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Geometry-complete diffusion for 3D
molecule generation and optimization

Check for updates

Alex Morehead & Jianlin Cheng

Generative deep learning methods have recently been proposed for generating 3D molecules using
equivariant graph neural networks (GNNs) within a denoising diffusion framework. However, such
methods are unable to learn important geometric properties of 3Dmolecules, as they adoptmolecule-
agnostic and non-geometric GNNs as their 3D graph denoising networks, which notably hinders their
ability to generate valid large 3D molecules. In this work, we address these gaps by introducing the
Geometry-CompleteDiffusionModel (GCDM) for 3Dmolecule generation,which outperforms existing
3Dmolecular diffusionmodels by significantmargins across conditional andunconditional settings for
the QM9 dataset and the larger GEOM-Drugs dataset, respectively. Importantly, we demonstrate that
GCDM’s generative denoising process enables the model to generate a significant proportion of valid
and energetically-stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail
to do so with the features they learn. Additionally, we show that extensions of GCDM can not only
effectively design 3D molecules for specific protein pockets but can be repurposed to consistently
optimize the geometry and chemical composition of existing 3Dmolecules for molecular stability and
property specificity, demonstrating new versatility of molecular diffusion models. Code and data are
freely available on GitHub.

Generative modeling has recently been experiencing a renaissance in
modeling efforts driven largely by denoising diffusion probabilistic models
(DDPMs). At a high level, DDPMs are trained by learning how to denoise a
noisy version of an input example. For example, in the context of computer
vision, Gaussian noisemay be successively added to an input imagewith the
goals of a DDPM in mind. We would then desire for a generative model of
images to learn how to successfully distinguish between the original input
image’s feature signal and the noise added to the image thereafter. If amodel
can achieve suchoutcomes, we can use themodel to generate new images by
first sampling multivariate Gaussian noise and then iteratively removing,
from the current state of the image, the noise predicted by the model. This
classic formulationofDDPMshas achieved significant results in the spaceof
image generation1, audio synthesis2, and even meta-learning by learning
how to conditionally generate neural network checkpoints3. Furthermore,
such an approach to generative modeling has expanded its reach to
encompass scientific disciplines such as computational biology4–8, compu-
tational chemistry9–11, and computational physics12.

Concurrently, the field of geometric deep learning13 has seen a sizeable
increase in research interest lately, driven largely by theoretical advances
within the discipline14 as well as by applications of such methodology15–18.
Notably, such applications even include what is considered by many

researchers to be a solution to the problem of predicting 3D protein
structures from their corresponding amino acid sequences19. Such an out-
come arose, in part, from recent advances in sequence-based language
modeling efforts20,21 as well as from innovations in equivariant neural net-
work modeling22.

However, it is currently unclear how the expressiveness of
geometric neural networks impacts the ability of generative methods that
incorporate them to faithfully model a geometric data distribution. In
addition, it is currently unknown whether diffusion models for 3D mole-
cules can be repurposed for important, real-world tasks without retraining
or fine-tuning and whether geometric diffusionmodels are better equipped
for such tasks. Toward this end, in this work, we provide the following
findings:
• Neural networks that perform message-passing with geometric

quantities enable diffusion generative models of 3D molecules to
generate valid and energetically-stable large molecules whereas non-
geometric message-passing networks fail to do so, where we introduce
key computational metrics to enable such findings.

• Physical inductive biases such as invariant graph attention and mole-
cular chirality both play important roles in diffusion-generating valid
3D molecules.
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• Our newly-proposed Geometry-Complete Diffusion Model (GCDM
—see Fig. 1), which is the first diffusionmodel to incorporate the above
insights and achieve the ideal type of equivariance for 3D molecule
generation (i.e., SE(3) equivariance), establishes state-of-the-art
(SOTA) results for conditional 3D molecule generation on the QM9
dataset as well as for unconditional molecule generation on the
GEOM-Drugs dataset of large 3D molecules, for the latter more than
doubling PoseBusters validity rates; generates more unique and novel
smallmolecules for unconditional generation on theQM9dataset; and
achieves better Vina energy scores and more than twofold higher
PoseBusters validity rates23 for protein-conditioned 3D molecule
generation.

• We further demonstrate that geometric diffusion models such as
GCDM can consistently perform 3D molecule optimization for
molecular stability as well as for specific molecular properties without
requiring any retraining and can consistently do so whereas non-
geometric diffusion models cannot.

Results and discussion
Unconditional 3D molecule generation—QM9
The first dataset used in our experiments, the QM9 dataset24, contains
molecular properties and 3D atom coordinates for 130k small molecules.
Eachmolecule inQM9can contain up to 29 atoms after hydrogenatoms are
imputed for eachmolecule following dataset postprocessing as in ref. 25. For
the task of 3D molecule generation, we train GCDM to unconditionally
generate molecules by producing atom types (H, C, N, O, and F), integer
atom charges, and 3D coordinates for each of the molecules’ atoms. Fol-
lowing ref. 26, we split QM9 into training, validation, and test partitions
consisting of 100k, 18k, and 13k molecule examples, respectively.

Metrics. We measure each method’s average negative log-likelihood
(NLL) over the corresponding test dataset, for methods that report this
quantity. Intuitively, a method achieving a lower test NLL compared to
other methods indicates that the method can more accurately predict

denoised pairings of atom types and coordinates for unseen data,
implying that it has fit the underlying data distribution more precisely
than other methods. In terms of molecule-specific metrics, we adopt the
scoring conventions of ref. 27 by using the distance between atom pairs
and their respective atom types to predict bond types (single, double,
triple, or none) for all but one baselinemethod (i.e., E-NF). Subsequently,
wemeasure the proportion of generated atoms that have the right valency
(atom stability—AS) and the proportion of generated molecules for
which all atoms are stable (molecule stability—MS). To offer additional
insights into eachmethod’s behavior for 3Dmolecule generation, we also
report the validity (Val) of the generated molecules as determined by
RDKit28, the uniqueness of the generated molecules overall (Uniq), and
whether the generated molecules pass each of the de novo chemical and
structural validity tests (i.e., sanitizable, all atoms connected, valid bond
lengths and angles, no internal steric clashes, flat aromatic rings and
double bonds, low internal energy, correct valence, and kekulizable)
proposed in the PoseBusters software suite23 and adopted by recent works
on molecule generation tasks29,30. Each method’s results in the top half
(bottom half) of Table 1 are reported as the mean and standard deviation
(mean and Student’s t-distribution 95% confidence error intervals) (±) of
each metric across three (five) test runs on QM9, respectively.

