
Expanding Sparse Tuning for Low Memory Usage

Shufan Shen1,2 Junshu Sun1,2 Xiangyang Ji3 Qingming Huang1,2,4 Shuhui Wang1,4∗
1Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS

2University of Chinese Academy of Sciences 3Tsinghua University 4Peng Cheng Laboratory
{shenshufan22z, sunjunshu21s, wangshuhui}@ict.ac.cn xyji@tsinghua.edu.cn

qmhuang@ucas.ac.cn

Abstract

Parameter-efficient fine-tuning (PEFT) is an effective method for adapting pre-
trained vision models to downstream tasks by tuning a small subset of parameters.
Among PEFT methods, sparse tuning achieves superior performance by only ad-
justing the weights most relevant to downstream tasks, rather than densely tuning
the whole weight matrix. However, this performance improvement has been ac-
companied by increases in memory usage, which stems from two factors, i.e.,
the storage of the whole weight matrix as learnable parameters in the optimizer
and the additional storage of tunable weight indexes. In this paper, we propose a
method named SNELL (Sparse tuning with kerNELized LoRA) for sparse tuning
with low memory usage. To achieve low memory usage, SNELL decomposes
the tunable matrix for sparsification into two learnable low-rank matrices, saving
from the costly storage of the whole original matrix. A competition-based spar-
sification mechanism is further proposed to avoid the storage of tunable weight
indexes. To maintain the effectiveness of sparse tuning with low-rank matrices,
we extend the low-rank decomposition by applying nonlinear kernel functions
to the whole-matrix merging. Consequently, we gain an increase in the rank of
the merged matrix, enhancing the ability of SNELL in adapting the pre-trained
models to downstream tasks. Extensive experiments on multiple downstream tasks
show that SNELL achieves state-of-the-art performance with low memory usage,
endowing PEFT with sparse tuning to large-scale models. Codes are available at
https://github.com/ssfgunner/SNELL.

1 Introduction

Fine-tuning has become a predominant way for adapting large pre-trained models to downstream tasks
with limited training samples [13, 9, 24, 23]. Nevertheless, fine-tuning all model parameters requires
substantial memory usage and is susceptible to over-fitting, making it costly and infeasible for large-
scale models [58, 2, 11]. To address these limitations, parameter-efficient fine-tuning (PEFT) [64, 27,
62, 30, 8, 22] has been proposed to tune a small subset of parameters while keeping other parameters
frozen. PEFT methods can be categorized into addition-based and reparameterization-based methods.
The former attaches additional parameters to a frozen pre-trained backbone, while the latter adjusts
the original parameters in the pre-trained backbone.

Addition-based methods [53, 62, 30] have achieved remarkable performance on vision tasks. However,
adopting additional parameters incurs extra computational costs during the inference process. In
contrast, reparameterization-based methods [5, 7, 27] directly fine-tune the original parameters. These
methods select specific parameters, involving reduced memory usage compared to full-parameter
fine-tuning. Based on the granularity of parameter selection, one primary approach focuses on
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Figure 1: (a) The high memory usage of sparse tuning arises from taking the whole weight matrix as
learnable parameters, in addition to the storage of the tunable weight indexes (typically represented
as a binary mask). (b) Our framework (SNELL) only stores the learnable low-rank matrices in the
optimizer. (c) Memory usage comparison on pre-trained models with different depths.

specific parameter matrices. For example, Bitfit [5] only adjusts bias to reduce the volume of tunable
parameters while Partial-k [30] fine-tunes the last few layers to avoid back-propagation through the
entire pre-trained backbone. To further reduce memory usage, LoRA [27] optimizes each selected
weight matrix using two low-rank matrices to achieve memory-efficient fine-tuning. Although
sufficient in reducing memory usage, these methods usually gain inferior performance compared to
addition-based methods [30]. Recently, SPT [22] and GPS [63] found that combining existing PEFT
methods with sparse tuning, which only adjusts the most task-related weights in a matrix, can achieve
state-of-the-art performance on vision tasks. Concurrently, the effectiveness of sparse tuning has also
been observed in NLP tasks [18]. By focusing on individual weights in a matrix, sparse tuning allows
for more precise adjustments, thus achieving good performance and mitigated over-fitting risks [18].

However, the performance gained from sparse tuning has been accompanied by high memory usage,
as Figure 1(a) shows. Although sparse tuning only updates part of weights in the pre-trained weight
matrix, the whole matrix still needs to be stored as learnable parameters in the optimizer and computed
for their corresponding gradients in practice. Additionally, sparse tuning necessitates storing the
tunable weight indexes, further aggravating the memory demands. The above observation indicates
that sparse tuning gains no advantage over full fine-tuning regarding memory usage, especially given
the increasing parameter volumes in pre-trained models [58, 2]. A sparse tuning method with low
memory usage is urgently required for applications on large-scale pre-trained models.

In this paper, we propose a method that conducts Sparse tuning with kerNELized LoRA (SNELL)
shown in Figure 1(b). SNELL can adapt pre-trained models to downstream tasks with both low
memory usage and strong performance. To reduce memory usage, we decompose the tunable matrix
for sparsification into low-rank learnable matrices to store fewer parameters in the optimizer and
develop a competition-based method to avoid storing the tunable weight indexes. To improve the
performance on downstream tasks, we extend LoRA from a kernel perspective and merge low-rank
matrices with nonlinear kernel functions to obtain matrices with higher ranks.

Specifically, SNELL updates the pre-trained weight matrix using a sparse low-rank adaptation matrix.
This adaptation matrix is first merged with two low-rank learnable matrices and then sparsified
toward effective fine-tuning. Compared to storing the whole adaptation matrix, storing low-rank
matrices in the optimizer results in lower memory usage. For the sparsification process, we propose a
competition-based method inspired by the neuron competition phenomenon in neuroscience [49],
avoiding the storage of the tunable weight indexes that incur additional memory usage. The proposed
method promotes competition among weights based on their absolute values. Most task-relevant
weights are encouraged to have larger absolute values and survive during the fine-tuning process. By
setting a sparsity ratio as the hyperparameter and determining tunable weights based on their absolute
values in an end-to-end manner, we can eliminate the storage of the tunable weight indexes.

In addition to low memory usage, the performance is also critical for model fine-tuning. However,
directly merging two low-rank matrices through the inner product leads to the low-rank structure of
the adaptation matrix, which narrows the optimization scope of tunable matrices and further limits
the expressiveness of sparse tuning. To overcome this bottleneck, we draw inspiration from DyN [45]
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on weight matrix interpretation based on low-dimensional dynamical systems, and reformulate the
merging process with nonlinear kernel functions that increase the rank of the merged adaptation
matrix. This new formulation enables a more expressive sparse tuning while maintaining a compact
representation with low memory.

Extensive experiments are conducted on 24 downstream visual recognition tasks with both plain and
hierarchical vision Transformer backbones under supervised and self-supervised pre-training. Results
show that SNELL can gain the performance improvement of sparse tuning and the low memory
usage of LoRA concurrently. SNELL obtains the state-of-the-art performance on FGVC (91.8% vs.
90.7%) and VTAB-1k (74.6% vs. 74.1%) benchmark with LoRA-level memory usage. Moreover, as
Figure 1(c) shows, the low memory-usage advantage of SNELL becomes increasingly apparent as
the model size grows, enabling sparse tuning on larger models.

