
MobiZO: Enabling Efficient LLM Fine-Tuning at the Edge via Inference
Engines

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) are currently002
pre-trained and fine-tuned on large cloud003
servers. The next frontier is LLM personal-004
ization, where a foundation model can be fine-005
tuned with user/task-specific data. Given the006
sensitive nature of such private data, it is de-007
sirable to fine-tune these models on edge de-008
vices to improve user trust. However, fine-009
tuning on resource-constrained edge devices010
presents significant challenges due to substan-011
tial memory and computational demands, as012
well as limited infrastructure support. We ob-013
serve that inference engines (e.g., ExecuTorch)014
can be repurposed for fine-tuning by leverag-015
ing zeroth-order (ZO) optimization, which uses016
multiple forward passes to approximate gradi-017
ents. While promising, direct application of018
ZO methods on edge devices is inefficient due019
to the high computational cost of multiple for-020
ward passes required for accurate gradient esti-021
mation, and their deployment has been largely022
unexplored in practice. We introduce MobiZO,023
a resource-efficient fine-tuning framework for024
LLMs specifically designed for edge devices.025
MobiZO combines three key innovations: (1) a026
parallelized randomized gradient estimator that027
employs both outer-loop and inner-loop paral-028
lelism to eliminate sequential forward passes,029
(2) a specialized Multi-Perturbed LoRA (MP-030
LoRA) module that enables efficient realization031
of both inner and outer loop parallelism, and032
(3) a seamless integration with ExecuTorch for033
on-device training, requiring no modifications034
to the runtime. Experiments demonstrate that035
MobiZO achieves substantial runtime speedups036
and memory savings while improving fine-037
tuning accuracy, paving the way for practical038
deployment of LLMs in real-time, on-device039
applications. Code available at: anonymous.040
4open.science/r/MobiZO-DBC6.041

1 Introduction042

Large Language Models (LLMs) have demon-043

strated strong performance across varied tasks,044

chatbots, image generation (OpenAI et al., 2024; 045

Chowdhery et al., 2022; Gemini-Team et al., 2024). 046

Fine-tuning is a crucial step for adapting LLMs 047

to specific tasks, but it demands significant mem- 048

ory resources for storing model parameters, gradi- 049

ents, activations, and optimizer states (Wan et al., 050

2024). This memory overhead makes fine-tuning 051

infeasible on resource-constrained devices such as 052

smartphones and edge platforms (Yin et al., 2024). 053

Moreover, existing on-device frameworks like Ex- 054

ecuTorch (Meta-AI, 2024a) and TensorFlow Lite 055

(Google, 2020) primarily optimize inference, leav- 056

ing fine-tuning largely unsupported. 057

Resource Challenges Despite Recent Ad- 058

vances. Techniques such as parameter-efficient 059

fine-tuning (PEFT) (Hu et al., 2022; Houlsby et al., 060

2019; Li and Liang, 2021; Lester et al., 2021) and 061

memory-efficient fine-tuning (Dettmers et al., 2023; 062

Lv et al., 2024; Zhao et al., 2024; Malladi et al., 063

2023) can significantly reduce the memory foot- 064

print associated with model weights, gradients, and 065

optimizer states. However, even with these meth- 066

ods, storing internal activations during backpropa- 067

gation remains a significant challenge. For exam- 068

ple, fine-tuning Llama 7B requires up to 45.6 GB of 069

on-chip memory for internal activations (Lv et al., 070

2024), making it impractical for most edge devices. 071

Current solutions still fall short of meeting the strin- 072

gent resource constraints of edge environments. 073

Limitations of On-Device Training Frame- 074

works. While several techniques exist to mitigate 075

the memory costs of intermediate activations dur- 076

ing backpropagation, they generally rely on train- 077

ing frameworks that support automatic differentia- 078

tion to perform backpropagation. For instance, gra- 079

dient checkpointing (Chen et al., 2016) discards se- 080

lect activations during the forward pass and recom- 081

putes them during backpropagation, while gradi- 082

ent accumulation aggregates gradients over smaller 083

batches. PockEngine (Zhu et al., 2023) limits back- 084

propagation to update a subset of layers, reducing 085

1

anonymous.4open.science/r/MobiZO-DBC6
anonymous.4open.science/r/MobiZO-DBC6
anonymous.4open.science/r/MobiZO-DBC6


the need to store activations for other layers. How-086

ever, all these techniques are not well supported087

by the existing on-device training frameworks on088

most edge platforms such as Android devices.089

Zeroth-Order Optimization as a Potential So-090

lution. Zeroth-order (ZO) optimization has gained091

attention as a way to eliminate the need to store acti-092

vations by estimating gradients using only forward093

passes. Specifically, ZO methods approximate gra-094

dients by evaluating the loss function at multiple095

perturbed versions of the model weights and using096

these values for gradient estimation. This approach097

has the potential to solve the memory challenge, as098

well as avoid the need for backpropagation support.099

Thus, ZO methods hold promise for on-device fine-100

tuning by utilizing existing inference frameworks101

like ExecuTorch (Meta-AI, 2024a). However, ap-102

plying ZO optimization to fine-tune LLMs on edge103

devices presents its own set of challenges.104

One classic zeroth-order optimizer, the Random-105

ized Gradient Estimator (RGE) (Duchi et al., 2015;106

Nesterov and Spokoiny, 2017), estimates gradients107

by computing finite differences of function values108

along randomly chosen perturbation vectors. With109

RGE, estimation accuracy for each step of training110

improves as the number of stochastic perturbations111

(also referred to as queries) increases (Zhang et al.,112

2024b; Gautam et al., 2024; Yang et al., 2024),113

but the computational cost scales linearly with the114

query count. In addition, its on-device adaptation115

remains largely unexplored.116

In this work, we propose MobiZO training117

framework to address the runtime overhead inher-118

ent in multi-query RGE. MobiZO includes a novel119

Multi-Perturbed LoRA (MP-LoRA) design and120

combines outer-loop parallelization and inner-121

loop parallelization to perform multiple forward122

passes in parallel, substantially reducing per-step123

latency while harvesting the accuracy benefits of124

multi-query gradient estimation. Moreover, Mo-125

biZO allows seamless adaptation for deploying126

RGE optimization via inference engines to enable127

practical on-device fine-tuning. Our contributions128

are as follows:129

• We introduce the MobiZO framework, spe-130

cialized for on-device training, consisting of131

outer-loop, inner-loop parallelization, and Multi-132

Perturbed LoRA designs. By executing multi-133

ple forward passes in parallel within each MP-134

LoRA module, MobiZO effectively amortizes the135

memory access cost of loading model parameters,136

thereby reducing training time while improving 137

model performance. 138

• We demonstrate that the MobiZO framework can 139

be seamlessly integrated into inference engines 140

such as ExecuTorch without requiring any mod- 141

ifications to its runtime code. Our approach 142

is realized through minimal server-side code 143

changes only, making it practical for on-device 144

fine-tuning. 145

• We empirically validate that our method achieves 146

substantial wall-clock time speedups and mem- 147

ory savings while improving model performance. 148

Our approach results in up to 4.3× end-to-end 149

training speedups and up to 8.1% improvement 150

in accuracy compared to the MeZO baseline. 151

2 Background and Related Work 152

Low-Rank Adaptation. To reduce the resource 153

demands of LLM fine-tuning, parameter-efficient 154

fine-tuning methods update only a small subset of 155

parameters. LoRA (Hu et al., 2022) introduces 156

trainable low-rank matrices A ∈ Rkin×r and B ∈ 157

Rr×kout while freezing the original weight matrix 158

W. Since r ≪ min(kin, kout), the number of train- 159

able parameters is significantly reduced. The for- 160

ward pass is computed as y = xW+xAB, where 161

A is initialized randomly and B starts at zero, 162

ensuring no initial deviation from the pre-trained 163

model. Variations such as LoRA-FA (Zhang et al., 164

2023) further reduce trainable parameters by freez- 165

ing A and updating only B. 166

Zeroth-Order Optimization. ZO optimization 167

methods have been widely applied across various 168

machine learning applications (Chen et al., 2017; 169

Sun et al., 2022; Wang et al., 2022; Liu et al., 170

2024c). Among ZO gradient estimators, the ran- 171

domized gradient estimator (RGE) is particularly 172

effective, especially for fine-tuning LLMs (Malladi 173

et al., 2023). Given a labeled datasetD and a model 174

with parameters θ ∈ Rd, let the loss function on a 175

minibatch B ⊂ D of size B be denoted as L(θ;B). 176

The RGE estimates the gradient of the loss L with 177

respect to the parameters θ on a minibatch B via: 178

∇̂L(θ;B) =
1

q

q∑
i=1

[
L(θ + ϵzi;B)− L(θ − ϵzi;B)

