper
bounds for the multiple-participation sensitivity of C has shown itself to be particularly useful:

Theorem 2.1. Let C ∈ Rn×n, and take some participation schema Π, with k = maxπ∈Π |π| the
maximum number of participations. With C[:,π] representing selecting the columns of the matrix C

indexed by π and ‖·‖2 the spectral matrix norm, let λ = max
π∈Π

∥∥C[:,π]

∥∥
2
. Then sensD1

Π
(C) ≤ λ

√
k.

In the (k, b)-participation case, |Π| = b. The complexity of computing the largest eigenvalue of
the subselected C matrix is cubic in k. Thus, computing this upper bound is of order bk3, easily
computable for the range of k, b considered here (k ≤ 100, b ≤ 500).

Differential Privacy Guarantee Using our generalization of adaptive streams to multiple partic-
ipations we obtain the following result (a straightforward generalization of Denisov et al. (2022,
Theorem 2.1)). The proof is identical that in Denisov et al. (2022), except we replace the sensitivity
bound with that for multiple participations obtained via Corollary 2.1.

Theorem 2.2. Let A ∈ Rn×n be a lower-triangular full-rank query matrix, and let A = BC be any
factorization with the following property: for any two neighboring streams x, x̃ ∈ Rn×d, we have
‖C(x − x̃)‖F ≤ κ. Let Z ∼ N (0, κ2σ2)n×d with σ large enough so thatM(x) = Ax + BZ =
B(Cx+Z) satisfies (ε, δ)-DP (or ρ-zCDP or µ-Gaussian DP) in the nonadaptive continual release
model. Then,M satisfies the same DP guarantee (with the same parameters) even when the rows
of the input are chosen adaptively.

3 OPTIMIZING MATRIX MECHANISMS FOR MULTIPLE EPOCHS

We now present methods for computing optimal matrix mechanisms that are specialized to a spe-
cific participation schema Π and query matrix A. For example, Fig. 2 shows the optimal factoriza-
tion for the query matrix A representing SGD with momentum and coldown under (k=6, b=342)-
participation, used in Section 5.2. Specializing the mechanism to both the participation pattern and
the specific query workload enables as to obtain state-of-the-art results in ML (Section 5).

We follow the approach of Denisov et al. (2022) which showed empirical improvements over prior
methods in single-epoch settings. We begin by defining the loss of interest, i.e., the total variance of
noise added, for the mechanism defined in Eq. (1). Note that this loss characterizes other downstream
tasks like DP Mean Estimation. Given D, assume that we may represent D = conv(D) for some
finite set D—as we have seen, this is the case, e.g., in (k, b)-participation. Then the loss which
corresponds to total squared error of a factorization, at a fixed privacy level, may be expressed as:

L(B,C) = sens2
D(C) ‖B‖2F where sensD(C) = sup

u∈D
‖Cu‖22 = sup

u∈D
‖Cu‖22. (4)
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Figure 2: The optimal factorization A = BC under (k=6, b=342)-participation, constructed by
solving the optimization problem Eq. (5). Matrix A encodes SGD with momentum 0.95 and a
learning-rate cooldown schedule for the last 25% of rounds, as used in our StackOverlow experi-
ments (Section 5.2). The constraints on sensitivity imposed by this participation schema are evident
in the resulting matrices. For example, the white diagonals with a period of b = 342 in X = C>C
show that the columns of C that could correspond to a pair of rounds (i, j) where the same user
might participate are in fact orthogonal. See Fig. 13 in Appendix F.4 for a larger view.

Observing that ∀α the mechanism A =
(
αB
)(

1
αC
)

has identical loss, we conclude that we may
consider the constrained version of the problem of minimizing this loss where sensD(C) ≤ 1. Since
for any C, B = AC† produces the minimum-Frobeneous norm B-matrix, it is sufficient to solve:

min
C
L
(
AC†,C

)
= min

C:sens2
D(C)=1

∥∥AC†
∥∥2

F
. (5)

With the change of variables X = C>C, equivalently:

min
Xis PD,ŝens2

D(X)=1
tr(A>AX−1) where ŝens

2
D(X) ≤ sup

u∈D
u>Xu. (6)

Theorem 3.1. Let a finite D = {ui}ki=1 be given, and assume that the vectors {ui}ki=1 span Rn.
Assume that A is full-rank, and for v ∈ Rk define Hv = [u1, . . . ,uk] diag(v)1/2, U = HvH>v .
Define the Lagrangian L as L (X,v) := tr(A>AX−1) +

∑
u∈D vu

(
u>Xu− 1

)
. Then, for La-

grange multipliers v such that the U is full-rank, the minimizer X (v) of L for this fixed v may be

represented X (v) = U−
1
2

(
U

1
2 A>AU

1
2

) 1
2 U−

1
2 . and the Lagrange dual function g for the problem

Eq. (6) can be expressed in closed form in terms of the dual variables v:

g(v) := inf
X is PD

L(X,v) = 2 tr
((

U
1
2 A>AU

1
2

) 1
2

)
−
∑
u∈D

vu (7)

Remark. The restriction that v yields a full-rank U serves to restrict to cases where the Lagrangian
has a finite, positive-definite minimizer in the primal variable; if the vectors {u} span Rn, the prob-
lem Eq. (6) has a finite minimizer by Lemma I.1. Any setting of the dual variables v corresponding
to this minimizer is contained in a neighborhood uniformly satisfying this full-rank property, and so
it is valid to differentiate our expression for g with respect to such v (as we will do in Appendix I.1).

Corollary 3.1. In the same setup as Theorem 3.1, the gradient of the dual function g is: ∂g
∂vi

=

u>i U−
1
2

(
U

1
2 A>AU

1
2

) 1
2 U−

1
2 ui − 1. Moreover, a maximizer of the dual v? must satisfy:

v? = diagpart
((

H>v?A>AHv?

) 1
2

)
. (8)

The optimal value of the problem defined in Eq. (6) is tr (v?).

Remark. In the single-participation case of Denisov et al. (2022), Hv = diag(v)
1
2 , and Eq. (8)

recovers the fixed point expression of that paper’s Theorem 3.2. Our Corollary 3.1 implies that the
optimization methods presented in Denisov et al. (2022) may be applied, with suitable translation, to
our setting; we use these methods to generate the optimal matrices studied empirically in Section 5.

4 FAST-FOURIER-TRANSFORM-BASED DP-PREFIX SUM ESTIMATION

Our work has two types of computation costs: optimization costs are those associated with op-
timizing and generating (or, computing) a mechanism whereas noise generation costs are those
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associated with using the mechanism to sample noise for DP prefix sum release. Note that once
optimized, a single mechanism can be reused indefinitely to generate noise for other runs by simply
resampling new noise and applying the same decoder. The best known methods for computing the
optimal factorizations scale as at least O(n3) (Yuan et al., 2016; Denisov et al., 2022). This opti-
mization cost can become intractable when n grows too large. Thus, in this section we focus on
reducing optimization computation at a small decrease in the achievable privacy-utility tradeoff.

A prime candidate for this goal is the Discrete Fourier Transform (DFT) because there are known
algorithms both for nearly-optimal private convolutions (Fawaz et al., 2013) which are intimately
related to the DFT, and for efficient calculation of the DFT using the Fast Fourier Transform
(FFT) (Nussbaumer, 1981). We present an FFT-based mechanism that reduces the noise genera-
tion costs. We then prove rigorous DP guarantees for it and show that these lead to near-optimal
privacy-utility tradeoffs in the single-epoch setting. We provide two improvements over prior work:
1) extending the result to the multi-epoch and multi-dimensional setting and 2) providing explicit
non-asymptotic analysis of the algorithm’s utility.

Let A represent the (Toeplitz) matrix of all 1s on or below the main diagonal and 0s elsewhere;
i.e., the prefix-sum matrix. In this section, we perform our analysis in the Fourier domain. To
release Ax, we define a circulant matrix Acirc ∈ R2n×2n with a corresponding input vector xext =
concat(x,0n),0n ∈ {0}n so that the first n entries of Acircxext are equal to Ax (see Appendix J.1).
Thus, we study the DP release of Acircxext. Note, to be consistent with the literature on FFT, in this
section, and in Appendix J, we will index all the vectors and matrices with starting index of zero.

Theorem J.1 of Gray (2006) (restated in Appendix J.1) shows there exists a diagonal Σ such that
Acirc = F∗ΣF for diagonal Σ, where F is the DFT matrix. Then, Acirc can then be factorized as
Acirc = BcircCcirc where Bcirc = F∗Σ1/2 and Ccirc = Σ1/2F.

The (complex-valued) matrix mechanism specified by the factorization above (and presented as Al-
gorithm 1 of Appendix C) is nearly optimal in the class of matrix-factorization-based mechanisms,
as we show in Appendix J. Though we prove a simple zCDP guarantee for any participation schema
having at most k = maxπ∈Π |π| participations in Theorem 4.1, we can instead use our Corollary 2.1
when the participation schema is known in advance (as in our experiments with (k, b)-participation).

Theorem 4.1. Under k-participation, Algorithm 1 satisfies (k2ρ)-zCDP.

The optimal FFT decoder Observe from Theorems 2.1 and 2.2 that the privacy guarantee of
our multi-participation adaptive setting is independent of the choice of decoder, B. Thus, instead
of taking Bcirc above, we take the optimal decoder using the Moore-Penrose pseudoinverse of the
encoder, i.e., Bcirc = SC†circ. We do so using an equivalent encoder C ∈ Rn×2n as shown in
Appendix K. We find that this leads to significant improvements in the privacy-utility tradeoff (see
Fig. 9 in Appendix E) at no additional computational overhead.

Computation Costs Though we define the optimal FFT decoder as a pseudoinverse, observe that
we do not need to optimize (or even compute) the decoder; by Appendix K, the problem is reduced
to that of solving a highly structured linear system. However, we find that even suboptimal imple-
mentations using the pseudoinverse can still factorize a mechanism for n = 10, 000 in 146 minutes
on a V100 GPU, remaining well within practical requirements since we need only generate a mech-
anism once, before it can be reused indefinitely for training. In contrast, computing optimal matrices
becomes practically difficult near n ≈ 10, 000, taking 24 hours to compute an effective factorization
for n = 8, 192 using batch-priority cloud CPU resources. We remark that this regime of n is highly
practical, e.g., standard federated benchmarks use n ≈ 2000 (Reddi et al., 2020) and our central
image classification use n = 2000. In terms of noise generation, the FFT mechanism shows prefer-
able asymptotic properties, scaling as O(nd log2 n). However, even the optimal matrix mechanism
with runtime scaling as O(dn2), noise generation on a GPU (even with significantly suboptimal
implementation) takes negligible time. Further, noise from our mechanisms can be pre-generated if
needed. We discuss these tradeoffs in Appendix C.
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5 EMPIRICAL EVALUATION

We compare four main mechanism classes: tree-based mechanisms (Honaker, 2015), including
‘tree-completion’ of Kairouz et al. (2021); our FFT mechanism; our optimal factorizations; and
DP-SGD with (though incorrect) amplification via Poisson Subsampling (Abadi et al., 2016b).

