
Published as a conference paper at ICLR 2024

FORWARD LEARNING OF GRAPH NEURAL NETWORKS

Namyong Park1, Xing Wang1, Antoine Simoulin1, Shuai Yang1, Grey Yang1, Ryan Rossi2,
Puja Trivedi3, Nesreen Ahmed4

1Meta AI, 2Adobe Research, 3University of Michigan, 4Intel Labs

ABSTRACT
Graph neural networks (GNNs) have achieved remarkable success across a wide
range of applications, such as recommendation, drug discovery, and question an-
swering. Behind the success of GNNs lies the backpropagation (BP) algorithm,
which is the de facto standard for training deep neural networks (NNs). However,
despite its effectiveness, BP imposes several constraints, which are not only bio-
logically implausible, but also limit the scalability, parallelism, and flexibility in
learning NNs. Examples of such constraints include storage of neural activities
computed in the forward pass for use in the subsequent backward pass, and the
dependence of parameter updates on non-local signals. To address these limita-
tions, the forward-forward algorithm (FF) was recently proposed as an alternative
to BP in the image classification domain, which trains NNs by performing two
forward passes over positive and negative data. Inspired by this advance, we pro-
pose FORWARDGNN in this work, a new forward learning procedure for GNNs,
which avoids the constraints imposed by BP via an effective layer-wise local for-
ward training. FORWARDGNN extends the original FF to deal with graph data and
GNNs, and makes it possible to operate without generating negative inputs (hence
no longer forward-forward). Further, FORWARDGNN enables each layer to learn
from both the bottom-up and top-down signals without relying on the backpropa-
gation of errors. Extensive experiments on real-world datasets show the effective-
ness and generality of the proposed forward graph learning framework. We release
our code at https://github.com/facebookresearch/forwardgnn.

1 INTRODUCTION

Graph neural networks (GNNs) (Zhou et al., 2020; Wu et al., 2021) are a family of deep learning
methods designed to operate on graph-structured data, such as social networks, knowledge graphs,
and citation networks. In recent years, GNNs have achieved state-of-the-art results across a wide
range of applications that involve graphs, such as recommendation (Fan et al., 2019), drug discov-
ery (Zhang et al., 2022), traffic forecasting (Jiang & Luo, 2022), question answering (Park et al.,
2022a; 2020), and program analysis (Allamanis, 2022). Behind the huge success of GNNs, as well
as other types of neural networks, lies the backpropagation (BP) algorithm (Rumelhart et al., 1986;
Plaut et al., 1986), which is the de facto standard for training deep neural networks.

BP adjusts the parameters of a neural network in a way that reduces the discrepancy between the net-
work’s output and the target value (e.g., ground-truth class labels). Specifically, these updates by BP
are performed in two passes. First, in the forward pass, the input is fed forward through the network
to produce an output, while storing intermediate activations of the neurons. Then, in the backward
pass, an error between the output and target gets propagated backward through the network using the
chain rule, which uses the stored activations to calculate the gradients of the loss with respect to the
network parameters. Then using gradient descent (Kiefer & Wolfowitz, 1952; Robbins & Monro,
1951), parameters are adjusted in the negative direction of the gradients, thereby reducing the loss.

Spurred by the success of BP, several prior works investigated whether BP could be a model of how
the brain learns (Lillicrap et al., 2020; Scellier & Bengio, 2017; Crick, 1989). However, there is no
evidence that the brain follows the learning constraints imposed by BP, e.g., (i) neural activations
computed in the forward pass need to be stored for use in the backward pass, which increases
memory overhead, (ii) parameter updates depend on the signals from all downstream neurons, while
biological synapses learn locally, i.e., from the signals of locally connected neurons (Whittington
& Bogacz, 2019), and (iii) parameter updates occur only after the forward pass, and in its reverse
order (i.e., from the last down to the first layer). These constraints not only render BP biologically
implausible, but also limit the scalability, parallelism, and flexibility in learning neural networks.

