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Abstract001

Automated Claim Verification (CV), where002
claim’s veracity is assessed against explicitly003
provided reference materials, is crucial in com-004
bating escalating online misinformation. This005
survey carefully analyzed 198 studies pub-006
lished between January 2022 and March 2025007
to summarize recent work on corpus creation,008
system architectures, and the integration of009
large language models. We also conducted010
two case studies: the first looks at the rela-011
tionship between claims and references. The012
second examines issues in claim decomposi-013
tion. Our findings illuminate common corpus014
construction strategies and emerging trends in015
system architectures while highlighting remain-016
ing challenges in CV research.017

1 Introduction018

The growing scale of online misinformation has led019

to a surge of research in automated fact-checking020

and claim verification, which assess whether a021

given claim is supported by accompanying refer-022

ences. A key milestone in this field was the release023

of the FEVER dataset (Thorne et al., 2018), which024

formalized claim verification as a benchmark task025

and sparked the development of new datasets such026

as Xfever (Chang et al., 2023), FEVEROUS (Aly027

et al., 2021) and many more. Since then, shared028

tasks like AVeriTeC (Schlichtkrull et al., 2024) have029

further advanced research by providing standard-030

ized datasets and evaluation frameworks for verify-031

ing claims against textual evidence.032

Many recent surveys have reviewed system designs033

of claim verification from different angles, includ-034

ing system overviews (Bhuiyan et al., 2025; Guo035

et al., 2022; Yang et al., 2024), justification gen-036

eration (Eldifrawi et al., 2024), LLM integration037

(Dmonte et al., 2024), and multimodal approaches038

(Akhtar et al., 2023b). Several surveys touch upon039

some elements in datasets such as size, input, and040

output format (Yang et al., 2024; Panchendrara- 041

jan and Zubiaga, 2024; Gusdevi et al., 2024), but 042

few have examined the corpora creation process 043

and its impact on system design. We fill this gap 044

by providing a review of recent corpus-creation 045

practices, together with system design across key 046

components. 047

In this study, we conduct a systematic survey of 048

claim verification (CV) research in order to answer 049

the following research questions: (1) What corpora 050

are available for CV research and how are they cre- 051

ated? (2) What are common approaches in building 052

CV systems? (3) What are the main issues and 053

challenges in corpus construction and system de- 054

velopment and what are some future directions to 055

address the issues? We will answer the first two 056

questions in Section 4-5 and the last question in 057

Section 6-8 with two case studies. 058

2 Task Setting 059

The input to a CV system consists of a claim and 060

optionally some reference documents. The docu- 061

ments are sometimes called evidence or context. In 062

this study we will call them reference documents 063

or reference in short, and use the term evidence- 064

bearing sentence to refer to evidence in the refer- 065

ence. The output of a CV system includes a verac- 066

ity label and optionally a justification to explain 067

the veracity label. 068

The task has two settings. In the first (also called 069

open-domain fact-checking), only a claim is pro- 070

vided as input and the CV system needs to retrieve 071

relevant documents from external sources such as 072

the Internet. In the second setting, the reference 073

documents are provided as input. In this survey, we 074

focus on the latter as we will study the relationship 075

between claims and references and its effect on 076

corpus creation and system development. 077
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3 Paper Selection078

To ground our analysis, we first collected a set of079

research papers on claim verification.080

3.1 The initial set of papers081

We collected papers from three main sources:082

ACL Anthology1, Semantic Scholar2, and Google083

Scholar3. We used query terms (fact OR claim)084

AND (checking OR verification) to retrieve papers085

published between Jan 2022 and March 2025.4 Af-086

ter removing duplicates, there were 315 papers left,087

forming our initial set of papers.088

3.2 Manual Screening and Categorization089

We read all the 316 papers and divide them into090

three groups: (a) 62 papers that are not on CV;091

(b) 56 papers are on the first CV setting (i.e., ref-092

erences are not provided); (c) 198 papers on the093

second setting of CV, forming the main collection094

of studies covered in this survey.095

For the rest of the paper, we will report findings096

from our main collection, but we will mention im-097

portant work published before 2022 and papers098

from (b) when appropriate.099

4 Corpus Creation100

Out of 198 papers in the main paper collection for101

this survey, 65 created new CV corpora. Among102

them, 47 focus on corpus construction while the103

remaining 18 are on system development but have104

built new corpora for evaluation. In this section,105

we report findings from these 65 papers.106

4.1 Main components of a CV corpus107

An instance in a CV corpora consists of a claim, a108

reference, a veracity label, and very often a justifi-109

cation. In addition, it may include some metadata110

such as author name, publication date, and publica-111

tion platform of the claim or the reference.112

Claim: A claim is a statement being verified. In113

almost all corpora in our collection, a claim is text,114

but there exist several corpora with multi-modal115

claims such as FACTIFY (Mishra et al., 2022),116

FACTIFY 2 (Suryavardan et al., 2023), and Claim-117

Review2024+ (Braun et al., 2024). For instance, a118

claim can be a (text, image) pair, extracted from119

public websites such as Twitter.120

1https://aclanthology.org/
2https://www.semanticscholar.org/
3https://scholar.google.com/, using SerpAPI
4Appendix A provides details of our scraping setup.

Reference: A claim is verified against some refer- 121

ence documents. While references in most corpora 122

in our collection are text (e.g., paragraphs or docu- 123

ments), 12 corpora go beyond text and use images 124

(e.g., (Yao et al., 2022; Mishra et al., 2022; Ran- 125

gapur et al., 2023; Braun et al., 2024; Chakraborty 126

et al., 2023; Chen et al., 2024b)), charts (Akhtar 127

et al., 2023a, 2024), tables (Akhtar et al., 2022; 128

Yilun Zhao et al., 2024), or videos (Liu et al., 2023). 129

Veracity Label: Most CV corpora use three la- 130

bels for veracity: supported, refuted, and NEI (not 131

enough information). Seventeen corpora use binary 132

labels: true or false. The rest extend these label sets 133

by adding labels such as partially supported (Li 134

et al., 2024), Conflicting evidence/cherry-picking 135

(Schlichtkrull et al., 2023), and Misleading (Braun 136

et al., 2024). used by the FCTR dataset 137

Justification: Although justification is not a re- 138

quired field in a CV corpus, it provides explana- 139

tion to the veracity label and majority of the cor- 140

pora in our collection include justification. Com- 141

mon types of justification are evidence-bearing sen- 142

tences (EBS) in the original reference (e.g., (Evans 143

et al., 2023; Vladika et al., 2024)), summaries of 144

the EBSs (Chakraborty et al., 2023), or other types 145

such as free-form, deductive and argumentative ex- 146

planation (e.g., (Cekinel et al., 2024; Chen et al., 147

2024b; Kotonya and Toni, 2024)). 148

4.2 Corpus properties 149

At the corpus level, 12 corpora have 1,000 or fewer 150

instances, 20 have 1,000 to 10,000 instances, and 151

the remaining 35 each have over 10,000 instances. 152

Modality Fifty-two corpora are text only and 13 153

corpora are multi-modal where their references in- 154

clude images, charts, tables, or videos. In FACT- 155

IFY (Mishra et al., 2022), FACTIFY 2 (Suryavar- 156

dan et al., 2023), FACIFY3m (Chakraborty et al., 157

2023), and ClaimReview2024+ (Braun et al., 2024), 158

both claims and references are (text, image) pairs. 159

While the justification in all these corpora are text 160

only, we believe there will be many use cases where 161

multi-modal justification is beneficial (e.g., an im- 162

age that marks errors in the claim or the reference). 163

Languages: The majority (50) of the corpora are 164

English only, five are Chinese only (Hu et al., 2022; 165

Lin et al., 2024; Zhang et al., 2024a,b; Wu et al., 166

2023), two are Vietnamese only (Hoa et al., 2024; 167

Le et al., 2024), and one each in German (Deck 168

et al., 2025), Italian (Scaiella et al., 2024), Indone- 169
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sian (Muharram and Purwarianti, 2024), Czech170