When computing optimal factorizations by solving Eq. (6), we may vary the sensitivity constraint
set D to encode different participation schemas. We compute optimal factorizations for the (k, b)-
participation setting. An encoder C factorized for one value of k can be applied for another, by
simply computing its new sensitivity (due to our Section 2), though this will alter its privacy-utility
tradeoffs. For example, our MF1,6e in Fig. 3 uses this to extend Denisov et al. (2022) to k > 1.

When applying a mechanism that is determined independently of the number of participations (e.g.,
FFT or tree aggregation) or extending an optimal mechanism for k participations to a larger number
of participations, the sensitivity may scale poorly in k. In such cases, it may actually have lower sen-
sitivity to reuse a single encoder multiple times over the course of n steps, and hence more favorable
privacy-utility tradeoffs. We term this approach encoder stamping. This also provides a straightfor-
ward method for extending any factorization to handle more iterations without, e.g., re-optimizing
Eq. (6). Combined with our Section 2, stamping lets us apply mechanisms from Denisov et al.
(2022), e.g., MF(k=1,n=1000)×2 in Fig. 1; mechanisms with stamping have “×s” appended in
this way. Discussion of stamping and its relation to existing literature are in Appendix D.4.

The manner in which baselines from the extant literature map to this setting can be found in Ap-
pendix D.1. Since the matrix mechanism reduces privacy cost of training to that of the release of a
single Gaussian mechanism, accounting in our case becomes quite simple; see Appendix D.2.

5.1 EXAMPLE-LEVEL DP FOR AN IMAGE CLASSIFICATION TASK.

We train image classification models on CIFAR10 (Krizhevsky, 2009) which has become a de facto
standard for comparing DP ML algorithms—sufficiently easy for existing DP algorithms to achieve
nontrivial accuracy, but not so simple so as to be unable to differentiate approaches. Details on our
full setup are in Appendix E; generally, they match those of Kairouz et al. (2021). Notably, we
make improvements on their Online Honaker-based approach by not just completing the tree with
virtual steps, but also zeroing out noise from virtual steps as detailed in Appendix D.3. We find this
led to significant improvements around a few percentage points. For all matrix mechanisms except
the Denisov et al. (2022) baseline and our Optimal MF(k = 20,dim = 2000)×1, we optimize over
the stamps s by the losses in Appendix D.5, which we find well match the ordering in ML accuracy.

In contrast to Section 5.2, in this section we only compare factorizations of the prefix-sum matrix;
we do not incorporate momentum or cooldown directly into the mechanisms, though we use both
momentum and cooldown as postprocessing for the matrix-factorization-based mechanisms and re-
port results for the best settings we find (with both). For DP-SGD, we report results for the best
setting (no momentum, with cooldown). Details are in Appendix E.

Main results (Figure 1) First, we see that the optimal factorization for the target (k, b) =
(20, 100) setting outperforms all other mechanisms across (nearly) all privacy levels, only slightly
underperforming DP-SGD with amplification at ε = 2. To the best of our knowledge, this represents
the first empirical demonstration of an ML algorithm which is competitive with DP-SGD into this
high-privacy regime, without any amplification by sampling. The FFT (optimal decoder) mechanism
outperforms all baselines, again well toward the high-privacy regime at ε ≈ 4. Though at a worse
privacy-utility tradeoff compared with our multi-epoch optimal matrices, this mechanism shows
promise for outperforming prior work when n grows too large for generating optimal factorizations.

5.2 USER-LEVEL DP FOR A NEXT WORD PREDICTION TASK

User-level DP for language models is an important real-word task (McMahan & Thakurta, 2022).
There is much history in the DP language modelling literature, which we briefly describe in Ap-
pendix F.1. Here, we use the standard benchmark: StackOverflow next-word prediction (Reddi
et al., 2020). Our experimental setup fixes the same model and hyperparameters as Kairouz et al.
(2021) and Denisov et al. (2022) except notable changes below. Details are in Appendix F.2.
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Figure 3: Our MF6,6e achieves within 2% relative difference in performance from the non-
private baseline at ε = 8.8, δ = 10−6. Our MF1,6e, though worse, outperforms all baselines
from the literature. Select runs were replicated multiple times, with bootstrap 95% intervals shown.
DP-GDM,2052e is the extreme case of every-round participation (342× more computationally ex-
pensive than 6 epochs of training), and hence generally infeasible. The server learning rate ηs was
optimized over 0.5 and 1.0, and additionally 0.25 for ε = 2. The blue bands give the non-private
baseline accuracy for 6 epochs of training with ηs = 1.0 and 0.5.

Notable changes from prior work We use a much higher 1000 clients per round (≈ 100 in prior
work)—enabled mainly by our multi-epoch factorizations. We also zero out large updates with `∞
norm greater than 100 (rather than scaling down to our clipping norm of ζ = 1) as we found this
improved the stability of noisy training (see Table 2 in Appendix F.3). This may have enabled more
consistent success of a higher server learning rate ηs = 1.0.

We conducted initial simulations which verified that two observations from Denisov et al. (2022) for
the single-epoch setting extended to our multi-epoch and large-batch (1000clients/round instead of
167) setting. First, linear server learning rate cooldown from 1× to 0.05× over the final 512 rounds
offered a small improvement over constant rates (more so in the higher-privacy regime). Second,
optimizing a factorizing with momentum and this cooldown schedule, rather than applying both as
post-processing, consistently offers a small benefit. See Appendix F.2 for details. Thus, for our
primary investigation we fix these preferable design choices and compare the following algorithms.

Algorithms All algorithms train for 6 epochs 2052 rounds, and a large-batch 1000 clients/round
(better for DP training) unless otherwise noted. Honaker,6e is the DP-FTRL algorithm of Kairouz
et al. (2021), trained for 2048 rounds (a power of 2). MF1,1e (Denisov et al., 2022) is the state-
of-the-art for single-epoch training, using 167 clients/round and k=1. MF1,6e uses our Eq. (3) to
take the (non-negative) (k=1)-optimized matrix of the previous approach and compute the sensi-
tivity under (k=6, b=342)-participation, allowing us to train for 6 epochs (2048 rounds) with large
batches. MF6,6e is our approach directly optimizing the matrix factorization for (k=6, b=342)-
participation via Eq. (6). DP-SGDM,6e is the DP-FedAvg algorithm of McMahan et al. (2018),
to 2052 rounds, and accounted with Poisson sampling—an incorrect, though standard, accounting
computation, as noted in Section 1. DP-GDM,2052e is full-batch gradient descent for 2052 rounds
and 2052 epochs, or 342× the computation cost of our 6 epoch runs. We compute the exact privacy
cost for this approach, and estimate the accuracy from experiments with 1000 clients per round for
computational efficiency, following the methodology of Kairouz et al. (2021). This is essentially an
upper bound on the best privacy-accuracy tradeoffs with unlimited computational resources.

Main results (Figure 3) We find that our MF6,6e, is the best feasible private result at 25.25%
accuracy and (17.7, 10−6)-DP. This exceeds the non-private baseline of 25.2% accuracy reported
by Kairouz et al. (2021), is within the margins of small hyperparameter tuning differences of our
improved non-private baselines (25.43%) and private full-batch gradient descent (25.31%). At
(8.84, 10−6)-DP, MF6,6e achieves 24.94% accuracy, substantially improving over the previous
state-of-the-art at this privacy level given by MF1,1e at 24.11% accuracy, and considerably im-
proves on both the accuracy and privacy of Honaker,6e (24.86% accuracy at (21.0, 10−6)-DP). In
fact, we achieve better accuracy at ε = 8.84 than prior methods achieve at ε = 17.7. DP-SGDM,6e
is outperformed by MF6,6e and MF1,6e across all ε values evaluated. Fig. 12 in Appendix F shows
results for each learning rate separately, with numeric results in Tables 4 and 5.

Discussion and conclusions can be found in Appendix G.
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Conference on Machine Learning, pp. 7634–7642. PMLR, 2019.

12

http://arxiv.org/abs/1602.04302
http://arxiv.org/abs/1602.04302


Under review as a conference paper at ICLR 2023

A SUMMARY OF NOTATION AND TERMINOLOGY

The following table summarizes the notation used throughout the paper:

n Number of steps of the streaming linear query (SGD steps or FL rounds)

d Dimension of per-step user contributions.

xi ∈ R or Rd Sum of per-example gradients (or per-user model updates) on step i.

x ∈ Rn×d Stream of inputs xi, equiv. matrix with rows xi (so xi = x[i,:]).

ζ Clipping norm that limits the size of per-example contributions to xi.

π Participation pattern, the set of steps that an example could participation in.

Π Participation schema, set of sets of steps (set of all π) an example could participate in.

D = {x− x̃ | (x, x̃) ∈ N}, the set of deltas between neighboring input streams x, x̃.

D Corners of D when assumed to be a polytope, D = conv(D).

(k, b)-participation participation schema Π with at most k participations, separated by exactly b.

A ∈ Rn×n Lower-triangular linear query matrix to be factorized as A = BC.

T ∈ Rn×n T := A>A for convenience.

λmin(A), λmax(A). Smallest and largest eigenvalues of real matrix A.

A∗ Conjugate (Hermitian) transpose of A.

X? A matrix X that is “optimal” in a context-dependent sense.

A† Moore-Penrose pseudoinverse of matrix A.

A[i,j] The (i, j)th entry of matrix A.

A[i,:] and A[:,j] The ith row and jth column.

s Number of encoder C replications (stamps) into a block-diagonal matrix.

conv (S) Convex hull of the set S.

[n] = {1, . . . , n}
‖X‖F The Frobenius norm of a matrix X.

We utilize terminology from federated learning as well as standard centralized training, which gen-
erally map as follows:

Centralized Federated

example user or client

batch size clients-per-round

DP-SGD DP-FedAvg

step or iteration (communication) round

gradient model update

B GENERALIZED SENSITIVITY AS AN OPERATOR NORM

Eq. (2) shows that our generalized notion of sensitivity can be viewed directly as a particular operator
norm. To see this, view C : V1 → V2 as a linear operator from vector space V1 to V2. Then with
‖ · ‖(1) the vector norm on V1 and similarly for V2, an operator norm is defined as

‖C‖(1),(2) = max
u∈V1:‖u‖(1)≤1

‖Cu‖(2).
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Because we use the Gaussian mechanism and thus are interested in the `2 sensitivity, ‖·‖(2) = ‖·‖2,
and we define the norm

‖u‖(1) = ‖u‖D := inf
{
r > 0 :

u

r
∈ D

}
,

the vector norm induced by D (the fact that D is a closed, convex, symmetric set ensures this is a
norm). Note u ∈ D ⇔ ‖u‖D ≤ 1. Thus, we have

sensD(C) = ‖C‖D,2. (9)

C THE FFT MECHANISMS AND REDUCING COMPUTATION

Algorithm 1 DP-Prefix Sum Computation via FFT (with d = 1)

Inputs: Data vector x ∈ Rn (with each |xi| ≤ ζ) and zCDP parameter ρ.
vDFT ∈ C2n ← the DFT of v (defined in Eq. (34)). Let vDFT

[:n] be the first n coordinates.
F← DFT matrix in 2n-dimensions, where the k-th row of F is given by

F[k,:] =
1√
2n

[
exp

(
−j2πka

2n

)
: a ∈ {0, . . . , 2n− 1}

]
.