1

https://github.com/facebookresearch/forwardgnn

Published as a conference paper at ICLR 2024

The forward-forward algorithm (FF) (Hinton, 2022) is a representative recent approach designed
to be a biologically plausible alternative to BP. FF avoids the above constraints of BP by replacing
the forward and backward passes in BP with two forward passes, which operate on the positive
and negative data, respectively, with opposite objectives. By adopting a layer-wise forward-only
training scheme, FF avoids the restriction of BP that a perfect knowledge of the computations in the
forward pass needs to be retained to compute the derivatives for backpropagation. In preliminary
experiments on image classification, FF showed comparable classification performance to BP.

The training of GNNs is limited by the same constraints of BP as discussed above, which restrict the
scalability and flexibility of model training, as well as rendering the learning process biologically
implausible. While FF and its recent variants (Hinton, 2022; Zhao et al., 2023; Lee & Song, 2023;
Paliotta et al., 2023) saw promising results, they fail to provide an effective and efficient alternative
for learning GNNs for the following reasons. First, the FF algorithm involves generating negative
data, which is a task-specific process (e.g., handcrafting masks for images with varying long range
correlations, and manipulating images via overlaying class labels), and needs to be defined to be
used for new tasks. Existing FF methods are mainly designed for image classification, and thus are
difficult or ineffective for handling graph data. Second, the current way FF generates negative data
is not scalable as it takes an increasing amount of memory and computation time as more negative
samples are used. To date, the potential of FF for the fundamental graph learning (GL) tasks, i.e.,
node classification and link prediction, has not been studied, and it remains to be explored how
effectively FF or alternative forward learning procedures can train GNNs for fundamental GL tasks.

To bridge this gap, we develop FORWARDGNN in this paper, a forward learning framework for
GNNs, which builds upon and improves the FF algorithm (Hinton, 2022) in learning GNNs for
graph learning tasks. First, FORWARDGNN proposes two orthogonal graph-specific approaches for
extending the FF algorithm for GNNs. Importantly, FORWARDGNN removes the need to explicitly
construct negative inputs needed for FF to work (i.e., FORWARDGNN requires just a single for-
ward pass, and hence is no longer forward-forward). This greatly improves the efficiency of both
training and inference processes. Further, in the local layer-wise training of FORWARDGNN, each
layer not only receives input from the lower layer, but also incorporates what the upper layers have
learned without relying on the backpropagation of errors, which further improves performance as the
bottom-up and top-down signals jointly inform the forward training. We show the effectiveness and
generality of the proposed forward graph learning framework in an extensive evaluation using three
representative GNNs on five real-world graphs. In summary, we make the following contributions.
• Forward Graph Learning. We systematically investigate the potential of forward graph learn-

ing, i.e., biologically plausible forward-only learning of graph neural networks for fundamental
graph learning tasks, namely, node classification and link prediction.

• Novel Learning Framework. We develop FORWARDGNN, a novel forward learning framework
for GNNs. FORWARDGNN is agnostic to the message passing schemes of GNNs, and is capable
of learning GNNs via a single forward pass, while incorporating top-down signals.

• Effectiveness. Extensive experiments show that (1) FORWARDGNN outperforms, or performs on
par with BP on link prediction and node classification tasks, while being more scalable in memory
usage; and (2) the proposed single-forward approach improves upon the FF-based methods.

2 BACKGROUND AND RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Given a graph G = (V,E) with nodes V and edges E, graph neural networks (GNNs) learn the
representation of a node in graph G by repeatedly performing a neighborhood aggregation or mes-
sage passing over its local neighborhood across multiple layers. Let xi ∈ RF1 be the input features
of node i, h(ℓ)

i ∈ RH be the representations or embeddings of node i learned by layer ℓ (ℓ ≥ 1), and
e(j,i) ∈ RF2 be optional features of the edge (j, i) from node j to node i. The message passing pro-
cedure that produces the embeddings of node i via the ℓ-th GNN layer can be described as follows:

h
(ℓ)
i = γ(ℓ)

(
h
(ℓ−1)
i ,

⊕
j∈N (i)

ψ(ℓ)
(
h
(ℓ−1)
i ,h

(ℓ−1)
j , e(j,i)

))
. (1)

Here, h(0)
i is set to xi, N (i) is the neighbors of node i, and ψ(·) is a function that extracts a message

for neighborhood aggregation, which summarizes the information of the nodes i and j, as well as the

