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ABSTRACT

Detecting unstable periodic orbits (UPOs) based solely on time series is an essential data-driven problem, attracting a great deal of attention
and arousing numerous efforts, in nonlinear sciences. Previous efforts and their developed algorithms, though falling into a category of
model-free methodology, dealt with the time series mostly with a regular sampling rate. Here, we develop a data-driven and model-free
framework for detecting UPOs in chaotic systems using the irregularly sampled time series. This framework articulates the neural differential
equations (NDEs), a recently developed and powerful machine learning technique, with the adaptive delayed feedback (ADF) technique. Since
the NDEs own the exceptional capability of accurate reconstruction of chaotic systems based on the observational time series with irregular
sampling rates, UPOs detection in this scenario could be enhanced by an integration of the NDEs and the ADF technique. We demonstrate
the effectiveness of the articulated framework on representative examples.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143839

With massive generation of datasets from real-world complex
systems, model-free algorithms have been recently and over-
whelmingly developed to cope with the data and solve the data-
driven problems (e.g., detection of hidden and unstable periodic
orbits) in various areas. These complex data are collected exper-
imentally over time from hidden complex dynamical systems,
whose explicit models are often partially or completely unknown.
Although the existing methods perform well in delineating the
skeleton of such complex data and the corresponding systems
based on the collected data with regular sampling rates, antici-
pated still is the method of efficacy to deal with a more realistic
case where the sampling rates of the collected data are not always
regular. Fortunately, some advanced machine learning meth-
ods, including the neural differential equations (NDEs), have the

capability in dealing with such irregularly sampled data. Thus, we
establish a practical framework, integrating the NDEs delicately
with the adaptive delayed feedback technique to pinpoint unob-
servable and unstable periodic orbits based only on the irregularly
sampled chaotic time series. This work could be regarded as a
solid step that uses the machine learning techniques to conquer
the difficulties arising in the data-driven research of complex
dynamical systems.

I. INTRODUCTION

An efficient way to understand a chaotic system is an accu-
rate description of unstable periodic orbits (UPOs) embedded in its
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chaotic but invariant attractor.1 For example, basic ergodic prop-
erties of chaotic attractors, such as fractal dimensions, Lyapunov
exponents, and topological entropy, can be expressed in terms of
UPOs.2,3 UPOs are also critical to many other fields of science and
engineering. A particularly important task is controlling chaos, con-
tributed seminally by Ott, Grebogi, and Yorke (OGY),4 where they
demonstrated that a small external force of a chaotic system can
be used to stabilize the UPOs embedded in the underlying chaotic
attractor. In the last three decades, many interesting works, follow-
ing the OGY approach, have been developed for achieving the UPO
detection in various physical, biological, and ecological systems.5–12

For example, Pyragas proposed an efficient method in Ref. 5, where
the UPOs can be stabilized either by a specially designed external
periodic oscillator or by the delayed self-controlling feedback with-
out using any external force. Therefore, it is not surprising that the
study of UPOs has played a vital role in the research of nonlinear
complex dynamics.

In practice, the most access one to real-world nonlinear systems
is the experimentally observed time series data; however, preknowl-
edge of the explicit forms of these systems is few or even none.
For example, the biophysical signals of brains can be measured via
the advanced equipment, but the underlying nonlinear dynamics of
brains are of still ambiguity. It, therefore, requires efficient meth-
ods for finding the hidden but principal dynamics, including those
unstable periodic orbits solely from the observational data. Many
works on this topic have been extensively studied.13–17 To name a
few, So et al.14,15 developed a statistical method to detect UPOs from
a chaotic time series by utilizing the linear dynamics around a UPO
to produce a statistical index, and Dhamala et al.16 addressed the
detection of UPOs from experimentally measured transient chaotic
time series by examining the recurrence times of trajectories in
the reconstructed vector space. Although these methods are very
useful in applications, they are sometimes limited to the insuffi-
cient information of linear dynamics around the relevant UPOs, the
systems of discrete time or/and low-dimension, or to address the
time series with uniform-interval time points sampled from con-
tinuous dynamics. Thus, it is highly anticipated for a data-driven
and model-free method for accurately detecting UPOs embedded
in the unknown continuous-time or/and high-dimensional (even
infinite-dimensional) chaotic systems solely from the observational,
irregularly sampled time series.