Baselines. Besides including a reference point for molecule quality
metrics using QM9 itself (i.e., Data), we compare GCDM (a geometry-
complete DDPM - i.e., GC-DDPM) to 10 baseline models for 3D
molecule generation, each trained and tested using the same corre-
sponding QM9 splits for fair comparisons: G-Schnet31; Equivariant
Normalizing Flows (E-NF)27; GraphDiffusionModels (GDM)25 and their
variations (i.e., GCM-aug); Equivariant Diffusion Models (EDM)25;
Bridge and Bridge+ Force32; latent diffusion models (LDMs) such as
GraphLDM and its variation GraphLDM-aug33; as well as the state-of-
the-art GeoLDM method33. Note that we specifically include these
baselines as representative implicit bond prediction methods for which
bonds are inferred using their generatedmolecules’ atom types and inter-

Fig. 1 | A framework overview of the proposed geometry-complete diffusion
model (GCDM) for geometric and chirality-aware 3D molecule generation. The
framework consists of (i) a graph (topology) definition process; (ii) a GCPNET-
based graph neural network for SE(3)-equivariant graph representation learning;

(iii) denoising of 3D input graphs using GCPNET++; and (iv) application of a
trained GCPNET++ denoising network for 3D molecule generation. Zoom in for
the best viewing experience.
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atomdistances, in contrast to explicit bondprediction approaches such as
those of refs. 34,35 for fair comparisons with our method. For each of
such baseline methods, we report their results as curated by refs. 32,33.
We further include two GCDM ablation models to more closely analyze
the impact of certain key model components within GCDM. These two
ablation models include GCDM without chiral and geometry-complete
local frames F ij (i.e., GCDM w/o Frames) and GCDM without scalar
message attention (SMA) applied to each edge message (i.e., GCDMw/o
SMA). In “Methods” section as well as Supplementary Methods A.2 and
Supplementary Note B, we further discuss GCDM’s design, hyperpara-
meters, and optimization with these model configurations.

Results. In the top half of Table 1, we see that GCDM achieves the
highest percentage of probable (NLL), valid, and unique molecules
compared to all baseline methods, with AS and MS results marginally
lower than those of GeoLDM yet with lower standard deviations. In the
bottom half of Table 1, where we reevaluate GCDM and GeoLDM using
5 sampling runs and report 95% confidence intervals for each metric,
GCDM generates 1.6% more RDKit-valid and unique molecules and
5.2% more novel molecules compared to GeoLDM, all while offering the

best reported NLL for the QM9 test dataset. This result indicates that
although GeoLDM offers novelty rates close to parity (i.e., 50%), GCDM
nearly matches the stability and PB-validity rates of GeoLDM while
yielding novel molecules nearly 60% of the time on average, suggesting
that GCDMmay prove more useful for accurately exploring the space of
novel yet valid small molecules. Our ablation of SMA within GCDM
demonstrates that, to generate stable 3Dmolecules, GCDMheavily relies
on both being able to perform a lightweight version of fully-connected
graph self-attention20, which suggests avenues of future research that will
be required to scale up such generativemodels to large biomolecules such
as proteins. Additionally, removing geometric local frame embeddings
from GCDM reveals that the inductive biases of molecular chirality and
geometry-completeness are important contributing factors in GCDM
achieving these SOTA results. Figure 2 illustrates PoseBusters-valid
examples of QM9-sized molecules generated by GCDM.

Property-conditional 3D molecule generation—QM9
Baselines. Towards the practical use case of conditional generation of
3D molecules, we compare GCDM to existing E(3)-equivariant models,
EDM25 and GeoLDM33, as well as to two naive baselines: “Naive (Upper-

Table 1 | Comparison of GCDM with baseline methods for 3D molecule generation

Type Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑

NF E-NF −59.7 85.0 4.9 40.2 39.4

Generative GNN G-Schnet – 95.7 68.1 85.5 80.3

DDPM GDM −94.7 97.0 63.2 – –

GDM-aug −92.5 97.6 71.6 90.4 89.5

EDM −110.7 ± 1.5 98.7 ± 0.1 82.0 ± 0.4 91.9 ± 0.5 90.7 ± 0.6

Bridge – 98.7 ± 0.1 81.8 ± 0.2 – 90.2

Bridge+ Force – 98.8 ± 0.1 84.6 ± 0.3 92.0 90.7

LDM GraphLDM – 97.2 70.5 83.6 82.7

GraphLDM-aug – 97.9 78.7 90.5 89.5

GeoLDM – 98.9 ± 0.1 89.4 ± 0.5 93.8 ± 0.4 92.7 ± 0.5

GC-DDPM—Ours GCDM w/o Frames −162.3 ± 0.3 98.4 ± 0.0 81.7 ± 0.5 93.9 ± 0.1 92.7 ± 0.1

GCDM w/o SMA −131.3 ± 0.8 95.7 ± 0.1 51.7 ± 1.4 83.1 ± 1.7 82.8 ± 1.7

GCDM −171.0 ± 0.2 98.7 ± 0.0 85.7 ± 0.4 94.8 ± 0.2 93.3 ± 0.0

Data 99.0 95.2 97.7 97.7

Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑ Novel (%) ↑ PB-Valid (%) ↑