2

Published as a conference paper at ICLR 2024

optional edge features e(j,i) if available.
⊕

(·) denotes a permutation-invariant function (e.g., mean
or max) to aggregate incoming messages, and γ(·) is a function that produces updated embeddings of
node i by combining node i’s embeddings with aggregated messages. With multi-layer GNNs, the
embeddings of a node learned via local message passing capture information from its k-hop neigh-
bors. This message passing scheme can be considered as generalizing the convolution operator in
CNNs to irregularly-structured graph data (Zhou et al., 2020; Daigavane et al., 2021), where con-
nections among nodes are often highly skewed and irregular in contrast to grid-structured images.

Various GNN architectures can be described by this framework, including graph convolutional net-
works (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and graph attention
networks (GAT) (Velickovic et al., 2018). They differ in terms of how they define the functions in
Eq. (1), i.e., γ(ℓ)(·),

⊕
(·), and ψ(ℓ)(·). For instance, to define the aggregator

⊕
(·), GraphSAGE

examines a few options, such as the mean operator, and a max pooling on top of trainable neighbor
transformations, while GAT uses an attention mechanism to perform a learnable weighted averaging.
As GNN training is done by BP, it inherits the same constraints of BP discussed in Section 1. In this
work, we develop an alternative learning procedure for GNNs without those constraints.

2.2 THE FORWARD-FORWARD ALGORITHM

The forward-forward algorithm (FF) (Hinton, 2022) is a greedy layer-wise learning procedure for
optimizing multi-layer neural networks (NNs). That is, FF trains layers one at a time, going from the
bottom to the top, and trained layers are no longer further optimized when upper layers are trained.
The main idea of FF is to replace the forward and backward passes of BP with two forward passes,
which operate on the positive (real) and negative (incorrect) data. Given images and their class
labels, FF constructs positive samples by overlaying each image with its one-hot encoded labels.
Negative samples are constructed in the same way, but using a randomly chosen incorrect label.

Goodness. In FF, each layer has its own objective, which is to make the forward pass at the layer
assign high goodness to positive data, and low goodness to negative data. As positive and negative
data differ only in the included labels, the layer is then trained to ignore the features that do not cor-
relate with the label. Specifically, FF defines the goodness of a layer to be the sum of the squares of
the ReLU activations. Let a(ℓ)

i denote the ReLU activation that the ℓ-th layer produces by processing
an input vector for object i. The goodness G(ℓ)

i of object i by the ℓ-th layer is computed as

G(ℓ)
i =

∥∥a(ℓ)
i

∥∥2
2
. (2)

To train each layer to be able to distinguish between positives and negatives using goodness, FF
defines the probability that object i is considered to be positive by layer ℓ as follows:

p(positive) = σ
(
G(ℓ)
i − θ

)
(3)

where σ(a) = 1/(1+e−a) is the logistic function, and θ is a threshold, which is to make the goodness
be well above the given value for positive data, and well below it for negative data.

Normalization. Note that Eq. (3) uses activation’s length in L2 norm to compute the goodness. To
prevent the next layer from distinguishing positive from negative data by just using the length of the
input vector (in L2 norm), FF normalizes the length of the activation before passing it down to the
next layer. This way, the next layer is guided to use the orientation of the input vector, not its length.

Applications and Extensions. FF was recently used for several applications, e.g., biomedical and
hyperspectral image classification (Angulo & Paheding, 2023; Paheding & Angulo, 2023), on-device
training (De Vita et al., 2023), imitation learning (Chung et al., 2023), and optical NN training (Oguz
et al., 2023). A few studies also presented extensions of FF. Instead of training the layers to predict
goodness (Eq. 2), CaFo (Zhao et al., 2023) attaches a class predictor to each layer. In CaFo, the
given NNs are randomly initialized and fixed the whole time, and only the layer-wise predictors are
locally trained. SymBa (Lee & Song, 2023) adopts an alternative loss to maximize the goodness
gap between positive and negative items via direct comparison. The predictive FF (Ororbia & Mali,
2023) combines predictive coding with FF, which jointly learns representation and generative cir-
cuits in a biologically plausible manner. In contrast to FF and follow-up works designed for image
classification, GFF (Paliotta et al., 2023) adapts FF to graph classification by defining the goodness
of a graph. However, GFF is designed specifically for graph classification, and cannot be applied
to the two fundamental GL tasks, i.e., node classification and link prediction. Improving upon GFF
and earlier works, FORWARDGNN enables forward learning for these GL tasks for the first time.