In recent years, machine learning, including the convolutional
neural network18 and transformers,19 are widely applied in a vari-
ety of tasks, such as image recognition,20 playing Go,21 protein
structure prediction,22–24 discovering faster matrix multiplication
algorithms,25 and learning control policies.26,27 In addition to these
successful applications, recurrent neural networks, including the
reservoir computing (RC),28–31 can be used for accurately recon-
structing or predicting the dynamics of complex systems from the
observational time series. Typically, the RC is driven by the avail-
able time series with regular time points and maps the data space to
the feature space, and then it is followed by the only trainable read-
out layer, mapping it back to the original data space. Notably, the
RC often requires the observational time series possessing uniform-
interval time points, which in turn results in the reconstruction or
prediction only at discrete regular time points, not any continuous
time point.

In what follows, a data-driven and model-free method, com-
bining the neural differential equations (NDEs)32,33 and the adaptive
delayed feedback (ADF) technique, is suggested for locating the
UPOs embedded in chaotic systems solely from the irregularly sam-
pled time series. In fact, the idea is adapted partly from the previous
work,34 where the RC is used to reconstruct the underlying chaotic
system from observational time series having uniform-interval time
points. The framework of the RC may deal with the irregularly
sampled data by using the interpolation methods, such as the nat-
ural cubic spline, to interpolate the data forming uniform-interval
points. However, the recurrent computation of the RC produces an
iteration system, which likely brings a large deviation when the un-
sampled but interpolated points are used. Instead, we in this article
adopt the framework of the NDEs, which directly parameterizes the
vector field of ordinary/delay differential equations (ODEs/DDEs)
using neural networks and can be trained from the irregularly sam-
pled time series. Unlike the RC, the NDEs (continuously defined
dynamics) naturally obtain the data that attain arbitrary time accu-
racy in the training data (interpolation) and in the testing data
(extrapolation) as well. Using these advantages of the NDEs, we can
accurately reconstruct the underlying chaotic dynamics, and then,
we employ the ADF method8–10 to the reconstructed systems for
detecting the UPOs in several representative chaotic systems even
with time delays.

The rest of the article is divided into three parts. Section II
briefly introduces the NDE framework for reconstructing chaotic
dynamics and the ADF technique for UPO detection based on the
reconstructed systems. Several representative examples are provided
in Sec. III to demonstrate the effectiveness of the proposed method.
Subsequently, some concluding remarks and perspectives are made
in Sec. IV.

II. METHOD: RECONSTRUCTION AND CONTROL

MANIPULATION

A. Model formulation

Consider a general nonlinear dynamical system that is modeled
by a set of ordinary differential equations (ODEs),

ẋ = F[x(t)], (1)

or a set of delay differential equations (DDEs),

ẋ = F[x(t − τ), x(t)], (2)

where x(t) = [x1(t), . . . , xN(t)]> ∈ R
N is the state variable of

N-dimension, F : R
N (resp., R

N × R
N) → R

N represents a contin-
uous vector function of the ODEs (1) [resp., the DDEs (2)], and τ

is the time delay. We always assume that there is a chaotic attrac-
tor A generated by the system in the phase space. In this article, our
goal is to detect the UPOs embedded in the chaotic attractor A of
the system (1) or (2) without knowing its specific form but with the
observational and irregularly sampled time series. Moreover, for the
DDEs (2), it is assumed that the time delay τ has been estimated
prior to the system reconstruction.
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B. Reconstruction of chaotic systems via NDEs

We estimate the vector field F by using the NDE framework,
including the neural ODEs (NODEs)32 and neural DDEs (NDDEs),33

which can naturally deal with the irregularly sampled time series.
In the following, we briefly introduce the NDE framework for the
reconstruction of chaotic systems, and a schematic illustration of the
NDE framework is depicted in Fig. 1.

For the ODEs (1), NODEs parameterize the vector field F by a
neural network, i.e.,

ż = f [z(t); θ], (3)

where θ is the vector of parameters to be trained under a pre-
defined loss. Specifically, given the irregular observation times
t0 = 0, t1, . . . , tl = T and an initial state z(0) = x(0), an ODE solver
produces z(t1), . . . , z(tl), which describe the predicted state at each
observation by NODEs, i.e.,

z(ti) = z(ti−1) +

∫ ti

ti−1

f[z(t); θ]dt, i = 1, 2, . . . , l.

It should be noted that modern ODE solvers can effectively obtain
these states through adaptive computations.32,35–37 With the target
states at the observation times, we define the loss function as follows:

L(z(t1), . . . , z(tl)) =

l
∑

i=1

[z(ti) − x(ti)]
2.

