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ABSTRACT

Spiking neural networks (SNNs) are energy-efficient alternatives to commonly
used deep artificial neural networks (ANNs). However, their sequential computa-
tion pattern over multiple time steps makes processing latency a significant hin-
drance to deployment. In existing SNNs deployed on time-driven hardware, all
layers generate and receive spikes in a synchronized manner, forcing them to share
the same time steps. This often leads to considerable time redundancy in the spike
sequences and considerable repetitive processing. Motivated by the effectiveness
of dynamic neural networks for boosting efficiency, we propose a temporal-wise
adaptive SNN, namely TEAS, in which each layer is configured with indepen-
dent number of time steps to fully exploit the potential of SNNs. Specifically,
given an SNN, the number of time steps of each layer is configured according to
its contribution to the final performance of the whole network. Then, we exploit
the temporal transforming module to produce a dynamic policy that can adapt the
temporal information dynamically during inference. The adaptive configuration
generating process also enables the trading-off between model complexity and ac-
curacy. Extensive experiments on a variety of challenging datasets demonstrate
that our method provides significant savings in energy efficiency and processing
latency under similar accuracy outperforming the existing state-of-the-art meth-
ods.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have achieved phenomenal successes in multiple domains, such
as object recognition, natural language processing, self-driving, etc Srinivasan & Roy (2019); Deng
et al. (2020). However, rapid evolution of this field brings about a momentum of dramatic growth
in computation. State-of-the-art ANN models with billions of parameters consumes such a huge
amount of computation that renders on-device inference challenging. For instance, surprisingly
powerful GPT-3 Brown et al. (2020), an autoregressive language model with 175 billion parameters,
consume 740,000 GFLOPS (Floating Point Operations) of computation for a single inference. Such
situation stimulates the demand for deploying more power-efficient neural networks in real-world
applications Rathi et al. (2021).

Recently, extensive efforts have been attracted by spiking neural networks (SNNs) due to their low-
power and biologically plausible nature. Different from ANNs, SNNs transmit information with
spike trains, which extends in the additional temporal dimension and contains only sparse binary
spike events. This leads to more power-efficient computation by substituting expensive multiplica-
tion with addition operations in neuromorphic hardware Lee et al. (2021).

In fact, the inference process for SNNs is quite different from that of ANNs: ANNs infer in a single-
shot forward pass, whereas SNNs require computation over multiple time steps. The requirement of
the multi-shot forward pass in SNNs causes repetitive spike generation across the time window, re-
sulting in higher inference latency and energy consumption. Currently, the information transmitted
in SNNs is conventionally encoded as an identical-sized time dimension, that is, the globally unified
time steps allocation Chen et al. (2021); Deng & Gu (2021). An excessively small time window
will lose important information, resulting in a significant accuracy loss. To achieve better perfor-
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Figure 1: Illustration of Linear-Integrate and Fire (IF) neuron dynamics. (a) A typical fully connected neural
network architecture for SNN; (b) The membrane potential of IF neuron increases with the accumulation of
weighted spikes.

mance, SNNs generally employ a large number of time steps for each layer, which imposes three
challenges to edge deployment under the current time-driven synchronized mechanism, as pointed
out in Narayanan et al. (2020); Singh et al. (2020): (i) long latency that places hurdles for real-time
applications; (ii) low energy efficiency induced by massive spike accumulation operations across
time steps; (iii) expensive overhead of memory storage and access for the intermediate values. As a
result, reducing the number of time steps while maintaining performance is a critical research prob-
lem in SNNs. However, the existing SNNs fail to dynamically transform the temporal dimension
in the inference, so that these works end up missing the chance in further reducing the power and
improving accuracy.

Therefore, we are motivated to apply different time steps of the spike train for layers with different
spiking activities to achieve SNNs with adaptive temporal information. Although adaptive temporal
information of SNNs looks trivial and handy at the first glance, we need to address two critical
challenges: 1) how to efficiently determine what time steps to use per layer, and 2) given layer-wise
time steps, how can we flexibly and efficiently convert the spike train between the adjacent layers
into various time steps at runtime, without loss of information.