(Σ,w)← (diag(vDFT), standard complex Normal in 2n-dimensions).

(s, z̃)←
([

x0,x0 + x1, . . . ,
n−1∑
a=0

xa

]
,
√

κ2‖vDFT‖1
4nρ

(
F∗Σ1/2 ·w

))
.

Output s + z̃.real[0, . . . , n− 1].

We propose two FFT mechanisms. First, we propose the FFT mechanism which is described in
Algorithm 1. This mechanism has the same computation complexity—no optimization costs and
O(nd log n) noise generation—as the Honaker method used in Kairouz et al. (2021) but at a bet-
ter privacy-utility tradeoff, as shown in Fig. 9. The privacy and utility analysis can be found in
Appendix J.

The FFT Optimal Decoder (FFT Opt Dec) mechanism presented in Section 4 represents taking (a
real-valued translation of) the encoder C from Algorithm 1 and using the optimal decoder, defined
in terms of the Moore-Penrose pseudoinverse of C. Similarly to Algorithm 1, there is no need to
construct a literal matrix to multiply by in the case of noise defined by the optimal decoder; noise
generation time of the mechanism, however, increases by a logarithmic factor to O(nd log2 n) (as
discussed in Appendix K). This complexity is still feasible for many steps (which we will discuss
below) and comes with significant utility benefits (see Fig. 1).

All the mechanisms we study scale as either O(n2) or O(n · polylog(n)). For our n = 2000 step
environments, and even far beyond to n ≈ 10, 000, our algorithms can be efficiently realized on
GPUs with runtime on the order of seconds per step (including computing and applying gradients
and noise). The main challenge in these cases are storing the n2 + nd coordinates in GPU memory
(the former for the decoder matrix, the latter for the noise samples). Given that each of the d
coordinates of noise can be sampled independently, this algorithm is straightforwardly parallelizable
and so work may be partitioned across many processors when needed. Noises could instead be pre-
generated in an entirely separate process, and stored on disk, to be loaded into memory row-by-row
concurrently with training.

Outside of computation, both our FFT mechanisms takeO(nd) space as all noises for the x ∈ Rn×d
must be pre-generated. This is in contrast to all prior work, and even our optimal factorizations,
which require only O(d) space to generate the noise at the current step. Again, we note that space
is ofter much cheaper so this is typically not the limiting factor.
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D MECHANISMS UNDER CONSIDERATION: BASELINES, SUBTLETIES, AND
LOSSES.

D.1 BASELINES

Kairouz et al. (2021) and Denisov et al. (2022) both present approaches for ML model training
which can be understood as instances of the matrix mechanism–the former grounded in the binary-
tree mechanism as refined by Honaker (2015), and the latter explicitly optimizing a factorization
under single participation. These two works yield two natural baselines:

• Kairouz et al. (2021) explores ‘tree restarts’ (generalized as our notion of ‘stamps’, s, in
Section 5) and the so-called ‘tree-completion trick’ for the Honaker estimator-from-below
variant of the binary tree method for computing differentially private prefix sums; the
matrix-factorization perspective on this estimator allows us to implement slightly optimized
versions of these methods; see Appendices D.3 and D.4.

• Denisov et al. (2022) computes optimal factorizations of various optimization-related ma-
trices, though only for a single epoch. For these matrices, we leverage the results in Sec-
tion 2 to directly compute the sensitivity of the encoder matrices for multiple participations.

These two papers can be combined in other ways as well; e.g., the results of Denisov et al. (2022)
show that the ‘fully efficient estimator’ of Honaker (2015) may be used as a drop-in replacement for
the estimator from below in Kairouz et al. (2021). We focus on the two mechanisms specified above
as the natural baselines for the present work.

D.2 PRIVACY ACCOUNTING

The matrix mechanism Eq. (1) conceptually adds isotropic Gaussian noise in some encoded space.
In our case, we encode a matrix of gradients (clipped to `2 norm ζ) computed over the course of
training, denoted by G, with the matrix C, and add Gaussian noise to each entry in the matrix CG.
Under the assumption that the matrix factorization has been appropriately scaled so C has sensitivity
1, this Gaussian noise will have standard deviation σ = ζz in each coordinate, where z is the ‘noise
multiplier’ parameter determining the privacy level of the mechanism (see Table 3 for example).

Privacy costs are computed as a single application of the Gaussian mechanism to GC using the
PLDAccountant provided by the Google DP Library3. We also use this accountant to analyze
DP-(S)GD baselines (which require more complex accounting), yielding a small improvements in ε
over the Renyi-DP accounting used in prior works.

D.3 IMPROVEMENTS TO‘TREE COMPLETION’ BY REMOVING NOISE FROM VIRTUAL STEPS

The “tree completion” trick of Kairouz et al. (2021) is used on the last step of any restart (in ours,
stamp) to reduce the noise added on this step. This is achieved by adding virtual steps (with 0
inputs) until the final step of that level in the tree, because this noise will be the lowest in that
level. In this section, we show how to further improve on this trick and that our matrix mechanisms
make analyzing such tricks easier. Our implementations of the binary-tree baslines Honaker (2015);
Kairouz et al. (2021) utilize these improvements.

For the online Honaker estimate, Honaker (2015) obtain a DP estimate for the release node i ∈ [n]
(representing the prefix sum until i) but summing the corresponding subtrees prior to this node.
These are exactly the subtrees corresponding to the binary representation of this node (Honaker,
2015). Then, the variance required to release node i, with subtrees of height 0, 1, ..., li − 1, isli−1∑

j=0

c2j · 2j
 · σ2 =

1

2 · (1− 2−µ)
· σ2 where cj =

1/2j

l1−1∑
j=0

(1/2j)

.

Notice that reaching a new height in the tree decreases the variance needed. In Kairouz et al. (2021)
and just before terminating on some non-power-of-two step n′ < n, they run n − n′ virtual steps

3https://github.com/google/differential-privacy
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on zero gradients. This enables their mechanism to use the minimal noise for the power-of-two-step
for the final real step.

However, notice that in both these cases, the methods assume that these virtual steps must be priva-
tized. Indeed, they do not need to be because we know apriori that these steps are virtual, i.e., not
corresponding to real gradients. Thus, in our methods we account for this in our mechanism and
reduce the noise of the final step accordingly. Importantly, this can be computed without altering
the asymptotic runtime and storage complexity of the algorithm: on the last step, the contributions
of the virtual steps to the power-of-two noise can be calculated using, e.g., a second binary tree, and
removed. This leads to a significant benefit in the loss as we observed in Table 1 in Appendix D.5.

We believe this oversight of prior works showcases the power of our matrix mechanism approach.
Indeed, let Ctree be a matrix representing the (complete) binary tree used in the mechanisms
of Honaker (2015); Kairouz et al. (2021) with 2dlog2(n)e leaves; for the sake of concreteness, as-
sume this is the matrix constructed in Appendix C of Denisov et al. (2022). Let BHon represent the
Honaker estimator-from-below; in our language, the decoder used by (Kairouz et al., 2021).

The tree completion trick of (Kairouz et al., 2016) can be understood as follows. The matrix
BHonCtree is of size 2dlog2(n)e × 2dlog2(n)e. In the case that n is not a power of two, the penulti-
mate rows and columns of this matrix will go unused. However, for this factorization, the variance
added by BHonon the final row will be quite small, due to the binary tree’s redundancy in encoding
estimates of this sum. The matrix we wish to factorize is a prefix-sum matrix S of size n × n; this
matrix can be expressed as any one of a family of transformations of the (potentially larger) product
BHonCtree:

S = PjBHonCtreeE,

where E embeds a n-dimensional vector into 2dlog2(n)e dimensions by padding with zeros, and Pj

projects back down to n dimensions in a similarly axis-aligned way, taking the first n − 1 rows of
its right-hand matrix argument, and only one, but any of the jth rows for n ≤ j ≤ 2dlog2(n)e. To
minimize the Frobenius norm of the constructed decoder in the factorization of S, we may simply
pick the row with the lowest `2 norm; in the case of BHon, this is the final row.

One more optimization becomes clear when tree completion is formulated in this manner. Similar
to our optimal decoder of Section 4, any decoder can be used without changing the sensitivity of
the encoder. Noting that nonzero entries in the decoder increase our loss of Eq. (4), we can simply
zero out the columns of the decoder corresponding to these virtual steps—this decreases the loss,
preserves the same error in the DP estimate of the prefix sum (the inputs are 0), and maintains the
same DP guarantee. In other words, we need not account for the noise, or the error it introduces, of
virtual steps. We now provide a more rigorous explanation.

The image of CtreeE can be contained in an axis-aligned subspace; effectively, the subspace corre-
sponding to elements that may be nonzero in the binary tree when run for n steps. In other words,
the columns of the decoder corresponding to rows of the encoder that are removed via the projection
need not be included: because the input is not processed. Therefore, denoting the projection onto
this subspace by Π, we may write:

S = PjBHonΠCtreeE = (PjBHonΠ) (ΠCtreeE) ,

further reducing the variance of the decoder (without increasing the sensitivity of the encoder) in
this incomplete binary tree case.

In our implementations of the online Honaker mechanism, we freely use these tricks, in addition
to exact calculations of the sensitivity of the mechanism enabled by noting that the encoder is all-
nonnegative and the observations of Section 2, leading to some improvements in these mechanisms
over those in the existing literature. No changes to accounting are required, as privacy is inherited
from the matrix mechanism perspective.
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D.4 STAMPING: REPEATED MECHANISMS IN THE MATRIX-FACTORIZATION SETTING

In stamping, we define a new encoder matrix as the Kronecker product of some given encoder C with
an s × s identity matrix I, creating a new sn-dimensional linear DP query mechanism. Assuming
C is of shape n× n, the resulting encoder is an sn× sn block-diagonal encoder matrix, formed by
‘repeating’ the matrix C along the diagonal.

Kairouz et al. (2021) explored ‘restarting’ their binary-tree based prefix sum estimation mechanism,
treating the number of restarts used as a hyperparameter, and treating the result of a ‘completed’
application of the binary tree as fixed. For linear operators A with constant columns below the
diagonal, this approach may be used to construct a new factorization from an existing one. This
constant-columns property, or a block-based variant thereof, is required to simply treat the output
from a ‘completed’ application of the existing mechanism as fixed; for a general matrix A, there is
no clear prefix property which can be leveraged for this purpose.

Taking the matrix view, one may construct a similar encoder/decoder pair for the prefix-sum matrix
by reusing the initial decoder B on the block-diagonal and fixing the columns to simply repeat
the final row of this decoder below the block-diagonal; notice that the constant-column property of
the prefix sum matrix guarantees that this construction appropriately factorizes A. The noise that
the matrix mechanism thus constructed adds can be implemented as a ‘restarted’ tree mechanism;
however, since we compute sensitivities exactly for decoders of this structure as in Section 2, the
privacy properties of these mechanisms we construct to replicate the ‘restarts’ of (Kairouz et al.,
2021) may not be identical to those presented there, where accounting is performed by composition.