GeoLDM – 98.9 ± 0.0 89.8 ± 0.4 93.6 ± 0.2 91.8 ± 0.2 53.5 ± 0.6 93.1 ± 0.4

GCDM −169.4 ± 0.8 98.7 ± 0.1 86.0 ± 0.7 94.9 ± 0.3 93.4 ± 0.3 58.7 ± 0.5 91.9 ± 0.5

The results in the top half of the table are reported in terms of the negative log-likelihood (NLL)—logpðx;h;NÞ, atom stability, molecule stability, validity, and uniqueness of 10,000 samples drawn from each
model, with standard deviations (±) for each model across three runs on QM9. The results in the bottom half of the table are for methods specifically evaluated across five runs on QM9 using Student’s t-
distribution 95% confidence intervals for per-metric errors, additionally with novelty (Novel) defined as the percentage of (valid and unique) generated molecule SMILES strings that were not found in the
QM9 dataset and PoseBusters validity (PB-Valid) defined as the percentage of generated molecules that pass all relevant de novo structural and chemical sanity checks listed in the “Unconditional 3D
molecule generation—QM9” section. The top-1 (best) results for this task are in bold, and the second-best results are underlined, with—denoting a metric value that is not available.

Fig. 2 | PB-valid 3Dmolecules generated by GCDM for the QM9 dataset. The corresponding SMILES strings for these generated small molecules, from left to right, are as
follows: a [H]/N=C(\C#N)NCC, b CC[N]c1n[nH]c(=O)o1, c O=CCNC(=O)CCO, d C/N=c1/[nH]c(O)c(N)o1, e [H]/N=C(/C[C]([NH])OC)OC, and f Oc1coc2cnoc12.
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bound)” where a molecular property classifier ϕc predicts molecular
properties given a method’s generated 3D molecules and shuffled (i.e.,
random) property labels; and “# Atoms” where one uses the numbers of
atoms in a method’s generated 3D molecules to predict their molecular
properties. For each baseline method, we report its mean absolute error
(MAE) in terms ofmolecular property prediction by an ensemble of three
EGNN classifiers ϕc

36 as reported in ref. 25. For GCDM, we train each
conditional model by conditioning it on one of six distinct molecular
property feature inputs—α, gap, homo, lumo, μ, and Cv—for approxi-
mately 1500 epochs using the QM9 validation split of ref. 25 as the
model’s training dataset and the QM9 training split of ref. 25 as the
corresponding EGNN classifier ensemble’s training dataset. Conse-
quently, one can expect the gap between a method’s performance and
that of “QM9 (Lower-bound)” to decrease as themethodmore accurately
generates property-specific molecules.

Results. We see in Table 2 that GCDM achieves the best overall results
compared to all baseline methods in conditioning on a given molecular
property, with conditionally-generated samples shown in Fig. 3 (Note:
PSI4-computed property values37 for (a) and (f) are 69.1 Bohr3 (energy:
−402 a.u.) and 89.7 Bohr3 (energy: −419 a.u.), respectively, at the DFT/
B3LYP/6-31G(2DF,P) level of theory24,38). In particular, as shown in the
bottom half of this table, GCDM surpasses the MAE results of the SOTA
GeoLDMmethod (by 19% on average) for all six molecular properties—

α, gap, homo, lumo, μ, and Cv—by 28%, 9%, 3%, 15%, 21%, and 35%,
respectively, while nearly matching the PB-Valid rates of GeoLDM
(similar to the results in Table 1). These results qualitatively and quan-
titatively demonstrate that, using geometry-complete diffusion, GCDM
enables notably precise generation of 3D molecules with specific mole-
cular properties (e.g., α—polarizability).

Unconditional 3D molecule generation—GEOM-Drugs
The second dataset used in our experiments, the GEOM-Drugs dataset, is a
well-known source of large, 3D molecular conformers for downstream
machine learning tasks. It contains 430k molecules, each with 44 atoms on
average and with up to as many as 181 atoms after hydrogen atoms are
imputed for each molecule following dataset postprocessing as in ref. 25. For
this experiment, we collect the 30 lowest-energy conformers corresponding to
amolecule and task eachbaselinemethodwith generatingnewmoleculeswith
3D positions and types for each constituent atom. Here, we also adopt the
negative log-likelihood, atomstability, andmolecule stabilitymetricsasdefined
in the “Unconditional 3D molecule generation—QM9” section and train
GCDMusing the same hyperparameters as listed in SupplementaryNote B.2,
with the exception of training for approximately 75 epochs onGEOM-Drugs.

Baselines. In this experiment, we compare GCDM to several state-of-
the-art baseline methods for 3D molecule generation on GEOM-Drugs.
Similar to our experiments on QM9, in addition to including a reference

Table 2 | Comparison of GCDM with baseline methods for property-conditional 3D molecule generation

Task α↓ Δϵ↓ ϵHOMO↓ ϵLUMO↓ μ↓ Cv↓

Units Bohr3 meV meV meV D cal
mol K

Naive (Upper-bound) 9.01 1470 645 1457 1.616 6.857

# Atoms 3.86 866 426 813 1.053 1.971

EDM 2.76 655 356 584 1.111 1.101

GeoLDM 2.37 587 340 522 1.108 1.025

GCDM 1.97 602 344 479 0.844 0.689

QM9 (Lower-bound) 0.10 64 39 36 0.043 0.040

Task α↓ Δϵ↓ ϵHOMO↓ ϵLUMO↓ μ↓ Cv↓

Units Bohr3 meV meV meV D cal
mol K

GeoLDM 2.77 ± 0.12 655 ± 20.57 357 ± 5.68 565 ± 10.62 1.089 ± 0.02 1.070 ± 0.04

GCDM 1.99 ± 0.01 595 ± 14.34 346 ± 1.23 480 ± 6.58 0.855 ± 0.00 0.698 ± 0.01

Metric α PB-Valid (%) ↑ Δϵ PB-Valid (%) ↑ ϵHOMO PB-Valid (%) ↑ ϵLUMO PB-Valid (%) ↑ μ PB-Valid (%) ↑ Cv PB-Valid (%) ↑