(Ullrich et al., 2023) Arabic(Haouari et al., 2024)171

Bangla(Rahman et al., 2025) and Turkish (Cekinel172

et al., 2024). In addition, several corpora are multi-173

lingual (e.g., (Chang et al., 2023; Zeng et al., 2024;174

Chung et al., 2025; Pikuliak et al., 2023)).175

Domain: Data in the CV corpora come from var-176

ious domains, such as politics (e.g., (Zeng et al.,177

2024; Nanekhan et al., 2025; Suryavardan et al.,178

2023), health (e.g., (Vladika et al., 2024; Akhtar179

et al., 2022; Gupta et al., 2023; Liu et al., 2023)),180

science and technology (e.g., (Wadden et al., 2022;181

Lu et al., 2023; Fu et al., 2024)), and finance (e.g.,182

(Yilun Zhao et al., 2024; Rangapur et al., 2023)).183

Majority of corpora collect data from multiple do-184

mains as Wikipedia is a major source (e.g, (Lin185

et al., 2024; Ma et al., 2024; Kamoi et al., 2023)).186

4.3 Corpus Construction Approaches187

CV corpora are rarely built from scratch; they are188

often built on existing datasets. Each of the four189

main components (namely, claim, reference, ve-190

racity label, and justification) is (1) inherited from191

existing datasets, (2) created or modified manually192

by annotators, or (3) generated by NLP systems.193

Often multiple methods are applied; for instance,194

claims in FEVERFact (Ullrich et al., 2025) origi-195

nated from a Wikipedia page, then were modified196

by systems, and finally checked by annotators.197

Based on whether claims and references existed198

before corpus construction, there are three common199

scenarios. First, both claims and references (and200

even veracity labels) came from datasets. They201

are cleaned, transformed and extended to form a202

new CV corpus. For instance, Xfever (Chang et al.,203

2023) translated the claims and the references in the204

FEVER dataset (Thorne et al., 2018) from English205

into five languages to form a multi-lingual corpus.206

LIAR++ (Russo et al., 2023) started from the LIAR-207

PLUS dataset (Alhindi et al., 2018).208

In the second scenario, claims were pre-existing209

(e.g., ones made by podcasters). To acquire ref-210

erences, one can retrieve documents with claim-211

based queries and then filter out irrelevant ones212

(e.g., (Schlichtkrull et al., 2023; Wadden et al.,213

2022; Vladika et al., 2024)).214

In the third scenario, references are from exist-215

ing sources such as Wikipedia; claims are gener-216

ated from the references by humans or systems. In217

FEVER (Thorne et al., 2018), claims are human-218

generated by paraphrasing or distorting sentences 219

from Wikipedia to create factual, refuted, or un- 220

verifiable statements. Many corpora (e.g., (Diggel- 221

mann et al., 2020; Wadden et al., 2022; Jiang et al., 222

2020)) follow this paradigm. An example is in 223

Appendix B. 224

For quality control, human inspection and auto- 225

matic evaluation are conducted at the instance level 226

and the component level with measures such as 227

inter-annotator agreement on veracity labels and 228

ROUGE scores for summaries as justification. 229

5 System Development 230

Of the 198 papers in our survey, 156 build or evalu- 231

ate CV systems. 232

5.1 The traditional pipeline 233

The traditional CV systems has four steps. 234

Document Selection/Evidence Retrieval: This 235

initial step (done by 76 papers) focuses on iden- 236

tifying the most relevant documents or passages 237

for the claim. Recent work emphasizes robust re- 238

trieval through methods like multi-stage rerank- 239

ing (Malviya and Katsigiannis, 2024), specialized 240

extraction pipelines (Wuehrl et al., 2023), and so- 241

phisticated question enrichment strategies (Churina 242

et al., 2024). 243

Sentence Selection/Ranking: From the retrieved 244

documents, sentences or snippets pertinent to the 245

claim are selected (68/156 papers). Hu et al. (2023) 246

proposed a latent variable model for better sentence 247

retrieval. (Zheng et al., 2024) demonstrated the 248

importance of accurate evidence retrieval. 249

Veracity Label Prediction: Considered the core of 250

claim verification (144 papers), this step involves 251

predicting a veracity label based on selected sen- 252

tences. Recently there is a shift from traditional 253

supervised classifiers to LLMs (Guan et al., 2024; 254

Li et al., 2024; Zeng and Gao, 2023; Zhang and 255

Gao, 2023), which often combine retrieved evi- 256

dence with instruction-tuned prompting (Alvarez 257

et al., 2024). 258

Justification Generation: Many systems (56 pa- 259

pers) now generate justification. Extractive ap- 260

proaches use retrieved evidence snippets (Wadden 261

et al., 2022; Vladika et al., 2024), while abstractive 262

methods generate new textual explanations, often 263

using LLMs (Zarharan et al., 2024). 264
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5.2 Other Strategies265

