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Abstract

In recent years, large language models (LLMs) have demonstrated impressive1

in-context learning (ICL) capability. However, it is still unclear how the underlying2

transformers accomplish it, especially in more complex scenarios. Toward this goal,3

several recent works studied how transformers learn fixed-order Markov chains4

(FOMC) in context, yet natural languages are more suitably modeled by variable-5

order Markov chains (VOMC), i.e., context trees (CTs). In this work, we study6

the ICL of VOMCs by viewing language modeling as a form of data compression7

and focusing on small alphabets and low-order VOMCs. This perspective allows8

us to leverage mature compression algorithms, such as the context-tree weighting9

(CTW) algorithm as a baseline, which is Bayesian optimal for a class of priors. We10

empirically observe that the performance of transformers is not very sensitive to the11

number of layers, and even a two-layer transformer can learn in context quite well,12

tracking closely the performance of CTW. We provide a construction with D + 213

layers that can mimic the CTW algorithm accurately for VOMCs of maximum14

order D. One distinction from the FOMC setting is that a counting mechanism15

plays an important role in this setting.16

1 Introduction17

Large language models (LLMs) are capable of completing various tasks (Kasneci et al., 2023; Wu18

et al., 2023; Thirunavukarasu et al., 2023; Wei et al., 2022). The transformer model (Vaswani et al.,19

2017), the key behind current prevailing LLMs, is known to have strong in-context learning (ICL)20

capabilities, and concrete ICL results for transformers have been established for some simple tasks21

(Garg et al., 2022; Von Oswald et al., 2023; Bai et al., 2024; Ahn et al., 2024). Despite these results,22

the mechanism for transformers to learn in context is still not fully understood, especially when the23

scenario is complex or the sequences have memories. Toward this goal, several recent works studied24

how transformers can learn fixed-order Markov chains (FOMCs) either in training or in-context25

(Makkuva et al., 2024; Edelman et al., 2024), where insightful observations and theoretical results26

were obtained. The FOMC is however a poor match for natural languages, for which variable-order27

Markov chains (VOMCs), also known as context tree (CT) models (Rissanen, 1983; Willems et al.,28

1995), are often viewed as a more suitable model (Begleiter et al., 2004).29

To this end, we study the ICL of transformers on VOMCs from the perspective of compression,30

motivated by a recent work connecting language models and data compression (Delétang et al., 2023).31

We therefore use compression rates in a fixed context window as our main evaluation metric. This32

allows us to use several well-known compression algorithms, particularly the context weighting33

(CTW) algorithm (Willems et al., 1995), as a baseline. The CTW algorithm is Bayesian optimal34

under certain priors, which gives us a fundamental lower bound in such settings. Appendix A gives a35

more detailed discussion on related works.36
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We first train a set of shallow transformers of various numbers of layers for VOMCs of various37

maximum orders, and empirically observe that the performance of transformers is not very sensitive38

to the number of layers, and even a two-layer transformer can learn in context quite well. We then39

answer the question of whether transformers can mimic the CTW algorithm. For this purpose, we first40

propose an alternative representation of CTW next token prediction, based on which a transformer41

construction with D + 2 layers is given, that can mimic CTW accurately for VOMCs of maximum42

order D. This establishes a fundamental capability of transformers for ICL-VOMC. The alternative43

representation enjoys an intuitive interpretation as blending probability estimates along a path on the44

context tree.45

Main Contributions: (i) We believe that ours is the first study of ICL for VOMC and we demonstrate46

that transformers can indeed (numerically) learn to compress VOMC in-context, close to optimal CTW47

algorithm for appropriate CTW-prior. (ii) we give an explicit D + 2-layer transformer construction to48

imitate CTW, based on a novel Bayesian optimal next token prediction representation, which can be49

of independent interests.50

2 Preliminaries51

2.1 The Transformer Model52

Transformer interacts with sequential data, e.g., xN
1 = (x1, . . . , xN ), where token xi is a symbol53

from an alphabet (a.k.a. vocabulary) A with A = |A|. Each token xi is embedded into h
(1)
i ∈ RE by54

integrating the information of its value xi and position i, where E is the embedding dimension.55

We introduce an L-layer decoder-only transformer model. Each layer of the transformer takes matrix56

H(ℓ) = [h
(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
N ], where h

(ℓ)
i ∈ RE , as its input and applies the multi-head attention57

layer operation and the feed-forward layer operation, and the output of the layer is the input to the58

next layer, denoted as H(ℓ+1). The decoder-only multi-head attention layer with M (ℓ) heads is59

a
(ℓ)
i = MHA

(
hi,H; {W (ℓ)

O,m,W
(ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M

(ℓ)

m=1

)
≜ W

(ℓ)
O

[
b
(ℓ)
1,i ;b

(ℓ)
2,i ; . . . ;b

(ℓ)

M(ℓ),i

]
, (1)

where {W (ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M(ℓ)

m=1 are the E(ℓ)×E query matrices, key matrices, and value matrices160

at the ℓ-th layer and m is the index of the attention head, respectively, W (ℓ)
O is the E ×M (ℓ)E(ℓ)61

output mapping matrix, and b(ℓ)
m is the output of the m-th attention head at this layer defined as62

b
(ℓ)
m,i = (W

(ℓ)
V,m[h

(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
i ]) · softmax((W (ℓ)

K,m[h
(ℓ)
1 ,h

(ℓ)
2 , . . . ,h

(ℓ)
i ])⊤(W

(ℓ)
Q,mh

(ℓ)
i )), (2)

where we used “;” to indicate vertical matrix concatenation and “,” to indicate horizontal matrix63

concatenation. The attention layer has a residual connection, and the attention output together with64

the residual connection also goes through a feedforward layer with a residual connection65

h
(ℓ+1)
i = FF(ai;W

(ℓ)
1 ,W

(ℓ)
2 ) = W

(ℓ)
1 σ(W

(ℓ)
2 (a

(ℓ)
i + h

(ℓ)
i )) + (a

(ℓ)
i + h

(ℓ)
i ), (3)

where σ is a non-linear activation function (e.g., ReLU or sigmoid). The output of the last (L-th)66

transformer layer H(L+1) goes through a linear then softmax unit to predict the probability of67

generating the next symbol in vocabulary A based on the past observations:68

p̂i+1 = softmax(W (L+1)
O h

(L+1)
i ) ∈ ∆A, i = 1, . . . , N − 1, (4)

where ∆A is the probability simplex on A. The model is illustrated in Appendix C.69

2.2 Context Tree Models (Variable-Order Markov Chains)70

Variable-order Markov chains (VOMCs), also known as context tree (CT) models, have been studied71

extensively in the data compression literature (Rissanen, 1983; Willems et al., 1995; Begleiter et al.,72

2004). String s = (x1−l, x2−l, . . . , x0) is a suffix of the string s′ = (x′1−l′ , x
′
2−l′ , . . . , x

′
0), if73

0 ≤ l ≤ l′ and x−i = x′−i for i = 0, 1, . . . , l − 1; e.g., (a, b, c, b) is suffix of (a, c, a, a, b, c, b).74

A CT source is specified by a suffix set S and the associated probability distributions. The suffix set75

is a collection of strings s(k), k = 1, . . . , |S|, which needs to be proper and complete: The set is76

1In practice, embedding dimension E is divisible by the number of heads M (ℓ) and E = M (ℓ)E(ℓ).