2ϵ
zi

]
, 179

where zi ∼ N (0, Id), q is the query number, and ϵ 180

is the perturbation scale. The choice of q balances 181

the variance of the ZO gradient estimate and the 182

2



computational cost, and the variance of the RGE is183

approximately O(d/q) (Zhang et al., 2024b).184

ZO-SGD replaces FO gradients with ZO gra-185

dient estimates: θt+1 = θt − η∇̂L(θ;Bt), with186

learning rate η at timestep t. The choice of op-187

timizer (SGD) is orthogonal to ZO optimization188

methods, but in our preliminary experiments, we189

find adaptive optimizers such as Adam would not190

necessarily improve LLM fine-tuning performance.191

ZO LLM Fine-Tuning. Conventional RGE192

training requires storing perturbation noise z, effec-193

tively doubling inference memory. MeZO (Malladi194

et al., 2023) eliminates this overhead by storing195

only the random seed and regenerating z on de-196

mand. While MeZO also considers q > 1, it com-197

pensates for the increased computation per step by198

proportionally reducing the total number of training199

steps (e.g., halving the steps when q = 2). Under200

this fixed computational budget, they observe that201

larger q does not improve accuracy compared to202

q = 1, prompting MeZO to adopt q = 1 as the de-203

fault setting. In contrast, Zhang et al. benchmarked204

various ZO optimization methods, including RGE205

with q > 1, and confirmed that when computa-206

tional constraints are lifted, larger q can indeed207

enhance performance.208

Sparse-MeZO (Liu et al., 2024b) selectively up-209

dates parameters but is sensitive to hyperparam-210

eters. Extreme-sparse-MeZO (Guo et al., 2025)211

integrates first-order Fisher-based sparse train-212

ing. MeZO-SVRG (Gautam et al., 2024) im-213

proves variance reduction but occasionally requires214

full-dataset gradient estimation, increasing cost.215

AdaZeta (Yang et al., 2024) adaptively schedules216

queries but still relies on sequential gradient esti-217

mations.218

On-device LLM Training. Several methods219

address the memory and compute constraints of220

on-device LLM training. PockEngine (Zhu et al.,221

2023) updates only select layers, skipping gradient222

calculations for less critical parameters. FwdLLM223

(Xu et al., 2024) applies numerical differentiation224

to approximate gradients, lowering communica-225

tion costs in federated learning but is limited to226

CUDA environment. HETLORA (Cho et al., 2024)227

enables federated LoRA training across heteroge-228

neous devices but requires further real-world test-229

ing due to high activation memory costs. Pock-230

etLLM (Peng et al., 2024) evaluates MeZO for231

on-device fine-tuning but does so in a simulated232

Linux environment rather than mobile devices.233

Algorithm 1 MobiZO Algorithm.

1: Input: learnable parameters θl ∈ Rdl , frozen
parameters θf ∈ Rdf , lossL : Rdl×Rdf → R,
step budget T , query budget q, effective batch
size E, perturbation scale ϵ, learning rate η

2: for t = 1 to T do
3: Sample batch B ⊂ D
4: for i = 1 to q do in parallel ▷ Outer
5: Sample random seed si
6: zi∼N (0, Idl) using si
7: for k ∈ {+1,−1} do in parallel ▷ Inner
8: θ

(k)
l = θl + kϵzi ▷ MP-LoRA

9: ℓ(k) = L((θ(k)
l ,θf );B)

10: end for

11: gi =
ℓ(+1) − ℓ(−1)

2ϵ
12: Store si and gi
13: end for
14: θl ← θl − η

(
1

q

q∑
i=1

gizi

)
15: end for

3 The MobiZO Framework 234

To perform a q-query gradient estimation, Ran- 235

domized Gradient Estimation (RGE) typically re- 236

quires 2q forward passes. The naive implemen- 237

tation of RGE (detailed in Appendix A) executes 238

these passes sequentially. However, these forward 239

passes are inherently independent—the only dif- 240

ference being the random perturbations applied 241

to the trainable parameters. To improve runtime 242

under resource constraints while preserving the ac- 243

curacy benefits of multi-query RGE, we propose 244

the MobiZO framework. MobiZO enables parallel 245

execution of gradient estimation through a special- 246

ized PEFT design called Multi-Perturbed LoRA 247

(MP-LoRA). In addition, we show that MobiZO 248

can be seamlessly integrated into inference engines 249

such as ExecuTorch to enable practical and effi- 250

cient on-device fine-tuning without modifying the 251

runtime. 252

MP-LoRA. A straightforward approach to per- 253

forming multiple forward passes in parallel is to 254

duplicate the model inputs and model weights, per- 255

turb each weight copy with distinct perturbations, 256

and then execute the forward passes concurrently. 257

However, this naive duplication incurs substantial 258

memory overhead from replicating weights and 259

managing perturbations, in terms of both storage 260

and I/O access. The random seed trick introduced 261

by MeZO (Malladi et al., 2023) mitigates the mem- 262

3



W ∈ Rk×k

B1

B2

...

Bq

z1

z2

zq

x1

x2

...

xq

y1

y2

...

yq

A

x+
i

x−
i

A

Bi + zi

Bi − zi

y+
i

y−
i

for each

xi

Frozen Trainable

(a) Outer-loop (b) Inner-loop

Figure 1: Overview of the MP-LoRA module in the
MobiZO framework that supports both outer-loop and
inner-loop parallelization, enabling faster training and
improved model accuracy with minimal memory usage
and access overhead.

ory overhead from storing the full perturbation vec-263

tors from O(d) to O(1). However, the computation264

time for the parameter perturbation step becomes265

O(d) as trainable parameters must be sequentially266

updated using perturbations regenerated from the267

seed. This sequential process can substantially slow268

down training for large models, potentially negat-269

ing the speedups gained from eliminating back-270

propagation.271

To address both the memory overhead of param-272

eter duplication and the O(d) sequential parameter273

operations inherent in the seed trick, MP-LoRA274

leverages PEFT methods, which drastically reduce275

the number of trainable parameters. Our prelimi-276

nary experiments (see Appendix B) indicate that277

combining ZO with LoRA-FA yields superior per-278

formance compared to alternatives like DoRA (Liu279

et al., 2024a) and VeRA (Kopiczko et al., 2024).280

Consequently, LoRA-FA serves as the foundational281

PEFT method for our MP-LoRA design. We note282

that, while MP-LoRA is developed upon a LoRA-283

based PEFT method, its core principles can be284

adapted to other PEFT techniques.285

The MP-LoRA framework is designed to effi-286

ciently manage multiple perturbed states of LoRA287

parameters for concurrent forward passes. Similar288

to standard LoRA, MP-LoRA modules are applied289

to specific weights of the pre-trained model, aug-290

menting them with a small number of trainable pa-291

rameters. The MP-LoRA augmented model takes292

an input batch x and a set of n distinct perturba-293

tions (which can be the full perturbation vectors294

or their generating seeds). At the beginning of a295

model execution, n copies of the input batch are296

created, X(n) = [x1,x2, . . . ,xn]. Each copy xi297

is then associated with the i-th perturbation path298

for its entire traversal through the model’s layers.299

This collection, X(n), serves as the effective in-300

put that propagates through the network, encoun- 301

tering MP-LoRA layers. Within any given MP- 302

LoRA layer, the original pre-trained model weights 303

W and the LoRA A matrix are kept fixed and 304

are shared across all n operational paths passing 305

through that layer. Only the LoRA B matrix is ef- 306

fectively replicated and distinctly perturbed n times 307

for these paths, resulting in a set of path-specific 308

matrices B(n) = [B1,B2, . . . ,Bn], where each 309

Bi corresponds to the perturbation path i. 310

The output of an MP-LoRA layer for these n
concurrent paths is computed as:

Y(n) = X(n)W + (X(n)A)⊙B(n)

Here, ⊙ denotes a batched operation where each 311

component (xiA) from the n paths undergoes ma- 312

trix multiplication with its respective perturbed 313

LoRA matrix Bi. Since Bi is orders of magni- 314

tude smaller than W, the overall memory overhead 315

is negligible even with the replication demands. 316

MP-LoRA achieves its efficiency by ensuring these 317

n distinct path-specific computations per layer are 318

performed concurrently, while reusing the shared 319

W and A components. 320

Outer-Loop Parallelization. Each RGE step 321

consists of evaluating q distinct stochastic pertur- 322

bations (queries). We employ MP-LoRA to exe- 323

cute these q queries in parallel, as illustrated in 324

Figure 1(a). This is achieved by invoking the MP- 325

LoRA mechanism once with n = q independent 326

perturbations (or their random seeds) as input. This 327

generates q distinct perturbed model states that are 328

subsequently processed concurrently through the 329

model. However, performing q operations simulta- 330

neously would naively increase the computational 331

load per step by a factor of q. 332

To maintain a computational cost per training 333

step comparable to that of single-query RGE, when 334

performing MobiZO with q > 1 queries, we pro- 335

portionally reduce the input batch size for each of 336

the q paths to E = B/q. Here, B is the original 337

batch size used in a q = 1 setting, and E is termed 338

the effective batch size per query path. For instance, 339

if a baseline setting uses q = 1 and B = 16, our 340

MobiZO approach can use q = 4 with an effective 341

batch size E = 4 per query, thereby maintaining 342

the total number of samples processed per step 343

(qE = B). As we demonstrate in Section 4, this 344

trade-off of increasing q while reducing E often 345

leads to improved model accuracy under a fixed 346

computational budget. The motivation and theoret- 347

ical background behind this trade-off are detailed 348

4



Model
Authoring

Mobile MP-
LoRA module

Exported
Graph

ExecuTorch
Program

Load Data
& Program Execute Kernel Library

Custom Op

modify
nn.Module

export
nn.Module

compile
ExportIR

offload
flatbuffer

Offline Compile-time (Server) Online Runtime (Edge)

Figure 2: MobiZO on-device training workflow via ExecuTorch with minimal modifications. The green box
represents additional procedure in addition to standard steps for inference deployment on edge devices.