The insight enabling this idea is that the average spiking rate varies greatly among different layers,
so the best temporal configuration for each layer can be pre-determined. To this end, we develop
a novel adaptive spike train conversion methodology, termed as TEAS. In the offline phase, TEAS
takes a description of SNN layers and explores the space of possible temporal configurations based
on the spiking activity to construct an SNN with the best per-layer configurations, while minimiz-
ing the accuracy loss. Then, in the execution phase, temporal configuration enforces the SNNs to
dynamically optimize processing latency and energy efficiency.

In summary, this paper makes the following contributions:

• We discover that the spiking activities in layers are highly correlated with the SNN accu-
racy, termed as vulnerable layers. This observation implies that applying the high-fidelity
temporal dimension on the vulnerable layers will reserve the SNN accuracy, while allowing
the salient information to flow the invulnerable layers can boost the performance.

• We propose TEAS to enable adaptive temporal dimensions in the SNN, a new dynamic
spike train conversion methodology. It is the first approach that adjusts informative features
in the temporal dimension at run-time to improve the computation efficiency, enabling
trade-off the accuracy and computation more flexibly.

• We evaluate the performance of TEAS with deep network architectures on MNIST, CIFAR-
10/100, and ImageNet datasets. The proposed TEAS exceeds state-of-the-art accuracy on
all tested datasets, using fewer time steps than other SNNs with unified time windows.

2 PRELIMINARIES AND MOTIVATION

Spiking Neural Network. The spiking neuron is the fundamental computing unit of SNNs. Fig. 1
illustrates the execution process of SNN neurons. An IF neuron receives train of spikes, over certain
time window. Input spikes (‘0’ or ‘1’ spike signals) from pre-synaptic neurons multiply the synaptic
weight, and consequently, the products accumulate to the potential of the post-synaptic neuron Roy
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Figure 2: An example of temporal alignment. (a) Expanding the time window; (b) Shrinking the time window.

et al. (2019); Tavanaei & Maida (2019). The spiking neuron dynamics are described by:

V(t+ 1) = V(t) +
∑

i∈{i|Xi(t)=1}

wi (1)

wherein, V(t) is the neuron membrane potential, Xi(t) = 1 means that a spike arrives at time step
t from the i-th pre-synaptic neuron, and wi is the weight associated with these inputs. The neuron
fires a spike when its membrane potential reaches the firing threshold Vth, and then resets membrane
potential to the reset potential Vreset.

We refer to rate-encoded and temporally-encoded SNNs as SNN-R and SNN-T respectively. Rate-
encoding converts an input pixel value into the spike train consisting of multiple spikes, representing
the average number of spikes fired by the neuron in a given time window Han et al. (2020). In
contrast to rate-encoding, temporal-encoding represents information through the latency to the first
spike of the corresponding spike train over a given time window, which converts an input pixel value
into the spike train consisting of a single spike Roy et al. (2019).

Limitations of previous works. However, these previous SNNs are developed based on the tempo-
ral alignment for the network (i.e., all the layers of the SNN share the unified time window), where
we believe such SNNs may be redundant and inefficient.

Suppose the previous layer uses a short time window Tshort, thus the transmitted information is
stuck at the last time step (shown in Fig. 2(a)). Not only will the information out of the time window
not be transmitted, but also the information already transmitted from the earlier time steps (i.e., ac-
cumulated membrane potential, but not yet fired spikes) will be lost together. Even if the following
layer uses a long time window Tlong , the informative features from the previous layers are only ter-
minated at Tshort, while Tshort+1 ∼ Tlong is useless without any information. In that case, directly
shortening the time window is extremely easy to cause the degradation of SNN accuracy. Fig. 2(b)
shows an example of shrinking the time window. In effect, it causes the information loss resulted
from ignoring the information transmitted beyond the time window of the post-neuron. Therefore,
the unified temporal dimension incurs redundant overhead for reserving better SNN accuracy, lead-
ing to significant latency and energy consumption opposite to the original purpose.

Why we need temporal-wise adaptive SNNs. The key to achieving efficient SNNs in trading-off
the processing efficiency (i.e., the temporal dimension) and accuracy is to produce lean temporal-
wise informative features matching each layer, thus enhancing the overall performance of the SNN
without compromising the representation power of networks. It is noteworthy that the adaptive
time window poses a bigger challenge for SNNs since it requires aligning the unequal temporal
dimensions between different layers in the information propagation Roy et al. (2019); Deng et al.
(2021).

