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ABSTRACT

We introduce Perceptual-Initialization (PI), a paradigm shift in visual repre-
sentation learning that incorporates human perceptual structure during the ini-
tialization phase rather than as a downstream fine-tuning step. By integrating
human-derived triplet embeddings from the NIGHTS dataset to initialize a CLIP
vision encoder, followed by self-supervised learning on YFCC15M, our ap-
proach demonstrates significant zero-shot performance improvements—without
any task-specific fine-tuning—across 29 zero-shot classification and two retrieval
benchmarks. On ImageNet-1K, zero-shot gains emerge after approximately 15
epochs of pre-training. Benefits are observed across datasets of various scales, with
improvements manifesting at different stages of the pre-training process depending
on dataset characteristics. Our approach consistently enhances zero-shot Top-1 ac-
curacy, Top-5 accuracy, and retrieval recall (e.g., R@1, R@5) across these diverse
evaluation tasks, without requiring any adaptation to target domains. These findings
challenge the conventional wisdom of using human-perceptual data primarily for
fine-tuning and demonstrate that embedding human perceptual structure during
early representation learning yields more capable and vision–language-aligned
systems that generalize immediately to unseen tasks. Our work shows that “begin-
ning with you”—starting with human perception—provides a stronger foundation
for general-purpose vision-language intelligence.
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Figure 1: Perceptual-Initialization (PI) yields faster, stronger zero-shot performance. Model
initialization. The image encoder is pre-biased with human triplet-similarity judgments from the
NIGHTS dataset, while a control model is fully random-initialized. Model training. Both models are
then trained with the same image–text contrastive objective on YFCC15M. Zero-shot evaluation.
Without any task-specific fine-tuning, the perceptually-initialized model (blue) consistently outper-
forms the random baseline (gold).
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1 INTRODUCTION

Deep networks are path–dependent: two models that share architecture, data, and even hyperparame-
ters can still end up in markedly different regions of the loss landscape, exhibiting distinct internal
geometries, saliency maps, and top-1 accuracies, when their weights are seeded with different random
numbers (Mehrer et al., 2020; Madhyastha & Jain, 2019; Picard, 2021). Outlier (“black-swan")
seeds can overshoot or undershoot the mean ImageNet score by several percentage points, a phe-
nomenon linked to whether the initial point falls inside a favorable “Goldilocks" basin of the loss
landscape (Russakovsky et al., 2015; Fort & Scherlis, 2018). Across common benchmarks, variance
introduced solely by the random seed often rivals or exceeds other stochastic factors such as data
shuffling(Bouthillier et al., 2021; Jordan, 2023).

At step t = 0, the weight matrix already defines a basis over which gradients are projected; early
updates therefore amplify directions present in the initialization rather than exploring the full space
uniformly. Put differently, the curvature and alignment of activation subspaces are locked in before
any data are seen, channelling optimization into a restricted trajectory. If stochastic seeds can bias
learning so strongly, purposeful priors injected at the same moment should exert an even greater and
potentially beneficial influence.

A number of large-scale resources now characterize human perceptual similarity with some scale:

• THINGS contains 4.7 M pairwise similarity judgements for 1 854 everyday objects, together
with low-dimensional, interpretable SPoSE embedding (Hebart et al., 2019; 2020).

• NIGHTS provides 20 k synthetic image triplets covering colour, pose, and semantic varia-
tions, each annotated with a two-alternative forced-choice perceptual judgement (Fu et al.,
2023).

These datasets have powered a wave of post-hoc alignment methods but importantly can also be used
to seed models before large-scale optimization begins (Zhang et al., 2018; Fu et al., 2023; Sundaram
et al., 2024; Muttenthaler et al., 2023; 2024; Croce et al., 2025a; Zhao et al., 2025).

We initialize a Vision Transformer (ViT) trained to reproduce NIGHTS triplet embeddings, thereby
infusing a human embedding into the weight space prior to any image text contrastive learning(Schroff
et al., 2015; Dosovitskiy et al., 2021; Chen et al., 2020). The model is then exposed to 15M
image–caption pairs from YFCC15M (Thomee et al., 2016) in standard self-supervised fashion,
allowing it to scale up while remaining anchored to perceptual structure.

