Automated Method Design for Cancer Image
Classification by Differential Evolution and
Ensembling

Natalia Oviedo Acostal2[0009-0002—9477-0454] " Stefay
Klein! [0000-0003-4449-6784] 5114 Martijn P.A. Starmans!-2[0000-0001—-5086-7153]

! Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the
Netherlands
{n.oviedoacosta, m.starmans, s.klein}@erasmusmc.nl
2 Department of Pathology, Erasmus MC, Rotterdam, the Netherlands

Abstract. Developing deep learning models for cancer image classifi-
cation requires many method design choices, such as in data prepro-
cessing, model architecture, hyperparameters and training procedures.
Typically, these are manually tuned, a process that is time-consuming,
expert-dependent, and often irreproducible. To address these challenges,
we propose an automated machine learning (AutoML) framework that
optimizes model design without human intervention. To ensure a com-
prehensive exploration of diverse architectures and hyperparameter con-
figurations, we define a search space based on state-of-the-art literature
in cancer imaging. Our framework employs Differential Evolution and
Hyperband (DEHB), which integrates evolutionary search algorithms to
balance search space exploration and exploitation, combined with adap-
tive resource allocation to mitigate the high computational cost of train-
ing multiple models. To enhance model robustness and reduce overfit-
ting in data-limited scenarios, we incorporate ensembling. We validate
our approach on four public cancer classification datasets encompassing
750 patients with either MRI or CT. The proposed framework demon-
strates higher performance when compared to a DenseNet-121 baseline.
While exploring multiple configurations, our approach reduces training
time by a factor of two to five compared to the baseline. By automating
model design and improving generalization across datasets, our frame-
work has substantial potential for broad applications across cancer imag-
ing, thereby streamlining deep learning model development.

Keywords: AutoML - evolutionary algorithms - hyperparameter opti-

mization - computer-aided diagnosis

1 Introduction

Deep learning has substantially advanced cancer image analysis by enabling
precise and early diagnosis through Al-driven models [I7]. However, developing
these models remains a labor-intensive process that requires numerous decisions
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regarding data preprocessing, model architecture, hyperparameters, and model
training. Commonly the majority of these choices are made manually through a
heuristic trial-and-error process, which is time-consuming, prone to overfitting
[10], limits reproducibility [12J21], may lead to suboptimal solutions [12] and can
be resource-intensive, making it inefficient [2416].

Among cancer imaging tasks, classification poses unique challenges, as it often
relies on a limited number of image-level labels, leading to small and heteroge-
neous datasets that make model development highly sensitive to hyperparameter
choices and prone to overfitting, where models may learn spurious correlations
instead of generalizable patterns [25]. To address these challenges, we propose
an automated method design framework based on Automated Machine Learn-
ing (AutoML) [I2] to streamline and optimize deep learning model development
for cancer image classification. AutoML has been gaining significant traction in
recent years and is increasingly being adopted in medical imaging. Promising re-
sults have been reported in both segmentation [4] and classification tasks [7], with
several recent studies providing comprehensive reviews and benchmarks tailored
to clinical applications [14J2]. As a next step in this direction, our framework
automates key design decisions, including data preprocessing, model selection,
hyperparameter tuning, and model training, thereby eliminating manual inter-
vention. We leverage Differential Evolution and Hyperband (DEHB) [3], a state-
of-the-art AutoML optimization algorithm, to efficiently explore large hyper-
parameter spaces and improve both convergence speed and model performance.
We hypothesize that integrating DEHB into the model development pipeline will
substantially accelerate training compared to manual tuning. Additionally, we
incorporate ensembling strategies to regularize DEHB optimization and improve
overall performance.

2 Methods

To automate model design, given a training dataset Di;.in and a validation
dataset Dy,1, we define an optimization function with the objective of identi-
fying the optimal hyperparameter configuration z* that minimizes the average
validation loss £ over Kiraining iterations (e.g., cross-validation). We formulate
the optimization of any method design choice, including data preprocessing,
model architecture, and model training, as a combined method selection and
hyperparameter optimization problem. Formally, we express this as follows:
1 Ktraining
z* = argmin —— Z L(2, Dirain,k, Dval i, b), (1)
zeX training =1

where = represents a hyperparameter configuration, X denotes the hyper-
parameter search space, and a given computational budget b (i.e., number of
epochs).

Manual tuning and conventional tuning strategies such as exhaustive grid
search or random search over X are computationally expensive, as these meth-
ods lack efficient resource allocation mechanisms. To address this, we propose
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to employ DEHB, which effectively balances the exploration of the search space
with a focus on promising solutions through an evolutionary algorithm, while ef-
ficiently managing computational resources using Hyperband [I6]. By leveraging
Differential Evolution (DE) [I8] for guided search and Hyperband for adaptive
resource allocation, DEHB provides a more efficient and scalable approach to
hyperparameter optimization, making it particularly well-suited for large and
complex search spaces as well as resource-intensive model training.