2



proper if no string in S is a suffix of any other string; it is complete if each semi-infinite sequence77

(. . . , xn−1, xn) has a unique suffix that belongs to S , denoted as βS(. . . , xn−1, xn). Associated with78

each suffix s ∈ S, there is a probability mass function ps ∈ ∆A. A CT has maximum order D if79

any suffix in S has has length at most D. Given a semi-infinite sequence (. . . , xn−1, xn), the next80

symbol xn+1 is generated randomly according to the distribution pβS(...,xn−1,xn). An example CT is81

in Fig. 5 in the appendix. For each suffix set S, there is a unique tree T with suffix set S being its82

leaves L(T ), and a CT can thus be represented by (T, {ps}s∈L(T )).83

2.3 Bayesian Context Tree Weighting Compression Algorithm84

Once the underlying CT is estimated accurately, arithmetic coding (AC) can be used to85

compress the sequence efficiently. The likelihood of a sequence xi
1 given x0

1−D for a86

CT with parameter (T, {ps}s∈L(T )) is PT,{ps}(x
i
1|x0

1−D) =
∏i

j=1 pβL(T )(xj−D,...,xj−1)(xj) =87 ∏
s∈L(T )

∏
a∈A ps(a)

ni,s(a), where ni,s is the counting vector associated with suffix s that88

ni,s(a) := number of times symbol a ∈ A follows suffix s in sequence (x1, . . . , xi). (5)

Willems et al. (1995) proposed the context tree weighting (CTW) algorithm for CT sources. CTW89

estimates the probability of the sequence xn
1 by the auxiliary parameters pe, pw’s as follows.90

1. For each s ∈ A∗ with |s| ≤ D, compute pen,s =
Γ(

∑
a∈Aα(a))

Γ(
∑

a∈A(ns(a)+α(a))

∏
q∈A

Γ(ns(a)+α(a))
Γ(α(a)) ,91

where ns is the counting vector ni,s with i = n, and Γ(·) is the Gamma function.92

2. From nodes in the D-th level to the 0-th level (i.e., root), iteratively compute93

pwn,s :=

{
pen,s, if |s| = D,
λpen,s + (1− λ)

∏
q∈A pwn,qs, otherwise, (6)

where qs is the string by appending symbol q ∈ A before the suffix s.94

Kontoyiannis et al. (2022) took the Bayesian view towards this procedure under a95

CTW prior. CTW prior πCTW is a Bayesian CT prior over the trees in T (D) :=96

{full A-ary tree with depth at most D} and the transition distributions ps ∈ ∆A. Specifically,97

πCTW(T, (ps)s∈L(T )) = πD(T )
∏

s∈L(T ) πp(ps) with98

πD(T ) = (1− λ)(|L(T )|−1)/(A−1)λ|L(T )|−|LD(T )|, πp(ps) = Dir(ps; {α(a)}a∈A).
πD(·) represents a bounded branching process with stopping probability λ for each node; and99

LD(T ) is the leaves of T with depth D. The next token probability ps follows a Dirichlet prior100

parameterized by {α(a)}. Kontoyiannis et al. (2022) showed that the pwn,() at root computed by CTW101

equals to the Bayesian predicted probability under CTW prior, i.e., pwn,() = PπCTW(x
n
1 |x0

1−D) =102 ∑
T∈T (D)

∫
PT,{ps}(x

n
1 |x0

1−D)π(T, {ps})
(∏

s∈L(T ) dps

)
. AC can be applied via sequentially103

calculating the predictive next token probability as PπCTW(xi+1|xi
1−D) =

PπCTW (xi+1
1 |x0

1−D)

PπCTW (xi
1|x0

1−D)
.104

3 Transformers Learn In-context of VOMCs105
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Figure 1: Transformer vs CTW

We choose ternary alphabet |A| = 3, and pretrain a trans-106

former of context window size N on data sequences of107

length-N generated using CTs randomly sampled from a108

CTW prior πCTW parameterized by α = 0.5, λ = 0.15 and109

a fixed maximum tree depth D, illustrated in Fig. 7 in Ap-110

penidx D. The training loss is the canonical next-token pre-111

diction cross-entropy loss. During the inference, given a112

source sequence of length-N generated from an unknown113

VOMC with the order at most D, can the transformer com-114

press this sequence efficiently, i.e., at a compression rate115

close to the optimal rate?116

In Fig. 1, we show the performance comparisons between117

trained transformers with various numbers of layers and118

the reference CTW algorithm. Experimental details are in Appendix D.119

3



3
0

0               
3

1
5               

3
3

0               
3

4
5               

3
6

0     

Key

300              315              330              345              360    

Q
u
e
ry

0

0.2

0.4

0.6

0.8

3
0

0               
3

1
5               

3
3

0               
3

4
5               

3
6

0     

Key

300              315              330              345              360    

Q
u
e
ry

0

0.2

0.4

0.6

3
0

0               
3

1
5               

3
3

0               
3

4
5               

3
6

0     

Key

300              315              330              345              360    

Q
u
e
ry

0

0.02

0.04

0.06

0.08

Figure 2: Partial attention heatmaps for different attention heads.
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Figure 3: Suffix locations and attention weights in the second type of pattern at two query positions.

We observe that almost all trained transformers, except that with a single layer, track the performance120

of the CTW algorithm fairly closely. The overall performance does improve as the number of layers121

increases in general; see Table 1 in the Appendix D.1 for numerical comparisons. Nevertheless, the122

improvements with increased numbers of layers are relatively small. Even transformers with two123

layers appear to learn in context quite well.124

4 Theoretical Interpretations and Empirical Evidences125

4.1 Analysis of Attention Maps126

To understand why and how the trained transformers perform comparable CTW, we first analyzed the127

attention maps of the trained transformers where two distinguished patterns emerge. One pattern is128

solely relative-position dependent. In the left two panels of Fig. 3, we observe off-diagonal stripes129

for these two attention heads, which are a few positions below the main diagonal. They can be a130

single off-diagonal or a collection of several off-diagonals. This indicates that the query position is131

attending positions at a few fixed but close distances ahead of itself. This pattern usually appears in132

the first or second layers of the transformers. Combining with the suffix structure in compression133

algorithms such as CTW, such an attention pattern suggests the suffix is being copied into the current134

query position for subsequent processing.135

Another pattern, shown in the third panel has more sophisticated spotty patterns, and the attention136

appears to depend more explicitly on the current token features instead of the position alone, and they137

usually appear in the second layer or above in the transformers. Taking query positions 350 and 362138

for the attention head shown in the third panel of Fig. 2, we plot in Fig. 3 the positions in the data139

sequence that match their suffixes of length-3 using the stem plots with a black circle on top, and the140

attention values as the red stems with the diamonds on top. This attention pattern suggests that it is141

collecting information for those positions with the matched suffix of a fixed length.142