2 Related Work

Parameter Sparsity. In early work, the parameter sparsity usually serves as an optimization objective
in model pruning [21, 42]. These pruning methods remove the weights from pre-trained models
irrelevant to a specific task, without significantly degrading model performance. The relevance of
individual weights can be estimated based on activations [28], redundancy [48], per-layer second
derivatives [15], and energy efficiency [57]. Except for the post-training pruning strategy, sparse net-
works [4, 41, 17] directly introduce parameter sparsity into the training process, removing redundant
weights more precisely [17]. Motivated by the advantage of parameter sparsity in model optimization,
recent studies introduce sparsity to the fine-tuning of pre-trained models and achieve enhanced model
performance on downstream tasks [1, 21, 56]. The parameter sparsity gives rise to a reduced number
of trainable parameters and serves as a regularization constraint during fine-tuning [18]. Among
sparse tuning, pre-pruning methods adopt model pruning for fine-tuning. These methods sparsify the
weight matrix [22, 63] or adapter [1] through pruning metrics [43, 17] to identify learnable parameters
for the fine-tuning process. Other methods select trainable parameters during fine-tuning, including
learnable mask [64] or diff vectors [20] with sparsity constraints. However, the parameter sparsifica-
tion methods need to store the indexes of tunable weights, which incurs additional memory usage. For
sparse tuning under low memory budget, our competition-based mechanism selects weights relevant
to downstream tasks in a learnable manner without storing the tunable weight indexes.

Parameter-efficient Fine-tuning. Fine-tuning is the most predominant approach for adapting a
pre-trained model to downstream tasks. However, for large pre-trained models, fine-tuning all
parameters is costly and prone to overfit downstream datasets. To tackle these problems, parameter-
efficient fine-tuning (PEFT) [8, 30, 62], which tunes only a tiny portion of parameters, becomes
a desirable choice. Following the taxonomy of SPT [22], PEFT methods can be categorized into
addition-based [3, 26, 46, 50, 14, 31, 37, 62] and reparameterization-based [5, 7, 20, 64, 27] methods.

Addition-based methods attach additional trainable parameters to a frozen pre-trained backbone.
Adapters [3, 26, 46, 50, 61] adopt a residual pathway and learn a bottleneck layer including two
linear projections and a non-linear activation. Prompt-tuning methods [14, 31, 37, 34] add trainable
parameters to the input and keep the entire pre-trained model unchanged during training. Recent
work [62] attempts to find the optimal configurations to combine multiple addition-based methods.
Despite of the popularity and effectiveness of addition-based methods, the additional trainable
parameters incur excess computational costs during the inference process [3, 33].

Reparametization-based methods adjust the inherent parameters in the pre-trained backbone to
avoid excess computational costs during inference. Early work directly selects parameters with low
memory usage for fine-tuning, such as the bias terms [5] and the final few layers of the pre-trained
model [7]. To further reduce the memory usage of the selected matrices, LoRA [27] optimizes
low-rank matrices that can be reparameterized into the pre-trained weight matrices to reduce memory
usage. Exploring finer-grained parameter selection, some studies [20, 64] propose sparse tuning,
which involves selecting and tuning individual weights sparsely within the weight matrices. Recently,
SPT [22] combines sparse tuning and LoRA in a hybrid framework that achieves state-of-the-art
performances on visual PEFT tasks. SPT has revealed that optimizing the weights most relevant to
the downstream task through sparse tuning can significantly enhance the performance, which is also
supported by SAM [18] and GPS [63]. However, existing sparse tuning framework still faces the
challenge of high memory usage brought by sparse tuning. Unlike existing methods, our SNELL
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inherits high performance and low memory usage concurrently by sparsifying the adaptation matrix
merged with low-rank matrices through nonlinear kernels.

3 Methodology

We first introduce the definitions of sparse tuning [64, 20, 1], LoRA [27] and kernel trick [32] (Section
3.1). Then we propose SNELL, a sparse tuning method including kernelized LoRA that enables
high-performance tuning with low-rank learnable matrices (Section 3.2) and a competition-based
mechanism that sparsifies weights without additional memory usage (Section 3.3).

3.1 Preliminaries

Sparse Tuning. Given a downstream training set D = {x(n), y(n)}Nn=1, the objective of sparse tuning
is to minimize the model’s empirical risk on the downstream task, with the sparsity constraints on
the volume of tunable weights in weight matrix W ∈ Rm×n. The sparsification is usually achieved
through a binary mask M ∈ {0, 1}m×n. The objective function can be formulated as

min
W⊙M

1

N

N∑
n=1

L
(
f(x(n);W), y(n)

)
(1)

where f(·; ·) is a parameterized function over the input (e.g., a neural network), L(·, ·) is a loss
function (e.g., cross-entropy), and ⊙ denotes element-wise multiplication. The binary mask M can be
either a fixed hyperparameter, pre-computed with heuristics such as pre-pruning [22], or a learnable
parameter obtained through end-to-end fine-tuning [64]. All these methods require storing M to
determine the tunable weights, which results in additional memory usage. More importantly, the
tunable parameters W⊙M occupy the same amount of memory as the weight matrix W in practice.
As a result, the memory usage of sparse tuning is even higher than that of full fine-tuning.

LoRA. Given a pre-trained weight matrix W0, LoRA [27] optimizes two low-rank matrices B ∈
Rm×r,A ∈ Rn×r to reduce the memory usage during fine-tuning. The low-rank matrices A and B
can be reparameterized into the pre-trained weight W0,

W = W0 +∆W = W0 +BA⊤ (2)

With r ≪ min(m,n), LoRA can achieve high training efficiency and low memory usage by only
optimizing the smaller low-rank matrices.

Kernel Trick [32]. In many machine learning tasks, mapping the vectors into higher dimensions is
frequently used to achieve linear separability [51]. However, the explicit mapping process incurs
significant computational costs. To address this problem, the kernel trick is proposed to efficiently
model data relationships in high-dimensional spaces, without the need to explicitly formulate the space.
According to Mercer’s theorem [6], a kernel function κ : Rr ×Rr → R can express an inner product
in some space as κ(x,x′) = ϕ(x)⊤ϕ(x′), if and only if κ is positive semi-definite (Appendix B).
x,x′ ∈ Rr, and ϕ : Rr → Rd is an implicit feature map. By selecting an appropriate kernel function
κ, we can obtain the inner product of two vectors in higher-dimensional space Rd (d ≥ r) without
explicitly formulating the feature map ϕ.