To optimize the loss function L, we should first compute the gra-
dients with respect to the vector θ . Actually, this can be done by
using the adjoint sensitivity method.32,38 Then, we can utilize an
advanced stochastic gradient descent algorithm to train the NODEs
(3). Notably, the NODEs are memory efficient, not requiring storing
any intermediate quantities of the forward pass through the ODE
solver and, therefore, allowing us to train the NODEs (3) with con-
stant memory cost as a function of the number of adaptive time
steps, which also allows the user to explicitly trade of the numerical
precision for speed. Additionally, due to the universal approximat-
ing capability of neural networks, the NODEs (3) are, in principle,

able to accurately reconstruct the underlying chaotic system (1)
solely from the irregularly sampled time series.

For the DDEs (2), NDDEs define the following parameterized
DDEs:

ż = f [z(t − τ), z(t); θ]. (4)

Different from the NODEs (3), NDDEs (4) require an initial func-
tion, z(t) = φ(t), t ∈ [−τ , 0], not the initial state z(0) = x(0) in
the NODEs (3). In practice, we cannot directly obtain the initial
function φ(t) but with the irregularly sampled initial history,

h = {[t−m, x(t−m)], . . . , [t−1, x(t−1)], [t0, x(t0)]} ,

with t−m = −τ and t0 = 0. Hence, we need to approximate φ by a
smoothed interpolation. For this purpose, the natural cubic spline is
used; i.e.,

φ(t) = Spline(h, t), t ∈ [−τ , 0].

One reason for the choice of the natural cubic spline is that φ(t)
is twice continuously differentiable, a basic condition for using
adaptive step-size solvers. Moreover, for accelerating the training
progress of NDDEs (4), we consider the irregularly sampled time
series within a time delay; i.e., {[t0, x(t0)], [t1, x(t1)], . . . , [tl, x(tl)]}
and tl ≤ τ . Under this setup, an ODE solver can be employed to
produce the predicted states,

z(ti) = z(ti−1) +

∫ ti

ti−1

f [φ(t − τ), z(t); θ]dt, i = 1, 2, . . . , l.

The rest of the training process, including the loss function, is the
same as the one of NODEs.

In the previous work,34 it shows that the RC framework is able
to reconstruct chaotic systems as well. Unfortunately, the classical
RC can only handle the time series with regular time points and
predict the states at discrete time steps, i.e., z(t), t = 0, 1t, . . . , l1t
with the constant time increment 1t and the number of time steps l.

FIG. 1. A schematic illustration of the NDE framework, including the NODEs and NDDEs, respectively.
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TABLE I. The hyperparameters of training NDEs and sampling schema that are used in our numerical examples.

Optimizer Activation Epoch size Batch size
Hidden

size/layer
Learning

rate
Weight
decay ptp rsa 1t T

Lorenz63 Adam tanh 128 32 50/2 0.001 1 × 10−5 5 0.8 0.1 1000
x2(t) (Lorenz63) Adam tanh 128 32 30/2 0.001 1 × 10−5 10 0.8 0.02 1000
Mackey–Glass Adam tanh 128 32 30/2 0.001 1 × 10−5 5 0.8 0.2 1270

Moreover, to accurately reconstruct the vector field F, Zhu et al.34

approximate it by the limitation of the following equation:

dz(t)

dt
= lim

1t→0

z(t + 1t) − z(t)

1t
≈ F[z(t)].

Accordingly, a good approximation of F requires a sufficiently small
time increment 1t = 0.001 as suggested by Zhu et al.,34 which
results in the densely sampled time series, and, hence, increases
computational costs significantly, a major bottleneck in training
neural networks. However, the NDEs are of continuously defined
dynamics and own the ability to deal with sparsely and irregularly

sampled time series. For example, we use a low sampling rate or
equivalently a large constant time increment 1t = 0.1 for the UPO
detection in the Lorenz system (see Sec. III and Table I). Addition-
ally, NDEs can obtain the state at any time point in the training
data (interpolation) and the testing data (extrapolation) through a
numerical solver. We also note that the RC maps the input space
to high-dimensional feature space, implying that the RC may suffer
from the curse of dimensionality and then requires high computa-
tional costs, as well as many parameters of the RC architecture.34 On
the contrary, NDEs directly approximate the vector field F, resulting
in a lightweight model.