3

Published as a conference paper at ICLR 2024

graph	𝐺 feats.	𝑿

Layer	1

Layer	2

Loss

(a)	Backpropagation

Layer	2

Layer	1

neg	
feats.	
𝑿!"#$

neg	
graph
𝐺!"#$

pos
feats.	
𝑿%&'$

Good
ness	↑

Good
ness	↑

(b)	Forward-Forward	(Sec.	3.1)

Good
ness	↓

Good
ness	↓

pos
graph
𝐺%&'$

Layer	2

Layer	1

(c)	Single	Forward	(Sec.	3.2)

Local	
Loss

Local	
Loss

graph	𝐺$

feats.	𝑿graph	𝐺

Layer	2

Layer	1

(d)	Single	Forward	w/	
Top-Down	Signals	(Sec.	3.3)

Local	
Loss

Local	
Loss

graph	𝐺$

feats.	𝑿graph	𝐺

Signal	Path:	
Top-To-Input	

feats.
𝑿

graph
𝐺

Signal	Path:	Top-To-Loss

Learning	objectiveBackpropagation	of	errors Layer-wise	local	trainingForward	pass

Figure 1: Backpropagation (BP) and proposed forward learning methods for GNNs. (a) BP involves
one forward pass, followed by one backward pass through the network. (b) Forward-forward (Sec.
3.1) involves two forward passes on positive and negative inputs. (c) Single forward (Sec. 3.2) learns
via just one forward pass. (d) Single forward is extended to incorporate top-down signals (Sec. 3.3).

3 FORWARD LEARNING OF GRAPH NEURAL NETWORKS

We develop new forward learning procedures for GNNs in this section. We start by extending the
FF algorithm for GNNs, and design a forward graph learning procedure with just a single forward
pass. We then extend them so that both the bottom-up and top-down signals can inform the training.
Figure 1 provides an overview of the proposed forward graph learning approaches and BP.

3.1 ADAPTING THE FORWARD-FORWARD ALGORITHM FOR GRAPH NEURAL NETWORKS

Positive and negative samples play an essential role in FF, as layers are trained to tell them apart in
terms of the goodness (Eq. 2). Designed for image classification, FF creates them by overlaying cor-
rect or incorrect labels over images. To adapt this idea to deal with graph data and GNNs, we propose
two orthogonal approaches for extending node features and graph structure using labels (Fig. 1b).

Extending Node Features With Node Labels. In this approach, we transform node labels into aux-
iliary features and use them to augment node features. Formally, the extended features x′

i of node i is

x′
i = [xi ∥ Label-To-Feat(i)], (4)

where Label-To-Feat(i) is a function that maps node i’s label to additional features, and [x∥y] de-
notes a concatenation of vectors x and y. Positive and negative features are created by using variants
of Label-To-Feat(i), which return the one-hot encoding of the correct, and randomly selected incor-
rect labels for node i, respectively. Note that not all nodes have labels, as some nodes are held out
for testing, or nodes may have been partially labeled from the beginning. This differs from the im-
age classification setup, where all training images are labeled. For nodes without labels, we define
Label-To-Feat(·) to be a uniform distribution over the node classes such that all classes contribute
equally for these nodes. This approach affects only the node features, while retaining the graph
structure. Thus the positive and negative embeddings of training nodes are obtained by running
GNNs (Eq. 1) on the same graph G using differently altered features xpos′

i and {xneg,j′
i }j as h(0)

i .

