
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE EXISTENCE OF UNIVERSAL SIMULATORS OF
ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Previous work on the learnability of transformers —focused on examining their
ability to approximate specific algorithmic patterns through training —has largely
been data-driven, offering only probabilistic rather than deterministic guaran-
tees. Expressivity, on the contrary, has theoretically been explored to address
the problems computable by such architecture. These results proved the Turing-
completeness of transformers, investigated bounds focused on circuit complexity,
and formal logic. Being at the crossroad between learnability and expressivity, the
question remains: can transformer architectures exactly simulate an arbitrary at-
tention mechanism, or in particular, the underlying operations? In this study, we
investigate the transformer encoder’s ability to simulate a vanilla attention mecha-
nism. By constructing a universal simulator U composed of transformer encoders,
we present algorithmic solutions to replicate attention outputs and the underlying
elementary matrix and activation operations via RASP, a formal framework for
transformer computation. We show the existence of an algorithmically achievable,
data-agnostic solution, previously known to be approximated only by learning.

1 INTRODUCTION

The vast adoption of Language Models across diverse fields of study — whether in task-specific
applications (Lin et al., 2022; Haruna et al., 2025; Consens et al., 2025) or theoretical verifications
(Strobl et al., 2024b) — has underscored the remarkable success of attention-based transformers.
These models have demonstrated the ability to learn from tasks and function as simulators of a
broad range of computational architectures. While ongoing investigations seek to characterize the
representational power of trained transformers from both statistical (in-context (Mroueh, 2023; Kim
et al., 2024)) and computational perspective (Merrill et al., 2020; Liu et al., 2023; Merrill & Sab-
harwal, 2024), a fundamental question remains unanswered: irrespective of the complexity class to
which a transformer belongs, can a mechanism simulate attention itself using only interactions be-
tween vanilla transformers? Specifically, we ask whether such a mechanism exists that emulates the
functioning of a single-layer transformer encoder, given we have access to a system with transform-
ers as the only computational model. As such, they can be solely characterized by their parameters.
Throughout our discussion, we refer to the self-attention mechanism of the transformer ‘encoder’.

To put the problem into perspective, we highlight that theoretical analyses of transformers often
involve hard (unique or average) attentions. The language, PARITY={w ∈ {0, 1}∗ | #1(w) =
0(mod 2)} in particular, has been contextual in most of the investigations. Hahn (2020) pointed
out the inability of transformers toward recognizing the language. Although the learnability of
such transformers did not prove amenable (Bhattamishra et al., 2020a), Chiang & Cholak’s way
of overcoming the drawback marked the explicit construction of a multi-layer multi-head softmax
attention transformer (SMAT). The language, k-PARITY = {w ∈ {0, 1}n | S ⊂ {0, 1, . . . , n −
1} and

∑
ij∈S wij = 0(mod 2)} where |S| = k ≪ n, has been shown single-layer multi-head

SMAT-learnable by Han & Ghoshdastidar. To further detail the representational power, of such
SMATs, we mention the task Match2 = {(si, sj) | (si + sj) = 0(mod p)}, proposed by Sanford
et al. (2023), where S = (s1, s2, . . . , s|S|) ∈ {1, 2, . . . , p}|S|} and p is very large. While the same
can be solved using a single-layer single-head SMAT, Match3, an extension with three variables
does not follow suit, even with the multi-layer multi-head extension. Our construction consolidates
both notions of attention (hard and soft) into a unified computational model (namely U) capable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of performing any single-layer multi-head attention. As a stepping stone, our investigation simu-
lates single-layer multi-head SMATs using (average) hard attention transformers, in line with Yang
et al. (2024b). In particular, we use Restricted Access Sequence Processing (RASP) (Weiss et al.,
2021), a formal, human-readable framework that models transformer computation with parallel,
attention-driven processing while enforcing constraints such as fixed computation depth, element-
wise operations, and pairwise token dependencies. Our construction of U utilizes RASP such that
given a single-layer transformer-attention T and an input X , the output (say, T (X)), becomes ex-
actly equal to the output of U on receiving the pair ⟨T,X⟩ (see Figure 1). By explicitly formulating
the transformations required to simulate matrix operations, including transposition, multiplication,
and inversion within the constraints of a transformer, our work provides a novel foundation for
understanding the representational capacity of self-attention. This marks an improvement over Gi-
annou et al. (2023)’s construction, which relies on a computational framework that is not entirely
transformer-based and amplifies input size e.g., transposing a d×d matrix requires an d2×d2 input.

U
X

A

T

V

⊗

⊤

⊗

⊗ σ ⊗

⊤ : Lemma 2 σ : Lemma 3 ⊗ : Lemma 4

Figure 1: Simulation of attention T char-
acterized by matrices A and V on input X
using the proposed transformer network U
such that U (⟨T,X⟩) = T (X). Opera-
tions ⊤,⊗ and σ represent matrix transposi-
tion, multiplication and activation softmax im-
plemented using transformer as presented in
Lemma 2, Lemma 4 and Lemma 3 respectively.

Our construction analogizes the rationale à la Uni-
versal Turing Machine (UTM). Observe that a
UTM U accepts the encoded pair ⟨T̂ , w⟩ if and
only if the Turing machine T̂ accepts the word
w. Inspired by the same, Kudlek (2012) explored
the (non)-existence of such universal automata for
some weaker classes of automata, such as finite
and pushdown automata. This, in turn, motivates
the inquiry into the simulation of other computa-
tional models. Analogously, our constructed trans-
former network, U , when deemed a language rec-
ognizer, can either accept or reject depending upon
whether the original transformer encoder T ac-
cepts or rejects X . When viewed as a transducer,
it can produce the same output as the original
transformer encoder, T , on input X . It is rather
natural to explore the idea of such self-simulation
for architectures coupled with decoder attention,
given the Turing-completeness (Pérez et al., 2021).
Ours, in contrast, involves encoder-only architec-
tures, which have further limited computational capabilities (Strobl et al., 2024b). As defined in Hao
et al. (2022), the self-attention mechanism introduced by Vaswani et al. belongs to the category of
restricted transformers. Our simulations will be confined to this class of transformers due to their
ubiquitous influence.

Our approach also bridges a crucial gap between expressivity and learnability of transformer models.
The problem k-PARITY, for example, achieves learnability through transformers (Han & Ghosh-
dastidar, 2025). On the other hand, our construction provides not only a definitive method to solve
the same, but its applicability can also be generalized for related problems, e.g., Match2. To con-
textualize, we point to the long line of works that explore the expressiveness of transformers in
simulating important models of computation (Pérez et al., 2019; 2021; Hao et al., 2022; Barcelo
et al., 2024), without determining the exact computational classes that include and are included by
a transformer’s recognition capacity. On the other hand, guarantees regarding the learning capac-
ity of theoretically constructed transformers and their verification toward generalization onto the
learned computation procedure (e.g., gradient descent in function space (Cheng et al., 2024); New-
ton’s method updates in logistic regression (Giannou et al., 2025)) inherently become probabilistic
and data-dependent. Such results lose justification in scenarios where approximation errors are un-
acceptable (e.g., formal verification). In contrast, our proofs provide a solution that algorithmically
enforces correct attention behavior, ensuring reliability beyond data-driven approximations. From a
probabilistic viewpoint, this can be regarded as an approximation guarantee with certainty, i.e., with
P-measure 1, given X follows the law P.

Contributions. The highlights of our study are as follows. i) We introduce a novel construction
framework of amenable matrix operations underlying attention, such as transposition (Lemma 2),
multiplication (Lemma 4), determinant calculation, and inversion (Lemma 9) using a transformer
itself. We also show that algorithmic constructions exist that exactly represent activation outputs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(e.g., softmax (Lemma 3), MaxMin (Lemma 6)). The results combined present a new approach
to proving a transformer encoder’s expressivity towards a Lipschitz continuous function. Our con-
structions via RASP are available in the following repository https://anonymous.4open.
science/r/TMA. ii) Our proposed simulator network U maintains parity with the architectures
under simulation in terms of the following fundamental architectural resemblance. Due to its sole
reliance on the number of input symbols, U possesses an inherent hierarchy while expressing atten-
tions of increasing order, leading to a universal simulator (Theorem 5, 8, Corollary 5.2). iii) Given
architectural specifications, our construction, for the first time, ensures the feasibility of simulating
soft-attention (restricted transformer) using average-hard attention (RASP) (Remark 5.1, 8.1). The
result extends to models involving multiple heads as long as their aggregation mechanism satisfies
RASP-interpretability (Remark 5.2).