The matrix-mechanism perspective additionally allows one to apply the ‘stamping’ construction
to any linear operator A (e.g. the momentum matrix), where a reuse of fixed previous outputs is
not possible. A ‘stamped’ factorization of any A may be obtained, for example, by matrix pseu-
doinversion: letting B = A (C⊗ I)

†. This defines a legitimate factorization of any A requiring
only suitable non-degeneracy assumptions on C, and indeed represents the optimal decoder for the
stamped encoder.

The pseudoinverse-based construction can, even in the prefix-sum case, be quite different from a
construction designed to replicate ‘restarted’ mechanisms. For example, if C is a matrix represen-
tation of the binary-tree encoder and I = 1, then the resulting decoder matrix represents the full,
rather than online, Honaker decoder (Honaker, 2015); the validity of this mechanism in the adaptive
streaming setting was only shown quite recently by Denisov et al. (2022).

For comparability with existing literature (and to preserve potential for an efficient implementa-
tion), however, all of the tree-based mechanisms we explore in the main body have decoders which
replicate the setting of composition4. All other stamped mechanisms used the optimal decoder.

Optimizing over s Considering instantiation enables us to directly analyze and minimize (over
s) the stamped mechanism’s multi-epoch loss Eq. (4) without running compute intensive ML ex-
periments. Indeed, we observe in Table 1 of Appendix D.5 that for mechanisms which were not
explicitly optimized for the (k, b)participation setting, there exist stamped mechanisms (s > 1) with
much lower loss that correspondingly led to much more performant ML models (e.g., Figures 7
and 8 of Appendix D).

Interestingly, with our capacity to measure mechanisms at a single shot in the multi-epoch setting,
we see a similar trend as was observed for restarts in Kairouz et al. (2021): that ‘stamped’ mecha-
nisms have lower total loss than their non-stamped full-tree counterparts in the 20-epoch, 100 steps
/ epoch setting (see Table 1); training performance of these ‘stamped’ mechanisms on CIFAR10 can
be found in Fig. 7. However, there is a significant improvement in our approach in that we can now
directly tune this hyperparameter without the need to actually run ML training. This lets us reduce
computation by only analyzing the loss of the generated matrices and then running the mechanism
with the lowest loss.

4We show how the optimal binary-tree decoder differs from the online, composition-based decoder in Fig. 6
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Figure 4: Per-iterate variance for prefix-sum factorizations. All mechanisms above yield the same
privacy ((ε, δ) = (4.38, 10−5) in the (k, b) = (20, 100) setting), but have different total variances
(the integral of the curves above).

D.5 FACTORIZATION LOSSES AND PER-ITERATE VARIANCE

As a first measure of the privacy-utility tradeoff, we compare the losses of each mechanism from
Eq. (4) for factorizations of the matrices under consideration.

We compare measured losses of several factorizations of the prefix-sum matrix for the (k, b) =
(20, 100) setting of the CIFAR experiments in Table 1. We plot the per-iterate variance of the mech-
anisms in Fig. 1, along with several variations, in Fig. 4. In Fig. 5, we plot the per-iterate variance
distribution of factorizations of the momentum and cooldown matrix (described in Section 5) at a
fixed variance level, and with various privacies, computed for the (k, b) = (6, 342) participation
setting.

Figs. 4 and 5 both demonstrate the effect of (k, b)-participations on the optimization problem. Partic-
ularly interesting to consider are the optimally-factorized matrices; in both cases, the epoch structure
is clearly visible in the manner in which the mechanisms distribute variance. We see also the ef-
fect of ‘stamps’ s in the variance distribution, effectively a proxy for the epoch structure directly
accounted for by the optimal mechanisms.
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Mechanism (k, b) = (20, 100)
Prefix Sum Loss Computation for n Steps, d = 1

(Online) Honaker(n = 2000) 5.8e6 O(n log n) Noise Generation
(Online) Honaker(n = 1000)×2 3.3e6
(Online) Honaker(n = 400)×5 2.1e6
(Online) Honaker(n = 200)×10 2.0e6
(Online) Honaker(n = 100)×20 2.1e6

Optimal Decoder Honaker(n = 2000) 2.4e6 O(n2) Noise Generation
Optimal Decoder Honaker(n = 1000)×2 1.6e6
Optimal Decoder Honaker(n = 400)×5 1.2e6
Optimal Decoder Honaker(n = 200)×10 1.4e6
Optimal Decoder Honaker(n = 100)×20 1.8e6

MF(k = 20,n = 2000) 6.5e5 O(n3) Optimization +
O(n2) Noise Generation

MF(k = 10, n = 1000)×2 8.8e5
MF(k = 5, n = 500)×4 1.2e6
MF(k = 1, n = 100)×20 2.5e6
MF(k = 1, n = 2000) 1.6e6
MF(k = 1,n = 1000)×2 1.37e6
MF(k = 1, n = 500)×4 1.4e6
MF(k = 1, n = 400)×5 1.5e6
MF(k = 1, n = 200)×10 1.8e6
MF(k = 1, n = 100)×20 2.5e6

FFT(n = 2000) 2.3e6 O(n log n) Noise Generation
FFT(n = 1000)×2 1.8e6
FFT(n = 400)×5 1.6e6
FFT(n = 200)×10 1.9e6
FFT(n = 100)×20 2.5e6

FFT Optimal Decoder(n = 2000) 2.2e6 O(n log2 n) Noise Generation
FFT Optimal Decoder(n = 1000)×2 1.5e6
FFT Optimal Decoder(n = 400)×5 1.1e6
FFT Optimal Decoder(n = 200)×10 1.2e6
FFT Optimal Decoder(n = 100)×20 1.7e6

Table 1: Loss for various prefix-sum factorizations, computed via Eq. (4), in multiple-participation
setting for 20 epochs with 100 steps per epoch. Lowest-loss mechanism in each class bolded. Note
that ‘(Online) Honaker’ corresponds to the restarted decoder. By evaluating the dual problem (Sec-
tion 3), 6.53e5 represents a lower bound on the optimal loss; the optimal matrix factorization is
within 0.2% of this optimal value. Though up to On2 noise generation can be tolerated practically
for large ML training runs, we find that the stamped FFT optimal decoder obtains the best privacy-
utility tradeoffs while requiring only O(n log2 (n)) time. Sensitivity is calculated exhaustively with
contributions constrained to +1 for all matrices except FFT ones, where sensitivity is calculated
using Theorem 2.1.
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Figure 5: Per-iterate variance for momentum + cooldown matrix factorizations. Privacy measured
in the (k, b) = (6, 342) setting.

Figure 6: Comparing the optimal decoder, i.e., OptDecoderHonaker, with the standard stamping
decoder (including fixing the output of each block), i.e., Online Honaker, with the optimal factor-
ization.

E DETAILS AND ADDITIONAL EXPERIMENTS FOR CIFAR10.

We train image-classification models using the CIFAR10 dataset as hosted in
tensorflow-datasets, containing 50,000 training and 10,000 test examples. We evalu-
ate and compute test accuracies on the entire test set, following the open-sourced code of Kairouz
et al. (2021). We reuse the network architecture, dataset processing and initialization strategies
presented in Kairouz et al. (2021); in particular, the architecture we use can be found in their Table
2 (b).
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Optimization setup and hyperparameters We train all mechanisms for 20 epochs with batch
size of 500, yielding 100 steps per epoch and 2000 total. After performing some small initial grid
searches, we settled on using linear learning rate cooldown to 0.05× the initial learning rate over
the last 500 steps of training. We found this consistently improved utility for all mechanisms and
privacy levels.

As mentioned in Section 5, for this 20-epoch training setup, we only compare factorizations of the
prefix-sum matrix, and do not include any factorizations of matrices which incorporate momentum
of learning rate cooldown directly in the mechanism itself (Denisov et al., 2022). We sweep over
learning rates of values (1 × 10i, 2 × 10i, 5 × 10i) for i in {−2,−1}; for all mechanisms and
noise levels, optimal values were in the interior of this sweep. We sweep over momentum values
of 0, 0.85, 0.9, 0.95 though find nonzero momentum works best for all matrix mechanisms, and no
momentum works best for DP-SGD at our scale as found previously by Kairouz et al. (2021).

For Honaker and FFT-based factorizations, there is no known a-priori way to choose the optimal
number of s for a given (k, b) setting. Therefore we treat the value s as a hyperparameter, and sweep
across it, for s ∈ {1, 2, 5, 10, 20}. As can be seen in Table 1, the optimal s for both of these factor-
izations was in the interior of this sweep. As shown, e.g., in Fig. 7, the training-time performance of
these mechanisms matched the expected order for computed loss. This value s represents an extra
hyperarameter which must be set for the Honaker and FFT mechanisms; to the best of our knowl-
edge, computing the loss for various instantiations of these mechanisms via Eq. (4) represents the
only known method for setting this parameter other than simply training models.

We also apply our sensitivity analysis of Section 2 to the matrices of Denisov et al. (2022) which
are optimized for k = 1. In doing so, we can also optimize the number of stamps which we do. We
report the best results as identified by the losses in Table 1.

Figure 7: DP-FTRL-Honaker baseline ablation with respect to number of ‘stamps’ s.
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Figure 8: Ablation of prefix-sum factorizations, optimized for different number of epochs, and
‘stamped’ as appropriate. Performance improves as the geometry used for computing the factoriza-
tion approaches that used for training.

Figure 9: Our optimal multi-epoch matrix and FFT-based mechanisms outperform all others,
including DP-SGD with amplification, as low as ε ≈ 4. Using our sensitivity calculation of
Theorem 2.1 and stamping (Section 5), we optimize a single pass (k = 1) matrix of Denisov et al.
(2022) but apply it here with > 1 pass. We use an online Honaker-based decoder equivalent to that
of Kairouz et al. (2021) except for a significant improvement to tree-completion in Appendix D.3.
Models trained for 20 epochs on CIFAR10 with a batch size of 500. We repeat each setting 12 times
and show 95% bootstrapped confidence intervals. Empirical setup is in Section 5.1.
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F ADDITIONAL STACKOVERFLOW DETAILS

F.1 PRIVACY AND LANGUAGE MODELLING

Language models trained on user data are an important real-world application of DP training, as
these models can memorize their training data if appropriate mitigations are not applied (Carlini
et al., 2019; Song & Shmatikov, 2019; Carlini et al., 2021). Since one user might contribute 1000s
of tokens (training examples) to a dataset, it is particularly important to consider user-level guaran-
tees (McMahan et al., 2018). Building on the approach of Kairouz et al. (2021), Google recently
announced the first-ever launch of a language model trained on user data with a formal user-level DP
guarantee (ρ = 0.81 zCDP), further demonstrating the importance of this application (McMahan &
Thakurta, 2022).

The StackOverflow next-word prediction task, introduced in (Reddi et al., 2020), has become a
benchmark problem for DP training, and our experimental setup here fixes the same model and
adapts hyperparmaeters from previous work including Kairouz et al. (2021); Denisov et al. (2022).