in Appendix F.3. Reducing the effective batch size349

E in a multi-query setting also offers the ancillary350

benefit of reducing padding tokens, as shown in351

Appendix C. Typically, larger batch sizes lead to352

more padding, as sequences of varying lengths are353

padded to match the maximum sequence length354

within that larger batch. By adopting a smaller ef-355

fective batch size per query, the total amount of356

padding can decrease, limiting wasted computation357

on these padding tokens, especially during atten-358

tion operations.359

Another key benefit of this MP-LoRA-enabled360

outer-loop parallelization is the improved data lo-361

cality for model weights. By loading the shared362

weights (such as the base model weights W and363

LoRA A matrices within MP-LoRA layers) once364

and reusing them across all q concurrent queries,365

costly external memory accesses are amortized.366

This can lead to a runtime per training step that367

is comparable to, or even faster than, the original368

sequential setting with q = 1, despite processing369

multiple queries.370

Inner-Loop Parallelization. While outer-loop371

parallelization addresses concurrency across multi-372

ple queries, each gradient estimation in RGE still373

requires two forward passes per query: one with a374

positive perturbation and one with a negative per-375

turbation. In standard RGE, these are typically376

executed sequentially.377

To further accelerate each gradient estimation,378

MobiZO incorporates inner-loop parallelization, as379

outlined in Algorithm 1 (line 7). This is also en-380

abled by MP-LoRA, which for a given query i, can381

perform both the positive and negative perturba-382

tion forward passes simultaneously, as illustrated383

in Figure 1(b). This is achieved by invoking MP-384

LoRA with n = 2q, using perturbations +ϵzi and385

−ϵzi applied to the LoRA B matrix for the i-th386

path. By processing positively and negatively per-387

turbed states in a single MP-LoRA invocation, we388

obtain two corresponding outputs. The loss dif-389

ference between these outputs can then be used390

to estimate the gradient component for that query,391

effectively performing the gradient estimation us-392

ing a single forward pass. This approach further393

reduces the external memory bandwidth burden 394

by maximizing the reuse of shared model weights 395

across these two evaluations. Consequently, Mo- 396

biZO with inner-loop parallelization can achieve 397

an even faster runtime per training step compared 398

to the sequential execution of two forward passes 399

in RGE, even for q = 1. 400

With inner-loop parallelization, the activation 401

size at each layer is doubled, as it forwards two 402

batches at the same time. However, this does not 403

result in significant memory overhead. Unlike first- 404

order methods, ZO methods allow activations from 405

previous layers to be discarded during forward 406

passes, rather than accumulating across all layers. 407

This property, as noted in (Zhang et al., 2024b), 408

enables ZO methods to scale more efficiently with 409

long sequence lengths and large batch sizes com- 410

pared to FO methods. To minimize memory costs 411

for storing LoRA-B weight matrices, it is possible 412

to keep a master copy of LoRA-B and instantiate 413

perturbed copies dynamically during the forward 414

pass. At each LoRA layer, only the master copy is 415

updated with the gradient and learning rate. Per- 416

turbed copies of LoRA-B are then instantiated and 417

deleted once the output is computed, ensuring that 418

the number of additional trainable parameters re- 419

mains the same as in the conventional ZO method. 420

A crucial benefit of MP-LoRA enabling inner- 421

loop parallelization in this manner is that it forms 422

the basis for on-device fine-tuning using inference 423

engines, as detailed next. 424

On-Device Training Adaptation. Deploying a 425

model with inference engine ExecuTorch involves 426

two primary steps: (1) converting a standard Py- 427

Torch nn.Module into an ExecuTorch program, a 428

serialized computation graph with embedded pa- 429

rameters; and (2) offloading this binary file along 430

with the C++ runtime to the edge device. The edge 431

runtime then interprets and executes the model us- 432

ing a backend-specific operator library. 433

However, ExecuTorch does not natively support 434

MeZO due to its reliance on complex device-side 435

operations, such as random number generation, 436

weight perturbation, and gradient application, none 437

of which are exposed through standard ExecuTorch 438

5



APIs. For instance, line 8 in Algorithm 1 requires439

direct modification of model weights, an operation440

currently unsupported. To address this limitation,441

we design a mobile version of the MP-LoRA that442

encapsulates all MobiZO logic inside its forward443

function. This approach enables full exportabil-444

ity and execution within the standard ExecuTorch445

runtime, eliminating the need to modify low-level446

components.447

Algorithm 2 shows the Mobile MP-LoRA mod-448

ule for q = 1. It maintains two perturbed variants449

of the LoRA weight matrix B, each scaled by ϵ450

with positive and negative noise. Since ExecuTorch451

does not support resetting random seeds between452

forward passes, we store both perturbed versions of453

B in memory instead of regenerating them. During454

execution, the module computes the gradient using455

the difference between B[0] and B[1], restores the456

unperturbed weight, and updates the parameter via457

projected gradient. The final output is computed458

using the sum of the frozen linear term xW and459

the adaptive term xAB.460

Figure 2 illustrates the complete workflow. We461

begin with a pre-trained PyTorch model and re-462

place its linear layers with our Mobile MP-LoRA463

modules. The modified model is then exported us-464

ing the standard ExecuTorch pipeline and deployed465

to the edge device. On-device execution is han-466

dled entirely by the ExecuTorch runtime, which467

runs the fine-tuning process implicitly through the468

forward pass. Additionally, a lightweight noise469

generation operator is registered using the Execu-470

Torch extension API (Meta-AI, 2024b) to support471

model perturbation.472

Algorithm 2 Mobile MP-LoRA Module

1: Input: x ∈ R2×seq_len×k, A ∈ Rk×r, B ∈
R2×r×k, Wk×k, learning rate η, perturbation
scale ϵ, projected gradient g

2: diff = B[0]−B[1]
2

3: update = η · g · diff
ϵ

4: z = ϵ · randn_like(B[0])
5: B[0] = B[0]− diff− update + z
6: B[1] = B[1] + diff− update− z
7: output = xW + bmm(xA,B)
8: Return: output

4 Experiments473

We conduct comprehensive experiments on the474

TinyLlama-1.1B (Zhang et al., 2024a) and Llama2-475

7B (Touvron et al., 2023) models across different 476

systems to evaluate both fine-tuning performance 477

and system efficiency. 478

4.1 Model Fine-Tuning Performance 479

We compare two sets of baselines: the first em- 480

ploys an FO-SGD optimizer in both the full and 481

LoRA-FA parameter spaces, while the second uses 482

a ZO-SGD optimizer with MeZO (q = 1, B = 16) 483

in the same parameter spaces. For our method, 484

MobiZO, we ensure equivalent computation per 485

training step while varying q by scaling the effec- 486

tive batch size (E) to maintain a fixed E ∗ q value, 487

such that setting q = 4, E = 4 or q = 16, E = 1 488

has equal computation load. By using the same 489

number of training steps (i.e., 20,000) for both Mo- 490

biZO and MeZO, we ensure that MobiZO does 491

not exceed the computational budget of the MeZO 492

baseline for end-to-end training. Experiments are 493

conducted using three random seeds, and we report 494

the average performance. For reference, we also 495

report zero-shot performance without additional 496

fine-tuning. 497

For the smaller-scale TinyLlama-1.1B model, 498

we evaluate its performance on the GLUE dataset 499

(Wang et al., 2019). The results in Table 1 show 500

that increasing the number of queries while de- 501

creasing the batch size outperforms the baseline 502

MeZO by up to 7.5% accuracy. For the larger 503

Llama2-7B model, we evaluate its performance 504

on SST-2 (Wang et al., 2019), SuperGLUE (Wang 505

et al., 2020), WinoGrande (Sakaguchi et al., 2021), 506

ARC-Easy, and ARC-Challenge (Clark et al., 2018) 507

datasets using the same experimental setup. Ad- 508

ditional experimental details, including dataset de- 509

scriptions, training procedures, and hyperparame- 510

ters, are provided in Appendix D. 511

From the results in Table 1, we observe that 512

MobiZO consistently outperforms MeZO across 513

nearly all tasks on Llama2-7B model. Notably, 514

MobiZO improves performance over the baseline 515

that updates the full parameter space by up to 8.1% 516

in the WiC task, demonstrating its effectiveness 517

in leveraging multi-query gradient estimation for 518

improved fine-tuning quality under the same com- 519

putational budget. Although MobiZO introduces 520

an additional hyperparameter q, we find that setting 521

q to 4 or 16 generally yields strong performance, 522

reducing the need for extensive tuning. Additional 523

results exploring a broader range of q values are 524

provided in Appendix F, along with an in-depth dis- 525

cussion of the accuracy gains enabled by MobiZO’s 526

6



TinyLlama-1.1B Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
Zero-shot 55.5 51.6 68.4 32.8 52.7 43.7

FO-SGD
Full 93.0 80.6 80.0 84.0 83.6 58.2
LoRA-FA 93.0 77.7 79.1 83.3 84.3 54.9

ZO-SGD

MeZO (Full) 91.1 65.3 70.8 73.7 69.2 58.2
MeZO (LoRA-FA) 86.5 67.1 72.1 74.7 62.4 59.2
MobiZO (q = 4) 88.5 70.5 73.6 76.4 75.0 60.6
MobiZO (q = 16) 89.7 72.4 73.4 77.0 76.7 59.6

Llama2-7B Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande ARC-E ARC-C
Zero-shot 58.0 59.2 71.9 52.9 50.0 54.9 79.0 62.7 47.9 35.0

FO-SGD
Full 95.8 86.5 85.3 66.0 72.5 82.4 87.0 67.0 80.6 66.2
LoRA-FA 95.4 81.7 84.9 62.8 62.6 74.7 84.0 64.2 81.3 60.7

ZO-SGD MeZO (Full) 92.2 73.5 81.9 64.7 55.6 68.6 84.0 64.5 69.8 47.5
MeZO (LoRA-FA) 92.4 70.8 81.6 63.5 63.4 72.3 86.3 64.2 73.6 50.6
MobiZO (q = 4) 94.1 75.5 82.7 64.1 63.1 74.7 85.0 64.8 73.8 50.9
MobiZO (q = 16) 94.2 75.5 82.7 62.5 63.7 72.9 87.3 64.9 73.2 51.4

Table 1: Performance of fine-tuning TinyLlama-1.1B and Llama2-7B on different tasks with different optimizers.
MobiZO outperforms the baseline MeZO in most tasks under the same computational budget.