2 RELATED WORKS

Simulation of computational models via transformers. Existing work in this line lacks uniformity
in transformer structures, leading to variations based on architectural distinctions (encoder-based or
encoder-decoder) and the specific implementation of positional encoding. Introduced by Pérez et al.
(2019) and Hahn (2020), a substantial body of research has investigated the theoretical capabilities of
transformers, characterizing their expressivity in terms of diverse circuit families (Hao et al., 2022;
Merrill et al., 2022; Chiang, 2025). Along this line of study, the development of domain-specific
languages (DSLs) like RASP (Weiss et al., 2021), enabling the expression of self-attention and
transformer operations in a human-interpretable manner, paved the way for further investigations
(Zhou et al., 2024; Yang & Chiang, 2024; Yang et al., 2024a; Strobl et al., 2024a). Subsequently,
RASP underwent refinements based on both augmentation and constraining of its features, leading
to the creation of DSLs with enhanced expressiveness within their respective frameworks. Yang
et al. (2024b) demonstrated the realization of hard attention through soft attention, involving the
simulation of a logical language family that can be implemented by both mechanisms. Studies using
a transformer as a language recognizer have also been pursued. Backed by the empirical studies
Dehghani et al. (2019); Shi et al. (2022); Deletang et al. (2023), the expressivity of transformers has
been investigated by measuring their equivalence with Turing machines (Bhattamishra et al., 2020b;
Pérez et al., 2021). More recently, Merrill & Sabharwal (2023); Barcelo et al. (2024) have drawn
equivalence with the logical expressions accepted by transformers. However, questions regarding
the realization of the suggested solutions in a learning setup remain mostly open.

Approximation and learnability. While vanilla transformer encoders are, in general, universal
approximators of continuous sequence-to-sequence (permutation equivariant) maps supported on a
compact domain (Yun et al., 2020), they require careful construction to extend the property to models
with nonlinear attention mechanisms (Alberti et al., 2023) and non-trivial positional encoding (Luo
et al., 2022). However, it remains unclear whether the approximation capability holds while learn-
ing, given the unidentifiability of additional optimization errors due to data-driven training. In this
context, we also mention that transformers are able to learn sparse Boolean functions of input sam-
ples having small bounded weight norms (Edelman et al., 2022). Along the line, Yau et al. (2024)
ensures that multi-head linear encoders can be learned in polynomial time under L2 loss. Corrobo-
rating Pérez et al. (2021)’s finding in a learning setup, Wei et al. (2022) also show that output classes
of functions from TMs can be efficiently approximated using transformers (encoder-decoder). In
contrast, the domain that has received the most attention is transformers’ capacity to learn tasks in-
context (IC) (Mroueh, 2023). Under varying assumptions on the architecture and data, transformers
provably tend to emulate gradient updation (Ahn et al., 2023; Cheng et al., 2024), Newton’s iter-
ations (Giannou et al., 2025), and perform linear or functional regression (Fu et al., 2024; Pathak
et al., 2024; Zhang et al., 2024). We reiterate that Giannou et al. (2023)’s OISC design augments
inputs with scratchpad and memory, and outputs often include non-essential residuals (e.g., dupli-
cate results of a matrix transposition, Lemma 19) unless post-processed. Even though their overall
layer-count and head-count are constant, several hyperparameters lie intrinsically dependent on the
number of tokens (n), e.g., the approximation bound is valid when temperature λ ≥ log n3

ϵ (Lemma
2). Similarly, the assignment of the non-trivial parameters V depends on n (Lemma 20). Above all,
its underlying computational framework fundamentally increases the depth (i.e., the layer-count)
by allowing loops. Therefore, the ensuing computational power of the model becomes stronger
compared to self-attention-based transformers (Hahn, 2020; Feng et al., 2023; Qiu et al., 2025). In

3

https://anonymous.4open.science/r/TMA
https://anonymous.4open.science/r/TMA

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

this work, we mitigate the limitations by answering whether transformer encoders can express with
certainty the fundamental operations underlying the attention mechanism.

3 PRELIMINARIES

By dimension of a multi-dimensional array M , we signify the number of axes referred in M . Thus
an element in n-dimensional array M can be referred using the notation M [i0, i1, . . . , in−1]. To
reduce notational overhead, we denote by M [i0] the induced (n−1)-dimensional array hosted from
the index i0 of the introductory axis in M . Note that a matrix is a two-dimensional array. We
also highlight the difference between the usage of ⊙m

i=1 (ai) and ◦ni=1 (ai). While the former, the
concatenation operation, denotes the expression a1 ⊙ a2 ⊙ . . .⊙ am as usual, the latter, an n-ary
operation, is used to denote ◦ (a1, a2, . . . , an). Given the sets of sequences S and S ′, we define a
mapping f : S → S ′ as length-preserving if for any S ∈ S, |S| = |f(S)|, where | · | implies the
number of elements in the sequence.

3.1 TRANSFORMER ENCODER

A transformer encoder is a layered neural network that maps strings to strings. The input layer maps
the string to a sequence of vectors. The subsequent layers apply the attention mechanism, which is
composed of the sublayers’ self-attention and feed-forward components. For ease of representation,
we avoid the layer normalization mechanism. The final output layer maps the sequence of vectors
back to a string. The following discussion formalizes the same.
Input. Let w = w1w2 . . . wn be a string, where each character wi belongs to the input alphabet Σ.
We assume the input layer of any transformer to be composed of the word embedding WE : Σ → Rd

and positional embedding PE : (N×N) → Rd in an additive form, so that the produced input vector
becomes X = (x1,x2, . . . ,xn) ∈ Rn×d such that xi = WE(wi) + PE(i, |w|).
Encoder attention. The first component of an encoder layer ℓ is self-attention. Assuming X(0) =
X , on an input X(ℓ−1), ℓ ∈ {1, 2, . . . , L} a self-attention mechanism produces

σ
(
X(ℓ−1)WQ

(ℓ)W
(ℓ)
K

⊤
X(ℓ−1)⊤

)
X(ℓ−1)W

(ℓ)
V , (1)

where, σ is a softmax activation, computing the attention scores from the query X(ℓ−1)W
(ℓ)
Q and

key X(ℓ−1)W
(ℓ)
K to draw the influential value vectors X(ℓ−1)W

(ℓ)
V in a composite form, where the

weight matrices W (ℓ)
Q ,W

(ℓ)
K ∈ Rd×d′

,W
(ℓ)
V ∈ Rd×dv and the input X ∈ Rn×d. A subsequent feed-

forward layer, consisting of two linear transformations with a ReLU activation in between, is applied
to this result. Note that, in the above expression the projections W

(ℓ)
Q and W

(ℓ)
K can be combined

to result A(ℓ) =: WQ
(ℓ)W

(ℓ)
K

⊤
∈ Rd×d, and to simplify notations, we rename WV to V . A self-

attention at a layer ℓ can thus be uniquely characterized by the three parameters A(ℓ), V (ℓ) and any
normalizing activation function, here taken as softmax. We will drop the notation ℓ wherever the
context is self-explanatory. We call a transformer attention T applied on input X ∈ Rn×d of order
(n, d, dv) if its characterizing matrices A ∈ Rd×d and V ∈ Rd×dv . Similarly, when a single-layer
transformer T with parameters W1 ∈ Rdv×d1 and W2 ∈ Rd1×d2 in feed-forward sublayer is applied
on input X ∈ Rn×d, we call it of order (n, d, dv, d1, d2).

3.2 GAHAT

A generalized attention, as proposed by Hao et al. (2022), takes the query and key as input and
does not restrict them to be combined using the dot-product operation only. Instead, any com-
putable association can be employed to calculate attention scores. Finding the dominant value
vectors has also been kept flexible using a function Pool that takes the value vectors and the at-
tention scores. When this function is particularly unique (or, average) hard, such transformers are
regarded as generalized unique (or, average) hard attention transformers (GUHAT or GAHAT). As
such, given value vectors XV = (y0,y1, . . . ,yn−1) and attention scores (a0, a1, . . . , an−1), let
j0, j1, . . . , jm−1 ∈ {0, 1, . . . , n−1} are the indices in ascending order such that they maximize ajs.
Then, unique hard attention pools yj0 while average hard attention pools 1

m

∑m−1
i=0 yji .

The computational model underlying the Restricted Access Sequence Processing Language (RASP),
introduced by Weiss et al. (2021), resembles that of GAHAT, based on overlapping sufficiency

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

characterizations (Section 3.1 in Weiss et al. (2021) and Section 4.3 in Hao et al. (2022) (Also, in
the same light, the expression above (1) falls under the category of restricted transformers.)). RASP
is a human-interpretable, sequence-processing DSL for designing transformer encoders. It operates
on a sequence of tokens (e.g., characters, numbers, Booleans) to produce a length-preserved output
sequence. Its core syntax includes elementwise operations and two non-elementwise operations:
select and aggregate, which together correspond to a single self-attention layer. Token values
and positions are accessed via tokens and indices. Lacking loops, RASP execution is inherently
parallelizable operations, mirroring self-attention (via select and aggregate pair that resembles
the QKV operation), with elementwise operations reflecting terminal feed-forward layers. This
absence of iterative constructs limits its applicability to inherently sequential computations, a direct
consequence of the transformer’s constant-depth nature that prevents arbitrary iteration simulation in
one pass. Note that the aggregate operation is crucial for derived operations like length, which
returns a sequence of the scalar repeated to maintain length.

Given the definition of Average Hard Attention (AHA) by Hao et al. (2022) (Def. 9), and the fact
that aggregate performs an average over value vectors from the Boolean attention matrix gener-
ated by select, it is evident that the attention module in RASP is AHA. The select operation uses
a Boolean predicate to associate keys and queries, placing it under the category of Generalized Av-
erage Hard Attention (GAHA). While GAHAT allows any terminating aggregator function1 (which
is a ReLU-activated FFN for restricted transformers), RASP permits any FFN for the same. The
only sufficient condition for an activation to be compliant with RASP is universal (also uniform) ap-
proximation with arbitrary accuracy of regular maps, e.g., continuous Borel-measurable functions,
Besov functions, etc.