In addition to the traditional pipeline, other strate-266

gies have been proposed for building CV systems.267

Below we summarize several common strategies.268

Decomposition. As an alternative, recent sys-269

tems decompose complex claims into sub-270

questions or subclaims (Chen et al., 2024a; Sahu271

et al., 2024; Schlichtkrull et al., 2023; Kamoi et al.,272

2023). Liu et al. (2024a) employ ”Claim Split”273

modules for this, guiding targeted verification ques-274

tions (Xu et al., 2024). However, such atomic units275

risk losing essential context and they may become276

ambiguous or unverifiable (Hu et al., 2024). (Gun-277

jal and Durrett, 2024) directly tackles this, defin-278

ing criteria like decontextuality (ensuring unique279

specification for stand-alone status) and minimality280

(adding only essential context). We will examine281

decomposition more in Section 7.282

Temporal Reasoning. Claims that mention dates283

or event order require temporal consistency checks284

(Mori et al., 2022). Barik et al. (2024a) extracts285

event–time pairs from both claim and evidence286

and aligns them on a shared timeline. Barik et al.287

(2024b) adds a rule-based filter that discards evi-288

dence outside the relevant time window.289

Knowledge Graph-Based Reasoning. Graph290

structures are used to model relationships between291

evidence and claims (Kim et al., 2023; Lin and Fu,292

2022; Lan et al., 2025), enabling reasoning over293

interconnected facts. In this approach, claims and294

evidence are represented as nodes (e.g., entities,295

facts), and verification is framed as graph traversal296

or subgraph matching (Lin and Fu, 2022).297

Iterative self-revision and flaw identification.298

A newer trend equips verifiers with a “quality-299

control” loop, where systems self-revise an initial300

veracity and explanation before user presentation.301

These extra verification loops improve factual align-302

ment and explanation quality compared to single-303

shot pipelines. For instance, Zhang et al. (2024b)304

let GPT-4 provide initial explanations, which a sec-305

ond LLM then scans and revises until fully citation-306

backed. Kao and Yen (2024a) train a module to307

detect rhetorical fallacies (e.g., cherry-picking) and308

apply fallacy-specific corrections.309

5.3 Evaluation practices310

Claim verification systems are typically evaluated311

using standard metrics such as accuracy and F1312

scores (Nguyen et al., 2025; Bazaga et al., 2023; 313

Zeng and Zubiaga, 2022). For datasets like FEVER 314

(Thorne et al., 2018), FEVEROUS (Aly et al., 315

2021), and AVeriTeC (Schlichtkrull et al., 2024), a 316

stricter FEVER-style score is used, which requires 317

both the correct label and at least one complete evi- 318

dence set (Gong et al., 2024; DeHaven and Scott, 319

2023; Zheng et al., 2024; Liu et al., 2024b). 320

Extractive justifications are evaluated by measur- 321

ing precision, recall and F1(Krishna et al., 2022). 322

Abstractive justifications rely on n-gram overlap 323

metrics such as BLEU and ROUGE alongside se- 324

mantic similarity scores like BERTScore (Zhang 325

et al., 2024b,c; Yao et al., 2022). 326

6 Case Study #1: Claim and Reference 327

Claims in early CV corpora were typically based 328

on single documents. For example, 87% of the 329

claims in the FEVER dataset (Thorne et al., 2018) 330

are supported by evidence from one single article, 331

and in many cases, verification relies on a single 332

sentence within that article. This contrasts with 333

real-world scenarios where verifying a claim often 334

requires synthesizing information from multiple 335

sources and multiple pieces of evidence (Ma et al., 336

2024). In this case study, we aim to investigate 337

the number of evidence-bearing sentences (EBSs) 338

needed to verify a claim. 339

6.1 Case Study Design 340

To that end, we randomly sampled 3 corpora - 341

MSVEC (Evans et al., 2023), HealthFC (Vladika 342

et al., 2024), WiCE (Kamoi et al., 2023) - from 12 343

corpora in which the justifications include multi- 344

ple EBSs. Figure 1 shows the distribution of the 345

number of EBSs per claim. Notably, in MSVEC, 346

19.6% of claims have only one EBS in justifica- 347

tion. Among the instances in which the number of 348

EBSs is greater than one, we want determine how 349

many of the gold-standard EBSs are truly needed 350

to verify the claim. To answer this question, we 351

randomly sampled from HealthFC (Vladika et al., 352

2024) 50 instances that have more than one EBSs, 353

for manual analysis. 354

We examined every (claim, veracity, EBS) triple in 355

our samples and found that EBSs sometimes fail 356

to support the veracity label. We identify six types 357

of scenarios for the triples based on whether an 358

EBS justifies the veracity label given to a claim. 359

We provide full examples of those scenarios in 360

Appendix C. 361
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Figure 1: The distribution of the number of EBSs per
claim in three corpora

Figure 2: The distribution of six types of relations for
claim-veracity-EBS triples. The raw count for Against
and Partially against are 7 and 4.

Sufficient: The EBS alone is sufficient to justify362

the veracity label.363

Partially sufficient: The EBS contributes to the364

veracity label but is not sufficient by itself.365

Against: The EBS is against the veracity label and366

is sufficient for a different label.367

Partially against: The EBS is partially sufficient368

for a different label.369

Irrelevant: The EBS is unrelated to the claim.370

Vague: It is not clear whether the EBS is related371

to the claim due to some ambiguity (e.g., due to372

unsolved coreference).373

6.2 Results and Issues374

Among the 168 EBSs in the 50 instances, 99 EBSs375

are sufficient for or contribute to justifying the ve-376

racity label; 39 are vague, most of which are due377

to coreference issues; surprisingly, we have found378

7 EBSs directly against the assigned label, sup-379

porting a different label. Figure 2 shows the full380

distribution.381

Overall, we agree with the veracity labels in 38 382

instances. Among them, 35 claims need only one 383

EBS to fully justify the assigned label; the other 3 384

need a combination of two EBSs. We disagree with 385

the label assigned for the remaining 12 instances: 386

either the EBSs are supporting a different label (2) 387

or the EBSs are not useful for assigning any labels 388

due to contradictory information (4) or irrelevant 389

and vague EBS (6). For each of these cases, we 390

provide detailed examples in Appendix C. 391

6.3 Discussion 392

As discussed earlier, not only do some EBSs fail 393

to support the assigned label, but they can also ac- 394

tively suggest a different one. In our sample of 50 395

instances, we disagreed with nearly a third of the 396

assigned labels. To address this, we suggest im- 397

proving both annotation guidance and label design. 398

More study is needed to categorize claim types and 399

understand their annotation needs. For instance, 400

when claims contain qualitative judgments, but 401

the supporting evidence is quantitative, disagree- 402

ments can easily occur. Many claims in our sample 403

involve subjective interpretations. For example, 404

one claim asks, “Do health benefits increase with 405

the duration and intensity of exercise?” One EBS 406

states, “Compared to inactive people, slight activ- 407

ity prolongs life by 0.7 year.” However, is a 0.7- 408

year increase considered significant or minimal? 409

This ambiguity can lead to inconsistent annotations. 410

In cases like this, domain-specific guidance and 411

clearly defined criteria for interpreting evidence 412

would help align annotators’ decisions. Moreover, 413

the design of veracity labels should reflect the com- 414

plexity of real-world data. In this case study, 10 415

instances could not be mapped to any of the pre- 416

defined labels. Adding categories like “contradic- 417

tory” or “irrelevant” could better capture these edge 418

cases. 419

7 Case Study #2: Claims and Subclaims 420

As discussed in section 5.2, a common pattern in 421

LLM-driven fact verification is the Decompose- 422

Then-Verify paradigm, where complex claims are 423

split into simpler subclaims before verification. 424

While this modular approach improves scalability 425

and interpretability, the quality of decomposition 426

remains a key bottleneck (Hu et al., 2024). Ide- 427

ally, subclaims should be semantically equivalent 428

to the original claim. In this case study, we examine 429

common decomposition strategies and associated 430
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Figure 3: The distribution of number of subclaims in
each dataset. For CLAIMDECOMP and WiCE, training
dataset is used; for FactLens, whole dataset is used.