Sequence length 64 128 256
Batch size 1 8 16 1 8 16 1 8 16

TinyLlama-1.1B
FO (Full) 11.32 12.00 12.78 11.44 13.00 14.76 11.77 15.62 20.02
FO (LoRA-FA) 4.15 5.00 5.98 4.27 5.98 7.81 4.51 7.81 11.58
MeZO (LoRA-FA) 2.09 2.19 2.32 2.10 2.32 2.56 2.13 2.56 3.05
MobiZO 2.11 2.32 2.56 2.14 2.56 3.05 2.20 3.05 3.98

Llama2-7B
FO (Full) 64.31 66.12 69.20 64.6 68.51 72.97 65.32 74.22 84.40
FO (LoRA-FA) 25.16 27.20 29.58 25.46 29.58 34.28 26.05 34.29 43.66
MeZO (LoRA-FA) 12.59 12.70 12.82 12.61 12.82 13.06 12.64 13.06 13.55
MobiZO 12.61 12.82 13.06 12.64 13.07 13.55 12.70 13.55 14.53

Table 2: Peak memory usage (GB) of TinyLlama-1.1B
and Llama2-7B for different sequence length and batch
size configurations.

design choices.527

4.2 System Performance528

We conduct measurements on a single NVIDIA529

A100 GPU to evaluate the server-side system530

performance of MobiZO compared to its base-531

lines. The ZO-SGD optimizer, including both532

MeZO and MobiZO, performs forward passes in533

16-bit floating-point precision to maximize compu-534

tational efficiency, leveraging ZO’s tolerance for535

low-precision gradient estimation (Zhang et al.,536

2024b). We use the FO-SGD optimizer with mixed-537

precision training enabled for memory and runtime538

evaluations.539

Memory Efficiency. We first evaluate the peak540

memory usage of MobiZO across different fixed541

sequence length and batch size configurations. The542

reported memory footprint includes storage for543

weights, activations, gradients, CUDA kernels, and544

other implementation-specific details.545

Table 2 shows the memory usage of FO-SGD546

(LoRA-FA), MeZO (LoRA-FA), and MobiZO. The547

FO-SGD optimizer requires more memory due to548

storing activations from all intermediate layers, de- 549

spite minimal gradient and optimizer state storage 550

through PEFT. In contrast, MobiZO slightly in- 551

creases memory usage due to the increased size of 552

the largest output tensor during the forward pass 553

and instantiation of multiple sets of LoRA train- 554

able parameters, yet it still demands significantly 555

less memory than the FO optimizer. For instance, 556

with Llama2-7B, a sequence length of 256, and 557

a batch size of 16, memory usage increases from 558

13.55 GB to 14.53 GB for MobiZO, whereas FO 559

requires over 40 GB. FO over full parameter space 560

requires even much more memory, going beyond 561

the memory capacity of edge devices. 562

End-to-end Wall-clock Time Speedup. Fig- 563

ure 3 shows the end-to-end wall-clock time for 564

fine-tuning TinyLlama-1.1B and Llama2-7B us- 565

ing MeZO and MobiZO for 20,000 steps across 566

various tasks. By applying PEFT methods, both 567

MeZO and MobiZO reduce training time by min- 568

imizing sequential processing of model parame- 569

ters, a benefit that becomes more pronounced with 570

larger models such as Llama2-7B. MobiZO further 571

improves training runtime through inner-loop and 572

outer-loop parallelization achieving speedups of 573

up to 4.3× over MeZO (Full) and up to 1.9× over 574

MeZO (LoRA-FA) baselines. 575

Additional system profiling ablation studies, in- 576

cluding runtime breakdown under different fixed 577

sequence length and batch size configurations, as 578

well as under different quantization schemes, are 579

available in Appendix G. 580

7



SST2
RTE

MRPC
QQP

QNLI
WNLI

0

20

40

60
3
8

6
2

4
6

4
1 4
6

4
4

3
5

5
6

3
5

3
5 3
7

3
4

2
4

4
4

3
4

2
6 3
2

2
9

2
5 3

2

3
0

2
4 2
7

2
6

R
un

tim
e

(m
in

/ta
sk

)
TinyLlama-1.1B

SST2
RTE

BoolQ
WSC

WiC
MultiR

C
COPA

WinoGrande

SQuAD
0

200

400

600

1
5
9

2
8
8 3
8
4

2
1
0

1
7
3

5
2
6

1
4
6

1
5
5

4
8
1

5
4

2
1
4

3
2
9

1
1
7

7
1

5
0
5

4
1 4
8

4
5
8

4
5

1
6
4 2
4
9

9
2

6
8

4
9
6

3
7 4
7

3
7
1

3
7 1
1
2 1
7
1

7
2

6
1

4
2
1

3
6 4
3

2
7
6

Llama2-7B

MeZO (Full)

MeZO (LoRA-FA)

MobiZO (q = 4)

MobiZO (q = 16)

Figure 3: End-to-end wall-clock time of fine-tuning TinyLlama-1.1B and Llama2-7B for various configurations
across tasks. MobiZO achieves up to 4.3× speedup compared to MeZO (full) under the same computational budget.

Sequence length 64 128
Batch size 1 2 4 8 1 2 4 8

TinyLlama-1.1B
MeZO (LoRA-FA) 0.69 0.71 0.89 1.28 0.70 0.88 1.27 2.18
MobiZO 0.43 0.49 0.69 1.15 0.49 0.69 1.13 2.00
Speedup ratio 1.62 1.45 1.29 1.12 1.42 1.29 1.12 1.09

Llama2-7B
MeZO (LoRA-FA) 3.10 3.37 4.44 6.46 3.37 4.44 6.47 10.83
MobiZO 1.69 2.22 3.22 5.38 2.22 3.22 5.37 8.60
Speedup ratio 1.83 1.52 1.38 1.20 1.52 1.38 1.21 1.26

Table 3: Runtime (sec/step) and speedup ratio of
inner-loop parallelization on Jetson GPU backend for
TinyLlama-1.1B and Llama2-7B with NF4 quantization.

4.3 On-Device Training Experiments581

For on-device training experiments, we begin with582

a sanity check to verify per-step loss values on583

two edge platforms: the NVIDIA Jetson Nano584

Orin (8GB) GPU and the OnePlus 12 smartphone585

(12GB) NPU backend. This ensures that both plat-586

forms yield the same output given the same input587

as those observed on the server side. Detailed edge588

system specifications and experimental setups are589

provided in Appendix H. After verification, we590

measure and report the runtime per step of Mo-591

biZO across different fixed sequence length and592

batch size configurations, following the same setup593

in Section 4.2. Due to out-of-memory issues, FO594

training is omitted from on-device experiments.595

On the Jetson platform, which runs on a Linux596

system, we use the PyTorch library for model for-597

ward passes. Table 3 shows the speedup achieved598

through MobiZO with inner-loop parallelization599

with NF4 weight-only quantization, showing up600

to 1.83× performance improvement. Since Mo-601

biZO is fully compatible with Q-LoRA (Dettmers602

et al., 2023), we also verify that weight-only quan-603

tization does not significantly degrade accuracy, as604

demonstrated in Appendix F.605

On the smartphone platform, which operates on606

Android OS without PyTorch support, we repur-607

pose the latest ExecuTorch library (v0.6.0) to per-608

2 4 8 16
0

2

4

6

8

0
.3
7

0
.6
3

1
.2
4 2

.8

0
.9
3

1
.6
7 2
.9
5

5
.7
6

Batch size

R
un

tim
e

(s
ec

/s
te

p) SeqLen = 64

SeqLen = 128

2 4 8 16
2

3

4

5

6

3
.3
7

3
.5
4

3
.7
7

3
.8
8

3
.4
4

3
.7 3
.9
3 4
.4
9

Batch size

M
em

or
y

(G
B

)

Figure 4: Runtime and memory usage per step on An-
droid NPU backend for TinyLlama-1.1B across different
batch sizes and sequence lengths.

form MobiZO fine-tuning through integrating the 609

Mobile MP-LoRA module as described in Section 610

3. Since we do not modify the runtime code on the 611

edge device, vanilla MeZO baseline experiments 612

are omitted due to incompatibility. Additionally, 613

due to current limitations in ExecuTorch’s support 614

for weight-only quantization, we run TinyLlama- 615

1.1B in FP16 mode on the NPU backend. While 616

Qualcomm’s NPU is optimized for low power 617

rather than raw throughput (Qualcomm, 2024), Ex- 618

ecutorch on the Android platform achieves com- 619

parable efficiency to Pytorch on the Jetson CUDA 620

platform at smaller batch sizes. As shown in Figure 621

4, with an effective batch size of 16, the NPU back- 622

end takes 5.76 seconds for one step with a sequence 623

length of 128, whereas Jetson GPU completes it in 624

2.00 seconds. 625

5 Conclusion 626

This work introduces MobiZO, a parallelized gra- 627

dient estimation technique for efficient LLM fine- 628

tuning on edge devices. By leveraging outer and 629

inner loop parallelism, MobiZO improves accuracy 630

while reducing training time and memory usage on 631

both server and edge platforms. It enables feasible 632

real-time on-device tuning, and its integration with 633

ExecuTorch via Mobile MP-LoRA demonstrates 634

broad portability on Android NPUs. 635

8



6 Limitations636

While MobiZO enables efficient on-device LLM637

fine-tuning, it has several limitations. First, Mo-638

biZO is tailored for the randomized gradient esti-639

mator in ZO optimization. Extending it to other640

ZO methods, such as variance-reduced optimizers641

or adaptive query selection, could further improve642

convergence speed. Second, thermal constraints643

on edge devices limit sustained compute perfor-644

mance, leading to throttling during prolonged fine-645

tuning. Future work will explore thermal-aware646

scheduling to maintain performance under temper-647

ature fluctuations. Third, MobiZO assumes static648

computational settings, whereas edge environments649

often have dynamic compute and memory resource650

constraints. Adapting query count, batch size, or651

precision in response to runtime conditions is a652

promising direction.653

References654

Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Al-655
bert Webson, Colin Raffel, Nihal V. Nayak, Ab-656
heesht Sharma, and et al. 2022. Promptsource:657
An integrated development environment and repos-658
itory for natural language prompts. Preprint,659
arXiv:2202.01279.660