In the scope of restricted transformers, various attention mechanisms have been employed to achieve
faster computation, differing mainly in their choice of characterizing matrices and/or the Pool func-
tion. For instance, Linformer (Wang et al., 2020) is one that introduces new characterizing matrices
E,F ∈ Rk×n for some k < n such that the attention becomes

σ
(
(XWQ) (EXWK)

⊤
)
FXV. (2)

A linear attention (Katharopoulos et al., 2020), on the other hand, assumes no Pool, resulting in:

(XWQ) (XWK)
⊤
XV. (3)

4 ON SIMULATING ATTENTION

In this section, we will provide all necessary lemmas and propositions required to construct the
transformer network U simulating arbitrary transformer attention T of order (n, d, dv) (Theorem 5).
The first proposition presents a way to rearrange a multi-dimensional array to a single dimension so
that all elements can be effectively accessed (proof in Appendix A.1). Subsequently, Lemma 2-4 use
this representation to perform some basic operations such as matrix transposition, applying softmax
activation and matrix multiplication2. Pseudocodes Algorithm 1-3 serve the constructive proofs of
the respective lemmas via GAHAT. Listing 1-3 provide the corresponding RASP codes. Notice that,
while these pseudocodes involve notation r denoting the matrix order (i.e. the number of rows), we
have considered r = 3 in the RASP codes as presented in Appendix A.1.

Proposition 1. An n-dimensional array A having size ml for each dimension l ∈ {0, 1, . . . , n− 1}
can be represented using a one-dimensional array A′.

Lemma 2. There exists a transformer transposing any matrix A of order r.

Note that for square matrices, the Algorithm 1 does not require the order r explicitly. As RASP
allows any arithmetic computation, r can be determined from the expression r2 = length.

Lemma 3. There exists a transformer implementing the operation softmax on matrix A of order r.

Lemma 4. There exists a transformer multiplying matrices A and B of shape r × k and k × c, for
any k ≥ rc

r+c .
1The choice of the codomain of g as {0, 1} is purely based on the objective of language recognition.
2However, for notational convenience, the usual matrix indexing will be followed in these pseudocodes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Transposing a matrix A of order r. [see Listing 1]

1 r ←[order of A.
2 Create a permutation ρ of the indices of A, such that it maps an element A[i, j] to position (j, i) using the

value r.
3 Create an attention that maps the indices of A to the reflected indices obtained from the calculation of ρ.
4 Return A⊤ produced from passing A to the attention matrix created above.

Algorithm 2: Applying softmax on a matrix A of order r. [see Listing 2]

1 r ←[order of A. Count the columns in A as c.
2 Exponentiate all the terms in A, say to A′.
3 Create r attention matrices each drawing the length-preserved sequence A′[i] padded with 0, where

i ∈ {0, 1, . . . , r − 1}.
4 Let sum denote the sequence such that sum[k] =

∑
j A

′[i, j] for all ci ≤ k < c(i+ 1).
5 Return the resultant sequence A′/ sum.

Algorithm 3: Multiplication of matrices A and B of shape r × · and · ×c respectively. [see Listing 3]

1 Let r (and c)←[order of A (and B⊤).
2 Create r attention matrices each drawing the length-preserved sequence A[i] padded with 0, where

i ∈ {0, 1, . . . , r − 1}.
3 Similarly, create c attention matrices each drawing the length-preserved sequence B[:, j]3padded with 0,

where j ∈ {0, 1, . . . , c− 1}.
4 Multiply tokens from each row of A with that of each column of B and store the rc sequences in rc

variables.
5 Create rc attention matrices such that attention matrix i focuses on first · positions of ith row.
6 Combine the sequences from line 4 with the attention matrices produced from line 5 to get AB, where the

last · (r + c)− rc tokens are 0.

To address the issue of redundant tokens (from Algorithm 3) occurring consecutively at the se-
quence’s end, we can incorporate a trivial attention mechanism in conjunction with a feed-forward
network. This approach enables the contraction of a sequence with m tokens into a shorter sequence
of length n (where n < m). To achieve this, a weight matrix Wm×n is employed within the final
feed-forward sublayer such that W [i][j] = 1 when i ≤ n, and i = j and 0 otherwise. Having
implemented the fundamental operations with transformers, we now present our main result.
Theorem 5. There exists a transformer network U that, on any input X of shape (n × d), can
simulate any single-layer transformer attention T of order (n, d, dv).

Proof. Suppose the restricted transformer attention T is characterized by A and V such that it can
be expressed as σ

(
XAX⊤)XV . The network U simulating T on input X takes input X,A and V ;

and it can be constructed through a series of fundamental operations, each of which has been realized
by specific transformer architectures as mentioned in Algorithm 1-3. Figure 1 depicts the required
network U .

Note that the criteria in Lemma 4 can be satisfied by k ≥ min(r, c). In the context of Theorem 5,
this requires n ≤ min(d, dv). This not only aligns with the existing empirical scenarios where the
sequence length n is smaller than the representation dimensionality d (Vaswani et al., 2017), but it
also renders the relation between hidden dimensions immaterial. Additionally, the representational
dimensions (d and dv) are often considered equal. In such scenarios, given that n = 0(mod 4), the
construction of U becomes entirely dependent on the sequence length, i.e., the number of input sym-
bols. The reason being, given the RASP primitive length, the provision to perform any arithmetic
operation, and the value of n, we may deduce the value d. For example, to know the value of d while
multiplying X and A, we may evaluate the expression nd+ d2 = length.
Corollary 5.1. There exists a transformer network U that can simulate any single-layer transformer
encoder T of order (n, d, dv, d1, d2).

3The notation indicates all elements stored in column j of matrix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proof. The characterizing parameters of a transformer encoder from the class of restricted
transformer contain two additional matrices. Let W1 and W2 specify the linear projections
within the feed-forward sublayer, in addition to the attention and value matrices characteriz-
ing T ’s self-attention sublayer. That is T (X) = FFN

(
σ
(
XAX⊤)XV

)
where, FFN(X) =

ReLU (XW1)W2.
We can implement the operation ReLU (see Listing 4). Now, continuing from Theorem 5, the rest
of the operations can be simulated using an application of Algorithm 3.

Remark 5.1 (Simulating SMAT using AHAT). The theorem ensures the existence of a unified net-
work capable of simulating certain computational models while maintaining parity with the models
under simulation. Precisely, we have employed average hard attention (see GAHAT in Section 3)
to mimic softmax-activated attentions. As a consequence, we can construct an AHAT for problems
such as Match2, known until now to be only learnable using single-layer single-head SMATs.
Remark 5.2 (Simulating Linformer and Linear Attention). As long as the characterizing matrices of
the transformers are involved with matrix multiplication (e.g., Linformer (2)) and the function Pool
is implementable using RASP (e.g., linear attention (3)), the Theorem 5 and Corollary 5.1 can be
applied to achieve a transformer network U simulating them.

Remarkably, one may follow an alternative approach to proving the representational capacity of
U by showing that it realizes operations such as (4) (see Appendix). The proof involves altering
the construction of U by introducing final attention parameters that adapt to the input ⟨T,X⟩. It
is crucial since, in the process, we show the existence of a transformer that inverts non-singular
matrices of fixed orders. See Appendix A.3 for a contextual discussion.

5 DISCUSSION ON GENERALIZATION

Operation Input Dependency Cost

Transposition ✓ O(1)
softmax ✓ O(r)
Multiplication ✓ O(rc)
MinMax ✗ O(1)

Table 1: The computational cost of con-
struction associated with the operations
and whether they are dependent on the
order of the input matrices.

Let us first analyze the complexity of the constructions
given above. We define the width of a single encoder layer
as the count of attention heads it contains. To extend this
definition to multi-layer encoders, we define the width as
the maximum width among all its constituent single-layer
encoders. The shortcoming that makes the Algorithm 3
lengthy stems from explicitly mentioning the r + c + rc
variables. Even with classical implementation of matrix
multiplication, where C[i0, i1] =

∑k
i=1 A[i0, i]B[i, i1],

taking O(rkc) time, it does not resolve the issue, but
rather follows the same in the scope of variable renaming facility. In contrast, since the constructed
system assumes attention being one of the basic operations and thus is an O(1) operation, matrix
multiplication costs O(2rc) number of operations. Similarly, the computation cost for Algorithm 2
and Algorithm 1 for an order-r matrix is O(r) and O(1), respectively. For each algorithm, the con-
struction of the transformers ensures that their depth is not a function of the input; however, for most
cases, the width is — a comprehensive view has been presented in Table 1.
Corollary 5.2. Let U(n,d,dv) and U(m,e,ev) be transformer networks as defined in Theorem 5, where
i) U(n,d,dv) simulates single-layer transformers with attention matrices A ∈ Rd×d, value matrices
V ∈ Rd×dv , and inputs X ∈ Rn×d, ii) U(m,e,ev) is defined analogously for dimensions m, e, and
ev . If n ≥ m, d ≥ e, and dv ≥ ev , then U(n,d,dv) is at least as expressive as U(m,e,ev). Specifically,
any computation performed by U(m,e,ev) can be exactly simulated by U(n,d,dv).