3.2 Kernelized LoRA

We leverage LoRA to reduce the memory usage of sparse tuning in light of its low memory usage. An
intuitive solution is to sparsify the adaptation matrix ∆W composed of the two low-rank matrices.
However, the low-rank property of ∆W can lead to the performance degradation of sparse tuning.
For the original sparse tuning, the weight matrix W is free of the rank constraint, and weights are
independent of each other. Therefore, we can independently select and optimize weights most relevant
to the downstream task. For sparse tuning with LoRA, the adaptation matrix ∆W with rank r is
constrained in Rr×(m+n−r), a subspace of Rm×n. When r ≪ min(m,n), the weight optimization
scope of sparse tuning contracts, hindering its performance on downstream tasks.

To achieve sparse tuning with both strong performance and low memory usage, we propose to
construct a high-rank matrix using low-rank matrices. Inspired by DyN [45] that fits a high-rank
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Figure 2: Overview of our SNELL strategy. Given two learnable low-rank matrices, we merge them
using a non-linear kernel function (left). This merging process is equivalent to mapping the matrices
to higher-rank matrices and then performing matrix multiplication. Then we sparsified this merged
adaptation matrix using a competition-based sparsification mechanism (right). This mechanism zeros
out weights with small absolute values based on the specified percentage of s.

matrix using the distance matrix of a low-dimension dynamical system, we extend the distance
function to general kernel functions and investigate LoRA in the kernel perspective. Given two
vectors x,x′ ∈ Rr, the kernel function κ(x,x′) can be formulated as an inner product ϕ(x)⊤ϕ(x′)
with an implicit feature map ϕ : Rr → Rd. The merging process of LoRA can be seen as applying
linear kernel function κl(·, ·) on the rows of the learnable parameters A and B,

∆Wij = κl(Ai,·,Bj,·) = ϕl(Bj,·)ϕl(Ai,·)
⊤ = Bj,·A

⊤
i,·, (3)

where Ai,·,Bj,· ∈ Rr, ϕl : Rr → Rr denotes the identity mapping. By replacing κl(·, ·) with more
complex non-linear kernel functions, we can approximate relations in higher-dimensional spaces
Rd and obtain matrices with rank larger than r. The merged adaptation matrix in SNELL can be
represented by

∆W = (κ(Ai,·,Bj,·))m×n = [ϕ(B1,·)
⊤, ..., ϕ(Bn,·)

⊤]⊤[ϕ(A1,·)
⊤, ..., ϕ(An,·)

⊤] = BϕA
⊤
ϕ .

(4)
Note that in practice, explicit computation of Aϕ ∈ Rn×d and Bϕ ∈ Rm×d is unnecessary. ∆W can
be directly derived based on A and B with the kernel function κ. By extending LoRA in a kernel
perspective, SNELL can build high-rank adaptation matrices based on low-rank learnable matrices,
empowering strong sparse tuning with low memory usage. We utilize the piecewise linear kernel
introduced in Appendix B without a specific statement.

3.3 Competition-based Sparsification Mechanism

Existing methods store tunable weight indexes M ∈ {0, 1}m×n for sparsifying the update of the
weight matrix W ∈ Rm×n. The storage of M leads to additional memory usage. Inspired by the
neuron competition phenomenon in neuroscience [49], we design a competition-based parameter
sparsification mechanism to avoid this additional storage. Instead of determining the learnable weights
in the optimization process based on M, our objective is to encourage the weights to compete based
on their contributions to performance improvement. Weights with stronger contributions survive in the
sparsification while the remaining low-contributed weights are zeroed out. The weight contribution is
reflected in their absolute values during the end-to-end optimization. During optimization, weights
contributing more to the loss reduction are encouraged to have more significant values, while weights
contributing less approach zero. By retaining higher importance to significant weights and zeroing
out the less impactful weights, we can achieve end-to-end tunable parameter selection by solely
relying on the absolute values of weights, avoiding the storage of M.

Specifically, given a merged adaptation matrix ∆W and a sparsity ratio s ∈ [0, 1], we sparsify
weights with a soft-threshold function. To induce weight competition during end-to-end fine-tuning,
we propose a dynamic threshold ∆ws, i.e., the weight having the ⌈smn⌉-th smallest absolute value
in ∆W. This threshold ensures that only a fixed proportion (s× 100%) of weights remain non-zero.
Therefore, the weights have to compete with each other to be selected instead of just having a larger
absolute value than a fixed threshold.

∆Ws
ij = ∆Wij max(|∆Wij | − |∆ws|, 0), (5)
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where ∆Ws = (∆Ws
ij)m×n denotes the sparse matrix with sparsity ratio s. In practice, the sparsity

ratio s is manually determined regarding specific downstream tasks. Given a sparsity ratio s, the
training objective in Equation 1 can be reformulated as

min
A,B

1

N

N∑
n=1

L
(
f(x(n);W0 +∆Ws), y(n)

)
. (6)

This objective encourages weights that are most relevant to the downstream task to gain more
significant values for survival. Adjusting the sparsity ratio s allows us to control the sparsification
process precisely and identify the optimal number of tunable parameters for different tasks.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We evaluate our methods on 24 downstream tasks categorized into two
groups following SPT [22]. (i) FGVC [30] is a benchmark for fine-grained image classification. This
benchmark includes 5 downstream tasks, which are CUB-200-2011 [55], NABirds [25], Oxford
Flowers [44], Stanford Dogs [19] and Stanford Cars [12]. We follow the validation splits in [22] if the
official validation set is unavailable. (ii) VTAB-1k [59] is a large-scale transfer learning benchmark
consisting of 19 visual classification tasks. VTAB-1k can be further divided into three groups, i.e.,
natural tasks with natural images, specialized tasks with images captured by specialized equipment,
and structured tasks with images mostly generated from synthetic environments. We use top-1
accuracy averaged within each group as our main metric following [22].

Pre-trained Backbones. We conduct experiments on the plain vision Transformer backbone ViT-
B/16 [16] that is pre-trained on ImageNet [47] with different pre-training strategies following [22],
including supervised pre-training and self-supervised pre-training with MAE [23] and MoCo v3 [10].
We also conduct experiments on the representative hierarchical vision Transformer backbone Swin-
B [38] and CNN backbone ConvNeXt-Base [39] under supervised pre-training. In addition, we
fine-tune the supervised pre-trained large-scale models (ViT-L/16 [16], ViT-H/14 [16]) on VTAB-1k
to demonstrate the memory-efficiency and high-performance of SNELL.

Competitors. We compare our methods with addition-based methods including MLP-k, VPT-
Shallow [30], VPT-Deep [30], Adapter-r [26], and SPT-Adapter [22]. For reparameterization-based
methods, we compare with Linear, Partial-1, Bias [5], LoRA-r [27], SSF [35], and SPT-LoRA [22].
Here r represents the number of bottleneck dimensions in Adapter-r and the value of rank in LoRA-r
and our proposed SNELL-r. Details of the competitors are presented in Appendix A.1. We also
provide additional comparisons with other approaches [63, 53] in Appendix C.1.