F.2 HYPERPARAMETER TUNING AND INITIAL EXPERIMENTS

All runs use server momentum 0.95 and a learning-rate cooldown schedule for the last 25% of
rounds. Zeroing outlier updates and using 1000 clients/round (6 epoch runs) allows the use of the
higher server learning rates. MF1,1e replicates the result of single-epoch training from Denisov
et al. (2022); note that with 167 clients/round and this mechanism, the higher learning rate does not
appear to help. Fig. 10 gives preliminary experimental results which informed the main experiments
used in the paper. Note that the y-axis range (Test set accuracy) is highly compressed, and so the
primary point of comparison is on epsilons. For example, Denisov et al. (2022) shows that cross-run
variation of 0.002 or more is typical.

The 6 horizontal lines give test-set accuracy for various non-private training mechanisms. The “Un-
noised MF” runs correspond to the same code path used for privacy, but without any noise addition.
In particular, these use momentum with learning rate cooldown; the other unnoised runs use a stan-
dard FL implementation with momentum but a fixed learning rate schedule; “cpr=167“ corresponds
to one epoch of training (167 clients/round), and “cpr=50” is 50 clients/rounds (only about 1/3 of an
epoch). This last non-private baseline uses the best hyperparameters for FedAvgM from Reddi et al.
(2020).

The two “Unnoised MF” runs with accuracies between 0.246 and 0.248 are functionally identical,
and the line near 0.248 accuracy is the same except it does not use learning-rate cooldown. Thus, for
the given learning rates, we see the higher-epsilon private runs are adding sufficiently small noise
that the accuracy is essentially equivalent to unnoised baselines with the same hyperparameters.
However, using larger learning rates can achieve accuracy over 25%, even with privacy as in the case
of the MF-6-6 run, hence motivating the inclusion of larger learning rates in the main experiments.

The MF (Matrix Factorization) runs with “prefix” in the name correspond to computing an optimal
factorization of the prefix-sum matrix (lower triangular matrix of ones) and then applying momen-
tum (and possibly learning rate cooldown) as post-processing. The other MF runs directly factor the
momentum or momentum+cooldown matrix.

F.3 IMPACT OF ZEROING-OUT LARGE-NORM UPDATES

We observed that zeroing out updates with an `∞ norm greater than 100ζ = 100 greatly stabilized
training, allowing larger learning rates, particularly for MF6,6e. We conducted ablation experiments
where we turned off this zeroing, which produced a large fraction of unconverged runs as detailed
in Table 2. The number of updates zeroed increases significantly with larger amounts of noise and
larger learning rates, as shown in Fig. 11.
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Figure 10: Preliminary experimental results and non-private (unnoised) baselines. The notation
sX, cY indicates a server learning rate X and client learning rate Y .

Figure 11: Number of large-magnitude updates zeroed per training round.

Unconverged runs with

Mechanism ε Zeroing No Zeroing

DP-SGDM,6e, ηs = 0.5 2 0 of 3 1 of 2

DP-SGDM,6e, ηs = 0.5 9 0 of 3 0 of 2

MF6,6e, ηs = 0.5 2 0 of 3 3 of 4

MF6,6e, ηs = 1.0 9 0 of 3 3 of 4

Table 2: Number of divergent training runs with and without zeroing of user updates with `∞ norm
greater than 100; ηs gives the server learning rate.
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Figure 12: Complete data used in Fig. 3 showing results for server learning rates ηs = 0.5 and 1.0,
as well as 0.25 when ε=2. All algorithms use momentum 0.95 and a client learning rate of 1.0.
For the 1 and 6 epoch runs, we observe MF generally tolerates larger learning rates, though lower
learning rates perform better for all algorithms at ε=2.

F.4 COMPLETE RESULTS

In this section we give additional details on our main grid of experiments. Fig. 12 uses the same
data as Fig. 3, but shows results for each learning rate individually. Tables 4 and 5 give the mean,
minimum, maximum, and standard deviation of test-set accuracy corresponding to Fig. 12, as well
as the number of replicated experiments (‘count’).

Table 3 gives the noise multipliers to achieve our various privacy targets ε. Due to a change in the
accountant used, we have slightly different ε targets around 8.8 for the different methods. Note the
noise multipliers here are incomparable between the MF and (S)GD mechanisms in terms of the
total noise introduced. For matrix factorization, we sample Z ∼ N (0, ζ2z2) for noise multiplier
z; this noise is applied after mapping the raw gradients/updates x through the linear map C which
is normalized so the total sensitivity is ζ. For the (S)GD mechanisms, we add noise N (0, ζ2z2)
independently to each model update. In all cases, noise is added to the sum of per-user updates, so
the effective noise in the average update scales down with the number of clients per round.

Noise multiplier z
target ε MF DP-SGD (6e) GD (2052e)

17.648 0.341 0.402 15.518
8.841 0.600 - -
8.824 - 0.491 27.493
2.000 2.231 0.757 106.023

Table 3: Noise multiplier parameters for the StackOverflow experiments to achieve various εs at
δ = 10−6. Privacy was computed using the PLD accountant, see Appendix D.2.
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Test set accuracy
clients/round ε ηs mean std min max count

1000 2.00 0.25 0.22654 0.00009 0.22648 0.22660 2
0.50 0.22592 0.00013 0.22581 0.22606 3
1.00 0.21869 0.21869 0.21869 1

8.82 0.25 0.23154 0.00015 0.23143 0.23164 2
0.50 0.23447 0.00033 0.23419 0.23495 4
1.00 0.23135 0.00041 0.23106 0.23164 2

17.65 0.25 0.23290 0.00002 0.23289 0.23291 2
0.50 0.23728 0.00014 0.23710 0.23741 4
1.00 0.23571 0.00019 0.23558 0.23585 2

342477 2.00 0.50 0.24074 0.24074 0.24074 1
1.00 0.24056 0.00097 0.23886 0.24125 5

8.82 0.50 0.24640 0.00011 0.24632 0.24647 2
1.00 0.25279 0.00019 0.25261 0.25306 4

17.65 0.50 0.24686 0.00025 0.24668 0.24704 2
1.00 0.25370 0.00039 0.25312 0.25394 4

Table 4: Test set accuracy statistics for DP-SGDM,6e (1000 clients/round) and DP-GDM,2052e
(342,477 clients/round). Accuracy for DP-GDM,2052e was estimated with 1000 clients/round with
an appropriately scaled noise multiplier. The count columns gives the number of repeated trials of
the given configuration, with ηs indicating the server learning rate.

Test set accuracy
ε ηs mean std min max count

Honaker, 6e (Kairouz’21) 2.00 0.25 0.20951 0.00134 0.20857 0.21046 2
0.50 0.19535 0.00114 0.19429 0.19655 3
1.00 0.00011 0.00011 0.00011 1

8.84 0.50 0.23952 0.00101 0.23881 0.24023 2
1.00 0.23799 0.00212 0.23649 0.23949 2

17.65 0.50 0.24422 0.00037 0.24383 0.24456 3
1.00 0.24675 0.00128 0.24540 0.24810 5

MF1, 1e (Denisov’22) 2.00 0.25 0.19674 0.00057 0.19633 0.19715 2
0.50 0.00093 0.00108 0.00017 0.00169 2

8.84 0.25 0.23500 0.00009 0.23493 0.23506 2
0.50 0.24105 0.00083 0.24019 0.24190 4
1.00 0.23909 0.00196 0.23767 0.24132 3

17.65 0.25 0.23576 0.00019 0.23562 0.23590 2
0.50 0.24503 0.00056 0.24408 0.24565 6
1.00 0.24522 0.00102 0.24424 0.24628 3

MF1, 6e (Ours) 2.00 0.25 0.22953 0.00046 0.22921 0.22985 2
0.50 0.22324 0.00017 0.22308 0.22341 3
1.00 0.00010 0.00010 0.00010 1

8.84 0.50 0.24516 0.24516 0.24516 1
1.00 0.24676 0.00044 0.24628 0.24714 3

17.65 0.50 0.24628 0.24628 0.24628 1
1.00 0.25194 0.00085 0.25124 0.25288 3

MF6, 6e (Ours) 2.00 0.25 0.22978 0.00038 0.22939 0.23014 3
0.50 0.23237 0.00078 0.23147 0.23286 3
1.00 0.22413 0.00055 0.22365 0.22472 3

8.84 0.50 0.24509 0.00010 0.24497 0.24515 3
1.00 0.24897 0.00081 0.24804 0.24955 3

17.65 0.50 0.24632 0.00015 0.24618 0.24648 3
1.00 0.25265 0.00025 0.25240 0.25291 3

Table 5: Test set accuracy for matrix-factorization based mechanisms. Note: Some 6 epoch runs
were conducted with shuffling between epochs, and some were conducted using a fixed order for
all epochs (as required by our DP analysis). We saw no impact of reshuffling on the final test set
accuracy, and so include all runs in these results regardless of the shuffling setting.
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Figure 13: A more detailed view of the matrices shown in Fig. 2.

F.5 OPTIMAL MATRIX MECHANISMS

G DISCUSSIONS AND CONCLUSIONS

Our work significantly improves the privacy-utility tradeoffs in DP ML. Indeed, our work outper-
forms the state-of-the-art (and, DPSGD with amplification) by ≈ 5 percentage points across many
privacy levels—and as low as ε ≈ 2—with practically implementable assumptions. We remark
that we compare our mechanisms with DPSGD on a level-ground using well-performing but not
state-of-the-art models and training protocols—e.g., very large models, augmentations prior to clip-
ping (De et al., 2022), public data usage, and large batch sizes can all aid training. Many, if not all,
of these techniques are applicable to our setting and can thus be used with our mechanisms to realize
additional absolute performance gains, again, likely beyond the performances achieved by DPSGD.

The major limitation of our approach is the computation required to generate the optimal matrices.
Though our optimal FFT decoder bridges the gap between the mechanisms without optimizer costs
and our optimal mechanism, it still leaves some room for improvement in the privacy-utility tradeoff.
We believe this is an important area for future work.

H ANALYSIS FOR SECTION 2

H.1 FROM SCALAR TO VECTOR CONTRIBUTIONS

Theorem H.1. Let C ∈ Rn×k which satisfies

‖Cu‖2 ≤ 1 ∀u ∈ {−1, 1}k,
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and let G ∈ Rk×d such that each row G[i,:] for i ∈ [k] satisfies ‖G[i,:]‖2 ≤ 1. Suppose at least one
of the following conditions hold:

1. We have k = 1 or k = 2 participations.

2. All the entries of C>C are non-negative.

3. The rows of G are all co-linear, G[i,:] = ui ·G[1,:] for ui ∈ {−1, 1}, i > 1.

4. The rows of G are all orthogonal, 〈G[i,:],G[j,:]〉 = 0, ∀i 6= j, i, j ∈ [k].

Then,
‖CG‖F ≤ 1. (10)

Furthermore, the following statements are also true without assuming conditions (1)-(3) above.

• ‖CG‖F = O (log k).

• If we replace the condition on G to ∀i ∈ [k], ‖G[i,:]‖1 ≤ 1, then ‖CG‖F ≤ 1.

Note Theorem H.1 is generally applied to C[:,π], the sub-matrix of some C ∈ Rn×n formed by
keeping only columns selected by a particular participation pattern π.

Proof Theorem H.1. Let C = [c1 c2 · · · ck] with each ci ∈ Rn being a column vector. Also
let we write g[i,j] for the (i, j)-th entry of G. It will also be useful to note

‖CG‖2F = tr
(
CG(CG)>

)
= tr

(
C>CGG>

)
. (11)

In the following we prove each of the individual cases of Theorem H.1.