GeoLDM 93.7 ± 0.5 92.8 ± 0.3 93.9 ± 0.4 93.3 ± 0.6 93.2 ± 1.3 92.5 ± 0.8

GCDM 92.3 ± 0.3 92.5 ± 0.8 92.7 ± 0.5 92.7 ± 0.6 92.4 ± 0.4 91.7 ± 0.4

The results in the tophalf of the table are reported in termsof theMAE formolecular property predictionby anEGNNclassifierϕcon aQM9subset,with results listed forGCDM-generated samples aswell as
for four separate baselinemethods. The results in the bottom half of the table (where GeoLDM is retrained using its official code repository due to the unavailability of its conditional model checkpoints) are
likewise listed for selected methods yet instead report (across an ensemble of three separately-trained EGNN property classifier models, each with a distinct random seed) Student’s t-distribution 95%
confidence error intervals for each propertymetric aswell as the percentage of PoseBusters-validated (PB-Valid) de novogeneratedmolecules. The top-1 (best) conditioning results for this task are in bold,
and the second-best results are underlined.

Fig. 3 | PB-valid 3Dmolecules generated byGCDMusing increasing values of α.The structural characteristics of the generatedmolecules are gradually altered as α ranges
from 68.7 (a) to 93.6 (f).
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point for molecule quality metrics using GEOM-Drugs itself (i.e., Data),
here we also compare against E-NF, GDM, GDM-aug, EDM, Bridge
alongwith its variant Bridge+ Force, aswell asGraphLDM,GraphLDM-
aug, and GeoLDM. As in the “Unconditional 3D molecule generation—
QM9” section, each method’s results in the top half (bottom half) of the
table are reported as the mean and standard deviation (mean and Stu-
dent’s t-distribution 95% confidence interval) (±) of each metric across
three (five) test runs on GEOM-Drugs.

Results. To start, Table 3 displays an interesting phenomenon that is
important to note: due to the size and atomic complexity of GEOM-
Drugs’ molecules and the subsequent errors accumulated when esti-
mating bond types based on such inter-atom distances, the baseline
results for the molecule stability metrics measured here (i.e., Data) are
much lower than those collected for the QM9 dataset. Thus, reporting
additional chemical and structural validity metrics (e.g., PB-Valid) for
comparison is crucial to accurately assess a method’s performance in this
context, which we do in the bottom half of Table 3. Nonetheless, for
GEOM-Drugs, GCDM supersedes EDM’s SOTA negative log-likelihood
results by 57% and advances GeoLDM’s SOTA atom and molecule

stability results by 4% and more than sixfold, respectively. More
importantly, however, GCDM can generate a significant proportion of
PB-valid largemolecules, surpassing even the referencemolecule stability
rate of the GEOM-Drugs dataset (i.e., 2.8) by 54%, demonstrating that
geometric diffusion models such as GCDM can not only effectively
generate valid large molecules but can also generalize beyond the native
distribution of stable molecules within GEOM-Drugs.

Figure 4 illustrates PoseBusters-valid examples of large molecules
generated by GCDM at the scale of GEOM-Drugs. As an example of the
notion that GCDM produces low energy structures for a generated mole-
cular graph, the free energies for Fig. 4a, f were computed to be−3 kcal/mol
and −2 kcal/mol, respectively, using CREST 2.1239 at the GFN2-XTB level
of theory (which matches the corresponding free energy distribution mean
for the GEOM-Drugs dataset (−2.5 kcal/mol) as illustrated in Fig. 2 of ref.
40). Lastly, to detect whether a method, in aggregate, generates molecules
with unlikely 3D conformations, a generated molecule’s energy ratio is
defined as in ref. 23 to be the ratio of themolecule’sUFF-computed energy41

and the mean of 50 RDKit ETKDGv3-generated conformers42 of the same
molecular graph.Note that, as discussedby ref. 43, generatedmoleculeswith
an energy ratio greater than 7 are considered to have highly unlikely 3D

Table 3 | Comparison of GCDM with baseline methods for 3D molecule generation

Type Method NLL ↓ AS (%) ↑ MS (%) ↑

NF E-NF – 75.0 0.0

DDPM GDM −14.2 75.0 0.0

GDM-aug −58.3 77.7 0.0

EDM −137.1 81.3 0.0

Bridge – 81.0 ± 0.7 0.0

Bridge+ Force – 82.4 ± 0.8 0.0

LDM GraphLDM – 76.2 0.0

GraphLDM-aug – 79.6 0.0

GeoLDM – 84.4 0.0

GC-DDPM—Ours GCDM w/o Frames 769.7 88.0 ± 0.3 3.4 ± 0.3

GCDM w/o SMA 3505.5 43.9 ± 3.6 0.1 ± 0.0

GCDM −234.3 89.0 ± 0.8 5.2 ± 1.1

Data 86.5 2.8

Method NLL ↓ AS (%) ↑ MS (%) ↑ Val (%) ↑ Val and Uniq (%) ↑ Novel (%) ↑ PB-Valid (%) ↑

GeoLDM – 84.4 ± 0.1 0.6 ± 0.1 99.5 ± 0.1 99.4 ± 0.1 – 38.3 ± 0.5

GCDM −215.1 ± 3.8 88.1 ± 0.1 4.3 ± 0.4 95.5 ± 0.1 95.5 ± 0.1 95.5 ± 0.1 77.0 ± 0.1

The results in the top half of the table are reported in terms of each method’s negative log-likelihood, atom stability, and molecule stability with standard deviations (±) across three runs on GEOM-Drugs,
each drawing 10,000 samples from the model. The results in the bottom half of the table are for methods specifically evaluated across five runs on QM9 using Student’s t-distribution 95% confidence
intervals for per-metric errors, additionally with validity and uniqueness (Val andUniq), novelty (Novel), and PoseBusters validity (PB-Valid) defined likewise as in the “Unconditional 3Dmolecule generation
—QM9” section; The top-1 (best) results for this task are in bold, and the second-best results are underlined.