Without any post-hoc tuning, this two-stage pipeline yields improvements across a variety of datasets
and benchmarks including top 1, top 5, and retrieval. By transforming random seeds into perceptual
seeds, we convert an often ignored source of variance into a principled inductive bias and set the
trajectory of representation learning on a more human-aligned course from the very first gradient
step.

2 PREVIOUS WORK

Contrastive Vision–Language Pretraining. Large-scale image–text contrastive learning frame-
works have emerged as a foundation for vision–language models. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) demonstrated that pretraining visual encoders on web-scale image–caption
data yields representations with strong zero-shot transfer performance. Subsequent works refined this
paradigm; for example, Zhai et al. (2022) found that starting from a high-quality pretrained image
encoder significantly improves training efficiency and final accuracy. Their LiT approach locked a
pretrained ViT model and learned only a text tower, achieving a remarkable 85.2% zero-shot Ima-
geNet accuracy—surpassing CLIP by over 8%—and highlighting the importance of initialization on
downstream performance. However, these contrastive methods do not incorporate human perceptual
knowledge during pretraining, instead relying on noisy web text as a proxy for semantics (He et al.,
2020; Li et al., 2021; Bao et al., 2022). Our work departs by injecting an explicit human perceptual
signal at the outset of pretraining.

Post-hoc Behavioral Alignment. Because standard models may not align with fine-grained human
perception, a growing line of research augments pretrained representations with human behavioral
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data after the main training phase. For instance, Muttenthaler et al. propose a global–local transform
that linearly aligns a model’s embedding space to human similarity judgments while preserving
local structure, substantially improving few-shot and anomaly detection performance (Muttenthaler
et al., 2023). In a similar vein, Zhao et al. fine-tune CLIP on 66-dimensional human behavioral
embeddings (SPoSE descriptors) to produce CLIP-HBA, a model significantly more aligned with
human judgments and even neural responses (Zhao et al., 2025). Sundaram et al. fine-tune vision
backbones on human perceptual triplet judgments, yielding improved counting, segmentation, and
instance-retrieval performance while largely preserving other benchmark scores (Sundaram et al.,
2024). These studies confirm that introducing human perceptual structure can enhance model
interpretability and task transfer—but they also note that naive alignment can distort a model’s
learned space, necessitating careful regularization or architectural constraints.

Incorporating Human Perceptual Structure. A few works have sought to bake human perceptual
priors into the training process itself. Dong et al. introduced PeCo, a perceptual codebook that
enforces that similar images map to nearby tokens during Vision Transformer pretraining, yielding
more semantically meaningful tokens and +1.3% ImageNet accuracy over a BEiT baseline (Dong
et al., 2022). Another line of research found that adversarially robust vision–language models (Robust
CLIP) induce feature spaces that better mirror human perceptual judgments—even without any
human labels—yielding more robust and interpretable perceptual metrics (Schlarmann et al., 2024;
Croce et al., 2025b). Crucially, however, no prior work has directly integrated supervised human
perceptual data into the core pretraining loop of vision–language models.

Our Contribution: Perceptual-Initialization. We build on these insights but depart by using
human perceptual knowledge as a starting point for web-scale training. To our knowledge, ours is the
first approach to utilize human triplet judgments to initialize a vision–language model’s parameters
prior to conventional image–text pretraining. This perceptual initialization infuses a human-aligned
inductive bias from the very beginning, seeding the model’s representation space before exposing it
to 15 million image–text pairs (YFCC15M (Gu et al., 2024)). Our zero-shot evaluations across 23 of
the 29 datasets confirm that this strategy yields systematically better generalization, opening a new
paradigm for pretraining with human-based initialization.
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Figure 2: Perceptual-Initialization yields consistent zero-shot gains across all benchmark fam-
ilies. (a) Mean Top-1 accuracy and (b) mean Top-5 accuracy after 32 epochs of YFCC15M
pre-training. PI surpasses the web-only baseline for every family—ImageNet, ImageNet-OOD,
VTAB, Fine-grained & Specialty, and Domain & Small. Numbers above the bars denote the average
lift in percentage points (pp). Overall, PI improves performance on 23 of 29 individual classification
benchmarks.