The corollary signifies the notion of hierarchy in simulation power. Our construction of a suitable
U , as discussed after Theorem 5, ensures the existence of a computational model that can simulate
any single-layer transformer attention with a given number of heads based on input X . We highlight
that it is X that dictates the width of U , whose depth remains independent of the input. As such, the
construction hinges solely on the sequence length n. For a sufficiently large N , we can inductively
construct and hence prove the existence of a network, say U(N) that can simulate arbitrary attention
(or, even transformer when extended with the feed-forward component) on input having length, say
n ≤ N – thus making it universal. The constructive proof has been provided in Appendix A.2. In
the absence of a theoretical lower bound on the allowable number of heads, we can only ensure that
the dependence underlying our model follows the principle of parsimony, given the natural hierarchy
among simulators.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Remark 5.3 (Sparsification). Note that the poly(n) complexity underlying our construction of U
stems from the definition of vanilla encoders, and does not contribute to inflation of ambient se-
quence length. Theorem 5 only requires n ≤ min(d, dv), which conforms to the convention in
Vaswani et al. (2017). Remarkably, our approach also conforms to sparsification of pairwise token
interactions, namely, methods that involve pooling to achieve appropriate compression and low-
rank attentions, e.g., Linformer (Wang et al., 2020), Performer (Choromanski et al., 2021), and
Sumformer (Alberti et al., 2023). This becomes crucial in mitigating the commonly encountered is-
sue of token explosion. Linformer approximates the self-attention mechanism by a low-rank matrix
—the lower rank (k) being prescribed based on the Johnson-Lindenstrauss Lemma —to achieve a
complexity of O(n). Meanwhile, Performer replaces the usual non-linearity by introducing kernels
for pooling. Under Gaussian kernels, the complexity can be made as low as O(nkd). Sumformers
consolidate all of the above models in universally approximating sequence-to-sequence permutation-
equivariant continuous functions. Our construction can be used to represent all such models as long
as the underlying pooling operations are representable (see Remark 5.2).

In the purview of Lemma 3, we also extend the encoder’s expressivity onto a larger class of activa-
tions. First, suppose S is a sequence of length gk and ρg is a permutation, where g, k are positive
integers. Thus, ρg(S) is the g-sorted sequence of S such that ρg(S)[i] ≥ ρg(S)[i + 1] ≥ · · · ≥
ρg(S)[i + g − 1] for all i that are multiple of g. This permutation is often called a GroupSort of
group size g. When g = 2, this is widely known as the MaxMin operation (Anil et al., 2019).
Lemma 6. There exists a transformer performing MaxMin on sequence (of even length).
Proof. MaxMin is both length-preserving and, when applied to a sequence or matrix (considered
as a sequence), according to Proposition 1, yields an identical result. Algorithm 4 provides the
pseudocode. Since the number of attentions does not depend on the input, it is only O(1)-costly.

Remark 6.1 (Approximating Lipschitz functions). The first reason behind Lemma 6 being important
is that, by representing MaxMin, U can express a vector p-norm preserving transform, p ≥ 1. As
such, recalling that U also simulates affine matrix operations (multiplication), it can represent an L-
deep feed-forward network z(ℓ) := W (ℓ) MaxMin(z(ℓ−1)) + b(ℓ), where W (ℓ) ∈ Rnℓ×nℓ−1 , b(ℓ) ∈
Rnℓ , given that ||W 1||2,∞ ≤ 1, max{||W (ℓ)||∞}Lℓ=2 ≤ 1 and max{||b(ℓ)||∞}Lℓ=1 ≤ ∞. In case
the input vectors z0 are constrained to a compact subset Z ⊆ Rn0 and nL = 1, the simulated
outputs are dense in Lip1(Z) (Tanielian & Biau, 2021). This presents a new proof showing that
transformer encoders are universal approximators of Lipschitz and Hölder-smooth functions. More-
over, following Lemma 6, U exactly represents ReLU,LeakyReLU and Maxout activations (Anil
et al., 2019). The result extends to GeLU-activated networks given the approximation of GeLU
(Lipschitz-smooth with associated constant 1.0998) using ReLU (Feng et al. (2023), Lemma C.2).

Algorithm 4: Applying MaxMin sort on any sequence S. [see Listing 5]

1 Let α ∈ {0, 1}∗ denotes a sequence such that α[i] = α[i+ 1] = 1(or, 0) for S[i] < S[i+ 1] (or,
otherwise), where i is even.

2 Create the attention matrix, say ρ2, with diagonal blocks
(
0 1
1 0

)
(or,

(
1 0
0 1

)
) depending upon

α[i] and α[i+ 1] are both 1(or, 0) for any even i.
3 Return the tokens of S after passing through ρ2.

To further generalize the construction of U , let us now work on the multi-head extension.
Lemma 7. Suppose ◦ is an n-ary operation. Then, there exists a transformer T computing
⊙H

h=1

(
◦ni=1 X

(h)
i

)
on input ⊙n

i=1

(
⊙H

h=1 X
(h)
i

)
, if there is a transformer T (h) realizing the op-

eration ◦ on input ⊙n
i=1 Xi, where ⊙ denotes concatenation.

Proof. If the construction for operation ◦ is independent of the input, T = T (h) for any h, e.g.,
MaxMin. Otherwise, we provide an explicit construction of such a transformer T . A transformer
can implement the following operations:

• identify: A contiguous subsequence σi−1σi . . . σi+k−1 from a sequence σ0 . . . σi−1 . . . σi+k−1

. . . σn−1 can be identified to produce the length-preserved sequence 0 . . . 0σi−1 . . . σi+k−10 . . . 0.
The RASP code is as follows. clip = select(indices, indices, ==)and select(
indices, i-1, >=)and select(indices, i+k-1, <=); aggregate(clip, tokens)
;. Line 3 (and 2 & 3) of Algorithm 2 (and 3) reminisce the property.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• shift: A cyclic permutation ρ on the sequence σ0σ1 . . . σn−1 can be performed, say by an amount
t. The RASP code is as follows aggregate(select(indices, (indices+t)%n, ==),
tokens);. Note that applying these two operations sequentially can help shift a subsequence.

Now to construct T , let us first apply the identify and shift operation to permute the input sequence
⊙n

i=1

(
⊙H

h=1 X
(h)
i

)
to ⊙H

h=1

(
⊙n

i=1 X
(h)
i

)
. The operations of T would then copy the operations

from T (h) with possible modification in indices, which is in T , is at an offset n × (h′ − 1).
When applied on the sequence ⊙h′−1

h=1

(
⊙n

i=1 0
)
⊙n

i=1 X
(h′)
i ⊙H

h=h′+1

(
⊙n

i=1 0
)

, this would pro-

duce ⊙h′−1
h=1

(
⊙n

i=1 0
)
◦ni=1 X

(h′)
i ⊙H

h=h′+1

(
⊙n

i=1 0
)

. Then just adding up all such H sequences

would produce ⊙H
h=1

(
◦ni=1 X

(h)
i

)
. Note that if a transformer T (h) requires using the FFN (e.g., the

matrix multiplication), T can also construct weight matrices for the FFN with possible modifications
to cater only to the required portions of the produced sequence.

The purpose of this lemma is to prove that given an operation ◦ implementable by a transformer,
another transformer can be constructed that can independently perform ◦, say, H times, without
mutual interference.
Theorem 8. There exists a transformer network U that, on input X , can simulate any single-layer
H-head transformer attention T of order (n, d, dv), at its own final attention layer.
Proof. Keeping congruence to the input provided to multihead attentions by Vaswani et al. (Sub-
section 3.2.2), we assume that the characterizing matrices have been stacked one after another,
i.e.,

(
⊙H

h=1 X
(h)
)
⊙
(
⊙H

h=1 A
(h)
)
⊙
(
⊙H

h=1 V
(h)
)

, where, X(h) ∈ Rn×d, A(h) ∈ Rd×d and

V (h) ∈ Rd×dv is the input to network U . Thus, the construction of U follows from Lemma 7
and Lemma 2-4.

Evidently, the result also extends to the entire transformer.
Corollary 8.1. There exists a transformer network U that, on input X , can simulate any single-layer
H-head transformer T of order (n, d, dv, d1, d2), at its own final attention layer.
Remark 8.1. With the simulation of multi-head transformers, an architecture can be realized through
explicit construction for the problems which are known to be learnable using single-layer multi-
head transformers, e.g., k-PARITY. Note that in terms of RASP, a residual connection is only an
elementwise sum. Accordingly, for the task of recognizing the language PARITY, the two-layer
softmax encoder architecture proposed by Chiang & Cholak can be realized using average hard
attention by employing two serially connected U networks.