4.2 Capability and capacity of transformer via construction143

Given a sequence xn
1 generated according to a CT(T, {ps}) sampled from the CTW-prior πCTW pa-144

rameterized by (D,λ, α), we propose a novel representation for computing the predictive probability145

PπCTW(xn+1|xn
1−D) in the following theorem. It is based on the weighted average of the next token146

prediction probability vector of each potential suffix sn,l := xn
n−l+1 of length l = 0, 1, . . . , D. The147

proof of Theorem 1 is in Appendix E.1.148

Theorem 1. The predicted probability can be computed as149

PπCTW(xn+1|xn
1 ) =

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (7)

150
where pn,sn,l

(a) =
α(a)+nn,sn,l

(a)∑
q(α(q)+nn,sn,l

(q)) ; and ωn,· ∈ ∆D+1 with ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−151

Il=D ln(λ)+ ℓen,sn,l
− ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
− ℓwn,sn,l

, where ℓen,s = ln(pen,s), ℓ
w
n,s = ln(pwn,s).152
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Figure 4: Illustration of Theorem 1

As illustrated in Fig. 4, each suffix sn,l, e.g., sn,0 =153

(), sn,2 = ba, can potentially be the true suffix of the154

underlying CT dynamics, i.e., sn,l ∈ L(T ); and pn,sn,l
155

is in fact the Bayesian optimal next token prediction156

given sn,l ∈ L(T ). The weights ωn,l assign credibility157

that sn,l is the true suffix. Theorem 1 suggests that the158

weights are based on both the information in the suffix159

path such as pesn,sn,l
as well as the information from160

their siblings pwn,qsn,l−1
(siblings are in triangles in Fig.161

4). The information of counting vector nn,s plays a vital162

role since pn,s, pen,s, e.t.c. are all functions of nn,s.163

4.3 Transformer construction: Approximating CTW164

We provide a construction of (2 +D)-layer transformer with sufficient representation power in the165

FF layer that can essentially approximate CTW, demonstrating the capacity of the transformer. The166

first two layers are motivated by the attention map patterns observed in Section 4.1, which we show167

their capabilities of capturing the important counting vector statistics suggested by Theorem 1. The168

last D layers are induction layers imitating the CTW procedure.169

We consider the initial embedding is one-hot, with additional scratch pad elements initialized as170

zeros and a positional embedding, i.e., h(1)
i = (xi;0;posi) where xi ∈ RA is the one-hot (column171

vector) embedding of xi , posi = (1, cos(iπ/N), sin(iπ/N))⊤ is a positional embedding, and the172

remaining (E −A− 3) elements being zero. The proofs of this section are in Appendix E.2.173

We begin with the first layer, which is referred to as a finite-memory context-extension layer.174

Theorem 2. There is an M -headed transformer layer that can perform finite-memory context175

extension, defined by the following output, with the initial one-hot embedded input H(1):176

h
(2)
i = (si,M+1;0;posi), (8)

where si,M+1 = (xi; . . . ;xi−M ) is the vector version of the M -length suffix si,M+1 = xi
i−M .177

This layer copies and stacks M past embedded symbols to the current position i. It utilizes the178

positional encoding posi via rotation and matching the corresponding positions.179

The second layer is referred to as the statistics collection layer, which takes a sequence of vectors180

h
(2)
i , i = 1, . . . , N , defined in (8) as its input. To rigorously specify the function of this layer, we181

define the forward and backward statistics vectors at position i,182

gi,s(a) =
ni,s(a)∑
q∈A ni,s(q)

, g←i−1,s(a) =

∑
q∈A ni,as(q)∑
q∈A ni,s(q)

, ∀a ∈ A, (9)

where ni,s is the counting vector defined in (5), and
∑

q∈A ni,s(q) is the number of appears of the183

string s in the sequence xi−1
1 . In plain words, with |s| = k − 1 they are the empirical probability of184

the next and previous token associated with the suffix s in the k-gram statistics seen before xi. For185

both gi,s and g←i−1,s, if the suffix s has not appeared in data xi−1
1 , it can be initialized arbitrarily as a186

vector in the probability simplex.187

Theorem 3. There is an M ′-head attention layer, where M ′ ≤ M + 1, that can perform statistics188

collection, defined by the following output, with H(2) in (8) as its input:189

a
(2)
i = (si,M+1;gi,M ′ ;g←i−1,M ′ ;0;posi), (10)

where gi,M ′ := (gi,si,0 ; . . . ;gi,si,M′−1
) and g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g

←
i−1,si,M′−1

).190

This functional layer essentially collects k-gram statistics for various lengths of k = 1, 2, . . . ,M ′.191

For example, when k = 3, it collects the normalized frequency associated with the suffix (xn−1, xn).192

For ICL of FOMCs, two-layer transformers collecting forward statistics gi,M ′ with M ′ =193

D + 1 is sufficient (Edelman et al., 2024). However, for the ICL-VOMC task, the under-194
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lying CT structure is unknown, therefore, collecting such simple statistics is no longer suf-195

ficient. As indicated in Theorem 1, the information of counting statistics ni,si,l is impor-196

tant to the performance of prediction since the weights heavily depend on ni,s(a). Yet due197

to the softmax function of the attention layer, only (normalized) probabilistic vector can be198

obtained instead of the exact count. With the backward statistics g←i,s, ni,si,l can be de-199

rived as ni,si,l(a) =
ni,si,l

(a)∑
q∈Ani,si,l

(q)

∑
q∈Ani,si,l

(q)∑
q∈Ani,si,l−1

(q) · · ·
∑

q∈Ani,si,1
(q)∑

q∈Ani,si,0
(q)

(∑
q∈A ni,si,0(q)

)
=200

gi,si,l
(a)
(∏l−1

j=0 g
←
i−1,si,j (xi−j)

)
i, by the information contained in vector a(2)i .201

Taking M = M ′ − 1 = D and a sufficiently wide FF layer in the second transformer layer, we have202

h
(3)
i = (si,D;pi,D; lei,D; ℓwi,si,D ;0;posi), (11)

where pi,D = (pi,si,0 ; . . . ;pi,si,D ) and lei,D = (ℓei,si,0 ; . . . ; ℓ
e
i,si,D

), by universal approximation.203

To fulfill the Bayesian optimal prediction, we introduce the following CTW induction layer that204

iteratively computes ℓwi,s on the suffix path and their siblings, and also the weight difference δi,l :=205

ln(ωi,l)− ln(ωi,l−1) for l = d,D − 1, . . . , 1. The desired embedding for ℓ = 3, 4, . . . , 3 +D is206

h
(ℓ)
i = (si,M(1)+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D−ℓ+4; ℓ

w
i,si,D+3−ℓ

;0;posi). (12)

Theorem 4. There exists a A-head transformer layer that can perform the induction: Takes H(ℓ) in207

(12) as input and outputs H(ℓ+1). And the final output layer taking H(D+3) as input can output the A-208

dimensional Bayesian optimal next token prediction vector PπCTW(·|xn
1−D) =

∑
l=0,...,D ωn,lpn,sn,l

.209

Although transformers with sufficient FF layers can theoretically compute the optimal prediction as210