3 THE PERCEPTUAL-INITIALIZED PRETRAINING PARADIGM

We propose a Perceptually-Initialized pretraining paradigm for vision-language models, specifically
the Contrastive Language-Image Pre-training (CLIP) model (Radford et al., 2021) with a Vision
Transformer (ViT-B/32) backbone (Dosovitskiy et al., 2021). Instead of applying human perceptual
alignment as a post-hoc fine-tuning step, our approach integrates human perceptual judgments at
the initial stage of representation learning. This paradigm consists of two sequential stages: first,
initializing the vision encoder by training it on human similarity judgments, followed by a second
stage of conventional large-scale contrastive pretraining on image-text pairs from the web.
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3.1 STAGE 1: PERCEPTUAL INITIALIZATION OF THE VISION ENCODER

Dataset. We utilize the NIGHTS dataset, which comprises approximately 20,000 image triplets.
Each triplet (x, x̃0, x̃1) consists of a reference image x and two synthetically generated variations,
x̃0 and x̃1. These triplets are annotated with two-alternative forced-choice (2AFC) human similarity
judgments, y ∈ {0, 1}, indicating which variation image humans perceived as more similar to the
reference x. The dataset focuses on mid-level visual properties such as pose, layout, shape, and color,
while maintaining roughly the same semantic content within a triplet (Fu et al., 2023).

Model and Objective. For this stage, we employ a CLIP model architecture using a ViT-B/32 for
the vision encoder and a custom Transformer-based text encoder (Radford et al., 2021). Crucially,
during this perceptual initialization stage, only the parameters θv of the vision encoder fθv (·) are
trained.

We train the vision encoder using a triplet contrastive loss. Given a triplet, the vision encoder produces
feature embeddings fθv (x), fθv (x̃0), and fθv (x̃1). The dissimilarity (distance) between two images,
say (x, x̃0), is measured by the cosine distance between their respective image features:

d(x, x̃0) = 1− fθv (x) · fθv (x̃0)

∥fθv (x)∥∥fθv (x̃0)∥
. (1)

The alignment loss encourages the model to match human preferences, defined as (Sundaram et al.,
2024):

Lperceptual(θv) = E(x,x̃0,x̃1,y)∼DNIGHTS [max(0,m−∆d · ȳ)] , (2)

where ∆d = d(x, x̃0)− d(x, x̃1), ȳ maps the human judgment y ∈ {0, 1} to {−1, 1} (specifically,
if y = 0 meaning x̃0 is more similar, ȳ = −1; if y = 1 meaning x̃1 is more similar, ȳ = 1). The
margin m is set to 0.05, following (Sundaram et al., 2024). This loss minimizes the distance between
the reference and the human-preferred variation, while maximizing the distance to the less-preferred
variation.

The vision encoder is trained for 32 epochs on the NIGHTS dataset using the AdamW optimizer.

3.2 STAGE 2: JOINT VISION-LANGUAGE PRETRAINING ON WEB-SCALE DATA

Following perceptual initialization, the full CLIP model undergoes standard contrastive pretraining
on a large-scale web dataset.

Dataset. We use YFCC15M a subset of the YFCC100M dataset (Thomee et al., 2016) filtered by
(Gu et al., 2024), consisting of approximately 15 million image-text pairs.

Model and Objective. The vision encoder, initialized with parameters θv from Stage 1, is unfrozen.
Simultaneously, the text encoder—initialized with random parameters θt—is also unfrozen. Both
encoders are trained concurrently using the standard symmetric InfoNCE loss (van den Oord et al.,
2018), as originally used for CLIP model training (Radford et al., 2021; He et al., 2020). The learnable
logit scaling parameter, τ , is also optimized during training.:

LCLIP(θv, θt, τ) = − 1

2N

N∑
i=1

(
log

exp(s(Ii, Ti)/τ)∑N
j=1 exp(s(Ii, Tj)/τ)

+ log
exp(s(Ti, Ii)/τ)∑N
j=1 exp(s(Ti, Ij)/τ)

)
, (3)

where Ii and Ti are the image and text features for the i-th pair in a batch of size N , and s(·, ·)
denotes cosine similarity.

The full CLIP model is trained for 32 epochs on the YFCC15M dataset using the AdamW optimizer
(Loshchilov & Hutter, 2019).

3.3 COMPARATIVE MODELS

To evaluate the efficacy of our Human-First pretraining paradigm, we compare it against two key
alternative approaches:
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Baseline YFCC15M Pretraining. This model serves as our primary baseline. A CLIP ViT-B/32
model, with both vision and text encoders randomly initialized, is trained from scratch on the
YFCC15M dataset for 32 epochs using the InfoNCE loss (Equation 3) and the AdamW optimizer.
This setup mirrors standard CLIP pretraining.