Implementation Details. Following SPT [22], we use the AdamW optimizer [40] with cosine
learning rate decay. The batch size, learning rate, and weight decay are 32, 1e − 3, and 1e − 4,
respectively. We also follow SPT [22] to implement the standard data augmentation pipeline for
VTAB-1K and follow SSF [35] for FGVC as well. SNELL is applied on the pre-trained weight
matrix of all linear layers. For each task, we fine-tune the model with different sparsity ratios s to
search the optimal volume of tunable parameters for this task. Without specific stating, we adopt
the piecewise linear kernel (introduced in Appendix B) as the kernel function for SNELL. Ablation
studies on different kernel functions are presented in Figure 4.

4.2 Performance on Downstream Tasks

Performance on Different Benchmarks. Experiments on FGVC and VTAB-1k benchmarks indicate
that SNELL achieves the best performance with supervised pre-trained ViT-B/16 backbone as shown
in Table 1. SNELL gains large performance improvements over LoRA variants, e.g., SNELL-8
surpasses LoRA-8 significantly by 5.5% in terms of mean accuracy on the FGVC benchmark.
Moreover, SNELL outperforms the state-of-the-art method SPT-LoRA by a clear margin of 0.5% in
terms of mean top-1 accuracy on the VTAB-1k benchmark. This stems from the fact that SPT-LoRA
only performs sparse tuning on a portion of the weight matrices while employing LoRA for the
remaining part. In contrast, the low memory property of SNELL empowers sparse tuning on all the
weight matrices, allowing for more precise adjustments and giving rise to superior performance.
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Table 1: Top-1 accuracy (%) on FGVC and VTAB-1k benchmarks using ViT-B/16 pre-trained on
ImageNet-21k supervisedly. The best result is in bold, and the second-best result is underlined.

Method FGVC VTAB-1k

CUB-200 NABirds Oxford
Flowers

Stanford
Dogs

Stanford
Cars Mean Acc. Natural Specialized Structured Mean Acc.

Full 87.3 82.7 98.8 89.4 84.5 88.5 75.9 83.4 47.6 69.0

Additional-based methods

MLP-3 [30] 85.1 77.3 97.9 84.9 53.8 79.8 67.8 72.8 30.6 57.1
VPT-Shallow [30] 86.7 78.8 98.4 90.7 68.7 84.6 76.8 79.7 47.0 67.8
VPT-Deep [30] 88.5 84.2 99.0 90.2 83.6 89.1 78.5 82.4 55.0 72.0
Adapter-8 [26] 87.3 84.3 98.4 88.8 68.4 85.5 79.0 84.1 58.5 73.9
Adapter-32 [26] 87.2 84.3 98.5 89.6 68.4 85.6 79.6 84.0 58.3 74.0
SPT-Adapter [22] 89.1 83.3 99.2 91.1 86.2 89.8 82.0 85.8 61.4 76.4
MoSA [60] 89.3 85.7 99.2 91.9 83.4 89.9 79.9 84.0 50.3 71.4

Reparameter-based methods

Linear [30] 85.3 75.9 97.9 86.2 51.3 79.3 68.9 77.2 26.8 57.6
Partial-1 [30] 85.6 77.8 98.2 85.5 66.2 82.6 69.4 78.5 34.2 60.7
Bias [5] 88.4 84.2 98.8 91.2 79.4 88.4 73.3 78.3 44.1 65.2
LoRA-8 [27] 84.9 79.0 98.1 88.1 79.8 86.0 79.5 84.6 60.5 74.9
LoRA-16 [27] 85.6 79.8 98.9 87.6 72.0 84.8 79.8 84.9 60.2 75.0
SPT-LoRA [22] 88.6 83.4 99.5 91.4 87.3 90.1 81.9 85.9 61.3 76.4
SSF [35] 89.5 85.7 99.6 89.6 89.2 90.7 81.6 86.6 59.0 75.7

SNELL-8 (ours) 89.6 86.8 99.3 92.1 89.9 91.5 82.0 85.7 61.6 76.4
SNELL-16 (ours) 89.9 87.0 99.3 92.2 90.3 91.7 82.4 86.1 61.7 76.7
SNELL-32 (ours) 89.9 87.0 99.4 92.0 90.5 91.8 82.7 86.1 61.8 76.9

Table 2: Top-1 accuracy (%) on VTAB-1k benchmarks using ViT-B/16 backbone pre-trained on
ImageNet using MAE and MoCo v3 strategies. The best result is in bold.

Methods VTAB-1k MAE VTAB-1k MoCo v3

Natural Specialized Structured Mean Acc. Natural Specialized Structured Mean Acc.

Full 59.3 79.7 53.8 64.3 72.0 84.7 42.0 69.6

Additional-based methods

Adapter-8 [26] 57.2 78.4 54.7 63.4 27.6 70.9 48.4 49.0
Adapter-32 [26] 55.3 78.8 53.3 62.5 74.2 82.7 47.7 68.2
VPT-Shallow [30] 40.0 69.7 27.5 45.7 67.3 82.3 37.6 62.4
VPT-Deep [30] 36.0 60.6 26.6 41.1 70.3 83.0 42.4 65.2
SPT-Adapter [22] 65.6 82.7 60.7 69.7 76.6 85.0 61.7 74.4

Reparameterization-based methods

Linear [30] 18.9 52.7 23.7 32.1 67.5 81.1 30.3 59.6
Partial-1 [30] 58.4 78.3 47.6 61.5 72.3 84.6 47.9 68.3
Bias [5] 54.6 75.7 47.7 59.3 72.9 81.1 53.4 69.2
LoRA-8 [27] 57.5 77.7 57.7 64.3 21.2 66.7 45.1 44.3
LoRA-16 [27] 57.3 77.1 59.9 64.8 16.0 64.0 48.7 42.9
SPT-LoRA [22] 65.4 82.4 61.5 69.8 76.5 86.0 63.6 75.3

SNELL-8 (ours) 68.3 83.8 63.5 71.8 76.8 86.0 63.7 75.5

Performance on Different Pre-training Strategies. Experimental results on models pre-trained us-
ing different strategies are presented in Table 2. SNELL outperforms the state-of-the-art performances
on models pre-trained with MAE (71.8% vs. 69.8%) and MoCo v3 (75.5% vs. 75.3%). Furthermore,
SNELL consistently outperforms other PEFT methods on every group of downstream datasets. This
demonstrates the general effectiveness of SNELL under different pre-training strategies.

Performance on Different Architectures. Following VPT [30] and SPT [22], we apply SNELL to
the hierarchal vision transformer Swin-B and the CNN architecture ConvNeXt-Base. Experimental
results are shown in Table 3. Results on Swin-B demonstrate that SNELL-8 outperforms existing
reparameterization-based PEFT methods by 0.3% and achieves comparable performance to the state-
of-the-art addition-based method SPT-Adapter. For ConvNeXt-Base, SNELL achieves a performance
improvement of 0.4% compared to the best-reported result. These results obtained on different
architectures further validate the versatility and effectiveness of our SNELL approach.