3 APPROACH

In this section, we first study the existence of vulnerable layers that affect the SNN performance and
to what degree, and then we present the adaptive conversion employed in the temporal dimension.
Finally, we describe the optimization procedure and implementation details for the proposed TEAS.
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Figure 3: Spiking activity of each layer and accuracy of SNN at different layers bearing the input noise (u =
0.1 that represents the magnitude of noise). The SNN with VGG-16 architecture trained on CIFAR-10.

3.1 IDENTIFYING VULNERABLE LAYERS IN THE SNN

Because shortening the time steps of the spike train will exert an impact on the SNN accuracy as
revealed by prior studies Fang et al. (2021); Han & Roy (2020); Han et al. (2020), two questions
naturally arise: 1) whether different layers have different degrees of sensitivity to the reduced time
steps and 2) how to utilize the difference to maintain the accuracy while shortening the time step.

To study the two questions in this section, we first verify that the spike train of layers does affect
the accuracy, and they are termed as vulnerable layers. With just a little noise added, these vul-
nerable layers will have a great impact on the prediction accuracy. This means these layers need
more temporal information to precisely deliver information to ensure the overall SNN accuracy. In
addition, we discover that these layers tend to have higher spiking activity (in Eq. (2)). As a result,
vulnerable layers should be carefully identified and allocated more temporal information to reserve
more detailed characteristics for the SNN, while there is no such need for other invulnerable ones.
A natural implication is that we should take advantage of the invulnerable to speed up the SNN by
differentiating time steps on different layers with almost no accuracy loss.

#Act(l) =
#fired spikes
#time steps

(2)

Fig. 3 gives the results, where the curve labeled circle represents network accuracy with noise being
added only to the certain layer, while bar represents the spiking activity (i.e., the average number
of spikes over the time window) of the layer. From the plot, a critical observation can be made:
when we add noise to the certain layer, the curve drops more rapidly at the layer with larger spiking
activity. This observation clearly manifests that different layers may have different impacts on the
final accuracy, and it is a popular observation across different networks we have investigated. In
other words, we can retain the SNN accuracy for a given dataset by restricting the informative
impact in the temporal dimension (equivalent to noise) for the vulnerable layers, while time steps
for the invulnerable layers can be relaxed.

3.2 ADAPTIVE CONVERSION IN THE TEMPORAL DIMENSION

Based on this observation, we need to address the following question: how to conduct the spike
train scaling at runtime? Layers with different magnitudes of vulnerability may introduce spike
trains with different time steps. This intra-layer conversion in the temporal dimension needs to be
efficient to reduce the neuron computation workload and benefit the inference performance on the
fly. The overview of the proposed adaptive conversion as shown in 4.

According to the method to translate the information contained in a spike train, SNNs can be catego-
rized into two classes Roy et al. (2019). SNN-Rs sort spike trains according to the number of spikes,
and spike trains with more spikes are regarded as carrying stronger information. SNN-Ts sort spike
trains according to the firing time of the only spike in the series, and an earlier spike means that the
spike train is carrying stronger information.

When the number of time steps of two layers are the same, then we can directly apply the output
spike train of the former layer as the input spike train of the later layer. However, if the number of
time steps of two layers are different, denoted as T l and T l+1 respectively, then we have found a
transformation from a spike train of length T l into a spike train of length T l+1. In the context of
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Figure 4: Overview of the proposed adaptive conversion in the temporal dimension. SNNs are routed to use
different time steps among layers regarding their spike activity. The brighter circle indicates the time step closer
to the first time step in the spike train.

SNN-R or SNN-T, we only need to find a transformation between firing times or firing numbers, i.e.
f : {0, 1, · · · , T l} → {0, 1, · · · , T l+1}.

An intuitive solution is linear mapping, i.e. f(x) = round(T
l+1

T l x). However, such conversion does
not work when we want to expand the number of time steps, T l+1 > T l. Since the input information
has only T l + 1 levels of difference, the output information has at most T l + 1 levels of difference,
failing to fulfill the object of increasing the resolution from T l to T l+1.