issues.431

7.1 Case study design432

To investigate these questions, we reviewed exist-433

ing corpora that provide aligned claim–subclaim434

structures and identified three publicly available435

datasets: CLAIMDECOMP (Chen et al., 2024a),436

WICE (Kamoi et al., 2023) and FACTLENS (Mi-437

tra et al., 2024). In all three datasets, LLMs are438

used to generate subclaims from complex claims439

via prompting, followed by human evaluation to440

ensure the quality of decomposition.441

Figure 3 shows the distribution of subclaims per442

claim. We excluded instances with only one sub-443

claim in FACTLENS, as they do not reflect true444

decomposition. Across datasets, most claims are445

decomposed into two or three subclaims, reflect-446

ing a tendency toward minimal yet tractable break-447

downs.448

We then randomly sampled 50 decomposable449

claims from FACTLENS. For each, we examined450

the generated subclaims, annotated the decompo-451

sition strategy (Section 7.2), and assessed whether452

the subclaims (1) entailed the original claim and453

(2) introduced any decomposition errors.454

7.2 Common patterns and issues455

Based on our analysis of 50 decomposed claims,456

we identified several recurring decomposition457

strategies, the distribution of which is shown in458

Figure 4. Here, we illustrate some of the common459

patterns and the corresponding issue using a repre-460

sentative example.461

Consider the original claim:462

“Mickey Mansell played in his second463

World Cup of Darts with Brendan Dolan,464

he reached the quarter-finals of a PDC465

Figure 4: The distribution of strategies we observed in
the sample. More detailed analysis of the strategies is
shown in the Appendix D.

event but lost in the UK Open which was 466

held at the Reebok Stadium in Bolton.” 467

This was decomposed into the following subclaims: 468

SC1: Mickey Mansell played in his second World 469

Cup of Darts with Brendan Dolan. SC2: Mickey 470

Mansell reached the quarter-finals of a PDC event. 471

SC3:Mickey Mansell lost in the UK Open. SC4: 472

The UK Open was held at the Reebok Stadium in 473

Bolton. 474

One issue with this decomposition is that the con- 475

nector between SC1 and SC2 is lost. As a result, 476

the temporal or causal relationship between events 477

becomes ambiguous—it is unclear whether these 478

events occurred in sequence, simultaneously, or are 479

otherwise related. Furthermore, by isolating events 480

into standalone subclaims, important contextual in- 481

formation such as temporal scope is stripped away. 482

SC2, SC3, and SC4 all become difficult to verify in 483

isolation, as they lack sufficient temporal anchor- 484

ing to be accurately matched against the reference 485

material. This observation highlights a broader 486

implication: context must be preserved when 487

generating and verifying claims and subclaims. 488

In particular, contextual information should be part 489

of the input to claim verification models, as it is 490

often essential for determining whether a subclaim 491

is truly supported by the evidence. 492

7.3 Results 493

Results are shown in Figure 5. Among the 50 sam- 494

pled claim-subclaim pairs, five sets of subclaims 495

did not entail the original claim, while nine entailed 496

it, but were not semantically equivalent. 497

Similarly to what we have discussed in Section 7.2, 498

7 claims were ungrammatical, often formed by join- 499
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Figure 5: Summary of decomposition analysis. The left
pie chart shows the distribution of entailment types in
our annotated sample; the right pie chart summarizes
the overall presence of problems.