Memory Usage Comparison. We illustrate the effectiveness of SNELL in terms of memory usage
by comparing it with various PEFT methods. Figure 3(a) shows the accuracy and memory usage
of different methods on ViT-B/16. Although some methods achieve satisfactory performance, their
memory usage is excessively large, even surpassing that of full fine-tuning (e.g. SPT-Adapter and
VPT-Deep). In comparison, SNELL achieves superior performance on downstream tasks with
memory usage comparable to memory-efficient methods, including LoRA and Adapter.
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Table 3: Comparisons on VTAB-1k benchmark with supervised pre-trained Swin-B and ConvNeXt-B.
Top-1 accuracy (%) is reported. The best result is in bold.

Methods VTAB-1k Swin-B VTAB-1k ConvNeXt-B

Natural Specialized Structured Mean Acc. Natural Specialized Structured Mean Acc.

Full 79.1 86.2 59.7 75.0 78.0 83.7 60.4 74.0

Additional-based methods

MLP-3 [30] 73.6 75.2 35.7 61.5 73.8 81.4 35.7 63.6
VPT-Deep [30] 76.8 84.5 53.4 71.6 78.5 83.0 44.6 68.7
Adapter-8 [26] 81.7 87.3 61.2 76.7 83.1 84.9 64.6 77.5
SPT-Adapter [22] 83.0 87.3 62.1 77.5 83.7 86.2 65.3 78.4

Reparameterization-based methods

Linear [30] 73.5 80.8 33.5 62.6 74.5 81.5 34.8 63.6
Partial-1 [30] 73.1 81.7 35.0 63.3 73.8 81.6 39.6 65.0
LoRA-8 [27] 81.7 87.2 60.1 76.3 82.2 84.7 64.1 77.0
SPT-LoRA [22] 83.1 87.4 60.4 77.2 83.4 86.7 65.9 78.7

SNELL-8 (ours) 83.3 87.7 61.4 77.5 84.5 87.4 65.6 79.1

Model
Initialize

Data
Input

Feed
Forward

Backward
Propagation

(a) (b) (c)

Figure 3: (a) Accuracy vs. memory usage (batchsize=64) with supervised pre-trained ViT-B/16 on
VTAB-1k. (b) Memory usage evolutions of full fine-tuning, SNELL, and SNELL storing the merged
adaptation matrix (SNELL storing ∆W) on ViT-H/14 during fine-tuning (batchsize=8). (c) Model
parameter volumes vs. memory usage (batchsize=8). As the model gets larger, SNELL’s advantage
of low memory usage over full fine-tuning becomes more obvious.

Additionally, we present the memory usage evolutions during the fine-tuning process in Figure 3(b)
to provide a detailed explanation of how SNELL can save memory. In the model initialization
stage, SNELL exhibits a significantly smaller memory usage compared to full fine-tuning. This is
because full fine-tuning stores all weight matrices as learnable parameters in the optimizer, whereas
SNELL only stores low-rank matrices with smaller parameter volumes. In the feed-forward phase,
the memory usage increases with the storage of intermediate variables for backpropagation. Unlike
other intermediate variables, the adaptation matrix ∆W in SNELL solely relies on the low-rank
parameter matrices, which are already stored in the optimizer. Therefore, it can be dumped in the
feed-forward phase and recovered in backpropagation immediately, saving from a large amount of
memory usage (SNELL vs. SNELL storing ∆W).

Scaling to Larger Models. To investigate the scalability of SNELL to large models, we apply it
to ViT models of varying sizes (ViT-B/16, ViT-L/16, and ViT-H/16 pre-trained on ImageNet21K).
We follow the experimental setup presented in Section 4.1, except for modifying the batch size for
experiments on ViT-H/14 to 8 and changing the search scope of sparsity ratios s ∈ {0, 0.9}.

As depicted in Figure 3(c), the memory usage of full fine-tuning increases rapidly as the model
size grows. This observation highlights that existing PEFT methods like VPT and SPT, despite
their advanced performances, incur substantial memory costs when applied to large-scale models
due to even higher memory usage than full fine-tuning. In contrast, SNELL exhibits a notable
advantage in terms of memory usage for larger models (similar to LoRA-8). When applied to ViT-
H/14, the memory usage of SNELL is only approximately 50% of that required for full fine-tuning,
exemplifying its significant memory-saving capability on large models.

Regarding the performance, as shown in Table 4, SNELL-8 outperforms LoRA-8 on all dataset
groups (Natural, Specialized, and Structured) as well as the mean accuracy for both ViT-L and ViT-H
on the VTAB-1k benchmark. This demonstrates the effectiveness of SNELL for adapting large
pre-trained models to downstream tasks.

8



Table 4: Comparisons on VTAB-1k benchmark with supervised pre-trained ViT-L/16 and ViT-H/16.
Top-1 accuracy is reported. The best result is in bold.

Methods VTAB-1k ViT-L/16 VTAB-1k ViT-H/14

Natural Specialized Structured Mean Acc. Natural Specialized Structured Mean Acc.

LoRA-8 81.2 86.6 53.4 73.7 77.9 84.8 55.9 72.9
SNELL-8 82.3 86.9 56.6 75.3 79.5 85.1 56.9 73.8

Table 5: (a) Performance on VTAB-1k of sparsifying a full-rank matrix, the merged adaptation matrix
of LoRA-8 and kernelized LoRA-8 (KLoRA-8) with sparsity ratio s = 0.9. (b) The mean accuracy
on VTAB-1k of kernelized LoRA (KLoRA) and SNELL (KLoRA+sparsifying) with different ranks
of learnable matrices. Perf. Imp. denotes the performance improvement of SNELL over KLoRA.

(a)

Matrix Natural Specialized Structured Mean Acc.

Full-Rank 80.5 85.1 57.6 74.4

LoRA-8 61.1 81.2 54.7 65.7
KLoRA-8 79.4 84.5 57.9 73.9

(b)

Method r = 8 r = 16 r = 32

KLoRA 73.2 73.0 72.7
SNELL 74.2 74.4 74.6

Perf. Imp. +1.0 +1.4 +1.9

4.3 Ablation Studies

Effect of Kernelized LoRA. We explore the effectiveness of kernelized LoRA by comparing the
performance of sparsifying a full-rank matrix, the merged adaptation matrix of LoRA, and the merged
adaptation matrix of kernelized LoRA. Experimental results are presented in Table 5(a). We can see
that sparsifying the merged adaptation matrix of LoRA significantly underperforms a full-rank matrix.
This reveals that the low-rank property of the merged adaptation matrix in LoRA greatly compromises
the weight selection scope, leading to performance degradation for sparse tuning. However, when we
replace LoRA with kernelized LoRA, the performance becomes notably comparable to that of the
full-rank matrix under the strong sparsity constraint (s = 0.9). This indicates that kernelized LoRA
can effectively leverage sparse tuning while maintaining a low memory usage.

Effect of Sparse Tuning. Table 5(b) shows the performance comparison between SNELL and
kernelized LoRA to explore the effectiveness of sparse tuning. For kernelized LoRA with different
ranks, applying sparse tuning can consistently improve their performance. Moreover, as the rank of
the learnable matrix increases, the performance of kernelized LoRA decreases while that of SNELL
increases. This difference stems from the model regularization. Similar to sparse regularization, the
low-rank property of LoRA that constrains the dependence between individual weights, can also be
taken as a form of regularization. As the rank of the learnable matrix increases, the effect of low-rank
regularization diminishes. Consequently, kernelized LoRA becomes more susceptible to over-fitting
and encounters performance degradation. In contrast, SNELL employs both low-rank and sparse
regularization. Higher ranks enable better sparsification towards downstream tasks, boosting sparse
regularization that counteracts the diminished low-rank regularization. Therefore, a higher rank may
lead to over-fitting in kernelized LoRA, but it can further enhance performance with sparse tuning.