Perceptual Fine-tuning. This approach aligns with prior work that applies perceptual alignment as
a subsequent fine-tuning step documented by Sundaram et al. (2024). We utilized the baseline model
described above. And then fine-tuned on the NIGHTS dataset for 8 epochs using the perceptual
triplet loss (Equation 2) with an AdamW optimizer. Crucially, during this fine-tuning stage, only the
Query, Key, and Value (QKV) projection matrices within each attention block of the ViT-B/32 vision
encoder are unfrozen and updated. All other parameters of the vision encoder, the entire text encoder,
and the logit scale remain frozen with their YFCC15M-trained weights.

3.4 IMPLEMENTATION DETAILS

Across all experiments, we use a CLIP ViT-B/32 architecture. The AdamW optimizer is used
throughout with a learnable logit scale initialized to ln(100) for Stage 2 and baseline training. Images
are processed at 224× 224 resolution with consistent augmentations across all training scenarios,
including random crops, color jitter, grayscale, Gaussian blur, and horizontal flips, followed by
normalization using CLIP’s standard values.

Stage 1 Initialization is extremely lightweight: a full 32-epoch run completes in roughly 30 min
on the 6 × A100 node, amounting to ∼ 3 GPU-hours in total. Stage 2 and the baseline YFCC15M
pre-training share identical hyperparameters, same hardware (6 × A100), batch size (30,720), and
duration (32 epochs). Each Stage 2 epoch takes ∼ 20 wall-clock hours, i.e. ∼ 120 GPU-hours per
epoch, for a total of ∼ 3.8 k GPU-hours over the 32-epoch run.
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Figure 3: Zero-shot classification scaling results. Top-1 accuracy (top row) and Top-5 accuracy
(bottom row) are shown for five benchmark families—ImageNet, ImageNet OOD, VTAB, Fine-
grained & Specialty, and Misc./Domain & Small—plotted against the log-scale of training samples
seen (10 M → 300 M) over total of 32 training epochs. The blue curve denotes our Perceptual-
Initialization pipeline (NIGHTS20k → YFCC15M) and the orange curve the web-only baseline
(YFCC15M). For each curve, we compute β as the slope of a log–log linear fit between training size
and performance. Across all families, Perceptual-Initialization attains higher initial accuracy and
exhibits larger scaling exponents β, reflecting steeper performance gains as more data are ingested.
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Table 1: Zero-shot classification results by bucket. Values show Top-1 and Top-5 accuracies for
Perceptual-Initialization (PI@K), the web-only baseline (Base@K), and Perceptual Fine-Tuning
(PFT@K). Bold indicates the best performance per metric. We include PFT’s failure cases where
human-aligned finetuning disrupts the model’s image–text alignment and yields near random accuracy
to illustrate the breakdown of this approach.