ing two independent sentences without appropriate500

conjunctions or punctuation. Such cases introduce501

structural ambiguities that hinder both manual and502

automatic decomposition.503

Accounting for all cases where (1) subclaims were504

not semantically equivalent, (2) decomposition in-505

troduced errors, or (3) the original claim was mal-506

formed, we estimate that 42% of the samples ex-507

hibit some form of decomposition failure. Given508

the increasing reliance on subclaim decomposition509

in fact verification pipelines, these quality issues510

raise concerns about the validity of this approach511

and its potential to negatively impact downstream512

verification performance.513

8 Challenges and Future Directions514

This study has revealed several issues with corpus515

creation and system development.516

8.1 Issues with corpus creation517

Context Dependency of Claim: Very few CV518

corpora in our survey provide context information519

to help resolve ambiguities in the claims. For in-520

stance, in order to verify the Mickey Mansell claim521

in our case study 2, we need to know which year522

the claim refers to, what PDC stands for, what was523

considered a PDC event in that year, and so on. As524

a result, some claims cannot be verified without525

additional information (Ousidhoum et al., 2022)526

Therefore, corpus designers should try to eliminate527

such ambiguities by changing their ways of gener-528

ating claims or references or by adding context as529

a new component of the corpora.530

Claim type and veracity label: Setty and Becker531

(Setty and Becker, 2025) created a dataset for fact-532

checking podcasts and categorized claims into four533

types of Checkable claims (i.e., factual descriptions,534

cause and effect, numerical claims, and quotations)535

and five types of Not Checkable claims.536

Our survey shows that the large majority of CV 537

corpora use binary or ternary veracity labels. For 538

some claim types (e.g., numerical claims), more 539

fine-grained label sets are needed, as discussed in 540

Section 6.3. Thus, our field will benefit from more 541

studies on claim types and veracity label sets and 542

more detailed guidelines for veracity annotation. 543

Modality and language: As our survey shows, 544

English is unsurprisingly the dominant language 545

in CV corpora and text remains the most common 546

modality. However, this dominance does not re- 547

flect the complexity of the real-world information 548

ecosystem, where claims are made in many lan- 549

guages and supported by evidence drawn from 550

what people read, hear, and watch. Expanding 551

beyond English and text should be a collective pri- 552

ority in the field, encouraging the inclusion of mul- 553

tilingual and multimodal data to better align with 554

real-world contexts. 555

8.2 Issues with system development 556

Multi-hop reasoning and decomposition: They 557

are common strategies adopted in CV systems. As 558

shown in Section 7, the decomposition process can 559

be error-prone; e.g., the conjunction of subclaims 560

might not be equivalent to the claim. Even when 561

they are equivalent, some subclaims might be un- 562

verifiable based on the available references. Fur- 563

thermore, some claims can be difficult to decom- 564

pose. Thus, more studies are needed on when and 565

how decomposition should be performed in the CV 566

task. 567

Use of LLMs Nowadays many CV systems are 568

built on top of LLMs. One issue is how LLMs’ 569

prior knowledge would affect their ”judgment” of 570

the claims, especially when the prior knowledge 571

is in conflict with the information in the reference. 572

Will LLMs be able to temporarily suspend its own 573

prior knowledge when dealing such conflict? More 574

studies are required to better understand LLMs’ 575

behavior. 576

Shared task, evaluation corpora and deploy- 577

ment The results of our survey, as well as the 578

overall system designs observed in the field, are 579

strongly shaped by the structure and requirements 580

of shared tasks. For instance, the AVeriTeC shared 581

task (Schlichtkrull et al., 2024) focuses not only on 582

veracity accuracy, but also on evaluating the qual- 583

ity of questions and their corresponding answers 584

generated from given claims. Consequently, all 585

7



participating teams were incentivized to include586

a question generation component in their systems.587

Moreover, the task mandated evaluation of an in-588

termediate step—sentence selection—even though589

our survey indicates that this step is not typically590

emphasized in standard claim verification pipelines.591

In other words, the specific design and evaluation592

criteria imposed by shared tasks like AVeriTeC sig-593

nificantly influence the development of systems in594

this subfield, often introducing components that595

would not otherwise be prioritized.596

Similarly, the design of CV systems can be greatly597

affected by the choice of evaluation corpora; for in-598

stance, if the corpora were created by aggregating599

multiple evidence-bearing sentences, CV systems600

are more likely to ”reverse engineer” by decompos-601

ing the claims.602

As the ultimate goal of building CV systems is to603

deploy them to check real-world claims, more work604

is needed on facilitating the deployment efforts and605

testing system performance in real world.606

9 Related Work607

The release of the FEVER dataset (Thorne et al.,608

2018) marked a turning point in automated claim609

verification. Follow-up datasets like HoVer (Jiang610

et al., 2020) and EX-FEVER (Ma et al., 2024) intro-611

duced multi-hop reasoning and structured evidence.612

These resources inspired a variety of corpora today613

and spurred the development of pipeline systems614

that typically include document retrieval, sentence615

selection, and veracity prediction.616

Our selection includes 8 surveys, which reviewed617

different aspects of claim verification. Many618

(Bhuiyan et al., 2025; Guo et al., 2022; Yang et al.,619

2024) provided an overview of the CV systems.620

Some adopted a more focus angle: Eldifrawi et al.621

(2024) specifically explored the methods on justifi-622

cation production generation; Dmonte et al. (2024)623

focuses exclusively on how LLMs are adopted into624

the CV system. Two surveys (Panchendrarajan625

and Zubiaga, 2024; Gusdevi et al., 2024) exam-626

ined claim verification systems in non-English and627

region-specific contexts, whereas another (Akhtar628

et al., 2023b) focused on multimodal approaches.629

While these surveys touch on certain aspects of cor-630

pus creation like size, label, and annotation(Yang631

et al., 2024; Panchendrarajan and Zubiaga, 2024;632

Gusdevi et al., 2024), none provides a comprehen-633

sive analysis of how CV corpora are constructed.634

Our work differs in scope and focus: we survey 635

only tasks where both a claim and reference are 636

present as input. Apart from synthesizing common 637

system approaches, we provide a detailed account 638

of how CV datasets are constructed to address a 639

gap in existing surveys by foregrounding the role 640

of dataset design in CV landscape. Furthermore, 641

we conduct two case studies to explore the number 642

of EBS used in verification and the quality of claim 643

decomposition. 644

10 Conclusion 645

Our survey of 198 claim verification (CV) papers 646

(January 2022 - March 2025) offers a novel fine- 647

grained analysis of corpus creation, system design, 648

and pipeline vulnerabilities investigated through 649

two detailed case studies. We described common 650

strategies and challenges in CV corpus construc- 651

tion, with our first case study highlighting the rela- 652

tionship between claims and references. For system 653

development, we detailed the pipeline’s evolution 654

and emerging strategies like claim decomposition, 655

where our second case study found various prob- 656

lems with decomposition. 657

While most studies in the NLP field focus on 658

proposing novel systems, our findings underscore 659

the need to better understand the data, as how the 660

corpora were created can affect whether certain sys- 661

tem design strategy would be effective. We hope 662

this survey motivates future research to apply new 663

techniques with critical awareness of these iden- 664

tified issues. Future research directions include 665

developing corpora with richer context, ensuring 666

LLM faithfulness to reference materials, and ex- 667

panding into multilingual and multimodal claim 668

verification. 669

Limitations 670

This survey included only papers in English pub- 671

lished from Jan 2022 to March 2025, and thus may 672

have missed studies published in other languages 673

or outside this time period. 674

Due to the large number of papers in the initial set, 675

most papers were manually checked by one annota- 676

tor in the the screening and annotation stage; thus, 677

annotation errors or inconsistencies are inevitable. 678

Finally, due to page limits for submission, while 679

XX papers are included in this survey from which 680

we gathered our statistics, only a small subset of 681

them are discussed individually in our paper. 682
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Ethical Consideration683

All the papers covered in our survey and the cor-684

pora used in our two case studies are publicly avail-685

able. The screening process in Section 3 and man-686

ual checking for the case studies were performed687

by researchers on our team. We are not aware of688

any ethical issues that arose while conducting our689

work.690
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is almost all you need for fact verification. In Findings1242
of the Association for Computational Linguistics: ACL1243
2024.1244

A Scraping and Filtering Details1245

We collected papers from three sources:1246

• Semantic Scholar: Queried via their public1247

API with keyword queries like “fact checking”1248

and “claim verification”. We retrieved up to1249

400 papers and filtered the first 200 titles that1250

matched either an exact keyword phrase or at1251

least two unigrams after stopword removal.1252

• Google Scholar: Accessed via SerpAPI. Ti-1253

tles were filtered using the same logic as1254

above. Due to SerpAPI limits and noisier1255

metadata, fewer papers passed the filter.1256

• ACL Anthology: Parsed locally from meta-1257

data in the official ACL Anthology GitHub1258

repository. XML files were searched for titles1259

with exact keyword phrases or (≥2) keyword1260

unigrams.1261

Across all sources, abstract matching was enabled1262

(via the ‘–check-abstracts‘ flag) to increase rele-1263

vance. Deduplication was performed using normal-1264

ized titles, with preference given to papers from1265

ACL Anthology, followed by Semantic Scholar,1266

then Google Scholar.1267

B An Example of Claim Generation1268

Figure 6 shows an example from Feverous dataset1269

(Aly et al., 2021), which is used as original claims1270

in FactLens (Mitra et al., 2024) dataset. The claim1271

is generated by using information from three sen-1272

tences on the first Wikipedia article5 and a table on1273

the second article6. The colors show the connec-1274

tion between the claim and the sources. The purple1275

highlights are about context information relevant1276

to the claim. Specifically, together with these cues,1277

temporal information ”2013” can be also inferred1278

from the fact that the paragraph shown in (a) is be-1279

tween two paragraphs that talked about Mansell’s1280

career in 2012 and 2014.1281

C Details of Case Study #11282

In this appendix, we provide full examples of six1283

types of relations regarding claim-veracity-EBS1284

triples. They are presented in table 1. As for1285

5https://en.wikipedia.org/wiki/Mickey Mansell
6https://en.wikipedia.org/wiki/2013 UK Open