6 CONCLUSION

We present for the first time an exact, data-agnostic construction of a universal simulator that repli-
cates the behavior of single-layer transformer encoders, including multi-head attention and non-
linear feed-forward components. Central to our construction is the implementation of key linear al-
gebraic operations and a wide-range of activation functions, all within the constant-depth constraint
of transformer architecture. Our results demonstrate that while such structure precludes simulation
of arbitrary encoder configurations, a hierarchical construction exists wherein simulators of higher-
order subsume lower-order models. Crucially, extending this to multi-head attention as in Theorem 8
ensures the existence of a universal simulator U . As an obvious extension of this work and backed
by the Turing completeness of transformers, one may investigate the construction of an analogous
mechanism involving an encoder-decoder-based model to simulate an arbitrary transformer. By con-
structing average-hard attention-based models that exactly replicate softmax-activated attention, we
show that algorithmic approximations of problems previously believed to be learnable only through
training, such as Match2 and k-PARITY. This rigorously shifts the boundary between empirical ap-
proximation and formal simulation in attention-based models. The development of RASP compilers
such as Tracr (Lindner et al., 2023) and ALTA (Shaw et al., 2025) presents a promising avenue for
obtaining realized weights corresponding to the proposed network U . However, challenges towards
a complete implementation of the RASP framework still exist in either of these compilers. Along
such a line, learning the algorithmically developed transformers and U via existing optimization-
based methods and coming up with a convergence criterion may be considered as future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers Learn to
Implement Preconditioned Gradient Descent for In-Context Learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 45614–45650. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/8ed3d610ea4b68e7afb30ea7d01422c6-Paper-Conference.pdf.

Silas Alberti, Niclas Dern, Laura Thesing, and Gitta Kutyniok. Sumformer: Universal Approxima-
tion for Efficient Transformers. In Proceedings of 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML), volume 221 of Proceedings of Machine Learn-
ing Research, pp. 72–86. PMLR, 28 Jul 2023. URL https://proceedings.mlr.press/
v221/alberti23a.html.

Cem Anil, James Lucas, and Roger Grosse. Sorting Out Lipschitz Function Approximation. In
International Conference on Machine Learning, pp. 291–301. PMLR, 2019.

Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
Languages Accepted by Transformer Encoders with Hard Attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=gbrHZq07mq.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 7096–7116, Online, November 2020a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.emnlp-main.576. URL https://aclanthology.org/2020.
emnlp-main.576/.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the Computational Power of Transformers
and Its Implications in Sequence Modeling. In Raquel Fernández and Tal Linzen (eds.), Proceed-
ings of the 24th Conference on Computational Natural Language Learning, pp. 455–475, Online,
November 2020b. Association for Computational Linguistics. doi: 10.18653/v1/2020.conll-1.37.
URL https://aclanthology.org/2020.conll-1.37/.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers Implement Functional Gradient Descent to
Learn Non-Linear Functions In Context. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the
41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 8002–8037. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/cheng24a.html.

David Chiang. Transformers in Uniform TC0. Transactions on Machine Learning Research, January
2025. URL https://openreview.net/forum?id=ZA7D4nQuQF.

David Chiang and Peter Cholak. Overcoming a Theoretical Limitation of Self-Attention. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
7654–7664, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.acl-long.527. URL https://aclanthology.org/2022.acl-long.
527/.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH.

Micaela E Consens, Cameron Dufault, Michael Wainberg, Duncan Forster, Mehran Karimzadeh,
Hani Goodarzi, Fabian J Theis, Alan Moses, and Bo Wang. Transformers and genome language
models. Nature Machine Intelligence, pp. 1–17, 2025.

10

https://proceedings.neurips.cc/paper_files/paper/2023/file/8ed3d610ea4b68e7afb30ea7d01422c6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8ed3d610ea4b68e7afb30ea7d01422c6-Paper-Conference.pdf
https://proceedings.mlr.press/v221/alberti23a.html
https://proceedings.mlr.press/v221/alberti23a.html
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.conll-1.37/
https://proceedings.mlr.press/v235/cheng24a.html
https://proceedings.mlr.press/v235/cheng24a.html
https://openreview.net/forum?id=ZA7D4nQuQF
https://aclanthology.org/2022.acl-long.527/
https://aclanthology.org/2022.acl-long.527/
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
Transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/pdf?id=HyzdRiR9Y7.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural Networks and
the Chomsky Hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive Biases and Variable
Creation in Self-Attention Mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards Revealing
the Mystery behind Chain of Thought: A Theoretical Perspective. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=qHrADgAdYu.

Deqing Fu, Tian qi Chen, Robin Jia, and Vatsal Sharan. Transformers Learn to Achieve Second-
Order Convergence Rates for In-Context Linear Regression. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=L8h6cozcbn.

Angeliki Giannou, Shashank Rajput, Jy-Yong Sohn, Kangwook Lee, Jason D. Lee, and Dim-
itris Papailiopoulos. Looped Transformers as Programmable Computers. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 11398–11442. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/giannou23a.html.

Angeliki Giannou, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D. Lee. How Well
Can Transformers Emulate In-Context Newton’s Method? In The 28th International Conference
on Artificial Intelligence and Statistics, 2025. URL https://openreview.net/forum?
id=cj5L29VWol.

Michael Hahn. Theoretical Limitations of Self-Attention in Neural Sequence Models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl a 00306.
URL https://aclanthology.org/2020.tacl-1.11/.

Yaomengxi Han and Debarghya Ghoshdastidar. Attention Learning is Needed to Efficiently Learn
Parity Function. arXiv preprint arXiv:2502.07553, 2025.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022. doi: 10.1162/tacl a 00490. URL https://aclanthology.
org/2022.tacl-1.46/.

Yunusa Haruna, Shiyin Qin, Abdulrahman Hamman Adama Chukkol, Abdulganiyu Abdu Yusuf,
Isah Bello, and Adamu Lawan. Exploring the synergies of hybrid convolutional neural net-
work and Vision Transformer architectures for computer vision: A survey. Engineering Ap-
plications of Artificial Intelligence, 144:110057, 2025. ISSN 0952-1976. doi: https://doi.org/
10.1016/j.engappai.2025.110057. URL https://www.sciencedirect.com/science/
article/pii/S0952197625000570.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Juno Kim, Tai Nakamaki, and Taiji Suzuki. Transformers are Minimax Optimal Nonparametric
In-Context Learners. In ICML 2024 Workshop on In-Context Learning, 2024. URL https:
//openreview.net/forum?id=WjrKBQTWKp.

11

https://openreview.net/pdf?id=HyzdRiR9Y7
https://openreview.net/pdf?id=HyzdRiR9Y7
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=L8h6cozcbn
https://openreview.net/forum?id=L8h6cozcbn
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=cj5L29VWol
https://openreview.net/forum?id=cj5L29VWol
https://aclanthology.org/2020.tacl-1.11/
https://aclanthology.org/2022.tacl-1.46/
https://aclanthology.org/2022.tacl-1.46/
https://www.sciencedirect.com/science/article/pii/S0952197625000570
https://www.sciencedirect.com/science/article/pii/S0952197625000570
https://openreview.net/forum?id=WjrKBQTWKp
https://openreview.net/forum?id=WjrKBQTWKp

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Manfred Kudlek. On the Existence of Universal Finite or Pushdown Automata. Electronic Proceed-
ings in Theoretical Computer Science, July 2012.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transform-
ers. AI Open, 3:111–132, 2022. ISSN 2666-6510. doi: https://doi.org/10.1016/j.aiopen.
2022.10.001. URL https://www.sciencedirect.com/science/article/pii/
S2666651022000146.

David Lindner, Janos Kramar, Sebastian Farquhar, Matthew Rahtz, Thomas McGrath, and Vladimir
Mikulik. Tracr: Compiled Transformers as a Laboratory for Interpretability. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=tbbId8u7nP.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
Learn Shortcuts to Automata. In The Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

Shengjie Luo, Shanda Li, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. Your Transformer
May Not be as Powerful as You Expect. Advances in Neural Information Processing Systems, 35:
4301–4315, 2022.

William Merrill and Ashish Sabharwal. A logic for Expressing Log-Precision Transformers. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc. URL https://dl.acm.org/
doi/10.5555/3666122.3668406.

William Merrill and Ashish Sabharwal. The Expressive Power of Transformers with Chain of
Thought. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=NjNGlPh8Wh.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
Formal Hierarchy of RNN Architectures. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 443–459, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.43. URL https://aclanthology.org/2020.acl-main.
43/.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated Transformers are Constant-Depth
Threshold Circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022. doi: 10.1162/tacl a 00493. URL https://aclanthology.org/2022.tacl-1.
49/.

Youssef Mroueh. Towards a Statistical Theory of Learning to Learn In-context with Transformers.
In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023. URL https:
//openreview.net/forum?id=ZbioTIO6y6.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
regression mixture models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sLkj91HIZU.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing Completeness of Modern Neural
Network Architectures. arXiv preprint arXiv:1901.03429, 2019.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-Complete. Journal of
Machine Learning Research, 22(75):1–35, 2021. URL http://jmlr.org/papers/v22/
20-302.html.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the
Turing completeness of prompting. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=AS8SPTyBgw.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=36DxONZ9bA.

12

https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://openreview.net/forum?id=tbbId8u7nP
https://openreview.net/forum?id=tbbId8u7nP
https://openreview.net/forum?id=De4FYqjFueZ
https://dl.acm.org/doi/10.5555/3666122.3668406
https://dl.acm.org/doi/10.5555/3666122.3668406
https://openreview.net/forum?id=NjNGlPh8Wh
https://aclanthology.org/2020.acl-main.43/
https://aclanthology.org/2020.acl-main.43/
https://aclanthology.org/2022.tacl-1.49/
https://aclanthology.org/2022.tacl-1.49/
https://openreview.net/forum?id=ZbioTIO6y6
https://openreview.net/forum?id=ZbioTIO6y6
https://openreview.net/forum?id=sLkj91HIZU
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
https://openreview.net/forum?id=AS8SPTyBgw
https://openreview.net/forum?id=36DxONZ9bA

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peter Shaw, James Cohan, Jacob Eisenstein, Kenton Lee, Jonathan Berant, and Kristina Toutanova.
ALTA: Compiler-Based Analysis of Transformers. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=h751wl9xiR.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning Bounded Context-
Free-Grammar via LSTM and the Transformer: Difference and the Explanations. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 36(8):8267–8276, Jun. 2022. doi: 10.
1609/aaai.v36i8.20801. URL https://ojs.aaai.org/index.php/AAAI/article/
view/20801.