Inspired by the fact that the membrane potential at the firing time step also reflects the strength of
the spike, a larger firing potential represents a stronger information, we separate the integer spike
time or spike count information into continuous domain [0, T l] to better distinguish the order of
each spike. Combing the relationship between the firing time or spike count with the strength of the
information, we have

x̃T = x+
Vth

Vfire

x̃R = x+ 1− Vth

V fire

(3)

where, Vth is the threshold voltage. xT and xR is the the firing time in SNN-T and the spike
count in SNN-R while x̃T and x̃R are new values in modified SNN, V fire is the firing potential for
the only spike in SNN-R, and Vfire is the average firing potential for all spikes in SNN-T. After
applying the adjustment, we can apply the linear mapping to decide the input spike time to the next
layer. For SNN-T, the input spike train to the next layer would a series with only one spike at time
round(T

l+1

T l xT ). For SNN-R, the result input spike train would be a series with spikes at the first
round(T

l+1

T l xR) time steps.

3.3 TRAINING PROCESS

The key idea here is that training SNNs makes networks adaptive to the various representation in the
varying temporal dimension. To train SNNs, spatio-temporal back-propagation (STBP) is used to
perform gradients computation across the time window Mirsadeghi et al. (2021); Liu et al. (2021);
Fang et al. (2021). Specifically, during the training, synaptic weights can be updated as:

Wl = Wl − η∆Wl

where ∆Wl =

T∑
t=1

∂L
∂Ot

l

∂Ot
l

∂U t
l

∂U t
l

∂Wl

(4)

Here, Ot
l and U t

l are output spikes and membrane potential at time step t for l-th layer, respectively.
Since the neuron generate the output spike only if the membrane potential exceeds the firing thresh-
old, results in non-differentiability. To deal with this problem, we follow Roy et al. (2019); Comsa
et al. (2020) and introduce an approximate gradient:

∂Ot
l

∂U t
l

= max{0, 1− | U
t
l

Vth
|} (5)
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Initialization is an important issue during the training. Without proper initialization, SNNs varying
the changes in the temporal dimension usually converge to a suboptimal state, where the temporal
information is not allocated properly among the layers leads to network accuracy cannot being re-
stored to the optimal one. Here, we allocate the time window to each layer of the pre-trained SNN
based on the spiking activity at the beginning, where the shortened time windows is constrained to a
target scaling ratio. Specifically, the layer with the highest spiking activity maintains the initial time
window, and the other layers are shortened according to their spiking activities.

Objective of TEAS training. To encourage fewer time steps of layers, we introduce a regularization
term into the training loss. This guides the average processing latency of the dynamic model to a
specific target overall scaling ratio. The regularization can be formulated as:

ℓr =

L∑
l=1

∑L
l=1 #Act(l)×#Para(l)

#Act(l)
(6)

where the spiking activity #Act(l) reflects the magnitude of temporal information reduction toler-
ated by the layer l, and the number of parameters #Para(l) reflects the overall processing overhead
as defined in Deng et al. (2021); Wang et al. (2019). The cross-entropy loss of the SNNs is:

LCE = −
∑
i

yi log
( eu

T
i∑N

k=1 e
uT
k

)
(7)

where ui corresponds to the firing rate or firing time of the output layer (i.e. the final (L-th) layer)
across the simulation time window, y indicates ground truth, T is the number of time steps, and N
is the number of categories. Therefore, the total loss function is the combination of cross-entropy
loss and regularization:

L = LCE + λℓr (8)
where ℓr combines the average spike rate and the number of parameters and λ is a penalty coefficient
of the network to balance the entropy and regularization term. The loss function in Eq. (8) achieves
the layer-wise adjustment by imposing a weaker regularization to the more vulnerable layers. The
reason that we use the average spike rate combined with parameters is to unify the exploration of λ
setting across different networks. By introducing this regularization item, we can further refine the
firing activities of an SNN model, resulting in a decreased time window.

Temporal Adjustment. After back-propagation across all the time steps, we will adjust the tempo-
ral dimension of each layer. Specifically, we first count the spiking activity for each layer during the
forward pass. Then, we check the time window Tl and remove the time steps based on the spiking
activity (lower spiking activity is better for shortening the time window).