Extending Graph Structure With Virtual Nodes. This approach introduces virtual nodes corre-
sponding to the node classes (i.e., there are as many virtual nodes as the classes), and use the links be-
tween real and virtual nodes to make positive and negative samples. For positive samples, each real
node is linked to the correct virtual node, that is, the one corresponding to the true label of the node.
For negative samples, real nodes are linked with randomly chosen incorrect virtual nodes. Formally,
given a set C = {ck}Kk=1 of K virtual nodes, the augmented graph G′ = (V ′, E′) is defined to be

G′ = (V ∪ C, E ∪ {(i, c) | i ∈ Vlabeled, c ∈ C, Label-RE(i) = Label-VR(c)}), (5)

where Vlabeled ⊆ V is the set of labeled nodes, and Label-RE(i) and Label-VR(c) are functions that
map real node i and virtual node c to the class labels, respectively. Specifically, in order to create
positive and negative samples, Label-RE(i) returns correct, and randomly chosen incorrect labels,
respectively, for real node i, while Label-VR(c) consistently returns the true label for virtual node c.

4

Published as a conference paper at ICLR 2024

With this augmented graph structure, real nodes can aggregate information from their real neighbors
and a virtual node. Similarly, virtual nodes aggregate information from the real nodes they are linked
with, which makes them representative of those connected real nodes. E.g., with positive connec-
tions, virtual nodes can be considered as class representatives, as virtual nodes are only connected
to the real nodes that belong to the virtual node’s class. From the perspective of real nodes, the
only difference between positive and negative cases is the link to the virtual node. All in all, GNN
layers are trained to utilize this difference to assign the goodness (Eq. 2) appropriately, e.g., by
ignoring or downplaying some of the aggregated node features that do not correlate well with the
node label. The positive and negative embeddings of training nodes are generated by running GNNs
(Eq. 1) on differently augmented graphsGpos′ and {Gneg,j′}j with the same input features xi = h

(0)
i .

Alg. 1 in Appendix C presents the forward learning algorithm discussed in this subsection.

Inference. After training GNNs with the above methods, GNN layers can produce the goodness of a
node with respect to label l, i.e., by running GNNs with node features extended with label l (Eq. 4),
or an extended graph where test nodes are linked to the virtual node corresponding to label l (Eq. 5).
To predict for a given node, we compute the goodness for all classes using each GNN layer, and accu-
mulate the goodness of all layers. Then the label with the highest accumulated goodness is selected.

3.2 FORWARD GRAPH LEARNING VIA A SINGLE FORWARD PASS

Based on FF, the approaches in Section 3.1 operate by learning to distinguish between positive and
negative inputs. Specifically, this process involves (1) creating positive and negative inputs in the
form of differently augmented graphs or node features, and (2) performing multiple forward passes
of GNNs with those augmented graphs and features, which overall has high computational and
memory requirements. This limitation is because they incorporate the label information at the input
level, i.e., by perturbing the inputs to create positive (real) and negative (incorrect) samples, which
require separate processing. We tackle this limitation by designing a learning framework that can
utilize the label information for the forward GNN training with just a single forward pass (Fig. 1c).

Framework. Our main idea is to enable the network to generate learning signals based on the avail-
able node labels, instead of requiring positive and negative samples to start the training, which are
created by perturbing the input data using labels. In other words, we want the GNN layer to avoid
the need for positive and negative samples by generating its own training targets in one forward pass,
which can then be used to learn node embeddings that reflect the class structure among the nodes.

To this end, we empower GNN layers to generate class representatives as their learning targets via
graph convolution (Eq. 1). Specifically, we turn to our proposed idea of graph augmentation (Eq. 5),
and use the positively augmented graph Gpos′ for the forward pass, in place of the original graph G.
As discussed in Sec. 3.1, a virtual node in Gpos′ can be considered to be representative of the nodes
in the corresponding class due to its label-based connections to real nodes and the message passing
process. This way, GNNs can produce the embeddings of real nodes and class representatives simul-
taneously in just one forward pass, without having to design a separate architecture to obtain class
representatives. As a result, compared to the forward-forward algorithm that involves two forward
passes, this framework is no longer forward-forward, and hence a significant departure from FF.