Fig. 4 | PB-valid 3Dmolecules generated byGCDMfor theGEOM-Drugs dataset.
The corresponding SMILES strings for these generated large molecules, from left to
right, are as follows: a CC(C)=N[N]C(=O)O[C]([CH]C(=O)NCCCCc1cccnc1)
Cc1ccc2c(c1)OCO2, b CN(N)Cc1cccnc1C(=O)NCCCc1ccc(F)cc1, c C=CCC(=O)

c1cc(C(N)=O)c2ccccc2n1, d CC(=O)N/N=C/N=C/C=C\N=C(/O)[C](O)CC(=O)
N(O)Cc1ccc(F)c(F)c1, e COC(=O)/C(CN)=C(\[CH]c1cc(C(C)=O)c(C)n1C)
c1cc(Cl)ccc1O, and f CC[C@@H](C)/N=C/[C](N[N+](=O)[O-])C(=O)
c1ccc(C(=O)O)cc1.
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conformations. Subsequently, Fig. 5 reveals that the average energy ratio of
GCDM’s large 3D molecules is notably lower and more tightly bounded
compared to GeoLDM, the baseline SOTAmethod for this task, indicating
that GCDM also generates more energetically-stable 3D molecule con-
formations compared to prior methods.

Property-guided 3Dmolecule optimization—QM9
To evaluate whether molecular diffusionmodels can not only generate new
3D molecules but can also optimize existing small molecules using mole-
cular property guidance, we adopt the QM9 dataset for the following
experiment. First, we use an unconditional GCDMmodel to generate 1000
3D molecules using 10 time steps of time-scaled reverse diffusion (to leave
such molecules in an unoptimized state), and then we provide these
molecules to a separate property-conditional diffusion model for optimi-
zation of themolecules towards the conditionalmodel’s respective property.
This conditional model accepts these 3D molecules as intermediate states
for 100 and 250 time steps of property-guided optimization of the mole-
cules’ atom types and 3D coordinates. Lastly, we repurpose our experi-
mental setup from the “Property-conditional 3D molecule generation—
QM9” section to score these optimized molecules using an ensemble of
external property classifier models to evaluate (1) howmuch the optimized
molecules’ predicted property values have been improved for the respective
property (first metric) and (2) whether and how much the optimized
molecules’ stability (as defined in the “Unconditional 3D molecule gen-
eration—QM9” section) has been changed during optimization (second
metric).

Baselines. Baseline methods for this experiment include EDM25 and
GCDM, where both methods use similar experimental setups for eva-
luation. Our baseline methods also include property-specificity and
molecule stabilitymeasures of the initial (unconditional) 3Dmolecules to
demonstrate how much molecular diffusion models can modify or
improve these existing 3D molecules in terms of how property-specific
and stable they are. As in the “Property-conditional 3D molecule gen-
eration—QM9” section, property specificity is measured in terms of the
corresponding property classifier’s MAE for a given molecule with a
targeted property value, reporting the mean and Student’s t-distribution
95% confidence interval for each property MAE across an ensemble of
three corresponding classifiers. Molecular stability (i.e., Mol Stable (%)),
here abbreviated atMS, is defined as in the “Unconditional 3D molecule
generation—QM9” section.

Results. In this section,wequantitatively explore (inFig. 6)whetherandhow
much generativemodels can reduce the property-specificMAE and improve
themolecular stability of a batch of existing 3Dmolecules. In particular, Fig. 6
showcases a practicalfinding: geometric diffusionmodels such asGCDMcan
effectivelybe repurposedas 3Dmolecule optimizationmethodswithminimal
modifications, improving both amolecule’s stability and property specificity.
This finding empirically supports the idea thatmolecular denoising diffusion
modelsmay be applied in the optimization stage of the typical drug discovery
pipeline44 to experiment with a wider range of potential drug candidates
(post-optimization) more quickly than previously possible. Simultaneously,
the baseline EDM method fails to consistently optimize the stability and
property specificity of existing 3D molecules, which suggests that geometric
methods such as GCDM are theoretically and empirically better suited for
such tasks. Notably, on average, with 100 time steps GCDM improves the
stability of the initial molecules by over 25% and their specificity for each
molecular property by over 27%, whereas for the properties it can optimize
with 100 time steps, EDM improves the stability of themolecules by 13% and
their property specificity by 15%. Lastly, it is worth noting that increasing the
number of optimization time steps from 100 to 250 steps inconsistently leads
to further improvements to molecules’ stability and property specificity,
indicating that the optimization trajectory likely reaches a local minimum
around 100 time steps and hence rationalizes reducing the required compute
time for optimizing 1000molecules e.g., from 15min (for 250 steps) to 5min
(for 100 steps).

Protein-conditional 3D molecule generation
To investigatewhether geometry-completemethods can enhance the ability
ofmolecular diffusionmodels to generate 3Dmodels within a given protein
pocket (i.e., to perform structure-based drug design (SBDD)), in this
experiment, we adopt the standard Binding MOAD45 and CrossDocked46

datasets for training and evaluation of GCDM-SBDD, our geometry-
complete, diffusion generative model based on GCPNET++ that extends
the diffusion framework of ref. 47 for protein pocket-aware molecule gen-
eration. The Binding MOAD dataset consists of 100,000 high-quality pro-
tein-ligand complexes for training and 130 proteins for testing, with a 30%
sequence identity threshold being used to define this cross-validation split.
Similarly, the CrossDocked dataset contains 40,484 high-quality protein-
ligand complexes split between training (40,354) and test (100) partitions
using proteins’ enzyme commission numbers as described by ref. 47.