The regularization strength allocated to each layer will vary with the temporal dimension, as de-
scribed in Eq. (8). The adjustment procedure of the temporal dimension will be executed period-
ically at intervals of several training epochs during the training process. At the end of the TEAS
training, we perform a final adjustment of the temporal dimension in order to obtain the final allo-
cation of the time window for each layer of the SNN. After the temporal dimensions are determined
(i.e., the time windows of each layer are no longer changed), we further perform fine-tuning to im-
prove the network accuracy of the SNN with adjusted temporal dimensions. Meanwhile, we find
it would be more efficient in reaching higher accuracy by starting from a pre-trained model than
training from scratch.

The training process is sensitive to parameter tuning; we observe that employing smaller tuning
magnitudes for parameters usually yields superior performance in practice. In practice, we first
initialize the time step for each layer based on the spiking activity and then gradually adjust the
temporal information guided by the information strength until the SNN reaches its objective. We
only update some of the most active layers during this process each iteration.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Dataset and Network Architectures. In this work, we evaluate our TEAS on the standard visual ob-
ject recognition benchmarks, namely the MNIST LeCun (1998), CIFAR-10, CIFAR-100 Krizhevsky
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Table 1: Choice of hyperparameters.

Parameters Descriptions Configurations

Np # Epochs for pretraining 150
Nr # Epochs for retraining 30

Batch Size - 16 ∼ 64
Vth Threshold Potential 0.7 ∼ 10

Vreset Rest Potential 0.0
decay coefficient Adam Decay 0.99

lr Learning Rate 5e-4/1e-4

et al. (2014) and ImageNet datasets Deng et al. (2009). MNIST contains 70,000 grayscale images
in 10 categories, of which 60,000 images are used for training and 10,000 images are for testing.
CIFAR-10 includes 60k 32 × 32 RGB images evenly sampled from 10 categories, with 50k and
10k samples for training and test respectively. CIFAR-100 has the same configuration as CIFAR-10,
except it contains images from 100 categories. ImageNet dataset contains 1.2M training images
divided into 1000 distinct categories. To demonstrate the generalizability of our scheme, we eval-
uate the performance of our scheme on ANN converted SNNs and directly trained SNNs. For the
MNIST dataset, we consider a shallow fully-connected neural network architecture (Input-Flatten-
800-IF-10-IF) similar to previous works (i.e., directly trained SNNs). On the CIFAR-10/-100 and
ImageNet datasets, we use a convolutional SNN (i.e., VGG-16 and ResNet network architecture),
which is identical to previous works (i.e., ANN converted SNNs). To facilitate the learning process,
we use the Adam optimizer. The choice of all hyperparameters is shown in Tab. 1. Note that, all the
experiments are performed on a 4-way NVIDIA Tesla V100 under the framework of Pytorch Paszke
et al. (2019).

Table 2: Classification Accuracy (%) on MNIST, CIFAR10, CIFAR100, and ImageNet.

SNN Structure Dataset ANN Acc. SNN Acc. Ori. T Reduced Acc. Reduced T

Directly Trained SNN Liu et al. (2021) 2 FC MNIST - 98.1 16 98.1 6.7
Directly Trained SNN Deng et al. (2021) LeNet MNIST - 99.07 10 99.05 7.1
Directly Trained SNN Liu et al. (2021) 7 Conv, 2 FC CIFAR-10 - 91.31 16 91.31 6.2

Directly Trained SNN Fang et al. (2021) 6 Conv, 2 FC CIFAR-10 - 92.84 8 92.80 5.3
ANN-Converted SNN Han & Roy (2020) ResNet-20 CIFAR-10 91.47 91.42 2048 91.43 45.5
ANN-Converted SNN Han & Roy (2020) VGG-16 CIFAR-10 93.63 93.63 2048 93.66 40.5
ANN-Converted SNN Han & Roy (2020) ResNet-20 CIFAR-100 68.72 68.18 2048 68.15 78.2
ANN-Converted SNN Han & Roy (2020) VGG-16 CIFAR-100 71.22 70.97 2048 70.95 71.3
ANN-Converted SNN Han & Roy (2020) ResNet-34 ImageNet 70.64 69.93 4096 69.87 83.1
ANN-Converted SNN Han & Roy (2020) VGG-16 ImageNet 73.49 73.46 2560 73.41 76.9