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
as Transducers. Transactions of the Association for Computational Linguistics, 13:200–219, 02
2024a. ISSN 2307-387X. doi: 10.1162/tacl a 00736. URL https://doi.org/10.1162/
tacl_a_00736.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal Lan-
guages Can Transformers Express? A Survey. Transactions of the Association for Com-
putational Linguistics, 12:543–561, 2024b. doi: 10.1162/tacl a 00663. URL https://
aclanthology.org/2024.tacl-1.30/.

Ugo Tanielian and Gerard Biau. Approximating lipschitz continuous functions with groupsort neu-
ral networks. In International Conference on Artificial Intelligence and Statistics, pp. 442–450.
PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with Linear Complexity. arXiv preprint arXiv:2006.04768, 2020.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically Meaningful Approximation: a Case
Study on Approximating Turing Machines with Transformers. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 12071–12083. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking Like Transformers. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 11080–11090. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/weiss21a.html.

Andy Yang and David Chiang. Counting Like Transformers: Compiling Temporal Counting Logic
Into Softmax Transformers. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=FmhPg4UJ9K.

Andy Yang, David Chiang, and Dana Angluin. Masked Hard-Attention Transformers Recog-
nize Exactly the Star-Free Languages. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024a. URL https://openreview.net/forum?id=
FBMsBdH0yz.

Andy Yang, Lena Strobl, David Chiang, and Dana Angluin. Simulating Hard Attention Using Soft
Attention. arXiv preprint arXiv:2412.09925, 2024b.

Morris Yau, Ekin Akyürek, Jiayuan Mao, Joshua B Tenenbaum, Stefanie Jegelka, and Jacob An-
dreas. Learning Linear Attention in Polynomial Time. arXiv preprint arXiv:2410.10101, 2024.

13

https://openreview.net/forum?id=h751wl9xiR
https://ojs.aaai.org/index.php/AAAI/article/view/20801
https://ojs.aaai.org/index.php/AAAI/article/view/20801
https://doi.org/10.1162/tacl_a_00736
https://doi.org/10.1162/tacl_a_00736
https://aclanthology.org/2024.tacl-1.30/
https://aclanthology.org/2024.tacl-1.30/
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.mlr.press/v139/weiss21a.html
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FBMsBdH0yz
https://openreview.net/forum?id=FBMsBdH0yz

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
Transformers universal approximators of sequence-to-sequence functions? In International Con-
ference on Learning Representations, 2020. URL https://openreview.net/forum?
id=ByxRM0Ntvr.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained Transformers Learn Linear Models In-
Context. Journal of Machine Learning Research, 25(49):1–55, 2024. URL http://jmlr.
org/papers/v25/23-1042.html.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What Algorithms can Transformers Learn? A Study in Length
Generalization. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=AssIuHnmHX.

14

https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
http://jmlr.org/papers/v25/23-1042.html
http://jmlr.org/papers/v25/23-1042.html
https://openreview.net/forum?id=AssIuHnmHX

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RASP CODES FOR IMPLEMENTING THE NETWORK U

This section will provide the deferred proof and RASP codes referenced in Section 4.

Proof of Proposition 1. We assume that performing basic arithmetic operations is supported while
doing this conversion. We would apply induction on n to prove the proposition. Avoiding the triv-
ial case when n = 1, let us consider a two-dimensional array A having m rows and m columns.
Note that any element A[i0, i1]; il ∈ {0, 1, . . . ,ml − 1}, l ∈ {0, 1} can be accessed from the one-
dimensional array A′ of size m0m1 using the elementary index calculation m0i0 + i1. We assume
that there exists a one-dimensional representation A′ for the n-dimensional array A. To construct
an one-dimensional representation A′′ for an n + 1-dimensional array A, let A′

j denotes the one-
dimensional representation of the n-dimensional array A[j], j ∈ {0, 1, . . . ,m0 − 1}. Thus, con-
catenation of all such A′

j , say A′′ is the one-dimensional representation of A such that the element
A[i0, i1, . . . , in] can be accessed in A′′ using index

∏n
l=1 mli0 + k, where k is the index of the

element in A′
i0

.� �
1 def Transpose_r(){
2 r, c = 3, length/3;
3 reflectedIndices = (indices%r)*c + ((indices-indices%r))/r;
4 reflect = select(indices, reflectedIndices, ==);
5 return aggregate(reflect, tokens_int);
6 }� �
Listing 1: Transposing a matrix of order 3 implementing Algorithm 1. Note that the transpose
operation is a length-preserving operation.� �
1 def softmaxrect_r(){
2 r, c = 3, length/3;
3 exp = (2.73ˆtokens_float);
4 sel1, sel2, sel3 =(select(indices, c*0+c, <) and select(c*0+c,

indices, >)), (select(indices, c*0+c, >=) and select(indices, c*1+c,
<) and select(c*1+c, indices, >) and select(c*0+c, indices, <=)), (

select(indices, c*1+c, >=) and select(indices, c*2+c, <) and select(
c*2+c, indices, >) and select(c*1+c, indices, <=));

5 denom1, denom2, denom3 = c*aggregate(sel1, exp), c*aggregate(sel2,
exp), c*aggregate(sel3, exp);

6 denom = (denom1+denom2+denom3);
7 return exp/denom;
8 }� �
Listing 2: Applying softmax (a length-preserving operation) on matrix A of order 3 implementing
Algorithm 2.� �
1 def Matmul_3dot4(){
2 k = length/(3+4);

3 one_a, one_b, two_a, two_b, three_a, three_b, four_b = indices%k, (
indices%k)*4+3*k, (indices%k)+1*k, (indices%k)*4+3*k+1, (indices%k)
+2*k, (indices%k)*4+3*k+2, (indices%k)*4+3*k+3;

4 one_sa, one_sb, two_sa, two_sb, three_sa, three_sb, four_sb = select(
indices, one_a, ==), select(indices, one_b, ==), select(indices,
two_a, ==), select(indices, two_b, ==), select(indices, three_a, ==)
, select(indices, three_b, ==), select(indices, four_b, ==);

5 oneone_ab, onetwo_ab, onethree_ab, onefour_ab, twoone_ab, twotwo_ab,
twothree_ab, twofour_ab, threeone_ab, threetwo_ab, threethree_ab,
threefour_ab = aggregate(one_sa, tokens_int)*aggregate(one_sb,
tokens_int), aggregate(one_sa, tokens_int)*aggregate(two_sb,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

tokens_int), aggregate(one_sa, tokens_int)*aggregate(three_sb,
tokens_int), aggregate(one_sa, tokens_int)*aggregate(four_sb,
tokens_int), aggregate(two_sa, tokens_int)*aggregate(one_sb,
tokens_int), aggregate(two_sa, tokens_int)*aggregate(two_sb,
tokens_int), aggregate(two_sa, tokens_int)*aggregate(three_sb,
tokens_int), aggregate(two_sa, tokens_int)*aggregate(four_sb,
tokens_int), aggregate(three_sa, tokens_int)*aggregate(one_sb,
tokens_int), aggregate(three_sa, tokens_int)*aggregate(two_sb,
tokens_int), aggregate(three_sa, tokens_int)*aggregate(three_sb,
tokens_int), aggregate(three_sa, tokens_int)*aggregate(four_sb,
tokens_int);

6 sel_one, sel_two, sel_three, sel_four, sel_five, sel_six, sel_seven,
sel_eight, sel_nine, sel_ten, sel_eleven, sel_twelve = select(
indices, k, <) and select(0, indices, ==), select(indices, k, <) and
select(1, indices, ==), select(indices, k, <) and select(2, indices

, ==), select(indices, k, <) and select(3, indices, ==), select(
indices, k, <) and select(4, indices, ==), select(indices, k, <) and
select(5, indices, ==), select(indices, k, <) and select(6, indices

, ==), select(indices, k, <) and select(7, indices, ==), select(
indices, k, <) and select(8, indices, ==), select(indices, k, <) and
select(9, indices, ==), select(indices, k, <) and select(10,

indices, ==), select(indices, k, <) and select(11, indices, ==);

7 matmul = k*(aggregate(sel_one, oneone_ab)+aggregate(sel_two,
onetwo_ab)+aggregate(sel_three, onethree_ab)+aggregate(sel_four,
onefour_ab)+aggregate(sel_five, twoone_ab)+aggregate(sel_six,
twotwo_ab)+aggregate(sel_seven, twothree_ab)+aggregate(sel_eight,
twofour_ab)+aggregate(sel_nine, threeone_ab)+aggregate(sel_ten,
threetwo_ab)+aggregate(sel_eleven, threethree_ab)+aggregate(
sel_twelve, threefour_ab));

8 return matmul;
9 }� �

Listing 3: Multiplying two matrices of shape 3× · and · ×4 implementing Algorithm 3.� �
1 def ReLU(){
2 return (0 if tokens<0 else tokens);
3 }� �

Listing 4: Implementation of ReLU.� �
1 def MaxMinSort(){
2 MaxSel = select(indices, indices, ==);
3 MinSel = select(indices, indices+1, ==) and select(1, indices%2+1, ==

);
4 MaxminusMin = aggregate(MaxSel, tokens) - aggregate(MinSel, tokens);
5 reqFlip = 1 if MaxminusMin<0 else 0;
6 reqFlip = reqFlip + aggregate(select(indices+1, indices, ==), reqFlip

);
7 revby2 = aggregate(select(0, indices%2, ==), 1) + aggregate(select(1,

indices%2, ==), -1);
8 flip = select(indices, indices+revby2, ==);
9 sorted = reqFlip*aggregate(flip, tokens) + (1-reqFlip)*aggregate(

select(indices, indices, ==), tokens);
10 return sorted;
11 }� �

Listing 5: Implementation of MaxMin sort realizing Algorithm 4.