Learning Signals. Given the embeddings and labels of real nodes as well as class representatives,
we would want the learning signals to train GNNs in such a way that nodes that are similar and in
the same class would be close to each other in the embedding space learned by GNNs, while nodes
that are dissimilar and in different classes would be away from each other. To train the ℓ-th GNN
layer, we generate such learning signals with the following contrastive learning objective L(ℓ),

L(ℓ) =
1

|Vlabeled|
∑

i∈Vlabeled
L(h(ℓ)

i , i, ℓ), L(h, i, ℓ) = − log
exp(C(h, c(ℓ)Label(i))/τ)∑
k∈J1,KK exp(C(h, c

(ℓ)
k)/τ)

, (6)

where h
(ℓ)
i and c

(ℓ)
k are embeddings of node i and class k learned by the ℓ-th GNN layer; K is the

number of node classes; Label(i) maps node i into its class; C(·, ·) is a critic function that measures
the similarity of two embeddings (e.g., dot product); and τ is the temperature parameter. This objec-
tive produces the learning targets by contrasting real nodes with class representatives, and maximizes
the probability of discriminating the correct (node, class) pair among negative unmatched pairs.
Alg. 2 in Appendix C presents the algorithm for the proposed single forward approach.

5

Published as a conference paper at ICLR 2024

Inference. Once GNNs are trained, GNN layers can produce the probability of a node belonging to
each class via the softmax inside the logarithm of Eq. (6). To predict for the given node, we compute
the class distribution across all GNN layers, and select the label with the highest average probability.

3.3 INCORPORATING TOP-DOWN SIGNALS

In the above forward learning frameworks (Secs. 3.1 and 3.2), GNN layers are trained progressively
from the bottom to the top, i.e., once a layer is trained, it remains fixed while upper layers are trained.
As a result, when layer ℓ ∈ J1, LK is trained, it can only use the bottom-up signals from lower
layers 1 to ℓ − 1, but not the top-down signals from upper layers ℓ + 1 to L. By contrast, with BP,
layers can also learn from the top-down signals via the backpropagation of errors throughout the
network. Inspired by recent works on the part-whole hierarchy representation in NNs (Hinton,
2021; 2022) and collaborative FF (Lorberbom et al., 2023), we extend the proposed single forward
pass approach (Sec. 3.2) to incorporate the top-down signals via two paths (Fig. 1d).

Signal Path: Top-To-Input. This path allows to incorporate the output of upper layers into the input
of a GNN layer. We now consider the forward pass training to be done over time, such that the
training of GNN layers at time t incorporates the top-down signals from the previous time step t−1.
Let h(ℓ−1)

i,t be the embeddings of node i produced by layer ℓ−1 at time t. The output of upper layers

at the previous time t− 1, i.e., {h(ℓ+1)
i,t−1 , . . . ,h

(L)
i,t−1}, constitutes top-down signals for node i. Then

h
(ℓ−1)′
i,t = Merge(h(ℓ−1)

i,t , {h(ℓ+1)
i,t−1 , . . . ,h

(L)
i,t−1}) (7)

is given to layer ℓ as input instead of h(ℓ−1)
i,t . Several options exist for Merge(·), e.g., all upper layers,

or an immediate upper layer alone may provide top-down signals, which are averaged and concate-
nated with h

(ℓ−1)
i,t . This way, each layer can learn from the representations learned by upper layers.

Signal Path: Top-To-Loss. This path allows to incorporate the output from upper layers into the
output of a GNN layer to be used in the loss computation and the inference step. Specifically, the
following loss replaces Eq. (6) so that both bottom-up and top-down signals can inform the training,

L(ℓ)′
t =

(∑
i∈Vlabeled

L(h(ℓ)′′
i,t , i, ℓ)

)/
|Vlabeled| where h

(ℓ)′′
i,t = Merge(h(ℓ)

i,t ,
{
h
(n)
i,t−1

}L
n=ℓ+1

) (8)

which uses augmented embeddings h
(ℓ−1)′′
i,t that incorporate top-down signals, instead of h(ℓ−1)

i,t .
Via this signal path, each layer can learn to generate outputs in light of what the upper layers learned.

Importantly, even with these signal paths, no gradient flows through GNN layers. Thus, the learning
procedure remains to be forward only. Alg. 3 in App. C lists steps for top-down signal incorporation.