Dataset Task #Test #Cls Ours@1 Base@1 ∆@1 Ours@5 Base@5 ∆@5
ImageNet
ImageNet-1k 52 Visual recog. 50 000 1 000 18.9 15.1 +3.8 39.0 33.3 +5.7
ImageNet OOD
ImageNet-A 26 Visual recog. 7 500 200 5.3 4.0 +1.3 19.0 16.0 +3.0
ImageNet-O 26 Visual recog. 2 000 200 21.6 14.3 +7.3 46.2 31.9 +14.3
ImageNet-R 25 Visual recog. 30 000 200 15.0 10.3 +4.7 34.7 24.6 +10.1
ImageNet-Sketch 62 Visual recog. 50 889 1 000 4.1 3.0 +1.1 11.7 9.1 +2.6
ImageNet-V2 51 Visual recog. 10 000 1 000 13.1 8.3 +4.8 30.6 20.0 +10.6
ObjectNet 2 Visual recog. 18 574 113 7.3 5.5 +1.8 20.5 17.8 +2.7
VTAB
CIFAR-100 32 Visual recog. 10 000 100 35.9 33.0 +2.9 67.5 64.9 +2.6
Caltech-101 15 Object recog. 6 085 102 44.7 47.9 -3.2 82.7 80.9 +1.8
CLEVR-Dist. 28 Distance pred. 15 000 6 15.8 16.1 -0.3 90.7 91.0 -0.3
CLEVR-Count 28 Counting 15 000 8 16.1 11.5 +4.6 61.8 65.3 -3.5
KITTI-CVD 19 Distance pred. 711 4 32.1 31.5 +0.6 — — —
DTD 8 Texture cls. 1 880 47 14.3 10.4 +3.9 34.4 28.0 +6.4
EuroSAT 24 Satellite recog. 5 400 10 24.7 19.6 +5.1 76.2 69.0 +7.2
Flowers-102 46 Flower recog. 6 149 102 26.7 18.7 +8.0 52.3 40.9 +11.4
Oxford-IIIT Pet 48 Pet cls. 3 669 37 17.2 11.6 +5.6 38.8 29.1 +9.7
RESISC45 6 Remote-sens. 6 300 45 17.6 15.9 +1.7 45.2 37.1 +8.1
SVHN 45 Digit recog. 26 032 10 11.0 11.3 -0.3 61.0 54.5 +6.5
PCAM 61 Histopath. cls. 32 768 2 50.5 50.8 -0.3 — — —
Fine-grained & Specialty
Stanford Cars 31 Vehicle recog. 8 041 196 1.7 1.5 +0.2 6.9 6.9 +0.0
Food-101 3 Food recog. 25 250 101 12.1 8.3 +3.8 35.8 26.0 +9.8
FGVC-Aircraft 41 Aircraft recog. 3 333 100 1.6 1.7 -0.1 6.5 5.7 +0.8
PASCAL VOC 07 14 Object recog. 14 976 20 46.6 38.4 +8.2 74.8 73.3 +1.5
Misc. / Domain & Small
CIFAR-10 32 Visual recog. 10 000 10 69.5 62.4 +7.1 95.9 95.7 +0.2
Country211 63 Geolocation 21 100 211 3.5 3.0 +0.5 11.3 10.4 +0.9
GTSRB 57 Traffic-sign recog. 12 630 43 7.0 5.9 +1.1 35.0 32.8 +2.2
MNIST 33 Digit recog. 10 000 10 12.4 11.6 +0.8 55.1 55.0 +0.1
Rendered-SST2 56 Sentiment cls. 1 821 2 49.9 49.9 +0.0 — — —
STL-10 9 Visual recog. 8 000 10 73.2 58.6 +14.6 98.0 96.8 +1.2

4 RESULTS

4.1 ZERO-SHOT CLASSIFICATION

Benchmarks and Setup. We assess zero-shot classification performance on a comprehensive suite
of 29 datasets. To facilitate a nuanced analysis across various visual domains and task complexities,
these datasets are categorized into five distinct families: ImageNet, ImageNet Out-of-Distribution
(OOD), VTAB, Fine-grained & Specialty, and Miscellaneous / Domain & Small. The specific datasets
(and evaluations) constituting each family are enumerated in Table 1. This grouping strategy is adopted
to provide a structured understanding of model generalization across different data distributions, akin
to methodologies used in large-scale evaluations like DataComp (Gadre et al., 2023). We report Top-1
and Top-5 accuracy for all classification tasks.

Scaling Laws by Benchmark Family. Figure 3 disaggregates the scaling behaviour of our
Perceptual-Initialization model (blue) versus the web-only baseline (orange) across five bench-
mark families. The top row reports Top-1 accuracy, and the bottom row reports Top-5 accuracy, each
plotted against the log-scale count of YFCC15M training samples. Across all families, Perceptual-
Initialization either outperforms or matches the baseline at every scale. The power-law expo-
nents (β) calcualted as the slope of a log–log linear fit between training size and performance,
shown in each panel measure the steepness of these gains and are uniformly higher for Perceptual-
Initialization—indicating faster improvement as more data are ingested. Crucially, the method
establishes a sizeable head start on ImageNet and ImageNet-OOD and maintains (or widens) that

6
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margin throughout pre-training, highlighting the broad utility of embedding a perceptual prior from
the outset. Extended per dataset scaling results are listed in the App. C (Supplementary).