whether we agree with the labels given by the au- 1286

thor, we also provide examples for the following 1287

5 scenarios: we agree with the label and believe 1288

only one EBS is needed for justifying the label; we 1289

agree with the label and believe a combination of 1290

two EBSs are needed for justification; we disagree 1291

with the label and believe the EBSs are supporting 1292

a different label; we disagree with the label and 1293

are unsure what label to put due to contradictory 1294

information; disagree with the label and are unsure 1295

what label to put due to irrelevant and vague EBSs. 1296

The examples are given in table 2. 1297

D Details of Case Study #2 1298

Conjunction: One of the most common decompo- 1299

sition strategies is to split coordinated structures, a 1300

pattern observed in approximately half of our sam- 1301

ple. This strategy is generally safe when the con- 1302

junction connects two independent clauses. How- 1303

ever, it becomes problematic when the coordina- 1304

tion occurs at the noun or modifier level. In two 1305

cases, we observed that decomposing noun-level 1306

conjunctions resulted in a loss of essential com- 1307

bined meaning. For example, the claim “Analysis 1308

of A and B shows C” was split into “Analysis of 1309

A shows C” and “Analysis of B shows C”, lead- 1310

ing to subclaims that no longer entail the original 1311

claim. Another type of issue arises when preposi- 1312

tional phrases (PPs) or adjectives are involved in 1313

the conjunction. Splitting such constructions can 1314

force a disambiguation not present in the original 1315

claim. For instance, in the phrase “A and B of C”, 1316

the decomposition can yield either “A of C; B of C” 1317

or “A; B of C”, each carrying a distinct semantic 1318

interpretation. In such cases, the decomposition in- 1319

troduces ambiguity or alters the intended meaning. 1320

Head + Restricted Modifier: In six examples, de- 1321

composition involved noun phrases with restricted 1322

modifiers, such as relative clauses, tightly scoped 1323

adjectives or restricted phrases. In three of these 1324

cases, we observed redundancy issues. Specifically, 1325

the system added the original claim as a subclaim 1326

alongside a version that included only the head 1327

noun without its modifier. Alongside this problem, 1328

the head noun was also included as a standalone 1329

subclaim, resulting in misleading entailments. For 1330

example, the subclaim T-cell deficiency can affect 1331

spatial learning ability” may be true, while the full 1332

original claim “T-cell deficiency can affect spatial 1333

learning ability following toluene exposure” may 1334

not. In such cases, the subclaim set entails but is 1335

14
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Figure 6: A claim from the Feverous corpus, which was generated from two Wikipedia articles

Claim Label EBS Relation

Do heat patches help with lower back pain? Support Carrying self-warming patches for three days has on average improved
the pain in the lower back by 18 points on the 100s scale [1].

Sufficient

Do heat patches help with lower back pain? Support In addition to movement exercises or painkillers, the heat patches are
probably pain-relieving

Partially
Sufficient

Does light freezing help with weight loss? NEI Nevertheless, weight loss was not significantly higher than after the same
exercise program at more pleasant temperatures.

Against

Does taking magnesium salts reduce the frequency
and intensity of exercise-induced muscle cramps
during sports?

NEI In muscle spasms without obvious cause, the symptoms were not easier
and did not occur less frequently compared to placebo when participants
had taken magnesium supplements.

Partially
Against

Do milk or dairy products promote colon cancer and
rectal cancer?

Refute There is also the possibility that dairy products will reduce the likelihood
of bladder cancer.

Irrelevant

Do milk or dairy products promote colon cancer and
rectal cancer?

Refute However, the study situation is still too unclear to draw definitive con-
clusions, which requires more and more meaningful studies.

Vague

Table 1: Full example of six types relations for claim-veracity-EBS-triples
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Claim Label EBSs Agreement Rational

Can arthroscopy reduce
pain or improve mobil-
ity?

Refute 1. Studies clearly speak against a benefit A research team summarized
the most meaningful of all previously published studies on arthroscopy
in knee arthritis.

Agree Each EBS is suf-
ficient

2. In these studies, patients treated after arthroscopy had no noticeably
less pain or movement restrictions than those treated only for appearance
or not at all.
3. Arthroscopy against osteoarthritis: not effective, but also not very
risky After all: Undesirable events were not conspicuously common in
the arthroscopy groups either.

Does taking antibiotics
for acute sinusitis speed
up the healing of the in-
fection?

Support 1. They say that antibiotics can shorten acute sinus inflammation a little
– but only in a few people.
2. Sickness duration: only 5 out of 100 benefit What is the benefit of
taking an antibiotic on the cure, i.e.
3. This means that only 5 out of 100 people with acute rhinosinusitis
benefit from taking an antibiotic instead of a dummy medication.

Agree EBS 1 and 3 com-
bined are suffi-
cient to justify
the label

Does taking magne-
sium salts reduce the
frequency and intensity
of exercise-induced
muscle cramps during
sports?

NEI 1. Anyone suffering from nocturnal calf cramps without known cause
will probably not feel relief from magnesium preparations [1] [2].
2. In muscle spasms without obvious cause, the symptoms were not
easier and did not occur less frequently compared to placebo when
participants had taken magnesium supplements.
3. Accordingly, the authors also came to similar conclusions: no effect
of magnesium salts was detectable in the general population compared
to placebo.

Disagree EBS 1 or 3 sug-
gests the label
“Refute”

Can antibiotic-resistant
germs from animal hus-
bandry be transferred to
humans?

Support 1. However, studies indicate that transmission to humans is possible.
2. For example, persons such as farmers, veterinarians or slaughterhouse
workers who have frequent contact with farm animals for professional
reasons are likely to be more likely to be populated with resistant bacteria
than persons from the general population [1] [8] [10–12].
3. Their summarized results show that people with close contact with
animals such as farmers, veterinarians or slaughterhouse workers are
actually more frequently populated than the average population with the
so-called ”livestock-associated MRSA”.
4. From this, the study authors conclude that a transfer of resistant germs
from animals to humans is in principle possible.
5. Although this type of study may give indications that antibiotic use in
animal husbandry will transfer resistant pathogens to humans, it is not
possible to provide clear evidence.

Disagree EBS 5 suggests
the label “NEI”
rather than “Re-
fute”. It contra-
dicts with EBS 2,
3, or 4.

Do green smoothies
promote health?

NEI 1. However, studies on green smoothies are not yet available.
2.In other words, the claim that they promote health is not substantiated.
3.They cannot easily be transferred to humans.
4. From the point of view of evidence-based reporting, the topic would
be already eaten.

Disagree All EBSs are
vague and thus
are not contribu-
tory to any label.

Table 2: Full example of five scenarios in which we agree or disagree with the label provided by the authors, with
rationals for our opinions.
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not semantically equivalent to the original claim.1336