4.2 RESULT EVALUATION

Inference performance. Tab. 2 shows the performance of our proposed TEAS for all four datasets.
The results show that our method can achieve state-of-the-art results in temporal-adaptive SNNs.
Specifically, for ANN converted SNNs with the VGG-16 network structure, we reduce the averaged
time steps to 40.5, 71.3, and 77.3 on CIFAR-10, CIFAR-100, and ImageNet, respectively, achieving
0.03% accuracy loss on average, where the maximum accuracy loss is 0.05%. The results of the
layer-wise time steps of the SNN with the VGG-16/ResNet-20 network structure under our TEAS is
shown in Fig. 5. It can be observed that the maximum time steps among the layer in SNNs are 108
and 72 in VGG-16 and ResNet-20, respectively. TEAS can easily find better tradeoff points with
both accuracy and the size of temporal dimension.
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Figure 5: Layer-wise time steps of SNNs with VGG16 network structure on ImageNet (a) and ResNet20
network structure on CIFAR-10 (b).

Comparison to other competing methods. Tab. 3 provides a performance comparison between
the proposed method and previous works, from which we can find that the proposed method out-
performs previous works. The results show that the proposed TEAS method outperforms all the
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Table 3: Comparion of our work with other SNN models on CIFAR-10, CIFAR-100 and ImageNet datasets

Method Structure ANN-SNN Conversion (T=2500) Temporal Comp. Acc.(%) Time Steps

CIFAR-10

Deng et al. (2021) 11 layer CNN - 312.5× 89.53 8
this work 7 Conv, 2 FC - 403.2× 91.31 6.2

Kundu et al. (2021) VGG16 92.48% 25× 91.29 100
Rathi et al. (2020) VGG16 92.48% 25× 90.2 100
Rathi et al. (2020) ResNet20 92.94% 10× 91.12 250
Garg et al. (2021) VGG9 - 52× 89.94 48
Park et al. (2020) VGG16 92.48% 3.7× 91.40 680

this work VGG16 92.48% 54.9× 91.43 45.5
this work ResNet20 92.94% 61.7× 93.66 40.5

CIFAR-100

Kundu et al. (2021) VGG11 70.94% 20.8× 64.98 120
Rathi et al. (2020) VGG11 70.94% 20× 65.52 125
Garg et al. (2021) VGG11 - 52× 68.30 48
Park et al. (2020) VGG16 70.97% 3.7× 68.80 680

this work VGG16 70.97% 35.1× 70.95 71.3

ImageNet

Rathi et al. (2020) VGG16 68.12% 10× 56.87 250
Rathi et al. (2020) ResNet34 65.1% 10× 62.73 250

this work VGG16 73.46% 32.5× 73.41 76.9
this work ResNet34 69.93% 30.1× 69.87 83.1

competitors and achieves state-of-the-art temporal compression rate without significant accuracy
loss. Compared to previous work, our TEAS adopts spiking activity-guided time step allocation to
adjust the temporal information adaptively that could realize both high accuracy and efficiency. For
example, regarding ResNet-20 on the CIFAR-10, TEAS achieves 61.7× time steps reduction with
nearly no accuracy loss compared to the original SNN (2500 time steps). For CIFAR-100, TEAS
algorithm shows a 0.02% accuracy loss compared to the original SNN and a significant 6.3% accu-
racy improvement over the state-of-art temporal compression method Kundu et al. (2021) with 40%
fewer time steps. While for the more complex task ImageNet, the adaptive time window among
layers makes our TEAS more robust for preserving SNN accuracy than the SNN with the small
windows Rathi et al. (2020). Specifically, TEAS achieves 4.9% accuracy improvement with 67%
fewer time steps over the method in Rathi et al. (2020). This is because existing efforts to reduce
temporal information are unified over all layers, which are too aggressive to achieve good accuracy.
The original SNN pursues better performance while ignoring time steps; the compression method
for the temporal dimension pursues the time steps to be small while ignoring the performance; our
TEAS can achieve a balanced complexity-accuracy trade-off by encouraging the layers with the high
and low spike activity to use the large and small number of time steps, respectively. These results
suggest that there exists extremely high redundancy in the temporal dimension of SNNs.