Effect of Different Kernel Function. We investigate the effectiveness of different kernel functions in
kernelized LoRA. First, we explore the ability of different kernel functions to fit randomly generated
full-rank matrices based on low-rank matrices using the gradient descent algorithm (introduced in
Appendix A.3). As shown in Figure 4(a), we explored four kinds of kernel functions. Compared with
the linear kernel function, nonlinear kernel functions can reconstruct the full-rank target matrix more
accurately based on the low-rank matrices. Subsequently, we explore the performance of kernelized
LoRA with different kernel functions for pre-trained model fine-tuning in Figure 4(b). We find
that using piecewise linear distance as the kernel function can achieve better results compared to
linear kernel function (LoRA), while using Sigmoid and RBF kernels leads to severe performance
degradation. This is because the complex non-linear kernel functions such as the exponential function
increase the optimization difficulty in deep networks shown in Figure 4(c). More comparisons
between LoRA and kernelized LoRA (with piecewise linear kernel) are presented in Appendix C.3.2.

Optimal Sparsity Ratio for Different Downstream Tasks. We provide the optimal sparsity ratio
of SNELL-8 on tasks from VTAB-1k benchmarks in Figure 5. The optimal sparsity ratio varies
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(a) (b) (c)
Figure 4: (a) The fitting ability of different kernel functions. We fit random sparse matrices by
merging two learnable low-rank matrices with different kernel functions and compute the MSE loss.
(b) Performance comparison on groups of datasets in VTAB-1k. (c) Training loss on CIFAR-100
dataset in VTAB-1k benchmark of kernelized LoRA with different kernel functions.

Figure 5: The optimal sparsity ratio of SNELL-8 on different downstream tasks (left) and the average
optimal sparsity ratio within each group (right) in VTAB-1k benchmark. The pre-trained model is
the ConvNeXt-B pre-trained on ImageNet-21k.

significantly across different downstream tasks within the same group (e.g., Cifar vs. Sun397, dSpr-
loc vs. Clevr-Dist). Furthermore, we can observe that the Natural task group exhibits a higher average
optimal sparsity ratio compared to the Specialized group, while the Structured group demonstrates the
lowest ratio. This observation aligns with the example illustrated in Figure A6, where cross-domain
adaptation from a model pre-trained on natural images (ImageNet) to images of Specialized and
Structured groups necessitates a larger number of tunable parameters.

5 Conclusion

In this work, we proposed a PEFT method named SNELL (Sparse tuning with kerNELized LoRA)
to conduct high-performance sparse tuning with low memory usage. To reduce memory usage, we
sparsified the adaptation matrix merged with low-rank matrices rather than the pre-trained weight
matrix to reduce the volume of learnable parameters stored in the optimizer. Then we designed a
competition-based sparsification mechanism to avoid the additional memory usage of storing the
tunable weight indexes. To reveal the effectiveness of sparse tuning, we utilize nonlinear kernel
functions to merge the adaptation matrix, increasing the rank of the merged matrix to maintain a
compact representation suitable for sparse tuning with low memory usage. Extensive experiments
demonstrated the ability of SNELL to leverage the high performance of sparse tuning and the low
memory usage of LoRA. For future work, we will apply SNELL on larger models such as LLMs and
improve its training efficiency. For limitations discussion, please refer to Appendix E.2.
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Figure A6: Samples of different downstream tasks in VTAB-1k.

A More Details of Experimental Setup

A.1 More Details of Contenders.

• Full: fully tunes all the model parameters (including backbone and classification head).

• Linear: freezes all the backbone parameters and only tunes the linear classification head.

• Bias [5]: freezes all model parameters except for the bias term and the linear classification head.

• Partial-1: freezes the backbone except for the last 1 layer and also tunes the classification head as
described in [30].

• MLP-3: freezes the backbone and tunes the classification head implemented by a trainable 3-layer
multi-layer percepton as described in [30].

• VPT-Shallow [30]: freezes all the backbone parameters while introducing additional trainable
prompts to the input space of the pretrained ViT.

• VPT-Deep [30]: freezes the backbone while appending additional trainable prompts to the sequence
in the multi-head self-attention layer of each ViT block.

• Adapter-r [26]: freezes all the backbone parameters while adding a down projection, a ReLU
non-linearity, and an up projection layer sequentially in the feed-forward network (FFN) of each
visual Transformer block. We report the performance implemented by [22] for comparison.

• Lora-r [27]: freezes all the backbone parameters while adding a concurrent branch including two
low-rank matrices to the weight matrices in the multi-head self-attention layers to approximate
efficiently updating them. The low-rank matrices can be merged into the backbone weights after
fine-tuning. We report the performance implemented by [22] for comparison.

• SPT [22]: identifies the tunable parameters for a given task in a data-dependent way, and utilizes
LoRA (SPT-LoRA) or Adapter (SPT-Adapter) for weight matrices with a large number of tunable
parameters and sparse tuning for weight matrices with a small number of tunable parameters.

• VQT [53]: introduces a handful of learnable query tokens to each layer for adaptation.

• DoRA [36]: decomposes the pre-trained weight into two components, i.e., magnitude and direction,
for fine-tuning. It specifically employs LoRA for directional updates to efficiently minimize the
number of trainable parameters.

• GPS [63]: identifies task-dependent tunable weights and applies sparse tuning to these weights.

A.2 Dataset Samples for the Downstream Tasks

We visualize some sampled images from different downstream tasks of VTAB-1k [59]) in Figure A6.
The VTAB-1k benchmark encompasses a diverse range of tasks, including natural images, remote
sensing, medical images, etc. Notably, our SNELL has achieved state-of-the-art (SOTA) performance
on these datasets, demonstrating its general effectiveness.