Baselines. Baseline methods for this experiment include DiffSBDD-
cond47 and DiffSBDD-joint47. We compare these methods to our pro-
posed geometry-complete protein-aware diffusion model, GCDM-
SBDD, usingmetrics that assess the properties, and thereby the quality, of
each method’s generated molecules. These molecule-averaged metrics
include amethod’s averageVina score (computed usingQuickVina 2.1)48

as a physics-based estimate of a ligand’s estimated binding affinity with a
target protein, measured in units of kcal/mol (lower is better); average
drug likeliness QED49 (computed using RDKit 2022.03.2); average
synthesizability50 (computed using the procedure introduced by ref. 51)
as an increasing measure of the ease of synthesizing a given molecule
(higher is better); on average howmany rules of Lipinski’s rule of five are
satisfied by a ligand52 (computed compositionally using RDKit
2022.03.2); and average diversity in mean pairwise Tanimoto
distances53,54 (derived manually using fingerprints and Tanimoto simi-
larities computed by RDKit 2022.03.2). Following established conven-
tions for 3Dmolecule generation25, the size of each ligand to generate was
determined using the ligand size distribution of the respective training
dataset. Note that, in this context, “joint” and “cond” configurations
represent generating a molecule for a protein target, respectively, with
and without also modifying the coordinates of the binding pocket within
the protein target. Also note that, similar to our experiments in the
“Unconditional 3Dmolecule generation—QM9”, “Property-conditional
3D molecule generation—QM9”, “Unconditional 3D molecule genera-
tion—GEOM-Drugs” and “Property-guided 3D molecule optimization

Fig. 5 | A comparison of the energy ratios23 of 10,000 large 3D molecules gen-
erated by GCDM and GeoLDM, a baseline state-of-the-art method. Employing
Student’s t-distribution 95% confidence intervals, GCDM achieves a mean energy
ratio of 2.98 ± 0.13, whereas GeoLDM yields a mean energy ratio of 4.19 ± 0.09.
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—QM9” sections, the GCDM-SBDDmodel uses 9 GCPmessage-passing
layers along with 256 (64) and 32 (16) invariant (equivariant) node and
edge features, respectively.

Results. Table 4 shows that, across both of the standard SBDD datasets
(i.e., Binding MOAD and CrossDocked), GCDM-SBDD generates more
clash-free (PB-Valid) and lower energy (Vina) molecules compared to
prior methods. Moreover, across all other metrics, GCDM-SBDD
achieves comparable or better results in terms of drug-likeness mea-
sures (e.g., QED) and comparable results for all other molecule metrics
without performing any hyperparameter tuning due to compute con-
straints. These results suggest that GCDM, with GCPNET++ as its
denoising neural network, not only works well for de novo 3D molecule
generation but also protein target-specific 3D molecule generation,
notably expanding the number of real-world application areas of GCDM.
Concretely, GCDM-SBDD improves upon DiffSBDD’s average Vina
energy scores by 8% on average across both datasets while generating
more than twice as many PB-valid “candidate” molecules for the more
challenging Binding MOAD dataset.

As suggested by ref. 23, the gap between the PB-Valid ratios in Table 4
without and with protein-ligand steric clashes considered for both GCDM-
SBDD and DiffSBDD suggests that deep learning-based drug design

methods for targeted protein pockets can likely benefit significantly from
interaction-aware molecular dynamics relaxation following protein-
conditional molecule generation, which may allow for many generated
“candidate” molecules to have their PB validity “recovered” by such
relaxation. Nonetheless, Fig. 7 demonstrates that GCDM can consistently
generate clash-free realistic and diverse 3D molecules with low Vina ener-
gies for unseen protein targets.

Conclusions
While previous methods for 3D molecule generation have possessed
insufficient geometric and molecular priors for scaling well to a variety of
molecular datasets, in this work, we introduced a geometry-complete dif-
fusionmodel (GCDM) that establishes a clear performance advantage over
previous methods, generating more realistic, stable, valid, unique, and
property-specific 3Dmolecules, while enabling the generationofmany large
3D molecules that are energetically stable as well as chemically and struc-
turally valid. Moreover, GCDM does so without complex modeling tech-
niques such as latent diffusion, which suggests that GCDM’s results could
likely be further improved by expanding upon these techniques33. Although
GCDM’s results here are promising, since it (like previous methods)
requires fully-connected graph attention as well as 1000 time steps to gen-
erate a high-quality batch of 3D molecules, using it to generate several

Fig. 6 | Comparison of GCDM with baseline methods for property-guided 3D
molecule optimization.The results are reported in terms ofmolecular stability (MS)
and the MAE for molecular property prediction by an ensemble of three EGNN
classifiers ϕc (each trained on the same QM9 subset using a distinct random seed)
yielding corresponding Student’s t-distribution 95% confidence intervals, with

results listed for EDM and GCDM-optimized samples as well as the molecule
generation baseline (“Initial Samples”). Note that x denotes a missing bar repre-
senting outlier property MAEs greater than 50. Alternatively, tabular results are
given in Table 1 of Supplementary Results C.1.
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thousand large molecules can take a notable amount of time (e.g., 15
minutes to generate 250 new largemolecules). As such, future researchwith
GCDM could involve adding new time-efficient graph construction or
sampling algorithms55 or exploring the impact of higher-order (e.g., type-2
tensor) yet efficient geometric expressiveness56 on 3D generative models to
accelerate sample generation and increase sample quality. Furthermore,
integrating additional external tools for assessing the quality and rationality
of generated molecules57 is a promising direction for future work.