3.4 APPLICATION TO LINK PREDICTION

The ideas proposed in Secs. 3.1 and 3.2 use the label information (e.g., label-based virtual nodes),
with a focus on the node classification task. Here we discuss that the proposed framework can be
naturally used for the forward learning of the link prediction (LP) task. We note that the standard
procedure for training and evaluating GNNs for LP shares a lot of similarities with the FF algorithm,
and is thus readily adaptable for use in the forward learning framework. Given embeddings hi and
hj of nodes i and j, the link probability pi,j between nodes i and j is modeled as follows:

pi,j = LinkProb(EdgeEmb(hi,hj)), (9)
where EdgeEmb(hi,hj) is a function that returns the embedding of edge (i, j) (e.g., element-wise
product), and LinkProb(·) transforms the edge embedding into a probability (e.g., summation fol-
lowed by a sigmoid function). The training goal is to learn to distinguish between the existing
(positive) and nonexistent (negative) edges in terms of the estimated link probability. This process is
similar to FF in the sense that both aim to tell positive and negative samples apart using the learned
scores (i.e., link probability and goodness). Differently from the FF applied for node classification
(Fig. 1b), positive and negative edge embeddings can be generated via a single forward pass using
the standard training process for LP. Notably, this forward learning approach differs from the BP-
based LP training in that each layer is locally trained without backpropagation of errors. The idea in
Sec. 3.3 can also be used to incorporate top-down signals in learning the embeddings of nodes, and
hence the embeddings of edges. The forward learning algorithm for LP is given in Alg. 4 in App. C.

Inference. Once GNNs are trained, each GNN layer produces the probability of a given edge. We
compute the link probability to be the average of the link probabilities estimated by all layers.

6

Published as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 EVALUATION SETUP

Our goal is to systematically evaluate the effectiveness and generality of the proposed forward graph
learning approach on fundamental graph learning tasks, namely, node classification and link predic-
tion, using representative GNN models and real-world graphs.

Node Classification. Given a graph where each node is assigned to a single class, the task is to
predict the class of the given node. We randomly generate the train-validation-test node splits with
a ratio of 64%-16%-20%, and evaluate the performance in terms of classification accuracy.

Link Prediction. The task is to predict whether the given edge is positive (existing) or not. We split
the edges randomly into train-validation-test sets, with a ratio of 64%-16%-20%, which form pos-
itive edge sets. We randomly select the same amount of nonexistent edges as the positive edges,
which form negative edge sets. We obtain the link probability (Eq. 9) via dot product of the two
nodes’ embeddings, followed by sigmoid. We measure the performance using the ROC-AUC score.

For both tasks, we perform evaluation using five randomly generated splits, and measure the average
and standard deviation of the corresponding performance metric.

Datasets. We use five real-world graphs drawn from three domains: PUBMED, CITESEER, and
CORAML are citation networks; AMAZON is a co-purchase network; GITHUB is a followership
graph. Table 2 in Appendix A provides the summary statistics of these graphs. Appendix A also
presents a more detailed description of these datasets.

Graph Neural Networks. We evaluate FORWARDGNN and BP using three representative GNNs,
namely, graph convolutional network (GCN) (Kipf & Welling, 2017), GraphSAGE (SAGE) (Hamil-
ton et al., 2017), and graph attention network (GAT) (Velickovic et al., 2018).

Experimental settings, e.g., details of GNNs and software used in this work, are given in Appendix B.

4.2 COMPARISON WITH THE BACKPROPAGATION ALGORITHM

We compare the proposed forward learning method with backpropagation (BP) using two criteria,
namely, (1) task-specific performance (e.g., accuracy) and (2) GPU memory usage increase as more
layers are used. Among several forward graph learning approaches we develop in Sec. 3, we report
the results obtained with the single-forward learning approach (SF) (Sec. 3.2) in this subsection.
Also, for link prediction, we apply the cross entropy loss to the SF method. We later present a
comparison among different forward learning approaches in Sec. 4.3.

Result Visualization. In Figure 2, we show the task-specific performance (y-axis) and the memory
usage of multi-layer GNN compared to the 1-layer GNN (x-axis), obtained with training GNNs
with the proposed SF and BP. In Figure 2, the shape and color of a symbol indicate the type of
GNNs and dataset, respectively, and symbols that are filled and empty, respectively, denote that
the corresponding GNN was trained with BP and SF. For ease of comparison, the filled and empty
symbols corresponding to the same GNN on the same dataset are linked by a dotted line.