2.1 Differential Evolution and Hyperband (DEHB)

As presented in Algorithm [1,, DEHB is initialized by evaluating a population
of @ candidates, i.e., set configurations of hyperparameters randomly sampled
from X. Initially, each configuration is trained on the minimum budget by,
and its validation loss L£(x, Dirain, Dval; bmin) 1S measured. After initialization,
Hyperband dynamically allocates computational resources by discarding poorly
performing configurations through successive halving. Configurations are eval-
uated in progressive stages, where in each stage only the top 1/n fraction of
candidates continues to the next stage with an increased budget b, while the rest
are eliminated. The selection is based solely on the validation loss observed at
the current budget level, without the use of any patience mechanism. Parameter
71, known as the aggressiveness factor, controls how many configurations are dis-
carded. The number of remaining candidates at stage s is therefore @ - (1/1)%,
making the reduction schedule deterministic. The budget b increases at each
stage according to the Hyperband schedule, typically growing multiplicatively
with 7. This process iterates until a predefined b,.x is reached or only one con-
figuration remains. Once Hyperband has selected the top-performing candidates
for further evaluation, DEHB extends this process by continuing the search with
evolutionary steps. The general procedure stops once all P configurations have
been evaluated and the x* is selected based on the validation loss.

Mutation Each configuration z; represents a vector of chosen hyperparameters.
New candidate configurations, or mutant vectors v;, are generated through a
mutation process that introduces controlled variations based on existing ones.
Specifically, mutation is performed as follows:

v =x, + F - (xq — xp),

where x,,x,, T, are randomly selected hyperparameter configurations from
the population, and F is a scaling factor controlling the magnitude of change
within the range (0,1].

Crossover After mutation, a new candidate vector u; is generated through
crossover, where each parameter is inherited from the original vector x; or the
mutant vector v;. Each 'Conﬁgurvation vector (e.g., ;) consists of N hyperparam-
eters, denoted as z?, v/, and u], where j € {1,2,..., N} indexes the individual
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Algorithm 1 Differential Evolution and Hyperband (DEHB)

Require: Search space X', budgets bmin, bmax, reduction factor 7, max evaluations P
: Randomly sample @ configurations from X into P,
: Evaluate all configurations in Pp_. at budget bmin

1 min
2 min
3: while total function evaluations < P do

4 for each budget b in {bmin, 7bmin, 172bmin7 ..y bmax} do

5: Select top 1/n fraction of configurations from previous budget as parent pool
6 for each configuration z; in the parent pool do

7 Generate mutant vector v;

8 Generate trial vector u; via crossover between x; and v;

9: Evaluate u; on budget b

10: Replace x; in the population if u; performs better
11: end for

12:  end for

13: end while
14: return z™: best configuration across all budgets

hyperparameters. Crossover is performed independently for each hyperparame-
ter j, selecting between v} and ] according to the following rule:

i
z;,

S Jvl @~ U(0,1) < O or (7= rana)
J otherwise

where Cr is the crossover probability, determining the likelihood of inherit-
ing parameters from v;. The index jyang, randomly selected from {1,2,..., N},
ensures that at least one parameter comes from v;, to prevent u; = xz;. This
process allows crossover to integrate information from the mutant vector while
preserving useful characteristics from the original configuration.

Selection The selection process then compares the performance of u; against its
corresponding parent configuration x; using the optimization function in Equa-
tion [1} If w; achieves a lower validation loss than z;, it replaces x; in the popu-
lation for the next iteration. Otherwise, x; is retained.

2.2 Search space

The performance of an AutoML framework highly depends on the search space,
i.e., the potential hyperparameter configurations. Since non-architectural design
choices such as data preprocessing, augmentation, model selection, and model
training can be equally important as architectural ones [I3l0], we construct a
comprehensive search space covering all these aspects, including discrete and
categorical hyperparameters, which motivates our choice of DEHB as the op-
timization strategy. To reduce computational burden, we set a GPU memory
constraint to filter out infeasible configurations and maintain efficient training
times. The complete search space is illustrated in Figure
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Data Preprocessing Data Model Selection
Fingerprinting Steps Augmentation