CTW, empirically, transformers of 2 +D layers perform slightly worse in our experiments. This is211

likely due to the less-than-perfect pretraining optimization and the limited representation capability of212

finite-width FF layers with ReLU activation. We also note that the proposed transformer construction213

may not be the only way to mimic CTW, however, we believe the first two layers do capture important214

universal features. We provide supporting evidence empirically in the sequel.215

Hybrid transformer with two-layer construction We construct hybrid versions of transformers,216

with details given in Appendix D.1.2. We train a two-layer transformer with a constructed a
(2)
i217

followed by a trainable FF layer (the FF layer in the second layer of the transformer) and an output218

layer, and compare the impacts different choices of a(2)i . We replace the backward statistics g←i,1,M ′219

and posi with {nn,sn,l
}Dl=0 and i in a

(2)
i in Eq. (10), and notice its performance is almost the same220

as the one using a
(2)
i in Eq. (10), and their performances are close to that of canonical 2-layer221

transformer. Moreover, the performances get worse if the statistics like {nn,sn,l
}Dl=0 and i are further222

removed. Thus such couting statistics are necessary and essential for the ICL of VOMC sources.223

More discussions and experiments with 4-layer transformers with one or two constructed layers are224

in Appendix D.1.2.225

5 Conclusion226

We considered the in-context learning of transformers for VOMC sources. By drawing a close analogy227

of ICL and Bayesian universal compression, we leverage the CTW as a baseline. Experimentally,228

we observe the performances of the trained transformers are close to that of CTW even with just229

two layers under CTW priors. To understand the mechanism of transformers’ ICL ability, we230

analyzed the attention maps and extracted two likely mechanisms. We then construct the finite-231

memory context extension layer, and the statistics collection layer, corresponding to these two232

mechanisms, respectively. The latter collects both the forward and backward statistics, which are vital233

as theoretically demonstrated by a novel representation of the CTW optimal next-token prediction.234

We also provide empirical evidence that the statistics collected by the constructed second layer, in235

particular the counting statistics, are indeed necessary.236

Although we empirically showed transformers can perform ICL-VOMC tasks and constructed an237

idealized transformer to mimic the CTW algorithm, it is not clear whether a trained transformer will238

indeed utilize the upper layer mechanisms. Extending the existing approach (Edelman et al., 2024) to239

answer this question appears quite difficult, given the complexity of the constructed transformer and240

the underlying VOMCs; this is part of ongoing investigations.241
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A Related Work339

There have been many efforts in studying the ICL capabilities of transformers. A significant recent340

development is the elucidation of the connection to gradient descent, particularly for linear regression341

tasks (Von Oswald et al., 2023; Akyürek et al., 2022; Dai et al., 2022; Ahn et al., 2024). Li et al.342

(2023) formulated the ICL problem as a multi-task learning problem and considered ICL for several343

simple problem settings for which the authors provide risk bounds for ICL of supervised learning344

algorithms in these problem settings. Kirsch et al. (2022) viewed the ICL problem as a meta-learner345

and studied the relation between tasks and model sizes.346

Olsson et al. (2022) studied the induction head, i.e., the forming of small k-gram attention in LLMs.347

Reddy (2023) studied the balance between ICL and in-weights learning, and observed the abrupt348

emergence of the induction head corresponds to the emergence of ICL. The induction head was349

generalized to the statistical induction head in (Edelman et al., 2024) mainly to study bigrams. We350

adopted it but further allowed more statistical induction heads for more suffixes to be included351

together, in the first two layers of the idealized transformer.352

There have also been efforts to study transformers and learning of Markov chains. Xie et al. (2021)353

viewed ICL as a Bayesian inference problem, where a latent concept determines an HHM, and the354

observations from the HHM can lead to the identification of the hidden concept. They studied the355

eventual ICL capability, i.e., when the number of in-context examples goes to infinity. The work in356

(Bietti et al., 2024) allowed a fixed-order Markov chain to switch to a new deterministic mode, and the357

authors study the training behavior of the corresponding ICL task with this mode transition. Akyürek358

et al. (2024) made a comprehensive empirical comparison of various language models on random359

finite automata, and showed that the transformer performs the best among these models. Makkuva360

et al. (2024) studied the loss landscape during transformer training on sequences generated from a361

single fixed-order Markov chain, using a single-layer transformer. Their study does not consider ICL.362

More recently Rajaraman et al. (2024) considered ICL of FOMCs with single-head transformers, and363

provided a construction to show that it is possible to use a single attention head to capture longer364

memory in the sequence. The work most relevant to us is (Edelman et al., 2024), where ICL of a365

fixed-order Markov chain was considered, and the training behavior was studied both empirically and366

theoretically, and the forming of induction heads in a two-layer network was demonstrated. All these367

existing work assumed fixed-order Markov models or fixed-order HHMs, usually with orders kept368

at 1 or 2; moreover, they almost all focus on the emergence of the induction heads during training369

or the training landscape. Our study is different firstly in the variable-order nature of the Markov370

models, and secondly the focus on the on-time ICL performance instead of the training landscape371

and behavior.372

Lossless data compression has a long history, with many different algorithms being developed over373

the years. The most popular general-purpose compression algorithms are perhaps the Lempel-Ziv374

compression algorithms (Ziv and Lempel, 1977, 1978) and their variants, which belong to dictionary-375

based compression algorithms. These algorithms do not explicitly maintain any probabilistic models,376

and their efficiency comes from maintaining an efficiency dictionary of sequences that have been seen377

before, and to be matched with future sequences. More powerful compression algorithms usually378

maintain probability models explicitly, which are then plugged into an AC module (Rissannen, 1976;379

Pasco, 1976; Rissanen and Langdon, 1979) for efficient compression. The most well-known classes380

of algorithms in this category is the context-tree weighting algorithm (Willems et al., 1995; Begleiter381

et al., 2004; Kontoyiannis, 2023) and prediction by partial matching (Cleary and Witten, 1984). The382

former enjoys a strong theoretical guarantee, particularly on binary sources (Willems et al., 1995), but383

has some difficulty in its practical implementation (Willems, 1998; Willems et al., 1996; Sadakane384

et al., 2000; Begleiter et al., 2004), particularly for large alphabet sizes and sequential data. The latter385

is based more on heuristics, and has been improved and extended in various ways (Cleary and Teahan,386

1997; Moffat, 1990; Shkarin, 2002). Methods based on probabilistic modeling are usually more387

resource-extensive, though they have gained more popularity recently due to the increased availability388

of computing resources. The evaluation given in (Begleiter et al., 2004) suggests that CTW and389

PPM are the two most powerful compression algorithms in practice. There are other compression390

algorithms such as those based on the Burrows-Wheeler transformation (Burrows, 1994) which does391

not explicitly maintain a probabilistic model, but are also not dictionary-based.392
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B An Example CT393

Figure 5: A CT in the alphabet A = {a, b, c} with suffix set S = {(b), (c), (a, a), (b, a), (c, a)}
and the associated probability distributions. If (. . . , xn−1, xn) = (. . . , c, a), then the probability
distribution for the next symbol xn+1 is pc,a.