FIG. 2. Dynamics reconstruction and prediction of the Lorenz system (7) by using the NODEs (3) based solely on the irregularly sampled time series. (a) Dynamics
reconstruction (blue solid line) from t = 253 to t = 317 and the irregularly sample time series (black dots) in the training phase. (b) Dynamics prediction (red solid line) from
t = 947 to t = 953 and the irregularly sample time series (black dots) in the testing phase. (c)–(f) Dynamics reconstructions of the Lorenz system (7) in different training
epochs, i.e., 1, 2, 14, and 80, respectively.
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C. Applying the ADF technique to the trained NDEs

Based on the approximated vector field f, we focus on detect-
ing its UPOs embedded in the chaotic attractor A by using the
ADF technique,8,9,34,39 which does not require any preknowledge of
the UPOs. Specifically, for the case of ODEs (1), we introduce an
ADF term to the approximated system (3), resulting in a controlled
system as

u̇ = f [u(t); θ] + C(t), (5)

where C(t) = 0(t){u[t − p(t)] − u(t)} is a delayed feedback control
term. For convenience, we only control one of the components of
the state; i.e., 0(t) = diag{0, . . . , 0, γi(t), 0, . . . , 0}. This choice works
well in our experiments. It should be noted that to ensure the
boundedness of the controlled system and noninvasiveness of the
ADF,8,9,34,39 the time-variant delay p(t) and the control gain γi(t) are
adaptively updated by the following DDEs:

ṗ = −r1

{

ui[t − p(t)] − ui(t)
}

,

γ̇i = r2

{

ui[t − p(t)] − ui(t)
}2

,
(6)

with r1 and r2 being the positive constants to be adjusted to achieve
a good convergence rate.

The initial states for the controlled system (5) and the adap-
tive rules (6) are both taken as constants on the initial time interval.
Additionally, to ensure the positiveness of the time-variant delay
p(t) in practice, the value of p(t) is reset to a small and positive value
whenever it becomes zero or exceeds a maximal threshold. As can be

seen from the adaptive manners (6) that the farther the dynamic is
from the expected UPOs, the faster the two variables can be adjusted
for realizing stabilization. Moreover, the monotonicity of γi(t) plays
an important role in stabilizing the UPOs, providing a persistent and
sufficiently large control gain whenever the controlled trajectory is
far away from the UPOs. As long as the stabilization is achieved, the
noninvasiveness of the ADF technique implies the convergence of
the time-variant delay p(t), corresponding to one of the unknown
UPOs. For the case of DDEs (2), we can follow the same way to
detect UPOs based on the trained NDDEs (4) as well.8,9,34,39

III. NUMERICAL EXAMPLES

The Lorenz system and the Mackey–Glass system are taken as
examples, common benchmarks for testing the methods of UPO
detection, for illustrating the effectiveness of the proposed data-
driven and the model-free method in Sec. II. In addition, we success-
fully locate the UPOs solely from a scalar time series of the Lorenz
system by using the Takens delay-coordinate-embedding method.40

In our experiments, to generate irregular time series, we randomly
sample data from the regularly sampled time series with a constant
time increment 1t within the time interval [0, T]. Denote by rsr
the random sampling rate from the regularly sampled time series.
Other irregular sampling schemas could be considered as well. In
this work, we are mainly to illustrate that our framework can deal
with the irregularly sampled time series. Additionally, we choose
95% irregularly sampled time series as the training data and the

FIG. 3. The detected UPOs by the ADF technique (5) and (6) based on the trained NODEs (3). Four detected UPOs are shown in (a)–(d) with the periods, 1.5608, 2.3202,
3.1084, and 4.5661, respectively, which are computed by the mean value of p(t) on an interval with the minimum variance (marked by a shaded interval in the right panel of
each subfigure).
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FIG. 4. The training and the testing errors (a)–(e) and the dynamics reconstructions (f)–(j) of the trained models under different noise levels. The variance of the noise is
taken in turn from the values 0%, 0.2%, 0.5%, 1%, and 2%.

remaining as the testing data. To effectively train the model, we
select the prediction time points as a small number, denoted by
ptp. The specific parameters above, including other hyperparame-
ters of training NDEs, are listed in Table I. The training algorithms
are implemented in PyTorch, where the ODE solver, developed by
Chen et al,32 with the default dopri5 method with adaptive step
size during training and testing phases are employed to numerically
integrate the considered nonlinear systems. In the UPO detection
by using the ADF technique based on the trained NDEs, r1 and r2,
as well as the initial values u(0), p(0), and γ (0) of the controlled sys-
tem (8), are regarded as the adjusted hyperparameters. Numerically,
the periods of these UPOs are determined by the mean value of the
time-variant delay p(t) on an interval with a low variance of p(t),
as well as the low differences of p(t) and u(t) at the beginning and
ending points. We implement the algorithm of the UPO detection
through the ddesd solver in MATLAB.