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi,661
and Cho-Jui Hsieh. 2017. Zoo: Zeroth order op-662
timization based black-box attacks to deep neural663
networks without training substitute models. In Pro-664
ceedings of the 10th ACM Workshop on Artificial665
Intelligence and Security.666

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos667
Guestrin. 2016. Training deep nets with sublinear668
memory cost. Preprint, arXiv:1604.06174.669

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi,670
and Gauri Joshi. 2024. Heterogeneous lora for fed-671
erated fine-tuning of on-device foundation models.672
Preprint, arXiv:2401.06432.673

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,674
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul675
Barham, Hyung Won Chung, Charles Sutton, Sebas-676
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha677
Tsvyashchenko, Joshua Maynez, and et al. 2022.678
Palm: Scaling language modeling with pathways.679
Preprint, arXiv:2204.02311.680

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,681
Ashish Sabharwal, Carissa Schoenick, and Oyvind682
Tafjord. 2018. Think you have solved question683
answering? try arc, the ai2 reasoning challenge.684
Preprint, arXiv:1803.05457.685

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 686
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun- 687
ing of quantized LLMs. In Thirty-seventh Confer- 688
ence on Neural Information Processing Systems. 689

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, 690
and Andre Wibisono. 2015. Optimal rates for zero- 691
order convex optimization: The power of two func- 692
tion evaluations. IEEE Transactions on Information 693
Theory, 61(5):2788–2806. 694

Tanmay Gautam, Youngsuk Park, Hao Zhou, 695
Parameswaran Raman, and Wooseok Ha. 2024. 696
Variance-reduced zeroth-order methods for fine- 697
tuning language models. In 5th Workshop on 698
practical ML for limited/low resource settings. 699

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Jean- 700
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 701
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil- 702
lican, David Silver, and et al. 2024. Gemini: A fam- 703
ily of highly capable multimodal models. Preprint, 704
arXiv:2312.11805. 705

Google. 2020. Tensorflow lite guide. 706

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, 707
Xinyu Yang, Yide Ran, Jacob R. Gardner, Osbert 708
Bastani, Christopher De Sa, Xiaodong Yu, Beidi 709
Chen, and Zhaozhuo Xu. 2025. Zeroth-order fine- 710
tuning of LLMs with transferable static sparsity. In 711
The Thirteenth International Conference on Learning 712
Representations. 713

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 714
Bruna Morrone, Quentin De Laroussilhe, Andrea 715
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 716
Parameter-efficient transfer learning for NLP. In 717
Proceedings of the 36th International Conference on 718
Machine Learning. 719

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 720
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 721
Weizhu Chen. 2022. LoRA: Low-rank adaptation of 722
large language models. In International Conference 723
on Learning Representations. 724

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M 725
Asano. 2024. VeRA: Vector-based random matrix 726
adaptation. In The Twelfth International Conference 727
on Learning Representations. 728

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 729
The power of scale for parameter-efficient prompt 730
tuning. In Proceedings of the 2021 Conference on 731
Empirical Methods in Natural Language Processing. 732
Association for Computational Linguistics. 733

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 734
Optimizing continuous prompts for generation. In 735
Proceedings of the 59th Annual Meeting of the Asso- 736
ciation for Computational Linguistics and the 11th 737
International Joint Conference on Natural Language 738
Processing. 739

9

https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/2202.01279
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2401.06432
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://doi.org/10.1109/TIT.2015.2409256
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://www.tensorflow.org/lite/guide


Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo740
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting741
Cheng, and Min-Hung Chen. 2024a. DoRA: Weight-742
decomposed low-rank adaptation. In Forty-first In-743
ternational Conference on Machine Learning.744

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng,745
Cho-Jui Hsieh, and Yang You. 2024b. Sparse mezo:746
Less parameters for better performance in zeroth-747
order llm fine-tuning. Preprint, arXiv:2402.15751.748

Z Liu, J Lou, W Bao, Y Hu, B Li, Z Qin, and K Ren.749
2024c. Differentially private zeroth-order meth-750
ods for scalable large language model finetuning.751
Preprint, arXiv:2402.07818.752

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and753
Xipeng Qiu. 2024. Full parameter fine-tuning for754
large language models with limited resources. In755
Proceedings of the 62nd Annual Meeting of the As-756
sociation for Computational Linguistics. Association757
for Computational Linguistics.758

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex759
Damian, Jason D. Lee, Danqi Chen, and Sanjeev760
Arora. 2023. Fine-tuning language models with just761
forward passes. In Thirty-seventh Conference on762
Neural Information Processing Systems.763

Meta-AI. 2024a. Executorch.764

Meta-AI. 2024b. Executorch kernel registration.765

Meta-AI. 2024c. Llama 3.2: Revolutionizing edge ai766
and vision with open, customizable models. Ac-767
cessed: 2025-05-12.768

Yurii Nesterov and Vladimir Spokoiny. 2017. Ran-769
dom gradient-free minimization of convex functions.770
Foundations of Computational Mathematics.771

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,772
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-773
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-774
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,775
Suchir Balaji, Valerie Balcom, and et al. 2024. Gpt-4776
technical report. Preprint, arXiv:2303.08774.777

Dan Peng, Zhihui Fu, and Jun Wang. 2024. Pock-778
etLLM: Enabling on-device fine-tuning for person-779
alized LLMs. In Proceedings of the Fifth Workshop780
on Privacy in Natural Language Processing. Associ-781
ation for Computational Linguistics.782

Qualcomm. 2024. Hexagon dsp sdk documentation.783
Accessed: 2025-05-12.784

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-785
ula, and Yejin Choi. 2021. Winogrande: an adver-786
sarial winograd schema challenge at scale. Commun.787
ACM.788

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,789
Xuanjing Huang, and Xipeng Qiu. 2022. BBTv2:790
Towards a gradient-free future with large language791
models. In Proceedings of the 2022 Conference on792
Empirical Methods in Natural Language Processing.793

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 794
bert, Amjad Almahairi, Yasmine Babaei, and et al. 795
2023. Llama 2: Open foundation and fine-tuned chat 796
models. Preprint, arXiv:2307.09288. 797

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, 798
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan, 799
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and 800
Mi Zhang. 2024. Efficient large language models: A 801
survey. Transactions on Machine Learning Research. 802

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 803
preet Singh, Julian Michael, Felix Hill, Omer Levy, 804
and Samuel R. Bowman. 2020. Superglue: A stickier 805
benchmark for general-purpose language understand- 806
ing systems. Preprint, arXiv:1905.00537. 807

Alex Wang, Amanpreet Singh, Julian Michael, Felix 808
Hill, Omer Levy, and Samuel R. Bowman. 2019. 809
GLUE: A multi-task benchmark and analysis plat- 810
form for natural language understanding. In Interna- 811
tional Conference on Learning Representations. 812

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang 813
Yang, and Junchi Yan. 2022. ZARTS: On zero-order 814
optimization for neural architecture search. In Ad- 815
vances in Neural Information Processing Systems. 816

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and 817
Shangguang Wang. 2024. FwdLLM: Efficient fed- 818
erated finetuning of large language models with per- 819
turbed inferences. In 2024 USENIX Annual Techni- 820
cal Conference (USENIX ATC 24). 821

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios 822
Mouchtaris, and Zheng Zhang. 2024. Adazeta: Adap- 823
tive zeroth-order tensor-train adaption for memory- 824
efficient large language models fine-tuning. Preprint, 825
arXiv:2406.18060. 826

Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu- 827
anzhe Liu. 2024. Llm as a system service on mobile 828
devices. Preprint, arXiv:2403.11805. 829

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen 830
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient 831
low-rank adaptation for large language models fine- 832
tuning. Preprint, arXiv:2308.03303. 833

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and 834
Wei Lu. 2024a. Tinyllama: An open-source small 835
language model. Preprint, arXiv:2401.02385. 836

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 837
Artetxe, Moya Chen, Shuohui Chen, Christopher 838
Dewan, Mona Diab, and et al. 2022. Opt: Open 839
pre-trained transformer language models. Preprint, 840
arXiv:2205.01068. 841

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, 842
Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Ja- 843
son D. Lee, Wotao Yin, Mingyi Hong, Zhangyang 844
Wang, Sijia Liu, and Tianlong Chen. 2024b. Revisit- 845
ing zeroth-order optimization for memory-efficient 846
LLM fine-tuning: A benchmark. In Forty-first Inter- 847
national Conference on Machine Learning. 848

10

https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.15751
https://arxiv.org/abs/2402.07818
https://arxiv.org/abs/2402.07818
https://arxiv.org/abs/2402.07818
https://pytorch.org/executorch-overview
https://pytorch.org/executorch/stable/kernel-library-custom-aten-kernel
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://docs.qualcomm.com/bundle/publicresource/topics/80-77512-1/hexagon-dsp-sdk-collection-landing-page.html?product=1601111740010422
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2406.18060
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2403.11805
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2308.03303
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068


Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang849
Wang, Anima Anandkumar, and Yuandong Tian.850
2024. Galore: Memory-efficient LLM training by851
gradient low-rank projection. In Forty-first Interna-852
tional Conference on Machine Learning.853

Ligeng Zhu, Lanxiang Hu, Ji Lin, Wei-Chen Wang,854
Wei-Ming Chen, and Song Han. 2023. Pockengine:855
Sparse and efficient fine-tuning in a pocket. In856
IEEE/ACM International Symposium on Microarchi-857
tecture (MICRO).858

11



A MeZO Algorithm and Its Limitation859

Algorithm 3 MeZO with q > 1.