A.3 Implementation details of Figure 4(a)

Given a random matrix W(gt) ∈ Rm×n, we fit this matrix by merging two low-rank learnable
matrices B ∈ Rm×r,A ∈ Rn×r with different kernel functions κ,

min
A,B

1

mn

m∑
i=1

n∑
j=1

(W
(gt)
ij − κ(Bi,·,Aj,·))

2. (A7)
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Table A6: Expression of kernel function utilized in the main text.
Kernel Function Expression

Linear κ(x,x′) = x⊤x′

Piecewise Linear κ(x,x′) =
P∑

p=1
αp∥x⌈rp/P⌉:⌈r(p+1)/P⌉ − x′

⌈rp/P⌉:⌈r(p+1)/P⌉∥2

Sigmoid κ(x,x′) = α(1 + exp(−βx⊤x′))−1 + γ
RBF κ(x,x′) = α(exp(−β∥x− x′∥22))) + γ

Table A7: Top-1 accuracy (%) on VTAB-1k benchmarks using ViT-B/16 backbone pre-trained on
ImageNet-21k supervisedly. The best result is in bold, and the second-best result is underlined.
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Full 68.9 87.7 64.3 97.2 87.4 38.8 86.9 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.6

Additional-based methods

MLP-3 63.8 84.7 62.3 97.4 32.5 49.2 84.7 77.0 88.0 70.2 56.1 47.8 32.8 32.3 58.1 12.9 21.2 15.2 24.8 53.2
VPT-Shallow 77.7 86.9 62.6 97.5 74.5 51.2 87.3 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 64.9

VPT-Deep 78.8 90.8 65.8 98.0 78.1 49.6 88.3 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.4
Adapter-8 69.2 90.1 68.0 98.8 82.8 54.3 89.9 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 71.4

Adapter-32 68.7 92.2 69.8 98.9 84.2 53.0 90.3 83.2 95.4 83.2 74.3 81.9 63.9 48.7 80.6 76.2 47.6 30.8 36.4 71.5
NOAH 69.6 92.7 70.2 99.1 86.1 53.7 90.4 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 73.2

SPT-Adapter 72.9 93.2 72.5 99.3 88.8 55.8 91.4 86.2 96.1 85.5 75.5 83.0 68.0 51.9 81.2 82.4 51.9 31.7 41.2 74.1

Reparameterized-based methods

Linear 63.4 85.0 63.2 97.0 36.6 51.0 86.3 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 52.9
Partial-1 66.8 85.9 62.5 97.3 37.6 50.6 85.5 78.6 89.8 72.5 73.3 41.5 34.3 33.9 61.0 31.3 32.8 16.3 22.4 56.5

Bias 72.8 87.0 59.2 97.5 59.9 51.4 85.3 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.0
LoRA-8 67.1 91.4 69.4 98.8 85.3 54.0 90.4 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 72.3

LoRA-16 68.1 91.4 69.8 99.0 86.4 53.1 90.5 85.1 95.8 84.7 74.2 83.0 66.9 50.4 81.4 80.2 46.6 32.2 41.1 72.6
SPT-LoRA 73.5 93.3 72.5 99.3 87.9 55.5 91.5 85.7 96.2 85.9 75.9 84.4 67.6 52.5 82.0 81.0 51.1 30.2 41.3 74.1

SNELL-8 73.7 92.7 72.4 99.2 89.2 55.4 91.4 84.9 96.1 86.4 75.2 84.0 68.5 53.5 81.0 82.7 49.9 33.9 39.2 74.2
SNELL-16 74.2 93.4 72.5 99.3 90.2 55.7 91.4 85.7 95.8 86.5 76.3 84.4 68.2 53.0 82.0 82.2 49.6 33.3 40.6 74.4
SNELL-32 74.5 93.4 73.1 99.3 91.1 55.9 91.5 85.5 96.1 86.5 76.2 83.4 68.6 52.2 81.3 83.2 50.7 35.9 39.0 74.6

We use gradient descent for 1e5 optimization steps, employing the Adam optimizer with a learning
rate of 1e− 4. We fit 10 randomly generated matrices for each kernel function presented in Table A6
and report the average MSE Loss in Figure 4(a).

B Introduction of Utilized Kernel Functions

Kernel Function Definition (positive semi-definite). Consider a vector space Rr, a kernel function
κ : Rr × Rr → R is called a positive semi-definite kernel on Rr if

n∑
i=1

n∑
j=1

cicjκ(xi,xj) ≥ 0 (A8)

holds for all x1, ...,xn ∈ Rr, c1, ..., cn ∈ R, n ∈ N.

Given two vectors x,x′ ∈ Rr, we show the utilized kernel functions in Table A6. We introduce
additional learnable parameters (the e.g. α for Sigmoid and RBF kernel, αp for piecewise linear
kernel) that enable the merged adaptation matrix ∆W to accommodate both positive and negative
values. The additional parameters select certain elements in the matrix and assign them negative
values, without compromising the high-rank property of the merged adaptation matrix ∆W. We set
P = 2 for the piecewise linear kernel.
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Table A8: (a) Performance comparisons on FGVC between SNELL and GPS. (b) Memory usage
comparison between SNELL and GPS (batchsize=8) on different pre-trained models.

(a)

Method CUB NABirds Oxford
Flowers

Stanford
Dogs

Stanford
Cars Mean

GPS 89.9 86.7 99.7 92.2 90.4 91.8
SNELL-32 89.9 87.0 99.4 92.0 90.5 91.8

(b)

Method Memory Usage (Mb)

ViT-B ViT-L ViT-H

GPS 2428 7522 16119
SNELL-32 1673 4519 9692

Table A9: Performance comparisons on VTAB-1k between SNELL and VQT with ViT-B/16 pre-
trained on ImageNet-21K. The best result is in bold.

Method Natural Specialized Structured Mean Acc.

VQT 72.7 84.5 49.3 68.8
SNELL-8 82.0 85.7 61.6 76.4
SNELL-16 82.4 86.1 61.7 76.7
SNELL-32 82.7 86.1 61.8 76.9

C Additional Experiments

C.1 More Comparisons with Existing Methods

Given that some methods do not provide performance or implementation details on both FGVC and
VTAB benchmarks, we present a comparison between SNELL and these methods in the appendix
rather than in Table 1. First, we provide comparisons with GPS [63] on the FGVC benchmark in
terms of performance and memory usage in Table A8. With comparable performance, SNELL has a
significant advantage over GPS in terms of memory usage. Then, we compare SNELL with VQT [53]
on VTAB-1k dataset in Table A9. SNELL significantly outperforms VQT (76.9% vs. 68.8%).

C.2 Per-task results on the VTAB-1k benchmark

We provide the per-tasks results on the VTAB-1k benchmark using ViT-B/16 supervised pre-trained
on ImageNet21K in Table A7. Our SNELL has demonstrated superior performance by achieving
SOTA performance on 13 downstream tasks. Additionally, SNELL achieves SOTA performance on
the mean accuracy across all tasks (74.6% vs. 74.1%), indicating its effectiveness in various domains.

C.3 More ablation studies.

C.3.1 Comparison between Competition-based Sparsification and Pre-defined Weight Mask

To verify the effectiveness of the proposed competition-based sparsification mechanism, we compare
the performance on FGVC datasets between kernelized LoRA (KLoRA-8-Fixed) with pre-defined
fixed masks, and SNELL in Table A10. The weight masks are generated by SPT [22]. For a fair
comparison, we utilize the same data augmentation as SPT. Compared to our dynamic masking
strategy, pre-defined fixed masking can hardly identify and adjust the most task-relevant weights in
an end-to-end fashion, which leads to performance degradation (89.4 vs. 90.3).

Table A10: Performance comparisons on FGVC benchmark between kernelized LoRA with fixed
weight masks (KLoRA-8-Fixed) and our dynamical masks (SNELL-8).