Head + Unrestricted Modifier: In approximately1337

half of our samples, the decomposition involved1338

head noun phrases with unrestricted modifiers,1339

such as unrestricted relative clauses, appositive1340

clauses, and prepositional phrases that are not se-1341

mantically essential to the head. This strategy is1342

generally safe, as the unrestricted modifier con-1343

tributes supplementary information without alter-1344

ing the scope or truth conditions of the main propo-1345

sition. However, care must be taken when decom-1346

posing appositive constructions, particularly when1347

a be-verb is inserted to form a standalone subclaim.1348

These cases are often tense-sensitive. For example,1349

the claim: “Cuba, a member of the Commonwealth1350

Realms under the monarchy of Queen Elizabeth II,1351

...”may be incorrectly decomposed into:“Cuba is1352

a member of the Commonwealth Realms”; “Cuba1353

is under the monarchy of Queen Elizabeth II.” Us-1354

ing the present tense here may introduce factual1355

inaccuracies, particularly if the context implies a1356

historical or past-tense reading.1357

Head with Multiple Dependents: A critical is-1358

sue we observed involves cases where a single1359

head element (such as a predicate or noun phrase)1360

has multiple dependent phrases, and the decom-1361

position splits these dependents into separate sub-1362

claims. This results in a loss of meaning that arises1363

from their joint contribution. For example, consider1364

the original claim: “HIV-infected patients should1365

be screened for silent myocardial ischaemia using1366

gated myocardial perfusion SPECT.” which was1367

decomposed into: “HIV-infected patients should be1368

screened for silent myocardial ischaemia”; “HIV-1369

infected patients should be screened using gated1370

myocardial perfusion SPECT.” In this decomposi-1371

tion, the link between the method (SPECT) and the1372

target condition (ischaemia) is severed. Each sub-1373

claim is independently verifiable, but the original1374

intent—screening for a specific condition using a1375

specific method—is not preserved. In such cases,1376

the subclaim set does not entail the original claim.1377

Clause-taking Verbs: Another issue arises when1378

decomposing constructions in which a verb takes a1379

clause as its complement. This occurred in two of1380

our annotated samples. Consider the claim: ’X, as1381

determined by histological evaluation’ which was1382

decomposed into: “X”; “Histologic evaluation de-1383

termined X.” This decomposition is problematic1384

because the subclaim ’X’ is no longer supported by1385

any evidential attribution. It presents the proposi- 1386

tion as a standalone fact, rather than one dependent 1387

on an evaluative process. In contexts where the 1388

original claim relies on such attribution (e.g., eval- 1389

uation, belief, reporting), the stripped-down sub- 1390

claim can overstate the certainty or factual status 1391

of the information. 1392

E Claim Verification Corpora in Our Col- 1393

lection 1394

In this section, we curated an extensive collection 1395

of corpora used in the papers in our survey. These 1396

datasets span diverse modalities (text, image, video, 1397

and audio), languages, and application domains, 1398

offering a broad foundation for both benchmarking 1399

and qualitative assessment. The full list is detailed 1400

in Table 3 to 6. 1401
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Corpus Name Corpus
Size

Modality Language Seed dataset Veracity Justification Link

Bangla Claim Detection
Dataset(Rahman et al., 2025)

4 1 ben fact-checking web-
sites, interviews,
speeches

1 0 Avialable upon request

FEVERFact(Ullrich et al.,
2025)

5 1 eng podcast episodes 1 0 link

GCC(Deck et al., 2025) 3 1 ger WhatsApp 3 0 Available upon request

2024 Presidential Debate
Claims(Nanekhan et al., 2025)

1 1 eng presidential debates 1 1 link

Fact-Checking Podcasts
Dataset(Setty and Becker,
2025)

1 1,4 eng, ger, nor podcast episodes N/A 0 link

MultiSynFact(Chung et al.,
2025)

5 1 eng, spa, ger,
low

LLMs 2 1 link

CorFEVER(Tan et al., 2025) 2 1 eng online sources 2 3 link

CHEF-EG, TrendFact(Zhang
et al., 2024b)

4 1 chi CHEF, Weibo 2 3 N/A

T-FEVER, T-
FEVEROUS(Barik et al.,
2024b)

5 1 eng FEVER, FEVER-
OUS

2 1 N/A

ChronoClaims(Barik et al.,
2024a)

5 1 eng Wikipedia 2 1 N/A

FactLens(Mitra et al., 2024) 2 1 eng CoverBench 1 1,3 N/A

Factify5WQA(Suresh et al.,
2024)

5 1 eng fact-checking
datasets

2 1 link

ViFactCheck(Hoa et al., 2024) 4 1 vie newspwpers 2 1 link

ViWikiFC(Le et al., 2024) 5 1 vie Wikipedia 2 0 link

TrendFact (Zhang et al., 2024c) 5 1 chi social media, fact-
checking websites

2 2, 3 link

Table 3: Claim Verification Corpora in Our Collection (1 of 4).

Legend for column codes:

• Corpus Name: This is the name of the CV corpus the paper created.
• Corpus size: 1: no more than 500 instances, 2: no more than 1,000 instances, 3: no more than 5,000 instances, 4: no more than 10,000 instances, 5: greater

than 10,000 instances
• Modality: 1 = text, 2 = image, 3 = video, 4 = audio, 5 = chart, 6 = table, 7 = others
• Language: eng = English, ben = Bengali, chi = Chinese, jpn = Japanese, spa = Spanish, ger = German, ita = Italian, ind = Indonesian, fre = French, tib =

Tibetan, rus = Russian, ukr = Ukrainian, vie = Vietnamese, tur = Turkish, nor = Norwegian, cze = Czech, low = low-resource languages mult = multilingual
• Seed dataset: It is the seed dataset used by the CV corpus.
• Veracity: 1 = binary (true/false), 2 = ternary (supported/refuted/NEI), 3 = more than 3 labels, 4 = numerical scale, 5 = others
• Justification: 0 = N/A, 1 = evidence-bearing sentences, 2 = summary, 3 = explanation, 4 = others
• Link: the link to access the dataset
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https://github.com/aic-factcheck/claim_extraction
https://github.com/kevin-rn/Efficient-Fact-checking/blob/main/data/elections/elections_dev_release_v1.1.json
https://github.com/factiverse/factcheck-podcasts
https://github.com/Genaios/MultiSynFact
https://github.com/txAnnie/Explainable-Fact-checking
https://github.com/Aadityaa2606/FACTIFY-AI-Fact-Checker
https://github.com/QuangDiy/ViFactCheck
https://github.com/HighWill0/ViWikiFC.git
https://github.com/zxc123cc/TrendFact


Corpus Name Corpus
Size

Modality Language Seed dataset Veracity Justification Link

CREDULE(Chrysidis et al.,
2024)

5 1 eng MultiFC, Politifact,
PUBHEALTH,
NELA-GT, Fake
News Corpus

3 3 link

CFEVER(Lin et al., 2024) 5 1 chi Wikipedia 2 0 link

CLAIMREVIEW2024+(Braun
et al., 2024)

1 1, 2 eng ClaimReview
Project

3 0 link

QuanTemp(Venktesh et al.,
2024)

5 1 eng Google Fact Check
Tools API

2 0 link

FlawCheck(Kao and Yen,
2024a)

5 1 eng WatClaimCheck 3 0 link

Adversarial CHEF(Zhang
et al., 2024a)

2 1 chi CHEF N/A 3 link

LLMforFV(Guan et al., 2024) 2 1 eng LLMs 1 0 link

RU22Fact(Zeng et al., 2024) 5 1 eng, chi, rus,
ukr

fact-checking web-
sites, news outlets

2 3 link

XClaimCheck(Kao and Yen,
2024b)

5 1 eng WatClaimCheck,
PolitiFact

3 0 link

HealthFC(Vladika et al., 2024) 2 1 eng, ger Medizin Transparent
web portal

2 1, 2 link

FCTR(Cekinel et al., 2024) 3 1 tur fact-checking orga-
nization, Snopes

3 2 link

ChartCheck(Akhtar et al.,
2024)

5 1, 5 eng Wikimedia Com-
mons

2 3 link

EX-Fever(Ma et al., 2024) 5 1 eng Wikipedia 2 3 link

BINGCHECK(Li et al., 2024) 3 1 eng ChatGPT prompted
user queries

3 0 N/A

EX-Claim(Zeng and Gao,
2024)

4 1 eng WatClaim Check 1 3 link

UNK(Tan et al., 2024) 5 1 eng reports from
National Transporta-
tion Safety Board