When k = 1 or k = 2: For k = 1, we have

‖CG‖2F = ‖c1‖22

 d∑
j=1

g[1,j]

2

≤ ‖c1‖22 = max
u∈{±1}

‖u · c1‖22 .

An equivalent argument is used in Denisov et al. (2022, Thm. 3.1).

For k = 2, we have the following:

‖CG‖2F =

2∑
i=1

‖ci‖22 ·

 d∑
j=1

g2
[i,j]

+
(
2g[1,1]g[2,1]〈c1, c2〉

)
+ · · ·+

(
2g[1,d]g[2,d]〈c1, c2〉

)
≤

2∑
i=1

‖ci‖22 +
(
2|g[1,1]| · |g[2,1]||〈c1, c2〉|

)
+ · · ·+

(
2|g[1,d]| · |g[2,d]||〈c1, c2〉|

)
≤

2∑
i=1

‖ci‖22 +
(
g2

[1,1] + g2
[2,1]

)
|〈c1, c2〉|+ · · ·+

(
g2

[1,d] + g2
[2,d]

)
|〈c1, c2〉| (12)

= ‖c1‖22 + ‖c2‖22 + 2|〈c1, c2〉| = max
{

(c1 + c2)
2
, (c1 − c2)

2
}

≤ max
u∈{±1}2

‖Cu‖22 ≤ 1,

where Eq. (12) follows from the standard A.M. ≥ G.M. inequality.

All the entries of C>C are non-negative: Let X = C>C and Ĝ = GG>. Observe Ĝ[i,j] ∈
[−1, 1], and using Eq. (11), when X is elementwise non-negative, tr

(
XĜ

)
is maximized when

Ĝ = 1k×k = ûû> by choosing û = 1k. Hence,

‖CG‖F ≤ tr
(
C>Cûû>

)
= ‖Cû‖2 ≤ max

u∈{±1}k
‖Cu‖22 . (13)

Eq. (13) completes the proof.
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The rows of G are co-linear: By the convexity of ‖CG‖2F with respect to the matrix G, we
may assume the rows of G are of `2 norm 1. Under the colinearity assumption, this translates to
G[i,:] = uiG[1,:], with each ui ∈ {±1}. Let u = [u1, . . . , uk] ∈ {−1, 1}k. Then for the matrix
GG> we have the following:

[GG>][i,j] = 〈G[i,:],G[j,:]〉 = uiuj〈G[1,:],G[1,:]〉 = uiuj .

which implies
GG> = uu>. (14)

Using Eq. (14) with Eq. (11), we have

‖CG‖2F = tr
(
CG(CG)>

)
= tr

(
C>Cuu>) ≤ max

u∈{±1}k
‖Cu‖22 ≤ 1.

The rows of G are all orthogonal This condition implies Ĝ = GG> is a diagonal matrix with
diagonal entries in [0, 1], and so Eq. (11) implies ‖CG‖2F ≤ tr(X). It is thus sufficient to show

tr(X) ≤ max
u∈{−1,1}k

tr(Xuu>).

We give a construction for a u that shows this. Observe

tr(Xuu>) = tr(X) + 2

k∑
i=1

ui

i−1∑
j=1

ujX[i,j]︸ ︷︷ ︸
bi

.

Observe we can choose u1 = 1 and then ui = sign(bi) since bi depends only on C and the previously
fixed uj for j < i, ensuring the double sum on the right is non-negative, completing the proof.

‖CG‖F = O(log k) without assuming conditions (1)-(4): We will prove this claim via proba-
bilistic argument. First notice that due to convexity, we have the following:

max
u∈{±1}k

‖Cu‖22 ≤ 1

⇒ ∀x ∈ Rk, ‖Cx‖22 ≤ ‖x‖
2
∞ . (15)

We now observe the following for Normal distributions:

‖CG‖2F = Ez∼N (0,1)d

[
‖CGz‖22

]
≤ Ez∼N (0,1)d

[
‖Gz‖2∞

]
= O

(
max
i∈[k]

∥∥G[i,:]

∥∥2

2
· log k

)
= O (log k) . (16)

The first inequality in Eq. (16) follows from Eq. (15), and the first equality in Eq. (16) follows from
expectation of the maximum of Gaussian random variables.

Replacing the condition on G to ∀i ∈ [k], ‖G[i,:]‖1 ≤ 1, then ‖CG‖F ≤ 1: First notice that
since ‖CG‖2F is a convex function, the maximum happens at the extreme points of the constraint
set G = {G | ∀i ∈ [k], ‖G[i,:]‖1 = 1}. We use Claim H.1 to identify the extreme points of G.

Claim H.1 (Theorem 1 in Cao et al. (2022)). The set of extreme points of the set of k × d row-
stochastic matrices are precisely the set of row permutation matrices, i.e., set of the matrices with
entries in {0, 1}k×d and each row has exactly one non-zero entry.

Notice that the constraint on any matrix G ∈ G is oblivious to the sign, meaning, we can flip the
sign of any set of entries in G and the new matrix will still be in G. This along with Claim H.1
immediately implies that the set H = {H ∈ {−1, 0, 1}k×d : ∀i ∈ [k], ‖H[i,:]‖0 =

∥∥H[i,:]

∥∥
∞ = 1}

is the set of extreme points of the set G. (If the set of extreme points of G is larger than H, then
the signs of any such extreme point can be flipped to create a new extreme point of row-stochastic
matrices, which would violate Claim H.1.)

It is not hard to observe that for any H ∈ H, there exists an uH{±1}k s.t. ‖CH‖F = ‖CuH‖2.
Since, ‖CuH‖2 ≤ max

u∈{±1}k
‖Cu‖2 for any choice of uH, and the fact that max

G
‖CG‖F is reached

at one of the matrices inH, the claim in Theorem H.1 follows.
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H.2 A COUNTEREXAMPLE FOR GENERAL C

Theorem H.1 indicates the possibility of the following conjecture being true, because of it being true
in so many special cases: If max

u∈{±1}k
‖Cu‖2 ≤ 1, then ‖CG‖F ≤ 1 for all G with row `2-norm

at most one. Unfortunately, we show that the conjecture is not true when k > 2, as shown by the
following counterexample with n = k = 3 and d = 2:

C =
1√
24

[
2 1 1
1 2 −1
1 −1 2

]
and G =

1√
5

[
2 1
2 −1
1 2

]
Direct calculation shows maxu∈{±1}k ‖Cu‖2 = 1, but ‖CG‖F =

√
1.1 ≈ 1.049.

H.3 PROOF OF COROLLARY 2.1

Corollary 2.1 Restated. When per-step contributions are bounded by ζ = 1, for any participation
pattern Π and dimensionality d ≥ 1, when C>C ≥ 0 elementwise, we have

sensDd
Π

(C) = sensD1
Π

(C).

Proof. To see sensDd
Π

(C) ≥ sensD1
Π

(C), suppose u? = arg maxu∈D1
Π
‖Cu‖2, and observe we

can construct a G such that ‖CG‖F = ‖Cu?‖2 by taking rows G[i,:] = (u?i , 0, . . . , 0) ∈ Rd for
i ∈ [n].

For the other direction, for each π ∈ Π, we apply Theorem H.1 to the matrix Cπ = C[:,π], and
observe C>C ≥ 0 is sufficient to imply C>πCπ ≥ 0.

Note The condition C>C ≥ 0 is sufficient but not in fact necessary for Corollary 2.1 to hold. In
particular, for (k, b)-participation Π, the sub-matrices C>πCπ for π ∈ Π “touch” only k2b entries of
the n2 = k2b2 entries of C>C; the other entries of C>C could in fact be negative. However, we
did not need to use this observation for any of the matrices in our experiments.

H.4 PROOF OF THEOREM 2.1

Theorem 2.1 Restated. Let C ∈ Rn×n, and take some participation pattern Π, with k =
maxπ∈Π |π| the maximum number of participations. With C[:,π] representing to selecting the
columns of the matrix C indexed by π and ‖·‖2 the spectral matrix norm, let λ = max

π∈Π

∥∥C[:,π]

∥∥
2
.

Then
sensD1

Π
(C) ≤ λ

√
k.

Proof. By assumption we have ‖u‖ ≤
√
k, and so

max
u∈D
‖Cu‖2 ≤ max

π∈Π
max
u∈D
‖C[:, π]‖2 ‖u‖2 ≤ λ

√
k.

I ANALYSIS FOR SECTION 3

I.1 PROOF OF THEOREM 3.1

Theorem 3.1 Restated. Let a finite D = {ui}ki=1 be given, and assume that the vectors {ui}ki=1

span Rn. Assume that A is full-rank, and for v ∈ Rk define

Hv = [u1, . . . ,uk] diag(v)1/2, U = HvH>v .

Then, for Lagrange multipliers v such that the U is full-rank, the Lagrange dual function g can be
expressed in closed form in terms of the Lagrange multipliers:

g(v) := inf
X is PD

L(X,v) = 2 tr
((

U
1
2 A>AU

1
2

) 1
2

)
−
∑
u∈D

vu (17)
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Proof. Since there is some finite set of vectors u ∈ Rn specifying D, the supremum in Eq. (5) may
be reduced to a maximum over these elements.

Our problem then takes the form:

inf
X is PD

tr(A>AX−1)

s.t. u>Xu ≤ 1, ∀u ∈ D. (18)

Recall that we have defined Hv = [u1, . . . ,uk] diag(v)
1
2 , and U = HvH>v . Now, note:

U =
∑
u

vuuu> = H diag(v)H> = HvH>v . (19)

Introducing Lagrange multipliers vu ≥ 0, for the problem Eq. (18) we form the Lagrangian for
positive-definite X:

L(X,v) = tr(A>AX−1) +
∑
u

vu

(
u>Xu− 1

)
(20)

= tr(A>AX−1) + tr

((∑
u

vuuu>
)
X

)
−
∑
u

vu (21)

= tr(A>AX−1) + tr (UX)−
∑
u

vu. (22)

For fixed v, any finite minimizer of L for positive-definite X must correspond to a zero of this
Lagrangian’s gradient. We then compute the gradient

∂L

∂X
= −X−1A>AX−1 + U. (23)

U and A are full-rank by assumption; therefore Lemma I.2 is applicable, and Eq. (23) has a unique
positive-definite zero (and indeed, the infimum in Eq. (18) becomes a minimum):

X = U−
1
2

(
U

1
2 A>AU

1
2

) 1
2 U−

1
2 . (24)

Note that Eq. (23) also immediately implies that if U is not full-rank, then there is no finite positive-
definite minimizer of L in X. Letting g(v) = minX L(X,v) be the Lagrange dual function and
plugging back into Eq. (22), we have

g(v) = min
Xis PD

tr(A>AX−1) + tr (UX)−
∑
u

vu

= min
Xis PD

tr(XU) + tr (UX)−
∑
u

vu using Eq. (23)

= min
Xis PD

2 tr (UX)−
∑
u

vu

= 2 tr
(
UU−

1
2

(
U

1
2 A>AU

1
2

) 1
2 U−

1
2

)
−
∑
u

vu using Eq. (24)

= 2 tr
((

U
1
2 A>AU

1
2

) 1
2

)
−
∑
u

vu.