C Transformer Architecture394

The transformer considered in this is illustrated in Fig. 6.395

Figure 6: Transformer model

D Pretraining Details396

We choose the alphabet size to be |A| = 3 in the experiments. For training, we randomly generate397

K = 20000 CTs of various depths (maximum order D ≤ 5), and then for each CT leaf, we generate a398

probability distribution. Two different ways of generating these probability distributions are taken: the399

first approach is use the Dirichlet distribution to sample such distributions, and the second approach400

is to randomly select some of the elements in the alphabet to have probability zero, and the others401

with random values. Different values of the Dirichlet parameter are tested but only the results do402

not appear to be sensitive to the choice. For each CT, a source sequence of certain length (e.g.,403

Nk = 5120) is produced. The context window N can vary, but in most cases, we set it at 512 (except404

when D = 5, we set it to be 1536 to allow sufficient data collection in context). Each source sequence405

is segmented into ⌊Nk/N⌋ training sequence.406
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Figure 7: Training data collection

TF-1 TF-2 TF-3 TF-4 TF-5 TF-6 CTW
CTs D = 3 0.9368 0.7297 0.7265 0.7220 0.7245 0.7258 0.7165
CTs D = 4 0.9667 0.7831 0.7818 0.7759 0.7791 0.7774 0.7603
CTs D = 5 0.9661 0.7569 0.7490 0.7440 0.7437 0.7438 0.7400

Table 1: Average compression rates in the context window by transformers and CTW, where the CTs
are sampled from the CTW-prior. The context window and embedding dimension for CTs of D = 5
are N = 1536 and E = 128, while for others it are N = 512 and E = 64.

During testing, we randomly generate multiple (2048 in our experiments) new CTs of varying depths407

using the same procedure, and for each CT, a sequence of length Nk = 5120 are generated, and then408

again segmented into a length of the context window for testing.409

The transformer model is implemented using Pytorch, and trained using the AdamW optimizer with410

the default parameters. A100/T100 GPUs are used for training. Training a model requires roughly411

4 to 6 hours. Batch size is set at 512, and the maximum epoch is set at 100 with early termination412

allowed after 15 epochs of no improvement. Testing was performed on a local workstation with a413

GeForce GTX 1660 Ti GPU card.414

D.1 Additional experimental results415

In Table 1, we further provide the average compression rates over the whole context window for CTs416

of different orders; we refer to the transformers as TF. For CTs with lower order, the transformer417

embedding dimension is set at 64 instead of 128.418

D.1.1 Transformers vs. CTW under Non-CTW-Priors419

The CTW algorithm is known to be Bayesian optimal when the CTs are generated from a CTW-prior.420

When the CTs do not follow those priors, can learning-based transformers perform better than CTWs?421

We empirically observe that in such settings, transformers indeed have advantages. The training data422

are generated by using CTs of different maximum orders, where the orders are chosen uniformly at423

random between 1 and 3. Moreover, the probability vector is not generated from the Dirichet prior,424

but from a distribution that for each CT leaf, randomly assigns one of the element in the alphabet to425

have zero-probability. We test on sequences generated from CTs produced from the same distribution426

as in the training setting. We assume the CTW takes the default (non-informative prior) parameters of427

α = 0.5, and the same tree branch stopping parameter λ = 0.15 as taken in the testing sequence CTs.428
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Figure 8: Transformers vs. CTW

As can be observed in Fig. 8, the CTW algorithm is no longer optimal, and trained transformers429

can perform considerably better. In fact, even transformers with 2 layers can outperform the CTW430

algorithm in this setting, and more layers usually lead to further improved performance, albeit the431

improvement is less significant.432

D.1.2 Hybrid transformer433

We conduct experiments on the hybrid versions of transformers. Let "TF 0-2" denote the canonical434

2-layer transformer; "TF 1-1" denote the transformer consisted of a constructed layer with output435

h
(1)
i (8), and a trainable transformer layer and a output layer taking H(1) as input; and denote by "TF436

2-0" the transformer with 2 constructed layer with output a(2)i in (10), followed by a trainable FF437

layer (the FF layer in the second layer of the transformer) and an output layer.438

We first study the key statistics behind the strong performance of two-layer transformers, as shown439

in the left panel in Fig. 9. Compared to "TF 2-0" which is the constructed layers given previously,440

the version "TF 2-0 w/o counts" does not contain g←i−1,M ′ or posi in a
(2)
i ; the version "TF 2-0 total441

counts only" does not contain g←i−1,M ′ in a
(2)
i and posi is replaced by the total count i; "TF 2-0 w/442

all counts" replaces g←i−1,M ′ and posi with {nn,sn,l
}Dl=0 and i. Even though their performances are443

rather clustered, we can make the following observations: 1) The performances degrade as more444

counting information is removed from the representation, and the counting information is clearly445

very important, 2) The performances of "TF 2-0" and "TF 2-0 w/ all counts" almost match exactly,446

indicating the main purpose of the backward statistics g←i−1,M ′ is to extract the counts, and 3) The447

performance of the original 2-layer transformer is similar to that of the constructed "TF 2-0" and "TF448

2-0: w/ all counts" that those without less counting information.449

We further study hybrid transformers with the first one or two being the constructed layers. As shown450

in the right panel of Fig. 9, transformers with 2 total layers and 4 total layers form two clusters,451
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Figure 9: Hybrid Transformers: Effects of accumulative suffix counts and synthetic layers

which provides strong evidence that the constructed layers are indeed replacing the first two layers of452

the original transformers in a functinal manner. Moreover, the performances of transformers with453

a single constructed layer, such as "TF 1-1" and "TF 1-3", are slightly better than those with two454

constructed layers, such as "TF 2-0" and "TF 2-2", likely due to the flexibility in the remaining455

trainable transformer layers. Interestingly, for two layer transformers, the hybrid versions can perform456

even better than the original transformer "TF 0-2", which we believe is because the latter is having457

difficulty extracting the exact statistics as those more readily available in the constructed layers.458
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E Proofs of The Theorems for CT Sources459

E.1 A New Representation for Bayesian Next Token Prediction460

We aim to predict the next token xn+1 based on the observations xn
1−D = (x1−D, . . . , xn) via a461

transformer-friendly formula. Note that x0
1−D is a place holder or dummy initialization sequence,462

which does not contain any information of (T, {ps}).463

Theorem 5 (Restate Theorem 1). The predicted probability can be computed as464

PπCTW(xn+1|xn
1−D) =

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (13)

465
where pn,sn,l

(a) =
α(a)+nn,sn,l

(a)∑
q(α(q)+nn,sn,l

(q)) ; and ωn,· ∈ ∆D+1 with ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−466

Il=D ln(λ)+ ℓen,sn,l
− ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
− ℓwn,sn,l

, where ℓen,s = ln(pen,s), ℓ
w
n,s = ln(pwn,s).467

Note that pen,s, p
w
n,s can be efficiently calculated by the CTW procedure, and compared to calculate468

PπCTW (xn+1
1 |x0

1−D)