Complexity of individual operations. To illustrate the complexities in accordance with the dis-
cussion in Section 5, we present the following analysis on the RASP codes. Listing 1 generates
an attention matrix that maps the indices to their transposed position and then passes the tokens to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

get permuted accordingly. This requires a single non-trivial attention layer and a preceding layer
to compute n and reflectedIndices. The reflectedIndices is in fact the permutation ρ as
defined in line 2 of Algorithm 1. For implementing the operation softmax in Listing 2, the principal
attention layer has a width of 3, computing the row sums. Similarly, the function matrix multiplica-
tion in Listing 3 requires two non-trivial layers and an opening layer for the calculation of several
index manipulations. Line 3 is performing necessary index calculations for implementing lines 2, 3
of the respective algorithm. The second attention layer corresponds to lines 4-5 and thus has a width
of seven, while the third layer, corresponding to lines 6-7, has width twelve. For easy understanding,
we have presented the keyword tokens in the proofs; however, following the RASP semantics, we
have used tokens_float (or tokens_int) while dealing with numerals. A standard construction
of UTM stores the transitions of an input TM using some delimiter (mostly a predefined number
of 0s). One may get intimidated to apply the same to delimit the rows of a matrix when presented
as a sequence using Proposition 1. Though that would help to count the rows and thus columns,
the architecture of transformers inhibits us from directly looping on the rows or columns to bypass
the explicit construction of the select-aggregate pairs (e.g., the three selectors sel1, sel2, and
sel3 in Listing 2).

A.2 PROOF OF COROLLARY 5.2

We prove this by construction. Let T be a single-layer transformer with attention matrix A ∈ Re×e,
value matrix V ∈ Re×ev , and input X ∈ Rm×e. To simulate T using U(n,d,dv), we proceed as
follows:

Step 1 (Input Embedding). Pad the input X to X̃ ∈ Rn×d via zero-padding and block-diagonal
extension:

X̃ =

[
X 0m×(d−e)

0(n−m)×e 0(n−m)×(d−e)

]
,

where 0p×q denotes a zero matrix of size p× q.

Step 2 (Attention/Value Matrix Embedding). Similarly, embed A and V into higher-dimensional
spaces:

Ã =

[
A 0
0 Id−e

]
, Ṽ =

[
V 0
0 0

]
,

where Ik is the k × k identity matrix. The identity block ensures that padded dimensions do not
interfere with the computation.

Step 3 (Simulation). By construction, U(n,d,dv)(⟨Ã, X̃⟩) computes:

softmax

(
X̃ÃX̃⊤
√
d

)
X̃Ṽ ,

which reduces to the original computation T (X) in the upper-left m×ev block. The padded dimen-
sions contribute only trivial linear transformations (due to 0 and I blocks), leaving the simulation
exact.

A.3 ALTERNATIVE CONSTRUCTION FOR U

Before the discussion for constructing U , let us implement another elementary matrix operation –
inversion.

Lemma 9. There exists a transformer that can invert a non-singular matrix A of rank 3.

Proof. Given a matrix A and its mapped sequence from Proposition 1, the inversion operation is
also length-preserving. We shall adopt an analytical framework for inverse computation, utilizing
the fundamental operations of matrix cofactor, determinant, and adjugate. The final transposition
step can be derived through the application of Lemma 2. The RASP pseudocode is presented in
Algorithm 5.

The RASP code for finding cofactor and determinant has been provided in Listing 6, 7.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 5: Finding Cofactor and Determinant of square matrix A of rank 3.

1 r ←[rank of A.
2 Identify the four sequences of indices of length r2, say, α, β, γ and δ such that the indices α[i], β[i], γ[i]

and δ[i] contain the tokens responsible for computing the cofactor corresponding to the token at index i
of matrix A.

3 Attend to the tokens P,Q,R and S at the sequences of indices α, β, γ and δ, respectively.
4 Then the cofactor of matrix A, MA is element-wise operation P ×Q−R× S.
5 Multiply the tokens of A and that of MA, element-wise.
6 Create a mask that can attend to only the first r position.
7 And apply the mask to the multiplied result from line 5.
8 Add all the elements in the resultant sequence from line 7 and obtain the determinant of A, a sequence of

length r2 filled with |A|.

The expression MA/|A| (or, Cofactor()/Det(Cofactor())(A)) now yields the transpose of
the adjugate Adj(A). Subsequently, applying the transposition operation to the adjugate results in
the desired matrix inverse A−1.� �
1 def Cofactor(){
2 n = lengthˆ0.5;
3 i,j = (indices-indices%n)/n, indices%n;

4 idx1, idx2, idx3, idx4 = (i+1)%n, (j+1)%n, (i+2)%n, (j+2)%n;
5 one, two, three, four = idx3*n+idx4, idx1*n+idx2, idx3*n+idx2, idx1*n

+idx4;

6 sel_one, sel_two, sel_three, sel_four = select(indices, one, ==),
select(indices, two, ==),select(indices, three, ==), select(indices
, four, ==);

7 P, Q, R, S = aggregate(sel_one, tokens), aggregate(sel_two, tokens),
aggregate(sel_three, tokens), aggregate(sel_four, tokens);

8 cofactor = P*Q-R*S;
9 return cofactor;

10 }� �
Listing 6: Finding Cofactor of a Matrix as a part of implementing Algorithm 5.� �

1 def Det(Cofactor){
2 n = lengthˆ0.5;
3 mask = select(indices, n, <) and select(indices, indices, ==);
4 det = length*aggregate(full_s, aggregate(mask, (tokens*Cofactor))

);
5 return det;
6 }� �

Listing 7: Finding Determinant of a Matrix as a part of implementing Algorithm 5.

Consider a transformer network U that adapts its parameters in the final attention layer depending
on the input parameters A, V , and X , where A and V are the non-singular characterizing matrices
of an attention T . Although such a construction does not solely satisfy the motivation as depicted in
Figure 1, it may be worth an attempt to explore the expressive power of a transformer implemented
using RASP.

From the fact that det(M1M2) = det(M1) det(M2) ̸= 0 when matrices M1 and M2 are both non-
singular, it is straightforward to see that matrix M1M2 is also non-singular. Now, we will construct
U , which will take input a sequence X,A and V such that the final attention layer, say L receives
input XAV . Thus, to simulate T on input X , the attention and value matrices at layer L of U must
be
(
(AV)⊤V

)−1
and (AV)

−1
V respectively, so that it produces:

σ
(
(XAV)

(
(AV)⊤V

)−1
(XAV)

⊤
)
(XAV) (AV)

−1
V (4)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As long as the characterizing matrices of T are non-singular and of rank 3, the attention and value
matrices of U can be realized through a series of sequential operations implementable using the
previous lemmas.

The function Cofactor(), a non-trivial attention layer with four heads representing the agents to
pick the four sequences of elements involved to calculate the respective cofactor, and a preceding
layer responsible for index calculation. The other one Det() calculating determinant takes the func-
tion Cofactor() as an argument, thus giving rise to two additional attention layers where the first
one attends to the first three indices and the following layer is a trivial one doing the multiplication
with length. However, while inverting a matrix, we may combine some arithmetic operations,
mostly taking place in the first layer of attention of the aforementioned functions, which will help
us to get a five-layer transformer having a width of four (see Figure 2). The existing implementa-
tions of calculating inverse (e.g., Giannou et al. (2023)) involve Newton’s iterative formula. The
constant-depth (13-deep, 1-wide) transformers only approximate the solution (up to T steps), and
fundamentally, rely on a computational framework that is neither entirely transformer-based (as they
use for) nor the classical computational paradigm (as they use transformers). On the other hand, it
is important to discuss the constructional challenges with matrix inversion in RASP. Despite produc-
ing an exact solution, computing the cofactor of a rank-(k+1) non-singular matrix depends on that
of precisely (k+1)2 rank-k matrices. Achieving this inherent recursive computation for arbitrary k
using a constant-depth architecture such as a transformer is not amenable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

l
a
y
e
r

0

l
a
y
e
r

2

h
e
a
d

0

(
s
e
l
_
o
n

e
)

h
e
a
d

1

(
s
e
l
_
t
w

o
)

h
e
a
d

2

(
s
e
l
_
t
h

r
e
e
)

h
e
a
d

3

(
s
e
l
_
f
o
u

r
)

l
a
y
e
r

1

h
e
a
d

0

(
f
u

l
l
_
s
)

l
a
y
e
r

3

h
e
a
d

0

(
m

a
s
k
)

l
a
y
e
r

4

h
e
a
d

0

(
f
u

l
l
_
s
)

l
a
y
e
r

5

h
e
a
d

0

(
r
e
f
l
e
c
t
)