I.1.1 PROOF OF COROLLARY 3.1

Corollary 3.1 Restated. In the same setup as Theorem 3.1, a maximizer of the dual v? must satisfy:

v? = diagpart
((

H>v?A>AHv?

) 1
2

)
. (25)

Moreover, the optimal value of the problem defined in 6 is tr (v?).
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Proof. As noted in the remark after Theorem 3.1, any optimal setting of the dual variables must
be in the interior of a neighborhood in which the representation Eq. (7) is valid. It is therefore
permissible to differentiate this representation.

Differentiating, we find:

∂

∂vi
tr
((

U
1
2 A>AU

1
2

) 1
2

)
=

1

2
tr
(
A>AU

1
2 (U

1
2 A>AU

1
2 )−

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
U−

1
2 (U

1
2 A>AU

1
2 )(U

1
2 A>AU

1
2 )−

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
U−

1
2 (U

1
2 A>AU

1
2 )

1
2 U−

1
2 uiu

>
i

)
=

1

2
tr
(
u>i U−

1
2 (U

1
2 A>AU

1
2 )

1
2 U−

1
2 ui

)
=

1

2
u>i Xui,

by defining X = U−
1
2

(
U

1
2 A>AU

1
2

) 1
2 U−

1
2 (recalling the usage of the symbol X in Eq. (24)).

Therefore
∂g(v)

∂vi
= u>i Xui − 1,

and we have the stated expression for the gradient of the dual function.

Now, at a maximizer of the dual function, this derivative must vanish. An equivalent condition is
diagpart(H>XH) = ~1, and hence

tr(UX) = tr(H diag(v)H>X) = tr(diag(v)H>XH) =
∑
u

vu, (26)

so at the optimum v? in fact g(v?) =
∑

u v?u, establishing the second claim of our result.

Again using the observation that diagpart(H>v XHv) = ~1 and so

diagpart(H>v XHv) = diagpart(diag(v)H>XH) = v.

Further, using the second claim of Corollary I.1, we can take

X = H−>v
(
H>v A>AHv

) 1
2 H−1

v ,

and multiplying this by H>v and Hv on the left and right respectively yields

H>v XHv = H>v H−>v
(
H>v A>AHv

) 1
2 H−1

v Hv =
(
H>v VHv

) 1
2

and so we conclude for the optimal Lagrange multiplier v?,

v? = diagpart
((

H>v?A>AHv?

) 1
2

)
. (27)

I.2 LEMMAS AND COROLLARIES

Lemma I.1. The set of positive-definite X such that supu∈D u>Xu ≤ 1 is bounded as a subset of
Rn×n if and only if D = {u} spans Rn.

Proof. Suppose that D spans Rn. For a PSD matrix, a bound on the trace implies a bound on
the elements; therefore it is sufficient to show that supu∈D u>Xu ≤ 1 implies that the maximum
eigenvalue of X is uniformly bounded for X PSD.
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Take some set of vectors {ui}ni=1 ∈ D which span Rn. Fix some representation

ei =

n∑
j=1

αijuj ,

where ei is the ith standard basis vector.

Take y of `2 norm 1, and express:

y =

n∑
i=1

γiei.

Then for X satisfying our assumptions,

∣∣y>Xy
∣∣ =

∣∣∣∣∣∣
n∑

i,j=1

γiγje
>
i Xej

∣∣∣∣∣∣ =≤ n2 max
1≤i,j≤n

|γiγj |
∣∣e>i Xej

∣∣ . (28)

Similarly,

∣∣e>i Xej
∣∣ =

∣∣∣∣∣∣
n∑

k,l=1

αikαjlu
>
k Xul

∣∣∣∣∣∣ ≤ n2 max
1≤k,l≤n

|αikαjl|
∣∣u>k Xul

∣∣ ≤ n2 max
1≤k,l≤n

|αikαjl|, (29)

where the final inequality follows by the assumptions on X.

Now, since the `2 norm of y is 1, the orthogonality of the ei imply that each |γiγj | is at most 1.
Therefore:

∣∣y>Xy
∣∣ ≤ n4 max

1≤i,j,k,l≤n
|αikαjl|, (30)

and we have sufficiency of D spanning Rn.

For necessity, suppose D does not span Rn. Then there is some vector y ∈ span (D)
⊥ of norm 1.

Take any X such that supu∈D u>Xu ≤ 1. Then, since y>u = 0 for all u ∈ D, Y := X + αy
satisfies the same set of inequalities for any α.

Lemma I.2. Let U,V ∈ Sn++. Let U = ULUR be a factorization of U such that URVUL is
PSD, and the following equation defines a positive-definite matrix X:

X = U†R
(
URVUL

) 1
2 U†L. (31)

Then, this X solves the equation

XUX = V or equivalently U = X−1VX−1.

Moreover, this positive-definite solution X is unique.

Proof. We will begin by showing that X as defined by Eq. (31) solves the equation XUX = V;
then we will show that any two positive-definite representations of the form Eq. (31) are in fact
identical.

Notice that the representation U = ULUR implies that rank(UL) ≥ n and rank(UR) ≥ n. There-
fore ULU†L = I = U†RUR, as implied by the Moore definition of the Moore-Penrose pseudoin-
verse. So:
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XUX = XULURX

=
(
U†R
(
URVUL

) 1
2 U†L

)
ULUR

(
U†R
(
URVUL

) 1
2 U†L

)
= U†R

(
URVUL

) 1
2 PR(U†L)PR(UR)

(
URVUL

) 1
2 U†L

We claim that
(
URVUL

) 1
2 PR(U†L) = PR(UR)

(
URVUL

) 1
2 =

(
URVUL

) 1
2 . In both cases,

this can be seen by multiplying on the left or right as appropriate by
(
URVUL

) 1
2 , and noting

PR(UR)UR = UR, ULPR(U†L) = UL. Since all the terms here are symmetric, the appropriate
equality follows by uniqueness of the symmetric matrix square root. Therefore:

XUX = U†RURVULU†L
= V.

The uniqueness of a positive-definite X solving XUX = V follows from the uniqueness of the
usual matrix square root. Indeed, assume Y positive-definite satisfies YUY = V. Then:

(
U1/2YU1/2

)2

= U1/2VU1/2

Since the positive-definite square root is uniquely determined, U1/2YU1/2 is uniquely determined.
Since U is invertible, Y is uniquely determined as well, and we have Y = X.

Corollary I.1. Two particular instantiations of Lemma I.2 are of interest. X as the matrix geometric
mean of U−1 and V (taking UL = UR =

√
U):

X = U−
1
2

(
U

1
2 VU

1
2

) 1
2 U−

1
2 , (32)

and assuming the representation U = HvH>v :

X = H†>v
(
H>v VHv

) 1
2 H†v. (33)

Proof. By positive-definiteness of U and V, Eq. (32) is clearly positive definite; Eq. (33) may be
seen to be positive definite via the SVD of the pseudoinverses involved. Symmetry is again clear.
Therefore both representations satisfy the assumptions of Lemma I.2.

J ANALYSIS FOR SECTION 4

J.1 ADDITIONAL DETAILS

Defining the circulant matrix We consider the special case where A is the prefix sum linear
query matrix (lower-triangle matrix of ones). Then, we define the corresponding circulant matrix

Acirc ,


v0 v2n−1 · · · v1

v1 v0 · · · v2

...
... · · ·

...
v2n−1 v2n−2 · · · v0

 where v , [1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
n

]. (34)

It is straightforward to verify Acirc[:n,:n] = A.

Defining the DFT

∀k ∈ [2n− 1] : vDFT[k] =

2n−1∑
a=0

v(a) exp

(
−j2πka

2n

)
(35)
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Circulant matrices expressed using Fourier Transforms
Theorem J.1 (Adapted from Gray (2006)). Consider any circulant matrix Acirc ∈ R2n×2n. Let F ∈
C2n×2n, where the k-th row of F is given by F[k, :] = 1√

2n

[
exp

(
− j2πka2n

)
: a ∈ {0, . . . , 2n− 1}

]
.

Then, Acirc = F
∗
ΣF, where Σ ∈ C2n×2n is a diagonal matrix with the diagonal being the DFT

(defined in Equation 35) of the first column of Acirc. Here, ∗ is the Hermimitian operation.

Privacy and utility guarantees In the following we provide the privacy guarantee and the main
utility guarantee for the FFT mechanism defined in Algorithm 1.

Theorem J.2 (DP-Prefix Sum via FFT Privacy Guarantee). Algorithm 1 is ρ-zCDP in the adaptive
continuous release model.

Next, we analyze the utility of Algorithm 1 and show that it is nearly optimal in terms of the mean
squared error (MSE) in the single-pass setting. First, we express the MSE in Theorem J.3 below.

Theorem J.3 (DP-Prefix Sum via DFT Utility). The MSE achieved by Algorithm 1 using the real
and imaginary components of z̃ is

E [MSE] =
κ2
∥∥vDFT

∥∥2

1

2ρn2
.

In the following, we will have an explict expression for
∥∥vDFT

∥∥
1

in terms of the problem parameters.
Finally, we will argue that Theorem J.3 is nearly optimal.

Corollary J.1. The expected mean squared error (MSE) is given by the following:

E [MSE] =
κ2

2ρn2

n+

b 2n−1
2 c∑

a=0

1

sin
(
π(2a+1)

2n

)
2

.

Near-optimal utility Here, we show that Theorem J.3 is near-optimal in utility for the
single-participation setting. To do this, we compare with a lower bound on the ex-
pected MSE of any factorization-based mechanism from Henzinger et al. (2022, Theorem 2):

1
2ρπ2

(
2 + ln

(
2n+1

3

)
+ ln(2n+1)

2n

)2

. We find that the though our analytical upper bound in Corol-
lary J.1 is≈ 6x worse than the lower bound, the empirical noise added in Algorithm 1 closely tracks
the lower bound to within a factor of 1.2x—because it only adds the real part of the noise. Results
are in Figure 14 of Appendix J.1.

Showing near-optimal utility via MSE experiments

Figure 14: Algorithm 1 achieves near-optimal utility as measured by the analytic lower bound
from Henzinger et al. (2022, Theorem 2).

J.2 PROOF OF THEOREM J.2

Theorem J.2 Restated. Algorithm 1 is ρ-zCDP in the adaptive continuous release model.
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Proof. First, consider the non-adaptive setting and the following mechanism, with parameters as
defined in Algorithm 1, [

Σ
(
Fxext + Σ−1z

)]
,

where z =

√
κ2 ‖vDFT‖1

4nρ

(√
Σ ·w

)
(36)

We claim that this satisfies
κ2‖vDFT‖

1

4nσ2 -zCDP. To see this, we proceed by bounding ρi for each coor-
dinate i ∈ [2n] defined in Equation 36. For brevity, let b = Fxext. Consider two neighboring data
sets g and g′, correspondingly, (b,xext) and (b′,x′ext). Then,

‖b− b′‖∞ = ‖F(xext − x′ext)‖∞ =
κ√
2n
. (37)

We will now prove zCDP guarantee independently for each of the 2n coordinates and then use
standard zCDP composition (Bun & Steinke, 2016). For any coordinate a ∈ {0, . . . , 2n − 1},

adding noise
(

σ√
|vDFT[i]|

)
· Ncomplex (0, 1) to b[i] satisfies ρi-zCDP with ρi = κ2|vDFT[i]|

4nσ2 . Then by

composition, we have that

ρ =

2n−1∑
a=0

(ρi) =
κ2

4nσ2

2n−1∑
a=0

(∣∣vDFT[i]
∣∣) =

κ2
∥∥vDFT

∥∥
1

4nσ2
. (38)

Therefore, setting σ2 =
κ2‖vDFT‖

1

4nρ -satisfies a non-adaptive ρ-zCDP. Using the same σ, we prove the
adaptive part using the same σ. We have the following from Equation 36.