Method CUB-200 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean

KLoRA-8-Fixed 88.0 82.1 99.0 89.4 88.4 89.4
SNELL-8 89.0 83.9 99.3 90.6 88.6 90.3
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Table A11: Comparisons between LoRA and kernelized LoRA (KLoRA) on VTAB-1k using ViT-
B/16 pre-trained on ImageNet21k supervisedly. Better performance for the same rank is in bold.

Method Natural Specialized Structured Mean Acc.

LoRA-8 80.8 84.9 59.6 75.1
KLoRA-8 80.8 85.5 60.5 75.6

LoRA-16 80.6 85.6 58.5 74.9
KLoRA-16 80.9 85.7 59.7 75.4

LoRA-32 79.4 85.4 57.8 74.2
KLoRA-32 80.8 85.4 59.4 75.2

Table A12: Memory usage comparison between SNELL and LoRA. ∆ Mem. denotes the incremental
memory usage of SNELL in comparison to LoRA.

Pre-trained
Model

LoRA-8
Mem. (MB)

SNELL-8
Mem. (MB)

∆ Mem. /
SNELL-8 Mem.

ViT-B/16 1546 1673 0.076
ViT-L/16 4325 4519 0.043
ViT-H/16 9325 9692 0.038

C.3.2 Comparison between Kernelized LoRA and LoRA

We compare the performance of LoRA and kernelized LoRA on the VTAB-1k benchmark, where all
weight matrices of the pre-trained models are fine-tuned to ensure a fair comparison. The experimental
results are presented in Table A11. Through experiments with different ranks, we observed that
kernelized consistently outperforms LoRA across various task groups. The replacement of the inner
product with nonlinear kernel functions leads to stronger expressive ability, which in turn contributes
to improved performance on downstream tasks.

C.3.3 Additional Memory Usage from Nonlinear Kernel Functions

In Figure 3(a), we observe that SNELL requires additional memory usage compared to LoRA due
to the incorporation of nonlinear kernel functions. To explore whether the impact of this additional
usage hinders the usability of SNELL on large models, we compare the memory usage between
SNELL and LoRA on models as the model size grows (in Table A12). As the model size expands,
the incremental memory usage of SNELL becomes negligible.

C.4 Experiments on Large Language Models

We apply SNELL on LLaMA2-7B [52] to adapt to the commonsense reasoning benchmark. As
Table A13 shows, SNELL achieves a better performance than LoRA. This shows the applicability of
SNELL to NLP tasks. Many other vision PEFT approaches lack this capability, as they necessitate a
full level of memory usage for fine-tuning as Figure 3(a) shows.

C.5 Training Time Analysis

Table A14 provides a comparison of training time costs between SNELL and other PEFT methods
using NVIDIA GeForce RTX 4090 GPU. The training time of SNELL-8 is slightly higher than
LoRA-8 (0.557 vs. 0.443). By further comparing the training time of SNELL-8 and SNELL-8 (saving
∆W), it becomes apparent that the increase in time cost primarily stems from the recomputation

Table A13: Performance on commonsense reasoning benchmark with LLaMA-2-7B.
Model BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LoRA-32 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
SNELL-32 71.4 82.9 80.7 82.1 80.9 82.6 68.0 80.8 78.7
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Table A14: Training time cost on ViT-B/16 of different PEFT methods.

Method LoRA-8 KLoRA-8 KLoRA-8
(saveing ∆W) SNELL-8 SNELL-8

(saving ∆W)

Training time (s/img) 0.443 0.522 0.446 0.557 0.448

Figure A7: Accuracy of different sparsity ratios using SNELL-8. The pre-trained model is the
ConvNeXt-B pre-trained on ImageNet-21k.

of the merged adaptation matrix ∆W. Conversely, the time cost associated with sparsification
(KLoRA-8 vs. SNELL-8) and kernelization (LoRA-8 vs. KLoRA-8 (saving ∆W)) is relatively small.
Indeed, despite the slight increase in time cost due to the recomputation, one significant advantage is
the significant performance improvement and memory efficiency shown in Figure 3.

D Additional Visualization

D.1 Performance of Different Sparsity Ratio

Figure A7 depicts the accuracy of different sparsity ratios on datasets in VTAB-1k. Different
downstream tasks exhibit diverse preferences for the sparsity ratio. For instance, CIFAR-100 tends to
favor a smaller sparsity ratio (0.2), while DTD prefers a larger sparsity ratio (0.8). Both Sun397 and
Retinopathy tasks also lean towards a larger sparsity ratio (0.99). This highlights the need to consider
the specific characteristics of each task when determining the optimal sparsity ratio.

D.2 Analysis of Tunable Parameters

We analyze the tunable weights of SNELL for different downstream tasks. In Figure A8, we compute
the number of weights in the weight matrix WQ of self-attention [54] selected by multiple tasks.
We find that most of the weights are only selected by a single downstream task (Tuned Times=1).
Moreover, we find that in blocks of different depths, there will be a small part of weights that are
selected by multiple downstream tasks, which indicates that there exists a small number of crucial
parameters to improve the model’s performance on downstream tasks.

Figure A8: Number of weights in WQ selected by multiple tasks with sparsity ratio s = 0.99.
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E Discussion

E.1 Tunable Parameter Volume Computing

We justify our choice to omit to report the volume of learnable parameters. First, computing the
volume of tunable parameters in SNELL is difficult. In the case of LoRA, the volume corresponds
to the shape of the learnable low-rank matrices. Conversely, for sparse tuning, the volume is
determined by the number of updated weights. However, SNELL employs low-rank matrices as
learnable parameters and achieves additional updated weight reduction by sparsifying the merged
matrices. When using the parameter volume computation method of LoRA, calculating the reduction
in parameters due to sparsification becomes challenging. Conversely, applying the parameter volume
computation method of sparse tuning would be inherently unfair, given that SNELL is specifically
optimized using low-rank matrices. Second, the parameter efficiency is a pathway to achieve high
performance and low memory usage rather than an objective for model improvement, because
performance improvement and memory usage reduction hold practical value. In our experiments,
SNELL has demonstrated its advantages in terms of high performance and low memory usage, which
we consider more valuable than the pursuit of fewer learnable parameters.

E.2 Limitation Discussion

Despite achieving state-of-the-art performance with low memory usage, SNELL requires more
training time than LoRA. The additional training time cost comes from the recomputation of the
merged matrix ∆W in the backpropagation process presented in Appendix C.5. However, it is
crucial to note that this limitation can be solved. Firstly, given the unique characteristics of the
kernel matrix, more efficient methods [29] can be employed to calculate the merged adaptation
matrix ∆W. Secondly, by designing appropriate GPU operators, it is possible to avoid explicitly
calculating ∆W [45] during the fine-tuning process like LoRA and reparameterize the learnable
low-rank matrices into the pre-trained weight matrices after the fine-tuning process.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in Appendix E.2
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4.1, Appendix A and the released codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

https://github.com/ssfgunner/SNELL


Answer: [Yes]

Justification: Please refer to the released codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper does not report error bars following the practice of previous
studies [30, 22, 53].

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

24

https://github.com/ssfgunner/SNELL
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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