PπCTW (xn
1 |x0

1−D)
for each xn+1 the extra computation besides the CTW procedure is A times larger469

than that by Eq (7). As illustrated in Fig. 4, the weighted average formula in Eq (7) gives a natural470

interpretation for the Bayesian optimal next token predicted probability. Each suffix along the root471

the leaf path sn,0 − sn,1 − · · · − sn,D can potentially be the true suffix, i.e., sn,l ∈ L(T ), and pn,sn,l
472

is in fact the Bayesian optimal next token prediction given sn,l ∈ L(T ).473

The weights ωn,l’s are based on stopping probability λ, the information in the potential suffix path474

such as pesn,sn,l
as well as the information from their siblings pwn,qsn,l−1

. We can interpret pen,s as475

the evidence (unnormalized likelihood) that s ∈ L(T ), and pwn,s as the evidence that s ∈ T , i.e.,476

the underlying tree covers node s. Theorem 1 indicates that more weights are assigned to sn,l than477

sn,l−1, i.e., ωn,l > ωn,l−1, if λ is smaller (i.e., node sn,l−1 is more likely to branch and thus less478

likely to be a leaf node), pen,sn,l
− pen,sn,l−1

is larger (i.e., sn,l has more evidence than sn,l−1) and479 ∑
q∈A ℓwn,qsn,l−1

− ℓwn,sn,l
is larger (i.e., sn,l’s siblings have more evidence to explain the data and480

thus sn,l−1 is less likely to be a leaf node).481

Proof of Theorem 5. Recall si,l = (xi−l+1, . . . , xi) is the suffix at position i of length l. We omit482

D by writing T = T (D) when D is clear from the context. Define partition {Tsn,l
}0≤l≤D, that483

Ts = {T ∈ T : s ∈ L(T )} is the set of trees with leaf s. The predicted probability can then be484

computed as485

PπCTW(xn+1|xn
1−D) =

∑
T∈T

∫
p(xn+1|T, {ps}, xn

1−D)π(T, {ps}|xn
1−D)

( ∏
s∈L(T )

dps

)
=

∑
l=0,...,D

∑
T∈Tsn,l

∫
psn,l

(xn+1)π(T, {ps}|xn
1−D)

( ∏
s∈L(T )

dps

)
=

∑
l=0,...,D

∑
T∈Tsn,l

∫
psn,l

(xn+1)π(T |xn
1−D)π(psl |T, xn

1−D)dpsl

=
∑

l=0,...,D

∑
T∈Tsn,l

πD(T |xn
1−D)

∫
psn,l

(xn+1)π(psl |T, xn
1−D)dpsl

=
∑

l=0,...,D

( ∑
T∈Tsn,l

πD(T |xn
1−D)

)(∫
psn,l

(xn+1)π(psl |T, xn
1−D)dpsl

)
=

∑
l=0,...,D

ωn,l · pn,sn,l
(xn+1), (14)

where the last equality is by the definition that486

ωn,l =
∑

T∈Tsn,l

πD(T |xn
1−D), (15)

15



and the optimal prediction probability given suffix sn,l is487

pn,sn,l
(a) =

α(a) + nn,sn,l
(a)∑

q∈A(α(q) + nn,sn,l
(q))

, (16)

since for any T ∈ Tsl , the posterior of ps follows Dirichlet distribution488

π(psl |T, xn
1−D) = Dir(θsl ;α+ nn,sn,l

), (17)

with posterior mean E[psl |T, xn
1−D] ∈ ∆A and ∝ α+ nn,sn,l

.489

It remains that whether the parameters ωn,l is easy to compute or not. The following theorem490

shows that these parameters ωn,l can be computed easily via pws and pes based on xn
1−D without the491

knowledge of xn+1.492

Since the length of data n is fixed and clear from the context, let x = xn
1−D be the sequence, and we493

omit n in the subscript of pen,s, pwn,s and sn,l for simplicity.494

For any model T ∈ T (D), the posterior probability π(T |x) is given by:495

πD(T |x) = πD(T )Pπ(x|T )
Pπ(x)

=
πD(T )

∏
s∈L(T ) p

e
s

pw()
, (18)

where the denominator P ∗π (x) = pw() is the prior predictive likelihood computed by CTW, and496

the numerator is by Pπ(x|T ) =
∏

s∈L(T ) p
e
s in (Kontoyiannis et al., 2022, Lemma 2.2). Since497

ωl =
∑

T∈Tsl
π(T |x) by definition, we have for any l = 1, 2, . . . , d,498

ωl

ωl−1
=

∑
T ′∈Tsl

πd(T
′|x)∑

T∈Tsl−1
πd(T |x)

=

∑
T ′∈Tsl

πd(T
′)
∏

s∈L(T ′) p
e
s∑

T∈Tsl−1
πd(T )

∏
s∈L(T ) p

e
s

. (19)

Note that tree in Tsl and trees in Tsl−1
share similarities. For any T ∈ Tsl−1

, let Tsl;T = {T ′ ∈499

Tsl : L(T ) ⊂ L(T ′) ∪ {sl−1}} be the set of trees that differs from T only at subtree sub(T ′; sl) :=500

{subtree of T ′ with root at s}.501

Take any l = 1, 2, . . . , D − 1. For any T ∈ Tsl−1
and T ′ ∈ Tsl;T . Based on the definition of502

πD = (1− λ)(|L(T )|−1)/(A−1)λ|L(T )|−|LD(T )|, it is not hard to verify that503

πD(T ′)

πD(T )
=

πD−l+1(sub(T ′; sl−1))
πD−l+1(sub(T ; sl−1))

=
(1− λ)πD−l(sub(T ′; sl))

∏
s′l∈sib(sl) πD−l(sub(T ′; s′l))

λ

= (1− λ)
∏

s′l∈sib(sl)

πD−l(sub(T ′; s′l)),

where sib(sl+1) = {qsl : q ∈ A and qsl ̸= sl+1} is set of siblings of sl+1. We can interpret the ratio504

as follows. T ′ and T only differs at the sub(T ′; sl−1) and sub(T ; sl−1). Since T ′ branch at node505

sl−1, we thus have the numerator in the second equation, where (1− λ) corresponds to the branching506

and then compute for the subtrees. Note that T stops branching at sl−1 and T ′ stops branching at sl,507

then πD−l+1(sub(T ; sl−1)) = πD−l(sub(T ′; sl)) = λ equals to the stopping probability.508

Given any suffix s with |s| ≤ D, it has been shown in (Kontoyiannis et al., 2022, Proof of Theorem509

3.1) that for any l ≤ D,510

pws =
∑

U∈T (D−l)

πD−l(U)
∏

u∈L(U)

peus, (20)
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where T (D − l) is the set of trees with maximum depth D − l and πD−l is the prior for bounded511

branching process with maximum depth D − l. We thus have512 ∑
T ′∈Tsl;T

πD(T ′)
∏

s∈L(T ′) p
e
s

πD(T )
∏

s∈L(T ) p
e
s

=

∑
T ′∈Tsl;T

πD(T ′)
∏

s∈L(T ′) p
e
s

πD(T )
∏

s∈L(T ) p
e
s

(21)

=
∑

T ′∈Tsl;T

πD(T ′)

πD(T )

∏
s∈L(T ′)\L(T ) p

e
s

pesl−1

(22)