[F∗ (ΣFxext + z)] =

[
F∗√Σ

(√
ΣFxext +

1√
Σ
z

)]
=

F∗√Σ

√ΣFxext +

√
κ2 ‖vDFT‖1

4nρ
·w


(39)

Since, w in Equation 39 is spherical Gaussian, and the original query matrix A is lower triangular,
by Theorem 2.1 in Denisov et al. (2022), the adaptive privacy guarantee follows.

J.3 PROOF OF THEOREM J.3

Theorem J.3 Restated. The MSE achieved by Algorithm 1 using the real and imaginary compo-
nents of z̃ is

E [MSE] =
κ2
∥∥vDFT

∥∥2

1

2ρn2
.

Proof. The MSE is given by the following:

E[MSE] =
1

n
E
[
‖z̃[0, . . . , n− 1]‖22

]
=
κ2
∥∥vDFT

∥∥
1

2n2ρ
· tr (|Σ[: n, : n]|) =

κ2
∥∥vDFT

∥∥2

1

2n2ρ
. (40)

In equation 40, Σ[: n, : n] refers to the top-left n× n submatrix of Σ.

J.4 PROOF OF COROLLARY J.1

Corollary J.1 Restated. Under the same setting as Theorem J.3, the MSE for Algorithm 1 is the
following

E [MSE] =
κ2

2ρn2

n+

b 2n−1
2 c∑

a=0

1

sin
(
π(2a+1)

2n

)
2

.
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Proof. Recall the definition of DFT from Equation 35 and of v in Equation 34. It is immediate that
vDFT[0] = n. For any k 6= 0, we have,

vDFT[k] =
1− exp

(
−j2πkn

2n

)
1− exp

(
−j2πk

2n

) =
1− exp (−jπk)

1− exp
(
−jπk
n

) . (41)

From Equation 41, we have that when k > 0 is even, vDFT[k] = 0. For k odd, we have

∣∣vDFT[k]
∣∣ =

∣∣∣∣∣∣ 2

1− exp
(
−jπk
n

)
∣∣∣∣∣∣ =

1

|sin(πk/(2n))|
=

1

sin(πk/(2n))
(42)

Combining these, the term
∥∥vDFT

∥∥
1

is

∥∥vDFT
∥∥

1
= n+

bn−1
2 c∑

a=0

1

sin(π(2a+ 1)/(2n))
(43)

J.5 PROOF OF THEOREM 4.1

Theorem 4.1 Restated. Under k participation, Algorithm 1 satisfies (k2ρ)-zCDP.

Proof. The proof goes exactly as Theorem J.2, except equation 37 gets replaced by the following:

‖b− b′‖∞ = ‖F(xext − x′ext)‖∞ =
kκ√
2n
. (44)

K TWO RELATED FFT MECHANISMS.

The FFT mechanism presented in Section 4 can be understood as an application of a complex-valued
matrix mechanism factorizing the prefix-sum matrix as

B = PF∗
√

Σ,

C =
√

ΣFE,

where E and P are appropriate embedding and projection matrices, respectively embedding an n-
dimensional vector in the first n components of R2n, and projecting those same first n components
back to Rn, and following this application by ‘chopping off’ the imaginary part of the noise. The
entries of Σ may be computed exactly; they contain no purely negative entries, so specifying the
principal branch of the square root resolves the implicit ambiguity in the formulation above. This
branch corresponds as well to the implementation of the complex square root in major software
frameworks (e.g., NumPy).

All these operations are linear; and since everything begins and ends in the real domain, this mech-
anism can be expressed as a real-valued mechanism. Therefore identical codepaths can be used for
implementing experiments with the FFT, though notably without some special implementation of
the mechanism, realizing the potential computational savings will not be immediate. In this small
section, we translate this complex-valued mechanism into two real-valued mechanism which can be
integrated with the code backing the rest of the paper. These mechanisms differ in their decoding
matrix B, and thus achieve different levels of loss. Both have efficient implementations, though
with asymptotics differing by a logarithmic factor. We implement and experiment with both of these
mechanisms in the main body.

These two mechanisms share an encoding matrix:

CF = F∗C,
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which is real-valued by Lemma K.1. Note that the sensitivity of CF is identical to that of C for
any notion of sensitivity expressible as Definition 1 due to the unitary of the Fourier transform.
Since this matrix is of shape [2n, n], there is choice in computing the decoder B such that BCF

represents the prefix-sum matrix. The two decoders we present below correspond to two subtly
distinct mechanisms.

Mechanism 1: A real-valued version of the mechanism presented in Section 4. One natural
translation of the analysis in Section 4 (indeed, a real-valued version of the precise operation de-
scribed in Algorithm 1) may be computed by inserting a Fourier transform to match the inverse
transform in CF:

BF = BF,

Clearly BFCF = BC, and BF real-valued by Lemma K.1.
Proposition K.1. For any D, the mechanism described in Section 4 is distributionally equivalent to
an application of the real-valued matrix mechanism with the factorization (BF,CF), and satisfies
the same privacy guarantees.

Proof. To show this result, by noting that CF and C have the same sensitivity, it suffices to show
that it suffices to show:

• <[F∗
√

Σz] (for z a sample from an isotropic complex Gaussian) is distributionally equiva-
lent to PF∗

√
ΣFb for b a sample from a real (isotropic) Gaussian with the same variance.

This is a consequence of the distributional invariance of the Gaussian under unitary transformations:

<[F∗
√

Σz] ∼ <[F∗
√

ΣFz]

= F∗
√

ΣF<[z] (as F∗
√

ΣF is real)

∼ F∗
√

ΣFb,

where the variances are as desired.

Note that the efficiency of the mechanism described in Section 4 carries over immediately to this
factorization (BF,CF); indeed, the capacity to compute the noise BFb with complexity n log(n)
may be reasoned to directly, in a similar manner.

This mechanism is not, however, the optimal one for the encoder CF, and this subtlety has difficult
downstream effects in integrating with real-valued factorization codepaths (e.g., see the discussion
in Appendix D.4). We proceed to show that the optimal decoder can be used directly, at only a
moderate loss of efficiency with sufficiently careful implementation.

Mechanism 2: A real-valued optimal decoder with complexity n log2(n). As noted in the liter-
ature (e.g. Section 3 of Denisov et al. (2022)), for a fixed encoder, the optimal decoder may always
be computed in terms of an appropriate pseudoinversion of the encoder. Therefore, we may compute
the optimal decoder for the encoder CF, defining:

BFopt = SC†F,

where S is the prefix-sum matrix. Since CF is real, its pseudoinverse is as well, and BFopt is also
real-valued. Since BFopt can have no more variance than BF, all the utility analysis of the DFT
mechanism in Section 4 carries through as an upper bound for this factorization. Privacy of this
mechanism is ensured by the fact that this mechanism reuses teh encoder CF. The major way in
which these mechanisms operationally differ comes down to the cost of computing the noise vector
BFoptb, where b represents a sample from an isotropic Gaussian distribution. Though we do not
know of a complexity result which matches the decoder BF, we will show that the complexity cost
which must be paid is only logarithmically higher.
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Proposition K.2. The mapping b 7→ BFoptb, where b ∈ Rn, may be evaluated in O(n log2(n))
time.

Proof. First, notice that the matrix CF is one-to-one; indeed, this is immediately implied by the
factorization S = BFCF. By Theorem 1.2.1 (P6) of (Campbell & Meyer, 1979), any one-to-one
matrix T admits the following representation for its pseudoinverse:

T† = (T∗T)
−1

T∗.

We compute:

C†F = (C∗FCF)
−1

C∗F

=
((

F∗
√

ΣFE
)∗

F∗
√

ΣFE
)−1 (

F∗
√

ΣFE
)∗

=
(
PF∗
√

Σ
∗
FF∗
√

ΣFE
)−1 (

F∗
√

ΣFE
)∗

= (PF∗|Σ|FE)
−1
(
F∗
√

ΣFE
)∗

Now, the matrix PF∗|Σ|FE is Toeplitz, since F∗|Σ|F is circulant, and P, E combine to select out
the top-left n × n square of F∗|Σ|F. Notice that PF∗|Σ|FE is not circulant, and cannot therefore
be diagonalized by the n-dimensional Fourier transform.

The development of Section 4 yield the representation:

S = PF∗ΣFE,

which implies that matrix-vector products with the matrix S may be computed in n log n time by the

use of the FFT. Similarly, matrix-vector products with
(
F∗
√

ΣFE
)∗

may be computed in n log n

time.

Therefore the computational cost of computing the mapping b 7→ SC†Fb can be upper bounded by
the maximum of n log n and the cost of computing the mapping v 7→ (PF∗|Σ|FE)

−1
v.

The cost of computing this mapping is, in turn, bounded by the cost of inverting a general (full-
rank) Toeplitz system, since (PF∗|Σ|FE)

−1
v may be alternatively characterized as the solution x

to the equation PF∗|Σ|FEx = v. The computational cost of solving such a system is known to be
n log2(n); see, e.g., (de Hoog, 1987).

Lemma K.1. For a real-valued vector v, let v̂ represent its discrete Fourier transform. If v̂ as no
purely real, negative entries, then letting

√
· denote the (pointwise) principal branch of the square

root and F the matrix representation of the Fourier transform, the matrix F∗
√

v̂F is real-valued.

Proof. Conjugate symmetry of the DFT states that for a j-dimensional real-valued vector x, x̂[m] =

x̂[j −m], and that the converse also holds–that if x̂ has this symmetry, x is real-valued. This can be
seen by examining the action of conjugation of x on the Fourier transform x̂.

Now, by the assumptions on v̂ and the choice of the principal branch of the square root5, if v̂

has this conjugate symmetry, so does
√

v̂. Therefore there is some real-valued vector y such that
ŷ =

√
v̂. The matrix F∗

√
v̂F represents convolution with y in the standard basis, and hence is

real-valued.

5These assumptions can be avoided, though at the cost of taking care in choosing the square root of the
negative elements of v̂ to preserve the appropriate symmetry.
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Remark. Lemma K.1 can be understood as a statement about the solvability of a certain repeated-
convolution equation over real-valued functions (the equation g ∗ g = f ). We suspect that this fact
has been observed in the harmonic analysis literature as a general property of all Fourier trans-
forms; we could find no reference. The symmetries discussed above take a slightly different form
in the continuous and noncompact case (IE, Fourier transform on real-valued function on Rd) and
the finite-dimensional Fourier transform here, so we choose to prove this statement in this limited
setting.
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