Methods
Problem setting
In this work, our goal is to generate new 3D molecules either uncondi-
tionally or conditioned on user-specified properties. We represent a mole-
cular point cloud (e.g., 3D molecule) as a fully-connected 3D graph
G ¼ ðV; EÞ with V and E representing the graph’s sets of nodes and edges,
respectively, and N ¼ jVj and E ¼ jEj representing the numbers of nodes
and edges in the graph, accordingly. In addition, X ¼ ðx1; x2; :::; xN Þ 2
RN × 3 represents the respective Cartesian coordinates for each node (i.e.,
atom). Each node in G is described by scalar features H 2 RN × h and m
vector-valued features χ 2 RN × ðm× 3Þ. Likewise, each edge in G is described
by scalar features E 2 RE × e and x vector-valued features ξ 2 RE × ðx × 3Þ.
Then, letM ¼ ½X;H� represent the molecules (i.e., atom coordinates and
atom types) our method is tasked with generating, where [⋅,⋅] denotes the
concatenationof twovariables. Important tonote is that the input featuresH
and E are invariant to 3D roto-translations, whereas the input vector fea-
turesX, χ and ξ are equivariant to 3D roto-translations. Lastly, in particular,
we design a denoising neural network Φ to be equivariant to 3D roto-
translations (i.e., SE(3)-equivariant) by defining it such that its internal

operations and outputs match corresponding 3D roto-translations acting
upon its inputs.

Overview of GCDM
We will now introduce GCDM, a new Geometry-Complete SE(3)-Equiv-
ariant Diffusion Model. GCDM defines a joint noising process on equiv-
ariant atom coordinates x and invariant atom types h to produce a noisy
representation z = [z(x), z(h)] and then learns a generative denoising process
using the newly-proposed GCPNET++ model (see Supplementary
Methods A.1), which desirably contains two distinct feature channels for
scalar and vector features, respectively, and supports geometry-complete
and chirality-aware message-passing58.

As an extension of theDDPM framework59 outlined in Supplementary
Methods A.2.1, GCDM is designed to generate molecules in 3D while
maintaining SE(3) equivariance, in contrast to previous methods that
generate molecules solely in 1D60, 2D61, or 3D modalities without con-
sidering chirality9,25. GCDM generates molecules by directly placing atoms
in continuous 3D space and assigning them discrete types, which is
accomplished by modeling forward and reverse diffusion processes,
respectively:

qðz1:T jz0Þ|fflfflfflfflffl{zfflfflfflfflffl}
Forward

¼
YT
t¼1

qðzt jzt�1Þ pΦðz0:T�1jzT Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Reverse

¼
YT
t¼1

pΦðzt�1jztÞ

Overall, these processes describe a latent variable model pΦ(z0) = ∫pΦ(z0:T)
dz1:T given a sequence of latent variables z0, z1,…, zT matching the
dimensionality of the data M∼ pðz0Þ. As illustrated in Fig. 1, the forward

Table 4 | Evaluation of generatedmolecules for target protein pockets from theBindingMOAD (BM) andCrossDocked (CD) test
datasets

Dataset Method Vina (kcal/mol, ↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) PB-Valid (%) (↑)

BM DiffSBDD-cond (Cα) −5.784 ± 0.03 0.433 ± 0.00 0.616 ± 0.00 4.719 ± 0.01 0.848 ± 0.00 16.6 ± 0.6/1.7 ± 0.2

DiffSBDD-joint (Cα) −5.882 ± 0.05 0.474 ± 0.00 0.631 ± 0.00 4.835 ± 0.01 0.852 ± 0.00 10.7 ± 0.5/0.7 ± 0.1

GCDM-SBDD-cond
(Cα) (Ours)

−6.250 ± 0.03 0:465± 0:00 0:618 ± 0:00 4.661 ± 0.01 0.806 ± 0.00 40.8 ± 0.8/6.8 ± 0.4

GCDM-SBDD-joint
(Cα) (Ours)

�6:159 ± 0:06 0.459 ± 0.00 0.584 ± 0.00 4.609 ± 0.02 0.794 ± 0.00 37:3± 0:8 = 2:0± 0:2

Reference −8.328 ± 0.04 0.602 ± 0.00 0.336 ± 0.00 4.838 ± 0.01 – –

CD DiffSBDD-cond (Cα) −5.540 ± 0.03 0.449 ± 0.00 0.636 ± 0.00 4.735 ± 0.01 0.818 ± 0.00 40.7 ± 1.0/12.4 ± 0.6

DiffSBDD-joint (Cα) −5.735 ± 0.05 0.420 ± 0.00 0.662 ± 0.00 4.859 ± 0.01 0.890 ± 0.00 34.1 ± 0.9/6.2 ± 0.5

GCDM-SBDD-cond
(Cα) (Ours)

−5.955 ± 0.04 0:457± 0:00 0:640 ± 0:00 4:758 ± 0:02 0.795 ± 0.00 38.1 ± 1.0/15.7 ± 0.7

GCDM-SBDD-joint
(Cα) (Ours)

�5:870 ± 0:03 0.458 ± 0.00 0.631 ± 0.00 4.701 ± 0.02 0.810 ± 0.00 46.8 ± 1.0/6.5 ± 0.5

Reference −6.871 ± 0.04 0.476 ± 0.00 0.728 ± 0.00 4.340 ± 0.00 – –

Our proposed method, GCDM-SBDD, achieves the best results for the metrics listed in bold and the second-best results for the metrics underlined. For each metric, a method’s mean and Student’s t-
distribution 95%confidence error interval (±) is reported over 100 generatedmolecules for each test pocket. Additionally, the PB-Validmetric is defined as the percentage of generatedmolecules that pass
all docking-relevant structural and chemical sanity checks proposed by ref. 23, with the validity ratio to the left (right) of each/denoting the percentage of valid molecules without (with) consideration of
protein-ligand steric clashes.

Fig. 7 | Protein pocket-specific 3Dmolecules generated byGCDM-SBDD.GCDM-SBDDmolecules generated for BM (a,b) andCD (c,d) test proteins. Vina energy scores
for these selected pocket-binding molecules range from −8.2 (c) to −9.7 (b).
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process (directed fromright to left) iteratively addsnoise to an input, and the
learned reverse process (directed from left to right) iteratively denoises a
noisy input to generate new examples from the original data distribution.
We will now proceed to formulate GCDM’s joint diffusion process and its
remaining practical details.