Aggregated Performance Gains. The cumulative advantages of perceptual initialization are con-
cisely summarized in Figure 2, which presents the mean Top-1 (Fig. 2a) and Top-5 (Fig. 2b) accuracy
improvements, averaged across the datasets within each respective family, upon completion of 32
training epochs. For Top-1 accuracy, our model demonstrates notable gains over baseline across
all five benchmark families: +3.8 percentage points (pp) on ImageNet, +3.5 pp on ImageNet OOD,
+2.4 pp on VTAB, +3.0 pp on Fine-grained & Specialty, and +4.0 pp on Misc./Domain & Small.
Consistent positive outcomes are also evident for Top-5 accuracy, with improvements of +5.8 pp (Im-
ageNet), +7.2 pp (ImageNet OOD), +5.0 pp (VTAB), +3.0 pp (Fine-grained & Specialty), and +0.9
pp (Misc./Domain & Small). These results compellingly indicate that seeding models with human
perceptual priors fosters systematically enhanced generalization capabilities on a wide spectrum of
unseen classification tasks. As noted in the caption of Figure 2, our approach surpasses the baseline
on 23 out of 29 Top-1 classification benchmarks (with 1 tie and 5 losses), highlighting the widespread
nature of the improvements.

4.2 ZERO-SHOT RETRIEVAL

Table 2: Retrieval performance (Recall@K)

Flickr 1K Test MS-COCO 2014 5K Test
Image→Text Text→Image Image→Text Text→Image

Model R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Baseline (YFCC) 14.2 32.9 24.3 51.0 7.3 19.7 14.7 33.1
Human-first (ours) 21.3 45.3 31.6 60.7 10.0 25.2 18.0 38.8
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Figure 4: Retrieval Tasks Scaling Results. Recall@1 and Recall@5 are plotted (log-scale, number
of image–text pairs seen) over successive epochs on YFCC15M for two retrieval directions: (a) Image
→ Text R@1, (b) Image → Text R@5, (c) Text → Image R@1, and (d) Text → Image R@5. The
blue curves show our proposed perceptual initialization method, while the orange curves represent
the conventional web-scale baseline. A performance gap between the two methods becomes apparent
after just a few epochs and grows steadily as more data is ingested, underscoring the strong and
increasing advantage of our approach with larger training-sample scales.

Benchmarks and setup. Zero-shot image–text retrieval is assessed on two standard
benchmarks—MS-COCO Captions (Lin et al., 2015) and Flickr30k (Young et al., 2014). For
each benchmark we report both retrieval directions, image→ text (I→T) and text→ image (T→I),
using Recall@1 (R@1) and Recall@5 (R@5).

Scaling-law Analysis. Figure 4 plots four curves: I→T R@1, I→T R@5, T→I R@1, and T→I R@5,
each as a function of the log-scale number of image–text pairs seen during YFCC15M pre-training.
Across all metrics and scales the Perceptual Initialization model (blue) consistently surpasses or
matches the web-only baseline (orange). The power-law exponents (β), annotated on each subplot
are uniformly higher for our method, signaling steeper performance gains as more data are ingested.
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Together with the classification results, these curves show that injecting a perceptual prior not only
yields an early lead but also preserves a stronger scaling trend throughout training.

Comparison to human-later fine-tuning. For completeness, we replicated the post-hoc perceptual
fine-tuning protocol from Sundaram et al. (2024), running eight additional epochs of NIGHTS triplet
supervision after the 32-epoch YFCC15M pre-training under identical Stage-2 hyperparameters.
Although this increased NIGHTS validation accuracy to 91%, it catastrophically disrupted the learned
image–text alignment: zero-shot classification family means fell sharply, and retrieval collapsed (e.g.,
COCO I→T R@1 14.2% → 1.3%). Full per-dataset tables are provided in App. D (Supplementary).
These results indicate that perceptual supervision is most effective when applied at initialization,
rather than as a late-stage retrofit.

Figure 5: Qualitative comparison of zero-shot retrieval. (a) Image→Text: For two query images,
we list the ground-truth captions (left) and the top-5 captions returned by each model, together with
their cosine similarity scores (higher is better). Ground-truth matches are highlighted in bold. The
PI model retrieves the correct caption in every case, with higher cosine similarity scores and larger
Top-1 margins (∆) compared to the baseline. (b) Text→Image: For two query captions, we show the
top-5 retrieved images per model, with similarity scores beneath each thumbnail. In the first example,
only the PI model retrieves zebras in the top ranks and secures a significantly higher Top-1 score
(0.441 vs. 0.386). In the second example, both models retrieve surfing scenes, yet the PI model still
secures a better Top-1 score.