1: Input: parameters θ ∈ Rd, loss L : Rd →
R, step budget T , function query budget q,
perturbation scale ϵ, learning rate η

2: for t = 1, . . . , T do
3: for i = 1, . . . , q do
4: seeds, projected_grads = []
5: Sample batch B ⊂ D and random seed s
6: θ = PerturbParameters(θ, ϵ, s)
7: ℓ+ = L(θ;B)
8: θ = PerturbParameters(θ,−2ϵ, s)
9: ℓ− = L(θ;B)

10: θ = PerturbParameters(θ, ϵ, s)
11: proj_grads[i] = ℓ+−ℓ−

2ϵ
12: seeds[i] = s
13: end for
14: for i = 1, . . . , q do
15: Reset random generator with seeds[i]
16: for θj ∈ θ do
17: z ∼ N (0, 1)
18: θj = θj − ηt

q × proj_grads[i]× z
19: end for
20: end for
21: end for
22: Function PerturbParameters(θ, ϵ, s)
23: Reset random number generator with seed s
24: for θj ∈ θ do
25: z ∼ N (0, 1)
26: θj = θj + ϵz
27: end for
28: End Function

We evaluate the runtime efficiency of the MeZO860

optimizer, outlined in Algorithm 3, which is861

adapted from the original work. MeZO employs a862

random seed trick to eliminate the need for storing863

random noise, reducing peak memory usage.864

In each iteration, MeZO proceeds through four865

distinct loops. First, it introduces positive noise866

into the trainable parameters (line 6), followed by867

perturbing the weights in the opposite direction868

using the same noise (line 8). Next, the weights869

are restored to their original state before the update870

(line 10), and finally, the computed gradients are871

applied to update the weights (line 18).872

This method reduces memory overhead from873

O(d) to O(1) by avoiding the storage of random874

noise. However, the runtime cost escalates from875

O(1) to O(d) because each parameter update re-876

quires individual processing, which cannot be effi- 877

ciently parallelized. In practical settings, especially 878

with LLMs, iterating over the full parameter set 879

four times per update can significantly slow down 880

the training process, thus negating the benefits of 881

eliminating backpropagation. 882

In contrast, PyTorch’s FO optimizers utilize a 883

foreach implementation by default. This method 884

aggregates all layer weights into a single tensor dur- 885

ing parameter updates, which speeds up the compu- 886

tation. However, this approach also increases the 887

memory usage by O(d), as it requires maintaining 888

a copy of the entire gradients for the parameters 889

update. 890

Table 4 compares the runtime of the Llama2-7B 891

model using both FO-SGD and MeZO-SGD opti- 892

mizers (q = 1) over the full parameter space across 893

various batch sizes and sequence lengths on the 894

same standard benchmark introduced in Section 895

4.2. The FO optimizer is run with FP16 mixed- 896

precision training, while MeZO uses pure FP16 897

to maximize computational speed. To avoid out- 898

of-memory errors, we utilize two NVIDIA A100 899

(40GB) GPUs for the FO optimizer, which in- 900

curs additional GPU communication time in a dis- 901

tributed environment. 902

Sequence length 64 128 256
Batch size 1 4 8 1 4 8 1 4 8
FO-SGD 0.17 0.21 0.34 0.19 0.33 0.49 0.18 0.49 0.90
MeZO-SGD (q = 1) 0.43 0.48 0.56 0.43 0.56 0.73 0.45 0.73 1.05

Table 4: Runtime (sec/step) of Llama2-7B using FO and
MeZO optimizers over full parameter space.

When both the batch size and sequence length 903

are small, MeZO exhibits significantly higher run- 904

time due to the overhead of sequential operations 905

required to apply perturbations and gradients. How- 906

ever, as the batch size and sequence length increase, 907

where forward and backward passes, as well as 908

GPU communication, dominate the runtime, the 909

MeZO optimizer demonstrates improved perfor- 910

mance. This behavior highlights the importance of 911

applying PEFT methods with MeZO to mitigate 912

the computation overhead caused by the sequential 913

processing of model parameters. 914

B Preliminary Experiment of ZO with 915

Different PEFT Methods 916

We conducted a preliminary experiment by fine- 917

tuning the OPT-1.3B model (Zhang et al., 2022) for 918

10,000 iterations on the SST2 dataset (Wang et al., 919

12



2019) using ZO-SGD optimizer with different920

PEFT methods. We use hyperparameter grid search921

with learning rate ∈ {5e−6, 5e−5, 5e−4, 5e−3}922

and ϵ ∈ {1e− 3, 1e− 2}. LoRA (Hu et al., 2022),923

LoRA-FA (Zhang et al., 2023), and DoRA (Liu924

et al., 2024a) are configured with r = 16, and925

VeRA (Kopiczko et al., 2024) uses r = 1024.926

The results in Table 5 indicate that the LoRA-FA927

method outperforms other PEFT methods in terms928

of accuracy.929

PEFT Methods LoRA LoRA-FA DoRA VeRA
Accuracy 90.9 92.0 90.9 91.4

Table 5: ZO accuracy of OPT-1.3B on SST2 dataset
using different PEFT methods.

C Padding Statistics930

Figure 5 illustrates how smaller batch sizes (e.g.,931

2) result in less padding compared to larger batch932

sizes (e.g., 8), thereby reducing wasted computa-933

tion.934

1 32 64 96 128

1
2
3
4
5
6
7
8

Token Count

Sa
m

pl
e

In
de

x

Padding on batch size of 8

1 32 64 96 128

1
2
3
4
5
6
7
8

Token Count

Padding on batch size of 2

Figure 5: The standard batching approach pads shorter
sequences to the maximum sequence length within the
batch.

Figure 6 shows the average percentage of935

padding tokens used across different tasks and936

batch sizes. A larger batch size of 16 results in937

a higher percentage of padding tokens across all938

tasks compared to a batch size of 4. This suggests939

that smaller batch sizes may help reduce padding940

overhead, potentially leading to more efficient com-941

putation.942

D Experiment Setup943

D.1 Datasets944

We evaluate the performance of the TinyLlama-945

1.1B model on six tasks from the GLUE dataset946

(Wang et al., 2019): sentiment analysis (SST2),947

paraphrase (MRPC and QQP), and natural lan-948

guage inference (QNLI, RTE, and WNLI). For949

sst
2 rte

bo
olq wsc wic

mult
ircco

pa
sq

ua
d
dro

p

wino
gra

nd
e
mrpc qq

p
qn

li
wnli

0

20

40

60

Pa
dd

in
g

To
ke

ns
A

vg
Pe

rc
en

ta
ge

Batch size 16
Batch size 4

Figure 6: Average percentage of padding tokens for
different tasks and batch sizes.

the larger Llama2-7B model, evaluations were 950

performed on two tasks from the GLUE dataset: 951

SST2 and RTE. Additionally, the model was tested 952

on six tasks from the SuperGLUE dataset (Wang 953

et al., 2020), categorized as follows: text clas- 954

sification (BoolQ, WSC, WIC, and MultiRC), 955

and multiple-choice (COPA). We include three 956

additional multiple-choice tasks from the Wino- 957

Grande (Sakaguchi et al., 2021), ARC-Easy, and 958

ARC-Challenge (Clark et al., 2018) datasets. For 959

question-and-answering tasks, we utilize the F1 960

score as a metric, while accuracy metrics are used 961

for the rest. All datasets used in this work are in 962

English. 963

D.2 Training procedure 964

We achieve text classification, multiple-choice, and 965

question-and-answering tasks through next-word 966

prediction, using prompt templates based on MeZO 967

(Malladi et al., 2023) and PromptSource (Bach 968

et al., 2022). Table 6 presents the prompt templates 969

used for the datasets in our TinyLlama-1.1B and 970

Llama2-7B experiments. For SST-2, RTE, BoolQ, 971

WSC, WIC, MultiRC, and COPA, we applied the 972

template from MeZO (Malladi et al., 2023). We cre- 973

ated templates for MRPC, QQP, QNLI, WNLI, and 974

ARC by following the suggestions from Prompt- 975

Source (Bach et al., 2022), and we adapted the 976

same template for WinoGrande from (Zhang et al., 977

2024b). 978

Unlike MeZO, we compute the loss value of pre- 979

diction over the entire vocabulary space instead of 980

only the vocabulary space of the ground true. For 981

these tests, we also adopt a low-volume data con- 982

dition, limiting our samples to 1,000 for training, 983

500 for validation, and 1,000 for testing, as pro- 984

13



posed in the original MeZO work (Malladi et al.,985

2023). FO-SGD experiments are trained for 1,000986

iterations, and performance on the test dataset is987

evaluated every 100 steps. ZO experiments are988

trained for 20,000 iterations and performance on989

the test dataset is evaluated every 500 steps.990

D.3 Hyperparameters991

We report the hyperparameters searching grids in992

Table 7. For LoRA hyperparameters, we choose993

the LoRA rank to be 16 and LoRA alpha to be994

32. For MobiZO, with the constant batch size of995

16, we search configurations (q = 1, E = 16),996

(q = 4, E = 4), and (q = 16, E = 1).997

14



Dataset Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise> Does this mean that “<hypothesis>” is true? Yes or No?

Yes/No
MRPC cls. Do the following two sentences mean the same thing? Yes or No?

Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

QQP cls. Are these two questions asking the same thing? Yes or No?
Question 1: <question1>
Question 2: <question2>
Yes/No

QNLI cls. Does this sentence answer the question? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

WNLI cls. Given the first sentence, is the second sentence true? Yes or No?
Sentence 1: <sentence1>
Sentence 2: <sentence2>
Yes/No

BoolQ cls. <passage> <question> <answer>?
Yes/No

WSC cls. <text> In the previous sentence, does the pronoun “<span2>” refer to <span1>?
Yes/No

WIC cls. Does the word “<word>” have the same meaning in these two sentences?
<sent1> <sent2>
Yes, No?

MultiRC cls. <paragraph> Question: <question>
I found this answer “<answer>”. Is that correct?
Yes or No?

COPA mch. <premise> so/because <candidate>

WinoGrande mch. <context> <subject> <object>

ARC cls. Pick the most correct option to answer the following question: <question>
Options: <op1>, <op2>, <op3>, <op4>
Answer: <label>

Table 6: The prompt template of the datasets used in the experiments.

TinyLlama-1.1B
FO (Full) Batch size 16

Learning rate {1e-4, 5e-5, 1e-5}
FO (LoRA-FA) Batch size 16

Learning rate {5e-3, 1e-3, 5e-4}
MeZO (Full) Batch size 16

Learning rate {1e-6, 5e-7, 1e-7}
ϵ 1e-3

MobiZO Batch size 16
q {1, 2, 4, 8, 16}
Learning rate {5e-4, 1e-4, 5e-5, 1e-5}
ϵ 1e-2

Llama2-7B
Experiment Hyperparameters Values
FO (Full) Batch size 8

Learning rate {1e-4, 5e-5, 1e-5}
FO (LoRA-FA) Batch size 8

Learning rate {5e-3, 1e-3, 5e-4}
MeZO (Full) Batch size 16

Learning rate {1e-6, 5e-7, 1e-7}
ϵ 1e-3

MobiZO Batch size 16
q {1, 2, 4, 8, 16}
Learning rate {5e-4, 1e-4, 5e-5, 1e-5}
ϵ 1e-2

Table 7: Hyperparameters used for TinyLlama-1.1B and Llama2-7B experiments. Note that MeZO (LoRA-FA) is a
special case of MobiZO with q = 1.

15



E Additional FO Experiments998

We also provide additional experimental results on999

FO-Adam in Tables 8 and 9. While FO-Adam can1000

enhance model performance, it introduces a signifi-1001

cantly higher memory overhead, particularly when1002

updating all model parameters. This is because1003

Adam maintains two state variables, moment esti-1004

mates of the first and second order, for each param-1005

eter, effectively tripling the memory requirement1006

compared to storing only the model parameters.1007

Therefore, FO-Adam is typically deployed in dis-1008

tributed multi-GPU environments, which further in-1009

creases runtime due to the overhead of inter-device1010

communication.1011

Tasks SST-2 RTE MRPC QQP QNLI WNLI
Full 91.9 72.5 77.4 82.4 80.8 56.3
LoRA-FA 94.2 82.6 82.3 84.4 86.5 56.3

Table 8: Performance of fine-tuning TinyLlama-1.1B
on different tasks with FO-Adam optimizers.

Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA
Full 92.5 78.7 80.6 63.4 67.2 71.7 81.0
LoRA-FA 96.0 88.1 85.7 79.8 75.1 84.2 87.0

Table 9: Performance of fine-tuning Llama2-7B on dif-
ferent tasks with FO-Adam optimizers.

F Additional ZO Experiments1012

F.1 OPT model1013

We conducted additional zeroth-order optimization1014

experiments on the OPT-1.3B model (Zhang et al.,1015

2022), which was also evaluated in the original1016

MeZO study (Malladi et al., 2023). Given our em-1017

phasis on deployment in resource-constrained edge1018

environments, we exclude larger models such as1019

OPT-13B and OPT-70B from consideration. As1020

shown in Table 10, MobiZO consistently outper-1021

forms MeZO across most tasks, highlighting its1022

effectiveness beyond the LLaMA model family.1023

These results complement our primary evaluations1024

on LLaMA-based models and further demonstrate1025

the general applicability of MobiZO across diverse1026

model architectures.1027

Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) 92.4 57.8 70.6 67.7 56.2 59.2
MeZO (LoRA-FA) 89.8 62.8 70.6 69.3 58.9 59.2
MobiZO (q = 4) 92.0 62.8 71.3 73.1 65.4 60.6
MobiZO (q = 16) 91.5 62.8 71.3 74.3 65.8 60.6

Table 10: Evaluation results on GLUE tasks using OPT-
1.3B with different ZO methods.

F.2 Llama3.2-1B model 1028

Llama3.2-1B (Meta-AI, 2024c) is the first small- 1029

scale model from the LLaMA family designed 1030

specifically for edge deployment. As shown in 1031

Table 11, MobiZO continues to outperform the 1032

baseline MeZO on the majority of GLUE tasks. 1033

Methods SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) 91.9 63.9 70.6 75.6 67.7 60.6
MeZO (LoRA-FA) 92.8 64.6 70.3 73.6 60.4 63.4
MobiZO (q = 4) 93.8 64.6 74.8 76.2 63.7 63.4
MobiZO (q = 16) 93.7 65.3 73.0 77.9 67.8 63.4

Table 11: Evaluation results on GLUE tasks using
Llama3.2-1B with different ZO methods.

F.3 In-depth analysis of trade-offs in RGE 1034

Table 12 summarizes different trade-offs in RGE 1035

under a fixed computational budget. One strategy 1036

(Row 2) suggested by MeZO compensates for the 1037

increased number of queries by reducing the total 1038

number of training steps. In this work, we intro- 1039

duce an alternative trade-off (Row 3): increasing 1040

the query count while decreasing the batch size, 1041

rather than reducing training steps. As demon- 1042

strated in Section D, this approach consistently out- 1043

performs the trade-offs in Rows 1 and 2. Nonethe- 1044

less, each training step takes longer than it would 1045

with a single-query (q = 1) because the gradient 1046

estimations are executed sequentially, even though 1047

the total compute remains the same. While this 1048

trade-off improves final model accuracy, our objec- 1049

tive is to maintain high accuracy while minimizing 1050

per-step execution time via the parallelism intro- 1051

duced in MobiZO. 1052

Query Batch size Training steps Performance Wall-clock time
1 B T ✗ ✓

q B T/q ✗ ✓

q B/q T ✓ RGE ✗ / MobiZO ✓

Table 12: Different trade-offs for RGE.

Our motivation for this adjustment stems from 1053

the convergence analysis in the MeZO work (Mal- 1054

ladi et al., 2023), which shows that reaching ϵ- 1055

suboptimality requires 1056

t = O
(
ℓ

µ

(
1 +

r

n

)(
1 +

α

µB

)
log

(
L(θ0)− L∗

ϵ

))
, 1057

where n is the number of zeroth-order queries, 1058

B is the batch size, r is the local effective rank of 1059

the Hessian, and α bounds the trace of the gradient- 1060

covariance matrix. Among these variables, ℓ, µ, 1061

and α are properties of the loss landscape that are 1062

16



generally not controllable, but n and B are hy-1063

perparameters that can be tuned. We hypothesize1064

that increasing n has a greater impact on conver-1065

gence speed than increasing B, especially in large1066

language models with low effective Hessian rank1067

(Malladi et al., 2023). Given the complexity of1068

these models, analytically estimating r, α, or µ is1069

intractable; we therefore validate this hypothesis1070

through empirical results.1071

To support our analysis, Table 13 presents av-1072

eraged performance across different values of q1073

for both TinyLlama-1.1B and Llama2-7B on their1074

corresponding tasks described in Section 4. As q1075

increases and E decreases proportionally (keeping1076

total B fixed), model performance consistently im-1077

proves compared to single query RGE, confirming1078

the benefit of our trade-off strategy. However, the1079

improvement does not persist uniformly as q contin-1080

ues to grow. Therefore, in practice, we recommend1081

using q = 4 or q = 16, which offer a favorable1082

balance between convergence quality and hyperpa-1083

rameter search.1084

q 1 2 4 8 16
TinyLlama-1.1B 70.33 73.62 74.10 74.82 74.80
Llama2-7B 71.62 71.75 72.87 72.81 72.83

Table 13: Average performance of TinyLlama-1.1B and
Llama2-7B models under varying numbers of queries q
in MebiZO.

F.4 MobiZO with weight-only quantization1085

To evaluate the compatibility of MobiZO with1086

quantized models, we apply weight-only quan-1087

tization at both 8-bit and 4-bit precision levels1088

to the TinyLlama-1.1B model, building on Q-1089

LoRA (Dettmers et al., 2023), which has shown1090

that NF4 quantization is effective for freezing pre-1091

trained weights. In this setup, weights are stored1092

in low-bit formats to reduce memory usage and are1093

dequantized to FP16 during the forward pass. As1094

shown in Table 14 and Table 1, the fine-tuning per-1095

formance remains comparable to that of full FP161096

training, confirming that low-bit quantization does1097

not significantly affect model accuracy.1098

G Ablation Studies on System1099

Performance of MobiZO1100

G.1 Efficiency of outer-loop parallelization1101

We measure the runtime and memory usage of Mo-1102

biZO, implemented using outer-loop paralleliza-1103

tion only for the Llama2-7B model across different1104

Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
8-bit weights
MobiZO (q = 4) 88.3 70.3 73.4 76.2 74.8 60.3
MobiZO (q = 16) 89.4 72.2 73.5 76.9 76.5 59.7
4-bit weights
MobiZO (q = 4) 88.0 70.1 73.2 76.1 74.6 59.6
MobiZO (q = 16) 88.9 72.1 73.0 77.1 76.4 58.2

Table 14: Performance of TinyLlama-1.1B on GLUE
tasks under 8-bit and 4-bit weight-only quantization.

effective batch size and fixed sequence lengths con- 1105

figurations. As shown in Table 15, the runtime 1106

remains nearly identical across different combina- 1107

tions of the number of queries q and effective batch 1108

size E, given that the batch size remains constant at 1109

B = 16, which indicates our outer-loop paralleliza- 1110

tion implementation does not incur computation 1111

overhead. Peak memory usage increases slightly 1112

due to the instantiation of multiple LoRA trainable 1113

parameters at each layer. 1114

Sequence length 64 128 256
q 1 4 16 1 4 16 1 4 16
Effective batch size 16 4 1 16 4 1 16 4 1
Runtime (sec/step) 0.18 0.20 0.19 0.35 0.37 0.32 0.69 0.67 0.71
Memory (GB) 12.61 12.69 12.81 12.64 12.80 13.14 12.70 13.04 13.53

Table 15: System performance of outer-loop paralleliza-
tion for Llama2-7B under the same batch size of 16.