1 0 N/A

AMBIFC(Glockner et al.,
2024)

5 1 eng BooIQ dataset 2 0 link

Table 4: Claim Verification Corpora in Our Collection (2 of 4).
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https://github.com/mever-team/credule-dataset
https://ikmlab.github.io/CFEVER
https://github.com/multimodal-ai-lab/DEFAME
https://github.com/factiverse/QuanTemp
https://github.com/NYCU-NLP-Lab/FlawCheck
https://github.com/caiqizh/FC_Chinese
https://github.com/JianGuanTHU/LLMforFV
https://github.com/zeng-yirong/ru22fact
https://github.com/NYCU-NLP-Lab/XClaimCheck
https://github.com/jvladika/HealthFC
https://github.com/firatcekinel/FCTR
https://github.com/mubasharaak/ChartCheck
https://github.com/dependentsign/EX-FEVER
https://github.com/znhy1024/JustiLM
https://github.com/CambridgeNLIP/verification-real-world-info-needs


Corpus Name Corpus
Size

Modality Language Seed dataset Veracity Justification Link

Multi-News-Fact-
Checking(Chen et al., 2024b)

5 1, 2 eng Multi-News summa-
rization dataset

3 2, 3 link

FINDVER(Yilun Zhao et al.,
2024)

3 1, 6 eng company reports
through U.S. Secu-
rities and Exchange
Commission

1 3 link

FEVER-it(Scaiella et al., 2024) 5 1 ita FEVER 2 0 link

AuRED(Haouari et al., 2024) 1 1 ara Twitter 2 0 link

Facity 2(Suryavardan et al.,
2023)

5 1, 2 eng Twitter 3 0 link

WICE(Kamoi et al., 2023) 3 1 eng Wikipdeia 2 1 link

Fin-Fact(Rangapur et al.,
2023)

3 1, 2 eng PolitiFact, Snopes,
FactCheck

2 3 link

EFact(Hu et al., 2023) 4 1 eng fact-checking orga-
nization

3 0 N/A

X-Fact(Hu et al., 2023) 5 1 mult fact-checking orga-
nization

3 0 N/A

MSVEC(Evans et al., 2023) 1 1 eng news outlets, fact-
checking websites

1 1 link

AVeriTeC(Schlichtkrull et al.,
2023)

3 1 eng fact-checking orga-
nizations

3 3 link

Multi2Claim(Tan et al., 2023) 5 1 eng scientific multiple-
choice QA datasets

N/A 3 link

COVID-VTS(Liu et al., 2023) 4 1, 3 eng Twitter 1 1, 3 link

FACTKG(Kim et al., 2023) 5 1 eng WebNLG datase 1 0 link

FACTIFY-5WQA(Rani et al.,
2023)

5 1 eng fact verification
datasets

2 1, 3 link

LIAR++; FullFact(Russo et al.,
2023)

4 1 eng LIAR-PLUS, FULL-
FACT website

2 3 link

XFEVER(Chang et al., 2023) 5 1 eng, chi, jpn,
spa, ind, fre

FEVER 2 0 link

Check-COVID(Wang et al.,
2023)

3 1 eng scientific journal ar-
ticles

2 0 link

Table 5: Claim Verification Corpora in Our Collection (3 of 4).
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https://github.com/ting-chih/MetaSumPerceiver
https://github.com/yilunzhao/FinDVer
https://github.com/crux82/FEVER-it
https://github.com/Fatima-Haouari/AuRED
https://github.com/surya1701/Factify-2.0
https://github.com/ryokamoi/wice
https://github.com/IIT-DM/Fin-Fact/
https://github.com/lamps-lab/msvec
https://github.com/MichSchli/AVeriTeC
https://github.com/taneset/Multi2Claim
https://github.com/FuxiaoLiu/Twitter-Video-dataset
https://github.com/jiho283/FactKG
https://github.com/ankuranii/acl-5W-QA
https://github.com/LanD-FBK/benchmark-gen-explanations
https://github.com/nii-yamagishilab/xfever
https://github.com/posuer/Check-COVID


Corpus Name Corpus
Size

Modality Language Seed dataset Veracity Justification Link

ChartFC(Akhtar et al., 2023a) 5 1, 5 eng TabFact 1 0 link

MultiClaim(Pikuliak et al.,
2023)

5 1 mult Google Fact Check
Explorer, Snopes

1 0 Available upon request

FACTIFY 3M(Chakraborty
et al., 2023)

5 1, 2 eng ChatGPT, visual
paraphrases

3 2, 3 N/A

SCITAB(Lu et al., 2023) 3 1, 6 eng Sci-Gen dataset 2 0 link

German healthcare news arti-
cles(Gupta et al., 2023)

1 1 eng, ger German news
sources

N/A 1 N/A

CsFEVER, CTKFacts(Ullrich
et al., 2023)

5 1 cze Czech adaptation of
the English FEVER

3 1 link

FACTIFY(Mishra et al., 2022) 5 1, 2 eng Twitter 3 0 link

Custom COVID-19 Claims
Dataset(Casillas et al., 2022)

3 1 eng WHO Mythbusters,
John Hopkins FAQs,
CNN QA pages

1 0 link

Mocheg(Yao et al., 2022) 5 1, 2 eng PolitiFact, Snopes 2 1 link

SCIFACT-OPEN(?) 5 1 eng SCIFACT-ORIG test
set

2 1 link

PubHealthTab(Akhtar et al.,
2022)

3 1, 6 eng fact-checking, news
review websites

1 0 link

SufficientFacts(Atanasova
et al., 2022)

2 1 eng FEVER, Vitamin C,
HoVer

2 0 link

CHEF(Hu et al., 2022) 5 1 chi news review sites 2 0 link

FC-Claim-Det(Bhatnagar et al.,
2022)

1 1 eng Fact-checked arti-
cles

2 2, 3 link

FAVIQ(Park et al., 2022) 5 1 eng Natural Questions
dataset, AmbigQA

1 0 link

ClaVer(Sundriyal et al., 2022b) 3 1 eng CORD-19, LESA 2 0 link

DIALFACT(Gupta et al.,
2022)

5 1 eng Wikipedia 2 1 link

CURT(Sundriyal et al., 2022a) 4 1 eng Twitter N/A 3 link

Table 6: Claim Verification Corpora in Our Collection (4 of 4).
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https://github.com/mubasharaak/ChartFC_chartBERT
https://github.com/XinyuanLu00/SciTab
https://github.com/aic-factcheck/csfever-and-ctkfacts-paper
https://competitions.codalab.org/competitions/35153
https://github.com/PLN-disca-iimas/InterpretableFactChecking/tree/main/dataset
https://github.com/PLUM-Lab/Mocheg
https://github.com/dwadden/scifact-open
https://github.com/mubasharaak/PubHealthTab
https://huggingface.co/datasets/copenlu/sufficient_facts
https://github.com/THU-BPM/CHEF
https://github.com/varadhbhatnagar/FC-Claim-Det/
https://faviq.github.io/
https://github.com/LCS2-IIITD/claim_verification
https://github.com/salesforce/DialFact
https://github.com/LCS2-IIITD/DABERTA-EMNLP-2022
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