Qualitative examples. Figure 5 visualizes how our model behaves compared with a from-scratch
baseline on two representative zero-shot retrieval tasks image→text and text→image. Across both
directions, the PI model consistently ranks the ground-truth item higher and with a larger similarity
margin, indicating that the human-derived triplet supervision indeed steers the representation toward
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more semantically faithful matches. Extended qualitative examples, including failure cases are listed
in the App. E (Supplementary).

4.3 GENERALITY ACROSS ARCHITECTURES

To test whether PI is tied to a specific backbone, we ran two exploratory trainings beyond ViT-B/32. A
CLIP ResNet-50 encoder perceptually initialized on NIGHTS and trained for 32 epochs on YFCC15M
replicates the trend, improving mean Top-1 accuracy by +4.09 pp against a randomly-initialized
ResNet-50 baseline. A large-capacity ViT-L/14 model shows PI gains after only 16 epochs, with early
checkpoints already out-performing the size-matched baseline on 23/29 classification benchmarks.
These preliminary results suggest that PI provides a backbone agnostic inductive bias that benefits
both convolutional and transformer families without additional tuning.

5 DISCUSSION

Embedding human perceptual structure at the very start of pre-training produces quantitative and
qualitative benefits that conventional self-supervised pipelines do not attain. With perceptual priors
as an initialization, zero-shot accuracy surpasses the from-scratch baseline on 23 of 29 evaluation
datasets (79%) 1, overall across all families of evaluations, and it does so early enough to translate
into meaningful compute savings. These findings reinforce prior evidence that deliberate weight
initialization can steer convergence more decisively than many downstream hyper-parameters(Mehrer
et al., 2020; Picard, 2021; Bouthillier et al., 2021). Crucially, we integrate the perceptual prior
jointly with contrastive learning rather than performing fine-tuning as a costly second stage, thereby
preserving the simplicity of a single-stage workflow.

A natural question is not only how much but also which behavioral data suffice. We will train identical
models on 1%–100% of the Nights triplets, charting zero-shot accuracy to locate the fraction at
which gains become statistically reliable. The same sweep will be run with alternative priors—object-
level THINGS/SPoSE and low/mid-level BAPPS dataset(Zhang et al., 2018; Hebart et al., 2019;
2020)—under a fixed stage-1 compute budget. Comparing these data-efficiency curves will reveal
both the minimal data budget and the most informative behavioral source, albeit at non-trivial
computational cost because each model must be evaluated across training.

Beyond purely behavioral priors, recent work shows that fine-tuning CLIP with neural embeddings
can personalize representations to individual brains (Zhao et al., 2025). Our results open the door to
joint behavioral–neural pretraining in which MEG- or fMRI-derived embeddings act as an additional
perceptual channel, enriching the representation space while keeping compute manageable thanks to
earlier convergence (Cichy et al., 2016; Schrimpf et al., 2018; Kaniuth & Hebart, 2022; Oota et al.,
2024).

Extending the idea across modalities promises still larger dividends. Audio similarity judgments or
cross-modal correspondence tasks could supply complementary priors that interact supra-additively
with vision, much as synergistic gains have been reported for robust CLIP adversarial fine-tuning
(Schlarmann et al., 2024).

Several challenges nevertheless remain. Stimulus representativeness is the first with even large triplet
sets oversampling frequent objects and viewpoints, leaving rare or long-tail concepts sparsely covered.
Building behaviorally balanced libraries via targeted synthesis, active sampling, or human-in-the-loop
curation can reduce blind spots. High-quality behavioral embeddings beyond vision are still scarce
with large-scale, carefully designed datasets for audition, haptic, or olfaction virtually non-existent
(Liu et al., 2022; Li et al., 2024b;a). Collecting or transferring such priors is essential for truly
multimodal PI. Behavioral bias, finally, persists even in well-sampled datasets. Human judgments
reflect demographic, cultural, and contextual biases that can propagate into the model’s decision
boundary. Balanced sampling across populations, adversarial debiasing objectives, and fairness-aware
loss terms therefore remain critical directions for future work.

Taken together, these findings provide the first large-scale evidence that beginning with you, placing
human perception at the origin of representation learning, produces models that are faster, better
aligned, and more versatile. We hope this work catalyzes broader exploration of perceptual priors
across architectures, modalities, and levels of biological fidelity.
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