=
∑

T ′∈Tsl;T

(1− λ)
∏

s′l∈sib(sl)

πD−l(sub(T ′; s′l))

(pesl
∏

s′l∈sib(T ;sl)

∏
s∈L(sub(T ′;s′l))

pes

pesl−1

)
(23)

= (1− λ)
pesl
pesl−1

∑
T ′∈Tsl;T

 ∏
s′l∈sib(sl)

πD−l(sub(T ′; s′l))

 ∏
s′l∈sib(T ;sl)

∏
s∈L(sub(T ′;s′l))

pes

 (24)

= (1− λ)
pesl
pesl−1

∑
T ′∈Tsl;T

 ∏
s′l∈sib(sl)

πD−l(sub(T ′; s′l))
∏

s∈L(sub(T ′;s′l))

pes

 (25)

= (1− λ)
pesl
pesl−1

∏
s′l∈sib(sl)

 ∑
U∈T (D−l)

πD−l(U)
∏

u∈L(U)

peus′l

 (26)

=
(1− λ)pesl

∏
a̸=sl\sl−1

pwasl−1

pesl−1

. (27)

Similarly, for any T ∈ TsD−1
and T ′ ∈ TsD;T , πD(T ′)

πD(T ) = 1−λ
λ , and we have513

ωD

ωD−1
=

(1− λ)pesd
∏

a ̸=sd\si p
w
asD−1

λpesD−1

, (28)

in the same manner. The proof can then be concluded by taking logarithm on both hands.514

E.2 Construction of Transformer for CTW515

To make the presentation clear, in the following we separate the layers by their functionality and516

present them separately. Recall that517

a
(ℓ)
i = MHA

(
hi,H; {W (ℓ)

O,m,W
(ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M

(ℓ)

m=1

)
≜ W

(ℓ)
O

[
b
(ℓ)
1,i ;b

(ℓ)
2,i ; . . . ;b

(ℓ)

M(ℓ),i

]
,

where {W (ℓ)
Q,m,W

(ℓ)
K,m,W

(ℓ)
V,m}M(ℓ)

m=1 are the E(ℓ)×E query matrices, key matrices, and value matrices518

and W
(ℓ)
O is the E × M (ℓ)E(ℓ) output mapping matrix. For simplicity of presentation, we take519

Eℓ = E and W ℓ
O = [I; I; . . . ; I]. It is not hard to see the following constructions can be applied to520

much smaller E(ℓ) while taking WO as a permutation matrix.521

We have omitted the dimensionality of several zero matrices when they are obvious from the context.522

The first and second layer constructions are illusatred in Fig. 10.523

E.2.1 Finite-memory context-extension layer524

We begin with the first layer, which is referred to as a finite-memory context-extension layer.525

Theorem 6 (Restatement of Theorem 2). There is an M -headed transformer layer that can perform526

finite-memory context-extension, defined by the following output, with the initial one-hot embedded527

input H(1):528

h
(2)
i = (si,M+1;0;posi) = (xi;xi−1; . . . ;xi−M ;0;posi), (29)

where si,M+1 = (xi; . . . ;xi−M ) is the vector version of the M -length suffix si,M+1 = xi
i−M .529
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Figure 10: Transformer construction for D = 2. The left figure illustrates the first layer – finite-
memory context-extension layer, which append the previous D tokens. The right figure demonstrate
the MHA of the second layer – statistics collection layer, which extracts forward and backward
statistics based on the matched suffix.

Proof of Theorem 2. The input of the of the first layer is a initial one-hot embedded input with530

positional embedding H(1), where its n-th column is531

h
(1)
i = (xi;0;posi) ∈ RE , (30)

where positional encoding532

posi = (1; cos(iπ/N); sin(iπ/N)), (31)

with C being the maximum context size.533

The multi-head attention in the first layer is consisted of M (1) = D heads parameterized by534

(W
(1)
Q,m,W

(1)
K,m,W

(1)
V,m)m=1,2,...,M(1) . Specifically, for m = 1, 2, . . . ,M (1),535

W
(1)
Q,m =

(
0 Rot(m)
0 0

)
, W

(1)
K,m =

(
0 cI2×2

0 0

)
, W

(1)
V,m =

0mA×A 0
IA×A 0
0 0

 , (32)

where Rot(m) =

(
cos(mπ/N) sin(mπ/N)
− sin(mπ/N) cos(mπ/N)

)
is a rotation matrix that rotates clockwise by an536

angle of mπ/C, and c ∈ R+ is a temperature factor. The query, key, and value after the mapping are537

W
(1)
Q,mh(1)

n =

(
posn−m

0

)
, W

(1)
K,mh

(1)
i = c

(
posi
0

)
, W

(1)
V,mh

(1)
i =

0mA×1

xi

0

 . (33)

Take c = ∞ or sufficiently large. It is seen that the m-th head essentially copies the m-th earlier538

symbol to stack at the (m+ 1)-th position below the original symbol xi. Together with the residual539

link, the attention layer gives exactly the h
(2)
i shown in (34) while the feedforward network in this540

layer can be set as all zero.541

h
(2)
i = (xi;xi−1;xi−2;xi−M(1) ;0;posi) = (si,M(1)+1;0;posi), (34)

where si,l = (xi;xi−1; · · · ;xi−l+1) is the one-hot embedded version of suffix si,l =542

(xi−l+1, . . . , xi−1, xi).543
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E.2.2 Statistics collection layer544

Theorem 7 (Restatement of Theorem 3). There is an M ′-head attention layer, where M ′ ≤ M + 1,545

that can perform statistics collection, defined by the following output, with H(2) in (8) as its input:546

a
(2)
i = (si,M+1;gi,M ′ ;g←i−1,M ′ ;0;posi), (35)

where gi,M ′ := (gi,si,0 ; . . . ;gi,si,M′−1
) and g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g

←
i−1,si,M′−1

).547

Proof of Theorem 3. To make the proof self-contained, we first recall some key notations. The548

second layer is referred to as the statistics collection layer, which uses a sequence of vectors h(2)
i ,549

i = 1, 2, . . . , N , defined in (8) as its input, restated as follows.550

h
(2)
i = (si,M+1;0;posi), (36)

where si,M+1 = (xi; . . . ;xi−M ). To rigorously specify the function of this layer, recall the definition551

of the k-gram statistics vector gi,s, which in plain words, is the empirical probability distribution of552

the next token associated with the suffix s for a sequence xi
1. Mathematically, for a suffix s whose553

length is k − 1 and the current position i,554

gi,s(a) =
ni,s(a)∑
q∈A ni,s(q)

∀a ∈ A, (37)

where ni,s is the counting vector defined in (5).555

The k-gram backward statistics vector g←i−1,s is defined similarly, which is the empirical probability556

distribution of the previous token associated with the suffix s for data xi−1
1 , and mathematically557

g←i−1,s(a) =

∑
q∈A ni,as(q)∑
q∈A ni,s(q)

∀a ∈ A, (38)

where
∑

q∈A ni,s(q) is the number of appears of the sub-string s in the sequence xi−1
1 .558

The multi-head attention in the second layer is consisted of M (2) = M ′ ≤ M (1) +1 = M +1 heads559

parameterized by (W
(2)
Q,m,W

(2)
K,m,W

(2)
V,m)m=0,1,2,...,M(2)−1. Specifically, for m = 1, 2, . . . ,M (2)−1,560

W
(2)
Q,m =

(
I(m−1)A×(m−1)A 0

0 0

)
, W

(2)
K,m =

(
0(m−1)A×A cI(m−1)A×(m−1)A 0

0 0 0

)
, (39)

W
(2)
V,m =


0(M(1)+m)A×A 0

IA×A 0

0(M(2)−1)A×A 0

0A×A [0A×(m−1)A, IA×A,0]
0 0

 . (40)

The corresponding query, key, and value vectors after the mapping are561

W
(2)
Q,mh(2)

n =

(
sn,m−1

0

)
, W

(2)
K,mh

(2)
i = c

(
si−1,m−1

0

)
, W

(2)
V,mh

(2)
i =


0(M(1)+m)A×1

xi

0(M(2)−1)A×1

xi−m
0

 .