Effect of retraining. As stated above, we propose to apply layer-wise spiking activity-aware ad-
justment on the regularization term to penalize more on smaller layers during the training. Fig. 6
compares the TEAS scheme and the SNN (ResNet-20 network structure) performance achieved
without retraining or performing the TEAS retraining or without such a regularization term. All
the hyperparameters are kept the same. We observe that SNNs without retraining (black line in
Fig. 6) are sensitive to the temporal dimension, resulting in a drop in accuracy. On the other hand,
SNN recovers the accuracy with the adaptive adjustment with retraining. Meanwhile, from the plot,
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Figure 6: Layer-wise time steps comparison under TEAS schemes achieved with or without retraining. W/O
RT, W/ RT W/O R and W/ RT W/ R indicate without retraining, retraining without regularization term and
retraining with regularization term, respectively.
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Figure 7: The accuracy (Top-1) evolution curve versus the number of epochs under TEAS. Regions in shadow
indicates the error band w.r.t 5 trials.

training without the term will lead to over-penalization on earlier layers with higher spiking activi-
ties (vulnerable layers), while later layers with fewer spiking activities (invulnerable layers) are not
compressed enough.

Before retraining, the parameters of the SNNs are set to be the corresponding values of the trained
SNNs. We find it more efficient to reach convergence by starting from a pre-trained model than
training from scratch. Fig. 7 shows the image classification accuracy of VGG-16 and ResNet-20
models with averaged time steps 40.5 and 45.5, as the retraining epochs increase. The results show
that the SNN model can recover the original performance with 50 epoch.
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(1) CIFAR-10 (2) CIFAR-100 (3) ImageNet Operation Operand Format Energy (pJ) Relative costs

8-bit INT 0.03 1.0

32-bit INT 0.1 3.3

8-bit INT 0.2 6.7

32-bit INT 3.1 103.3

8-bit INT 0.23 7.7

32-bit INT 3.2 106.7

8-bit INT 0.03 1.0

32-bit INT 0.1 3.3

Adder

Multiplier

MAC (ANNs)

AC (SNNs)

(b) Estimated energy costs of operations in ANNs and SNNs for 
integer data format under 45nm process.

(a) Normalized energy efficiency

Figure 8: (a) Comparison of ANN, SNN and SNN under TEAS in terms of normalized energy efficiency with
VGG and ResNet network structure on CIFAR-10 (1), CIFAR-100 (2) and ImageNet (3). (b) Estimated energy
costs of operations in ANNs and SNNs for integer data format under 45nm process.

Computation efficiency of SNNs. SNNs are well-known to have higher energy efficiency compared
to ANNs. Therefore, we compare the energy consumption of ANNs and SNNs. Here, we compute
the energy based on the number of spikes generated by all layers. Fig. 8(a) illustrates the energy
consumption for ANNs, SNNs and SNNs under TEAS with VGG16 and ResNet network structure
on three datasets, where the energy is normalized to that of the ANN. Specifically, for VGG-16,
the SNN under TEAS provides 11.5× higher energy efficiency compared to ANN and SNN with
the identical temporal dimension. This efficiency mainly comes from TEAS, which makes the tem-
poral dimension assigned by SNN to each layer appropriate and without waste. Since the addition
operation consumes significantly less energy than multiplication (see Fig. 8(b)), the SNNs are signif-
icantly more energy-efficient. However, since the energy consumption of ANN depends on FLOPs,
while the fired spikes dominate that of SNN, making the actual energy efficiency gain of SNN lim-
ited by the fact that SNN requires multiple inferences. The time steps of SNN with our scheme are
substantially reduced, the energy efficiency can reach up to 22.9× on average, as opposed to ANN
models having similar parameters.

5 CONCLUSION

Our proposed TEAS is the very first work for dynamic conversion on the temporal dimension of
SNNs. TEAS sheds early lights on why the control of the temporal dimension for SNNs needs more
attention. Our method uses spiking activities of layers, which can be easily integrated and trained in
an end-to-end fashion, to guide the temporal dimension optimization. Then, we propose temporal
conversion to skip the redundant temporal dimension at run-time. We demonstrate through extensive
experiments and analyses that the redundancy in the temporal dimension of SNNs is extremely
severe than anticipated.
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