X
i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

F
F

I
(
(

i
n

d
i
c
e
s

=

=

0

)
)

1

0

0

0

0

0

0

0

0

O
t
h

e
r

1

1

1

1

1

1

1

1

1

1

M
e

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X
I
(
(

i
n

d
i
c
e
s

=

=

0

)
)

1

0

0

0

0

0

0

0

0

s
-
o
p

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

X
i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

(
0

)

X
s
-
o
p

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

0
.
1

1
1

(
1

)

F
F

l
e
n

g
t
h

9

9

9

9

9

9

9

9

9

(
2

)
f
r
o
m

(
1

)

F
F

n
3

.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

(
3

)
f
r
o
m

(
2

)

F
F

i
0

.
0

0
.
0

0
.
0

1
.
0

1
.
0

1
.
0

2
.
0

2
.
0

2
.
0

(
4

)
f
r
o
m

(
3

,

0

)

F
F

j
0

.
0

1
.
0

2
.
0

0
.
0

1
.
0

2
.
0

0
.
0

1
.
0

2
.
0

(
5

)
f
r
o
m

(
3

,

0

)

F
F

i
d

x
1

1
.
0

1
.
0

1
.
0

2
.
0

2
.
0

2
.
0

0
.
0

0
.
0

0
.
0

(
6

)
f
r
o
m

(
3

,

4

)

F
F

i
d

x
2

1
.
0

2
.
0

0
.
0

1
.
0

2
.
0

0
.
0

1
.
0

2
.
0

0
.
0

(
7

)
f
r
o
m

(
3

,

5

)

F
F

i
d

x
3

2
.
0

2
.
0

2
.
0

0
.
0

0
.
0

0
.
0

1
.
0

1
.
0

1
.
0

(
8

)
f
r
o
m

(
3

,

4

)

F
F

i
d

x
4

2
.
0

0
.
0

1
.
0

2
.
0

0
.
0

1
.
0

2
.
0

0
.
0

1
.
0

(
9

)
f
r
o
m

(
3

,

5

)

F
F

o
n

e
8

.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

5
.
0

3
.
0

4
.
0

(
1

0
)

f
r
o
m

(
3

,

9

,

8

)

F
F

t
w

o
4

.
0

5
.
0

3
.
0

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

(
1

1
)

f
r
o
m

(
3

,

7

,

6

)

F
F

t
h

r
e
e

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

4
.
0

5
.
0

3
.
0

(
1

2
)

f
r
o
m

(
3

,

7

,

8

)

F
F

f
o
u

r
5

.
0

3
.
0

4
.
0

8
.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

(
1

3
)

f
r
o
m

(
3

,

9

,

6

)

F
F

r
e
f
l
e
c
t
e
d

I
n

d
i
c
e
s

0
.
0

3
.
0

6
.
0

1
.
0

4
.
0

7
.
0

2
.
0

5
.
0

8
.
0

(
1

4
)

f
r
o
m

(
3

,

0

)

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

o
n

e
8

.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

5
.
0

3
.
0

4
.
0

0

1

2

3

4

5

6

7

8

8
.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

5
.
0

3
.
0

4
.
0

X
t
o
k
e
n

s
_
i
n

t

7

8

1
2

1
0

1
1

9

2

4

2
1

P
2

1

2

4

1
2

7

8

9

1
0

1
1

X
t
o
k
e
n

s
_
i
n

t

7

8

1
2

1
0

1
1

9

2

4

2
1

(
0

)

X
P

2
1

2

4

1
2

7

8

9

1
0

1
1

(
1

)

X
Q

1
1

9

1
0

4

2
1

2

8

1
2

7

(
2

)

X
R

4

2
1

2

8

1
2

7

1
1

9

1
0

(
3

)

X
S

9

1
0

1
1

2
1

2

4

1
2

7

8

(
4

)

F
F

c
o
f
a
c
t
o
r

1
9

5
-
1

9
2

1
8

-
1

2
0

1
2

3
-
1

2
-
6

0
5

7
-
3

(
5

)
f
r
o
m

(
2

,

4

,

3

,

1

)

F
F

(

t
o
k
e
n

s
_
i
n

t

*

c
o
f
a
c
t
o
r

)

1
3

6
5

-
1

5
3

6
2

1
6

-
1

2
0

0
1

3
5

3
-
1

0
8

-
1

2
0

2
2

8
-
6

3
(
6

)
f
r
o
m

(
0

,

5

)

0

1

2

3

4

5

6

7

8

4
.
0

5
.
0

3
.
0

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

X
t
o
k
e
n

s
_
i
n

t

7

8

1
2

1
0

1
1

9

2

4

2
1

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

t
w

o
4

.
0

5
.
0

3
.
0

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

Q
1

1

9

1
0

4

2
1

2

8

1
2

7

0

1

2

3

4

5

6

7

8

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

4
.
0

5
.
0

3
.
0

X
t
o
k
e
n

s
_
i
n

t

7

8

1
2

1
0

1
1

9

2

4

2
1

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

t
h

r
e
e

7
.
0

8
.
0

6
.
0

1
.
0

2
.
0

0
.
0

4
.
0

5
.
0

3
.
0 R

4

2
1

2

8

1
2

7

1
1

9

1
0

0

1

2

3

4

5

6

7

8

5
.
0

3
.
0

4
.
0

8
.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

X
t
o
k
e
n

s
_
i
n

t

7

8

1
2

1
0

1
1

9

2

4

2
1

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

f
o
u

r
5

.
0

3
.
0

4
.
0

8
.
0

6
.
0

7
.
0

2
.
0

0
.
0

1
.
0

S

9

1
0

1
1

2
1

2

4

1
2

7

8

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

n
3

.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

3
.
0

0

1

2

3

4

5

6

7

8

0

3
.
0

1

3
.
0

2

3
.
0

3

3
.
0

4

3
.
0

5

3
.
0

6

3
.
0

7

3
.
0

8

3
.
0

X
(

t
o
k
e
n

s
_
i
n

t

*

c
o
f
a
c
t
o
r

)

1
3

6
5

-
1

5
3

6
2

1
6

-
1

2
0

0
1

3
5

3
-
1

0
8

-
1

2
0

2
2

8
-
6

3

s
-
o
p

1
3

6
5

-
1

5
3

6
2

1
6

0

0

0

0

0

0

O
t
h

e
r

1

1

1

1

1

1

1

1

1

1

M
e

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X
s
-
o
p

1
3

6
5

-
1

5
3

6
2

1
6

0

0

0

0

0

0

s
-
o
p

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

X
l
e
n

g
t
h

9

9

9

9

9

9

9

9

9

(
0

)

X
c
o
f
a
c
t
o
r

1
9

5
-
1

9
2

1
8

-
1

2
0

1
2

3
-
1

2
-
6

0
5

7
-
3

(
1

)

X
s
-
o
p

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

5
.
0

(
2

)

F
F

d
e
t

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

4
5

.
0

(
3

)
f
r
o
m

(
2

,

0

)

F
F

(

c
o
f
a
c
t
o
r

/

d

e
t

)

4
.
3

3
3

-
4

.
2

6
7

0
.
4

-
2

.
6

6
7

2
.
7

3
3

-
0

.
2

6
7

-
1

.
3

3
3

1
.
2

6
7

-
0

.
0

6
7

(
4

)
f
r
o
m

(
3

,

1

)

O
t
h

e
r

i
n

d
i
c
e
s

0

1

2

3

4

5

6

7

8

M
e

r
e
f
l
e
c
t
e
d

I
n

d
i
c
e
s

0
.
0

3
.
0

6
.
0

1
.
0

4
.
0

7
.
0

2
.
0

5
.
0

8
.
0

0

1

2

3

4

5

6

7

8

0
.
0

3
.
0

6
.
0

1
.
0

4
.
0

7
.
0

2
.
0

5
.
0

8
.
0

X
(

c
o
f
a
c
t
o
r

/

d

e
t

)

4
.
3

3
3

-
4

.
2

6
7

0
.
4

-
2

.
6

6
7

2
.
7

3
3

-
0

.
2

6
7

-
1

.
3

3
3

1
.
2

6
7

-
0

.
0

6
7

s
-
o
p

4
.
3

3
3

-
2

.
6

6
7

-
1

.
3

3
3

-
4

.
2

6
7

2
.
7

3
3

1
.
2

6
7

0
.
4

-
0

.
2

6
7

-
0

.
0

6
7

Figure 2: Constructed transformer inverting a non-singular matrix A =

(
7 8 12
10 11 9
2 4 21

)
. For a clear

view, see https://anonymous.4open.science/r/TMA/Inverse.pdf.

20

https://anonymous.4open.science/r/TMA/Inverse.pdf

	Introduction
	Related Works
	Preliminaries
	Transformer Encoder
	GAHAT

	On Simulating Attention
	Discussion on Generalization
	Conclusion
	Appendix
	RASP Codes for Implementing the network U
	Proof of Corollary 5.2
	Alternative Construction for U