For m = M (2), W (2)
Q,m,W

(2)
K,m are of the same structure, while W (2)

V,m does not contains that IA×A in562

that [0A×(m−1)A, IA×A,0] block, and thus W (1)
V,mh

(1)
i does not have xi−m.563

It is not hard to see that taking c → ∞ gives564

(si,M(1)+1;gi,M(2)−1;g
←
i−1,M(2)−1;0;posi) = [MHA(H(2)) +H(2)]i, (41)

where565

gi,M ′ = (gi,si,0 ; . . . ;gi,si,M′−1
)

g←i−1,M ′ = (g←i−1,si,0 ; . . . ;g
←
i−1,si,M′−1

).

566
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Note that the counting vector can be obtained via567

ni,si,l(a) =
ni,si,l(a)∑
q∈A ni,si,l(q)

∑
q∈A ni,si,l(q)∑

q∈A ni,si,l−1
(q)

· · ·
∑

q∈A ni,si,1(q)∑
q∈A ni,si,0(q)

∑
q∈A

ni,si,0(q)

 (42)

= gi,si,l
(a)

l−1∏
j=0

g←i−1,si,j (xi−j)

 · i, (43)

by the information contained in vector (si,M(1)+1;gi,M(2)−1;g
←
i−1,M(2)−1;0;posi).568

Since pei,si,l and pi,si,l
in (16) are functions of ni,si,l , we can then obtain (approximate) the following569

output by a sufficiently wide FF layer that570

h3
i = (si,M(1)+1;pi,D; lei,D; ln(pwi,si,D );0;posi), (44)

where lei,D contains the logarithm of pe along the path from root () to (xi−d+1, . . . , xi), and pi,D571

stacks the optimal prediction given suffices si,0, . . . , si,D, i.e.,572

lei,D = (ℓei,si,0 ; ℓ
e
i,si,1 ; . . . ; ℓ

e
i,si,D ) = (ln(pei,si,0); ln(p

e
i,si,1); . . . ; ln(p

e
i,si,D )), (45)

pi,D = (pi,si,0 ;pi,si,1 ; . . . ;pi,si,D ), (46)

and ln(pwi,si,D ) = ln(pei,si,D ) with suffix |si,D| = D. These quantities can be extracted, since they573

are functions of the statistics collected from a
(2)
i .574

This functional layer essentially collects k-gram statistics for various lengths of k = 1, 2, . . . ,M (2)575

via multi-head attention and then process the the statistics for follow-up optimal scheme.576

E.2.3 Inductive CTW layer577

Recall the input and the expected outputs of the inductive CTW layer that578

h
(ℓ)
i = (si,M(1)+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D−ℓ+4; ℓ

w
i,si,D+3−ℓ

;0;posi), (47)

for ℓ = 3, 4, . . . , 3+D, where δi,l := ln(ωi,l)− ln(ωi,l−1) for l = d,D−1, . . . , 1 are the the weight579

difference, and we take M (1) = D.580

Theorem 8 (Restatement of Theorem 4). There exists a A-head transformer layer that can perform581

the induction: Takes H(ℓ) in (47) as input and outputs H(ℓ+1). And the final readout layer taking582

H(D+2) as input can output the A-dimensional Bayesian optimal next token prediction vector583

PπCTW(·|xn
1−D) =

∑
l=0,...,D ωn,lpn,sn,l

.584

Proof of Theorem 4. For any fixed ℓ = 3, 4, . . . , 2 + D, we specify the construction for the ℓ-th585

transformer layer. It contains A heads and for each m = 1, 2, . . . , A, the Q,K, V matrices are586

W
(ℓ)
Q,m =


I(D+1−ℓ)A×(D+1−ℓ)A 0

0 [em,0A×2]
0 0
0 I2×2

 , W
(ℓ)
K,m =

cI(D+2−ℓ)A×(D+2−ℓ)A 0
0 0
0 cI2×2

 ,

W
(ℓ)
V,m =

0(placeℓ+m)×(placeℓ+m) 0

[01×(placeℓ−1), 1] 0
0 0

 ,

where em is the A-dimensional one-hot vector at position m, and placeℓ = (M (1)+D+2)A+D+ℓ−1587

is index of element ℓwi,si,D+3−ℓ
in h

(ℓ)
i . The corresponding query, key, and value vectors after the588

mapping are589

W
(ℓ)
Q,mh(ℓ)

n =

sn,D+1−ℓ
em
0

posn

 , W
(ℓ)
K,mh

(ℓ)
i = c

(
si,D+2−ℓ

0
posi

)
, W

(ℓ)
V,mh

(ℓ)
i =

0(placeℓ+m)×1

ℓwi,si,D+3−ℓ

0

 .
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At position n, the query of m-head will select the latest (due to positional embedding) position with590

suffix [sn,D+1−ℓ; em], and append its ℓw at the end. It is not hard to see that taking c → ∞ gives591

a
(ℓ)
i = [MHA(H(2)) +H(2)]i
= (si,D+1;pi,D; lei,D; δi,D; δi,D−1; . . . ; δi,D+4−ℓ; ℓ

w
i,si,D+3−ℓ

; [ℓwi,qsi,D+2−ℓ
]q∈A;0;posi)

Recall ln(ωn,l)−ln(ωn,l−1) = ln(1−λ)−Il=D ln(λ)+ℓen,sn,l
−ℓen,sn,l−1

+
∑

q∈A ℓwn,qsn,l−1
−ℓwn,sn,l

592

by Theorem 1. δi,D+3−ℓ = ln(ωi,D+3−ℓ)− ln(ωi,D+2−ℓ) can be computed by a
(ℓ)
i and thus h(ℓ+1)

i593

can be approximated via the FF layer following the ℓ-th multi-head attention layer.594

The final layer approximate an A-dimensional vector595

PπCTW(·|xn
1−D) =

∑
l=0,...,D

ωn,l · pn,sn,l
(·), (48)

by an FF layer taking input596

h(D+3)
n = (sn,M(1)+1;pn,D; len,D; δn,D; . . . ; δn,1;0;posi). (49)

The proof is now complete.597
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