e

GPU memory
limit

—_—
Required input

Model Training

Design choice Configuration Design choice Configuration
MRI: per-image z-score {12, 16, 20, 26, 32}
normalization.
CT: global percentile clipping {4, 6, 8, 10}
followed by z-score normalization.
{8, 12, 16, 20}
Median, mean, fixed isotropic
(1%1x1 mm), and isotropic based {16, 24, 32, 40}
on the median volume.
{8, 12, 16, 20}
Crop the bounding box if its
dimensions exceed available {1,2,3}
memory, and pad if any dimension
is below the model's minimum Flipping, rotations, zooming,
size. scaling, and adjusting contrast
Linear interpolation Cross-entropy loss
ExponentialLR scheduler that
SGD with Nesterov momentum (U decays the learning rate by a
=0.99), Adam or Adadelta factor of 0.9
{0.0, 0.1,0.2,0.3,0.4, 0.5} Min: 30, Max: 50
{1,2,4} Batch size 1 and gradient
accumulation after 5 epochs.
{12, 32, 64}
40% of the number of epochs

Fig. 1. Overview of the proposed search space for cancer image classification. Default
values are shown in bold.
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Inspired by nnU-Net [I3], we introduce dataset fingerprinting to extract key
information about the input data, including modality, intensity distribution, im-
age shape, and spacing. These properties are used to define rule-based constraints
that both filter infeasible configurations and determine default hyperparameter
values within our AutoML search space.

Preprocessing includes intensity normalization and resampling. To account
for differences in resolution due to scanner variations, we included different target
spacings. For cropping and padding, we constrained the image sizes to a max-
imum of 512 voxels in all three dimensions. As our datasets contain the tumor
segmentation masks, we applied tumor-centered cropping to focus on the region
of interest while reducing unnecessary background. To prevent test-time bias, we
applied all preprocessing steps described above exclusively to the training data.

The backbone architecture used is DenseNet [I1], which has demonstrated
strong performance in cancer imaging tasks due to its efficient feature propaga-
tion and parameter efficiency, making it suitable for learning from limited and
heterogeneous datasets [26]. Search ranges for bottleneck size, growth rate, ini-
tial filter count, and block depth were defined based on default DenseNet-121
values [IT] and expanded to explore broader architectural variations.

For training parameters, the loss function was fixed to cross-entropy loss,
a standard choice for classification tasks as stated in [19]. The learning rate
is fixed, as prior work has shown that optimizing it can be unreliable under
multi-fidelity optimization frameworks like Hyperband [15]. To ensure stable
optimization with a batch size of one, gradient accumulation was combined with
instance normalization to maintain consistent updates and training dynamics.

2.3 Ensembling

While DEHB aims to identify a single optimal configuration, the optimization
landscape in medical imaging—particularly with small, heterogeneous datasets—can
be noisy [I7)8], and AutoML methods such as DEHB are prone to overfitting
on the validation dataset [I]. To mitigate this and improve generalization, we
construct ensembles by averaging predictions from multiple models trained with
diverse configurations selected by DEHB, ensuring that only competitive candi-
dates contribute while maintaining diversity across method design choices. Given
a set of M selected hyperparameter configurations {z1,...,2n}, each of which
is evaluated across K different data splits (e.g., cross-validation folds), we obtain
a total of M - K trained models.
The ensemble prediction g for an input z is computed as

1 LY K
I=3 % 1;ym,k(2)7

m=

X

where ¢, (%) denotes the prediction made by the model trained with configu-
ration x,, on fold k. This formulation allows for flexibility in ensemble design:
setting M = 1 yields an ensemble over data splits, while increasing M incorpo-
rates configuration-level diversity.
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3 Experiments and results

3.1 Dataset

For this study, four datasets from the publicly available WORC Database [23]
are used, comprising 750 anonymized patients with various tumor types. Each
dataset includes an MRI or CT scan, a tumor segmentation, and a tumor type
label serving as the prediction target. The datasets contain 115 patients with
liposarcoma or lipoma (Lipo), 203 with desmoid-type fibromatosis or extremity
soft-tissue sarcomas (Desmoid), 186 with primary solid liver tumors (Liver),
and 246 with gastrointestinal stromal tumors or similar intra-abdominal tumors

(GIST).

3.2 Experimental Setup

To evaluate the framework, two baselines were used: (1) the WORC frame-
work [22], previously validated on these datasets, and (2) DenseNet-121 [IT]
without hyperparameter tuning, trained from scratch for 100 epochs with 5-fold
cross-validation using default settings.

For DEHB, the maximum and minimum fidelity levels (number of epochs)
were set to byax = 50 and by, = 30, respectively. Other parameters followed de-
fault values [3]: n = 2, F = 0.5. Each dataset was split into 80% training and 20%
test sets. All model selection and cross-validation procedures, including those for
DEHB and DenseNet-121, were conducted within the training set using 5-fold
cross-validation. DEHB performed P = 10 function evaluations per fold, select-
ing one best configuration per fold. These five configurations were retrained and
evaluated across all five folds to obtain robust performance estimates, yielding
25 trained models per dataset. All experiments were run on 8 X NVIDIA A40 48
GB GPUs using MONALI [5] for efficient medical image processing.