A. UPO detection in the Lorenz system

Here, the Lorenz system41,42 is taken as a valuable benchmark
for testing our method of stabilizing UPOs,

ẋ1 = 10(x2 − x1),

ẋ2 = −10x1x3 + 28x1 − x2,

ẋ3 = 10x1x2 − 8x3/3,

(7)

which contains an infinite number of UPOs embedded in its
attractor.43 According to our method, we first use the NODEs (3)
to reconstruct the dynamics of the Lorenz system (7) from the irreg-
ularly sampled time series. We show the irregularly sampled time
series within a given time interval and the corresponding dynamics
reconstruction by the trained NODEs (3) in Fig. 2(a). Addition-
ally, the prediction on the testing data is displayed in Fig. 2(b). The

dynamics reconstructions of the Lorenz system (7) in different train-
ing epochs are shown in Figs. 2(c)–2(f). As can be seen in Fig. 2, the
trained NODEs (3) have both good interpolation and extrapolation
abilities in this example.

FIG. 5. Dynamics reconstruction (a) and prediction (b) of x2(t) of the Lorenz sys-
tem (7) in the three-dimensional phase space based on the trained NODEs (3)
and a detected UPO (c) by using the ADF technique (5) and (6), whose period
(d) (shaded interval) is determined by the convergence of time-variant delay p(t).
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We apply the ADF method to the trained NODEs (3) with
regard to the Lorenz system (7) to detect the UPOs, yielding a
controlled system coupled with the adaptive rules (6),

u̇1 = f1(u1, u2, u3; θ),

u̇2 = f2(u1, u2, u3; θ) + G(t),

u̇3 = f3(u1, u2, u3; θ),

ṗ = −r1

{

u2[t − p(t)] − u2(t)
}

,

γ̇ = r2

{

u2[t − p(t)] − u2(t)
}2

.

(8)

To ensure the small perturbation of C(t) as well as the boundedness
of trajectories in the controlled time duration, the specific form C(t)
is suggested by Refs. 17, 34, and 39, of the following form:

C(t) = I{|G(t)|<C0}G(t) + C0I{|G(t)|>C0} − C0I{|G(t)|<−C0},

where C(t) = γ (t)
{

u2[t − p(t)] − u2(t)
}

, IS is the indicator of the
set S, and C0 is a small constant that can be adjusted to control the
intensity of the perturbation G(t). As shown in Fig. 3, several UPOs
are detected with a good consistency with the reported UPOs.44

Notably, an accurate dynamics reconstruction of the under-
lying system is a key step for achieving the UPO detection. We,
therefore, assess the robustness of the dynamics reconstructions
by considering the Lorenz system with the measured noise as a
benchmark. In particular, we generate the time series perturbed by
the multiplicative noise, i.e., x̂i(t) = xi(t)[1 + n(t)] with i = 1, 2, 3,
where n(t) is a noise term sampled from the Gaussian normal distri-
bution with zero mean and the adjustable variance. Figures 4(a)–4(e)
show the training and the testing errors under different noise levels
by varying the variance. The corresponding dynamics reconstruc-
tions of the trained models are displayed in Figs. 4(f)–4(j). It can
be seen that the training and the testing errors increase monoton-
ically with the noise strength. The reconstructed systems exhibit
two lobes, until the noise variance increases through a threshold,
approximately 1%. Notice that the solution of ODEs is determined
by the initial value. Then, if the noise increases, the learning pro-
cess of dynamics reconstructions may easily fail due to the large
deviation from the true initial value. This suggests that we may
improve the robustness of our framework by first estimating the
initial value more accurately based on the time series via curve-
fitting schemes or using the neural ODE processes45 to handle

FIG. 6. Dynamics reconstruction and prediction of the Mackey–Glass system (10) by using the NDDEs (4) based solely on the irregularly sampled time series. (a) Dynamics
reconstruction (blue solid line) from t = 123 to t = 621 and the irregularly sample time series (black dots) in the training phase. (b) Dynamics prediction (red solid line) from
t = 1206 to t = 1272 and the irregularly sample time series (black dots) in the testing phase. (c)–(f) Dynamics reconstructions of the Mackey–Glass system (10) in different
training epochs, i.e., 1, 7, 13 and 64, respectively.
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the noise. This could be further studied as one of our future
directions.