Joint molecular diffusion
Recall that ourmodel’s molecular graph inputs, G, associate with each node
a 3D position xi 2 R3 and a feature vector hi 2 Rh. By way of adding
random noise to these model inputs at each time step t via a fixed, Markov
chain variance schedule σ21; σ

2
2; . . . ; σ

2
T , we can define a joint molecular

diffusion process for equivariant atom coordinates x and invariant atom
types h as the product of two distributions25:

qðztjzt�1Þ ¼ N xhðztjαtzt�1; σ
2
t IÞ: ð1Þ

whereN xh serves as concise notation to denote the product of two normal
distributions; the first distribution, N x , represents the noised node coor-
dinates; the second distribution, N h, represents the noised node features;
and αt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2t

p
following the variance preserving process of ref. 59.

With αt∣s = αt/αs and σ2tjs ¼ σ2t � αtjsσ
2
s for any t > s, we can directly obtain

the noisy data distribution q(zt∣z0) at any time step t:

qðzt jz0Þ ¼ N xhðzt jαtj0z0; σ2tj0IÞ: ð2Þ

BayesTheoremthen tells us that ifwe thendefineμt→s(zt, z0) andσt→sas:

μt!sðzt ; z0Þ ¼
αsσ

2
tjs

σ2t
z0 þ αtjsσ

2
s

σ2t
zt and σt!s ¼

σtjsσs
σt

;

we have that the inverse of the noising process, the true denoising process, is
given by the posterior of the transitions conditioned onM∼ z0, a process
that is also Gaussian25:

qðzsjzt ; z0Þ ¼ N ðzsjμt!sðzt ; z0Þ; σ2t!sIÞ: ð3Þ

Parametrization of the reverse process
Noise parametrization. We now need to define the learned generative
reverse process that denoises pure noise into realistic examples from the
original data distribution. Towards this end, we can directly use the noise
posteriors q(zs∣zt, z0) of Eq. A12 within Supplementary Methods A.2.1
after sampling z0 ∼ ðM ¼ ½x; h�Þ. However, to do so, wemust replace the
input variables x and hwith the approximations x̂ and ĥ predicted by the
denoising neural network Φ:

pΦðzsjztÞ ¼ N xhðzsjμΦt!sðzt ;~z0Þ; σ2t!sIÞ; ð4Þ

where the values for ~z0 ¼ ½x̂; ĥ� depend on zt, t, and the denoising neural
network Φ. GCDM then parametrizes μΦt!sðzt ;~z0Þ to predict the noise
ϵ̂ ¼ ½ϵ̂ðxÞ; ϵ̂ðhÞ�, which represents thenoise individually added to x̂ and ĥ.We
can then use the predicted ϵ̂ to derive:

~z0 ¼ ½x̂; ĥ� ¼ zt=αt � ϵ̂t � σt=αt : ð5Þ
Invariant likelihood. Ideally, we desire for a 3D molecular diffusion
model to assign the same likelihood to a generated molecule even after
arbitrarily rotating or translating it in 3D space. To ensure the model
achieves this desirable property for pΦ(z0), we can leverage the insight
that an invariant distribution composed of an equivariant transition
function yields an invariant distribution9,25,27. Moreover, to address the
translation invariance issue raised by ref. 27 in the context of handling a
distribution over 3D coordinates, we adopt the zero center of gravity trick
proposed by ref. 9 to defineN x as a normal distribution on the subspace
defined by ∑ixi = 0. In contrast, to handle node features hi that are

invariant to roto-translations, we can instead use a conventional normal
distribution N . As such, if we parametrize the transition function pΦ
using an SE(3)-equivariant neural network after using the zero center of
gravity trick of ref. 9, the model will have achieved the desired likelihood
invariance property.

Geometry-complete denoising network
Crucially, to satisfy the desired likelihood invariance property described in
the “Parametrization of the reverse process” section while optimizing for
model expressivity and runtime, GCDM parametrizes the denoising neural
network Φ using GCPNET++, an enhanced version of the SE(3)-equiv-
ariant GCPNET algorithm58, that we propose in Supplementary Meth-
ods A.1.2. Notably, GCPNET++ learns both scalar (invariant) and vector
(equivariant) node and edge features through a chirality-sensitive graph
message passing procedure, which enables GCDM to denoise its noisy
molecular graph inputs using not only noisy scalar features but also noisy
vector features that are derived directly from the noisy node coordinates z(x)

(i.e., ψ(z(x))). We empirically find that incorporating such noisy vectors
considerably increases GCDM’s representation capacity for 3D graph
denoising.

Optimization objective
Following previous works on diffusion models25,32,59, the noise para-
metrization chosen forGCDMyields the followingmodel trainingobjective:

Lt ¼ Eϵt ∼N xhð0;1Þ
1
2
w ðtÞ k ϵt � ϵ̂tk2

� �
; ð6Þ

where ϵ̂t is the denoising network’s noise prediction for atom types and
coordinates as described above and where we empirically choose to set
w(t) = 1 for the best possible generation results. Additionally, GCDM per-
mits a negative log-likelihood computation using the same optimization
terms as ref. 25, for which we refer interested readers to Supplementary
Methods A.2.2–A.2.4.

Data availability
The data required to train new GCDMmodels or reproduce our results are
available under a Creative Commons Attribution 4.0 International Public
License at https://zenodo.org/record/788198162. Additionally, all pre-
trained model checkpoints are available under a Creative Commons
Attribution 4.0 International Public License at https://zenodo.org/record/
1099531963.

Code availability
The source code for GCDM is available at https://github.com/
BioinfoMachineLearning/Bio-Diffusion, and the source code for
structure-baseddrugdesign experimentswithGCDMis separately available
at https://github.com/BioinfoMachineLearning/GCDM-SBDD.
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