Model performance was primarily measured using ROC-AUC [9]. DEHB was
evaluated in three ways: (1) the best configuration (lowest average validation
loss across five folds) was retrained on the full 80% training set and tested on
the 20% holdout; (2) a 5-Model Ensemble (SME) was created by training the
top configuration across all five folds (M = 1, K = 5); and (3) a 25-Model
Ensemble (25ME), where the top five configurations were retrained across five
folds (M =5, K = 5), and their predictions averaged.

Computation time Wall-clock time was measured for each dataset to assess
the efficiency of our framework, using P = 50 configurations. For the DenseNet-
121 baseline, training was performed with default settings using a single config-
uration for 100 epochs. Since training all P configurations individually for the
baseline would be computationally intensive, we estimated the cost by training
once on the larger datasets (Desmoid and GIST) and averaging five runs on
the smaller ones (Lipo and Liver). This simulation was intended to approximate
the total wall-clock time that would be required if 50 different configurations,
equivalent to those evaluated by DEHB, were trained from scratch using the
DenseNet-121 baseline, enabling a fair comparison of computational cost.
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3.3 Results

Table [I] compares the performance of different methods across all four datasets.
The DEHB framework alone slightly underperforms both baselines on most
datasets. However, incorporating the 5SME strategy with DEHB improves perfor-
mance across most datasets, with a higher performance increase observed with
DEHB + 25ME in all datasets.

Table 1. ROC-AUC for the four datasets, evaluated under three different setups:
(1) WORC in 100x random-split cross-validation, (2) DenseNet-121 in 5-fold cross-
validation, and (3) DEHB using a fixed 80/20 train/test split. The second row indicates
the number of samples (N;) for each dataset.

Model Lipo Liver Desmoid GIST
N 115 186 203 246
Baselines

WORC 0.83 0.80 0.82 0.77
DenseNet-121  0.82 0.88 0.80 0.61
Framework

DEHB 0.78 0.83 0.73 0.73

DEHB + 5ME 0.83 0.86 0.80 0.78
DEHB + 25ME 0.87 0.87 0.83 0.81

Computation time Our framework showed substantially lower computational
cost across all datasets compared to the simulated 50x DenseNet-121 baseline.
On Lipo, DEHB completed all P = 50 configurations in 95 hours versus 650 for
the baseline. For Liver, DEHB required 220 hours (vs. 900), and for Desmoid,
340 hours (vs. 1100). On GIST, the largest dataset, DEHB finished in 216 hours
(9 days), while the baseline was projected to take 3600 hours (150 days). These
results demonstrate a 2-5x speedup, indicating that the framework scales ef-
ficiently and enables automated model design without compromising runtime
feasibility.

4 Discussion and conclusion

This study presents an AutoML framework for cancer image classification that
combines DEHB with ensembling for automated method design. DEHB iden-
tified multiple high-performing models with similar validation performance, as
observed in five-fold cross-validation. Instead of relying solely on a single con-
figuration, we aggregate these diverse models through ensembling to enhance
robustness and generalization. Ensembling helps counteract overfitting by aver-
aging individual model biases. Although the improvement varies across datasets,
our results show that ensembles consistently match or outperform both the best
individual DEHB model and the baselines in the majority of cases, supporting
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their complementary role. Moreover, DEHB substantially reduced computational
time compared to the baseline by leveraging adaptive resource allocation, avoid-
ing exhaustive training and minimizing the need for manual tuning. Further
efficiency gains may be possible through techniques like reduced precision com-
putations [20]. While our evaluation offers a practical comparison basis, the fixed
80/20 train/test split used for DEHB may limit comparability with baselines
trained under different protocols. Future work will focus on aligning evaluation
strategies. Additionally, although DenseNet-121 was used as the backbone, ex-
tending the framework to other architectures could offer broader insight into
DEHB’s generalizability.

Our results highlight the effectiveness of combining DEHB with ensembling
to achieve competitive performance while significantly reducing computational
cost. By efficiently exploring configurations across preprocessing, architecture,
and training, the framework enables fully automated model design. This not
only accelerates development but also improves reproducibility, reduces overfit-
ting, and avoids suboptimal choices. These strengths make DEHB a compelling
solution for optimizing deep learning in cancer imaging, especially in resource-
constrained settings, and support more scalable, reproducible Al-driven diag-
nostics.
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