G.2 Efficiency of inner-loop parallelization 1115

We measure the runtime and memory usage of Mo- 1116

biZO, implemented using inner-loop paralleliza- 1117

tion only for the Llama2-7B model across fixed 1118

different sequence length and batch size configura- 1119

tions. As shown in Table 16, the runtime speedup 1120

is up to 1.79× at a sequence length of 64 and batch 1121

size of 1. This improvement is primarily due to 1122

reusing model weights across two forward passes, 1123

which reduces cache access and increases operation 1124

intensity. However, the benefits diminish as oper- 1125

ation intensity increases and the system becomes 1126

compute-bound. 1127

Sequence length 64 128 256
batch size 1 8 16 1 8 16 1 8 16
MeZO (q = 1, LoRA-FA) 0.07 0.11 0.18 0.07 0.19 0.35 0.07 0.35 0.69
MobiZO (q = 1, inner) 0.04 0.10 0.18 0.04 0.18 0.34 0.06 0.34 0.67

Table 16: Runtime (sec/step) of inner-loop paralleliza-
tion for Llama2-7B under different sequence length and
batch size configurations.

Additionally, we evaluate the speedup achieved 1128

by inner-loop parallelization under weight-only 1129

INT8 and NF4 quantization. As illustrated in Fig- 1130

ure 7, inner-loop parallelization achieves the great- 1131

est speedup in conjunction with NF4 quantization, 1132

17



TinyLlama-1.1B Llama2-7B

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

R
un

tim
e

sp
ee

du
p

seq len = 64

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

seq len = 128

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

seq len = 256

NF4
INT8
FP16

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

R
un

tim
e

sp
ee

du
p

seq len = 64

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

seq len = 128

1 8 16
1

1.2

1.4

1.6

1.8

2

batch size

seq len = 256

NF4
INT8
FP16

Figure 7: Runtime speedup per training step of TinyLlama-1.1B and Llama2-7B for different quantization methods,
sequence lengths, and batch sizes.

reaching up to a 1.97× improvement over the se-1133

quential execution of two forward passes. Since1134

NF4 dequantization is more computationally inten-1135

sive than INT8 during forward passes, inner-loop1136

parallelization enhances efficiency by dequantizing1137

weights only once per training step, reducing the1138

overhead from repeated dequantization.1139

G.3 End-to-end training efficiency1140

Tables 18 - 21 provide additional details on per-1141

task runtime and memory usage to complement1142

the experimental results in Table 1. In these ta-1143

bles, MeZO (Full) represents the baseline configu-1144

ration in which all model parameters are updated1145

during training. For MeZO (LoRA-FA), results1146

are presented for both the standard implementation1147

without optimizations and a variant enhanced with1148

inner-loop parallelization. For MobiZO, results are1149

shown for two setups: one using only outer-loop1150

parallelization and another that combines both in-1151

ner and outer-loop parallelization strategies. As1152

noted in Section 4.2, when both parallelization1153

strategies are enabled, MobiZO achieves speedups1154

of up to 4.3× over MeZO (Full) and up to 1.9×1155

over MeZO (LoRA-FA).1156

Regarding memory usage, enabling both inner1157

and outer-loop parallelization results in higher1158

memory consumption for both models compared to1159

configurations using only outer-loop parallelization.1160

This increase is due to the concurrent computation1161

of two forward passes when inner-loop paralleliza-1162

tion is enabled. Specifically, for Llama2-7B, tasks1163

like MultiRC see an increase in memory usage of1164

up to 33% when using inner-loop parallelization1165

due to larger sequence length. Despite this increase,1166

the memory efficiency remains within acceptable1167

bounds.1168

H Edge Devices Specifications 1169

Table 17 presents the specifications of the edge 1170

computing devices used in the experiments, detail- 1171

ing the CPU, memory, and accelerator components. 1172

Device CPU Memory Accelerator
NVIDIA Jetson 6× 1.5GHz Cortex- 8GB 68GB/s 1024-core Ampere
Orin Nano A78AE LPDDR5 GPU 625MHz
OnePlus 12 1× 3.3GHz Cortex-X4 12GB 77GB/s Hexagon NPU

3× 3.2GHz Cortex-A720 LPDDR5
2× 3.0GHz Cortex-A720
2× 2.3GHz Cortex-A520

Table 17: Edge devices used in the experiments.

For experiments on the Android NPU backend, 1173

we use the Qualcomm AI Engine Direct SDK 1174

(v2.28.0.241029) and Android NDK (r26d) to com- 1175

pile the kernel library. 1176

18



Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) (q = 1) 38.31 61.51 45.71 40.76 46.30 43.57
MeZO (LoRA-FA) (q = 1)

standard 34.66 55.53 35.45 35.00 37.44 34.40
inner 23.55 54.07 35.72 28.76 36.59 33.22

MobiZO (q = 4)
outer only 36.27 45.22 36.90 36.19 35.33 37.23
inner + outer 23.68 43.75 34.07 25.83 31.97 29.09

MobiZO (q = 16)
outer only 35.57 38.18 35.38 35.19 35.86 35.34
inner + outer 24.77 31.98 29.90 24.31 27.43 25.84

Table 18: Runtime (min/task) of fine-tuning TinyLlama-1.1B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande
MeZO (Full) (q = 1) 159.44 288.10 384.07 209.72 173.01 526.49 146.40 154.74
MeZO (LoRA-FA) (q = 1)

standard 54.20 213.81 329.46 116.79 70.55 504.74 40.77 48.07
inner 55.22 210.30 322.64 118.03 72.75 505.54 36.57 48.62

MobiZO (q = 4)
outer only 49.11 165.53 251.63 91.87 66.55 505.70 44.65 49.01
inner + outer 45.17 164.21 248.55 92.17 67.52 496.32 37.38 46.89

MobiZO (q = 16)
outer only 43.91 111.80 171.84 71.14 60.31 438.24 41.96 46.41
inner + outer 36.99 111.54 171.14 72.40 61.10 421.41 35.91 43.41

Table 19: Runtime (min/task) of fine-tuning Llama2-7B across different tasks using different ZO methods.

Methods \ Tasks SST-2 RTE MRPC QQP QNLI WNLI
MeZO (Full) (q = 1) 2.56 3.38 2.74 2.74 3.17 2.77
MeZO (LoRA-FA) (q = 1)

standard 2.35 3.27 2.63 2.63 3.06 2.66
inner 2.63 4.46 3.18 3.18 4.04 3.24

MobiZO (q = 4)
outer only 2.37 3.29 2.65 2.65 3.07 2.68
inner + outer 2.67 4.50 3.22 3.22 4.07 3.28

MobiZO (q = 16)
outer only 2.44 3.18 2.72 2.69 3.14 2.75
inner + outer 2.81 4.28 3.36 3.30 4.22 3.42

Table 20: Peak memory usage (GB) of fine-tuning TinyLlama-1.1B across different tasks using different ZO
methods.

Methods \ Tasks SST-2 RTE BoolQ WSC WiC MultiRC COPA WinoGrande
MeZO (Full) 13.64 16.23 18.39 14.51 13.82 18.39 13.60 13.60
MeZO (LoRA-FA) (q = 1)

standard 13.41 16.00 18.16 14.27 13.58 18.16 12.98 13.15
inner 14.23 19.41 23.73 15.96 14.57 23.73 13.37 13.71

MobiZO (q = 4)
outer only 13.53 16.12 18.28 14.40 13.71 18.28 13.10 13.27
inner + outer 14.47 19.65 23.97 16.20 14.82 23.97 13.61 13.95

MobiZO (q = 16)
outer only 14.03 16.10 18.77 14.92 14.20 18.77 13.59 13.77
inner + outer 15.45 19.59 24.95 17.17 15.79 24.95 14.58 14.93

Table 21: Peak memory usage (GB) of fine-tuning Llama2-7B across different tasks using different ZO methods.

19


	Introduction
	Background and Related Work
	The MobiZO Framework
	Experiments
	Model Fine-Tuning Performance
	System Performance
	On-Device Training Experiments

	Conclusion
	Limitations
	MeZO Algorithm and Its Limitation
	Preliminary Experiment of ZO with Different PEFT Methods
	Padding Statistics
	Experiment Setup
	Datasets
	Training procedure
	Hyperparameters

	Additional FO Experiments
	Additional ZO Experiments
	OPT model
	Llama3.2-1B model
	In-depth analysis of trade-offs in RGE
	MobiZO with weight-only quantization

	Ablation Studies on System Performance of MobiZO
	Efficiency of outer-loop parallelization
	Efficiency of inner-loop parallelization
	End-to-end training efficiency

	Edge Devices Specifications