Here, we consider the case that only one state variable of
the Lorenz system (7) can be observed, i.e., the irregularly sam-
pled time series of x2(t). In this case, we use the classic Tak-
ens delay-coordinate-embedding method40 to reconstruct the phase
space from the time series, recovering unobserved degrees of free-
dom. Particularly, the reconstructed system is consisted of other
time-delayed state variables, resulting in an augmented vector
y(t) = [x2(t), x2(t − τ), . . . , x2(t − (L − 1)τ )]> ∈ R

L, where τ = 0.1
is a constant time delay and L = 3 is the embedding dimension.
Here, we assume that y(t) obeys the governing equation,

ẏ = F̂[y(t)], (9)

where F : R
L → R

L models the vector field of this “virtual” system.
In fact, the system (9) and the Lorenz system (7) are related through
diffeomorphism. Thus, it is still possible to locate the UPOs solely
from the scalar time series.

In practice, to obtain these time-delayed state variables
x2(t − iτ), we interpolate them by the cubic interpolation method
based on the time series of x2(t). Then, the following steps are the
same as the case of the fully observable Lorenz system (7). We rou-
tinely use the NODEs (3) to approximate the system (9) and then
apply the ADF technique to this approximated system to locate the
unknown UPOs. As shown in Fig. 5, the NDEs achieve good perfor-
mances on the training data (interpolation) in Fig. 5(a) and testing
data (extrapolation) in Fig. 5(b), and a UPO with an approximated
period, 4.5804, is successfully detected in Fig. 5(c) according to the
convergence of the time-variant delay p(t) in Fig. 5(d).

B. UPO detection in the Mackey–Glass system

Finally, we test our method of locating the UPOs in the
Mackey–Glass system, a scalar time-delayed model for blood cell
regeneration, regarded as an infinite-dimensional model,46 of the
following form:

ẋ =
ax(t − τ)

1 + xb(t − τ)
− cx, (10)

where x describes the concentration of the circulating blood cells,
τ is a constant feedback time delay, and a, b, and c are the parame-
ters of biological significance. Here, we choose the parameters a = 2,
b = 10, c = 1, and τ = 3.18, and the system exhibits chaotic dynam-
ics. Based on the generated irregularly sampled time series, we first
use the NDDEs (4) to reconstruct the dynamics of the Mackey–Glass
system (10). The partial time series and the corresponding dynamics
reconstruction by the trained NDDEs (4) are shown in Fig. 6(a). In
addition, Fig. 6(b) shows good extrapolation ability on the testing
data. As shown in Figs. 6(c)–6(f), the NDDEs (4) gradually cap-
ture the intrinsic dynamics of the Mackey–Glass system (10) along
with the training procedure. Next, we directly apply the ADF tech-
nique to the trained NDDEs (4). The detected UPOs of the trained
NDDEs (4), as well as the original Mackey–Glass system (10), are
displayed in Fig. 7 according to the convergence of the time-variant
delay p(t). As can be seen, not only the shape but also the period
(p = 7.5994) of the detected UPO from the NDDEs (4) are almost

FIG. 7. The detected UPOs from the original Mackey–Glass system (10) and the
corresponding approximated NDDEs (4) by using the ADF technique (5) and (6).
As can be seen, the shape, as well as the period (p = 7.5994) of the detected
UPO from the trained NDDEs (4), is almost consistent with that (p∗ = 7.6001)
from the original system.

consistent with that (p∗ = 7.6001) from the original system. It indi-
cates that our data-driven and model-free method has the ability to
detect UPOs in high-dimensional chaotic systems solely from the
irregularly sampled time series.

IV. CONCLUSION

In conclusion, we have articulated a data-driven and model-
free method, integrating the NDEs and the ADF technique, to detect
UPOs embedded in chaotic attractors solely from the irregularly
sampled time series. Particularly, the NDEs successfully reconstruct
the dynamical systems with/without time delay from the fully or par-
tially observational irregularly sampled time series, based on which
the ADF technique can be employed to faithfully detect the UPOs
without any prior information on system per se. Our work suggests
that combining the advanced machine learning frameworks with
the classical theories and methods developed in nonlinear dynamics
could shed light on solving the longstanding problems in complex
systems efficiently and accurately.
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2D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. Gunaratne, and I. Procaccia,
“Exploring chaotic motion through periodic orbits,” Phys. Rev. Lett. 58(23), 2387
(1987).
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