Node Classification (Figure 2a). Using this visualization, we make the following observations.
• The proposed forward learning method (SF) performs similarly to BP in many cases (which

correspond to the near horizontal lines), or even outperforms BP in several cases (corresponding
to the lines that go towards the lower right corner), across different GNNs and graphs.

• As we use GNNs with a larger number of layers, BP requires more memory for training (the hor-
izontal distance between the filled and empty symbols gets longer), while the memory required
by SF remains nearly the same (empty symbols are located near the left end of the figures). The
memory usage increase when using BP goes up to 18× as we use four layers.

Link Prediction (Figure 2b). With the same visualization, we have the following observations.
• The proposed SF mostly achieves a higher link prediction performance than BP (most lines go

towards the lower right corner). This is mainly because the link prediction performance of the
GNNs trained with BP declines as more GNN layers are used, while the performance of GNNs
trained with SF improves to varying degrees (or remains nearly the same) as more layers are used.

• As in the node classification result, BP incurs more memory usage as the number of layers in-
creases, while the amount of memory required by SF remains the same.

7

Published as a conference paper at ICLR 2024

1× 4× 8× 12× 16×
Mem usage relative to 1-layer model

40

60

80

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(1) 2-layer models

1× 4× 8× 12× 16×
Mem usage relative to 1-layer model

40

60

80

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(2) 3-layer models

1× 4× 8× 12× 16×
Mem usage relative to 1-layer model

40

60

80

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(3) 4-layer models

SF-GCN
BP-GCN

SF-GAT
BP-GAT

SF-SAGE
BP-SAGE

Amazon
GitHub

CiteSeer
PubMed

CoraML

(a) Node classification accuracy (y-axis) vs. memory usage increase (x-axis). The proposed single-forward
graph learning (SF, empty symbols) performs similarly to backpropagation (BP, filled symbols) in many cases
(i.e., near horizontal lines), or even better than BP in several cases (i.e., lines going towards the lower right
corner), with no increase in memory usage as more layers are used. Figure 5 shows these results per GNN.

1.0× 1.5× 2.0× 2.5× 3.0×
Mem usage relative to 1-layer model

70

80

90

100

R
O

C
 A

U
C

 (%
)

B
et

te
r

Better

(1) 2-layer models

1.0× 1.5× 2.0× 2.5× 3.0×
Mem usage relative to 1-layer model

70

80

90

100
R

O
C

 A
U

C
 (%

)

B
et

te
r

Better

(2) 3-layer models

1.0× 1.5× 2.0× 2.5× 3.0×
Mem usage relative to 1-layer model

70

80

90

100

R
O

C
 A

U
C

 (%
)

B
et

te
r

Better

(3) 4-layer models

SF-GCN
BP-GCN

SF-GAT
BP-GAT

SF-SAGE
BP-SAGE

Amazon
GitHub

CiteSeer
PubMed

CoraML

(b) Link prediction performance (y-axis) vs. memory usage increase (x-axis). The proposed SF outperforms
backpropagation (BP, filled symbols) (corresponding to most lines going towards the lower right corner), with
no increase in memory usage as more layers are used. Figure 6 shows these results per GNN.

Figure 2: The single-forward approach (SF, empty symbols) vs. backpropagation (BP, filled sym-
bols) on (a) node classification and (b) link prediction. Lines towards the lower right corner (SF out-
performs BP), and upper right corner (BP outperforms SF); horizontal lines (both perform the same).

Additional Results. Figures 5 and 6 show the results of Figures 2a and 2b in detail, per GNN model.

4.3 COMPARISON AMONG FORWARD LEARNING APPROACHES

In this section, we evaluate the proposed forward learning approaches (Sec. 3) and existing forward
learning methods, in terms of the task performance and memory usage.

Node Classification. We evaluate the following forward learning methods: (1) FF-VN and (2) FF-
LA, the forward-forward (FF) graph learning approaches (Sec. 3.1), which augment graph data with
virtual nodes, and label-appending technique, respectively; (3) SF, the single-forward graph learning
method (Sec. 3.2); (4) SF-TopDown, the SF method with the top-to-input signal path (Sec. 3.3); (5)
FF-SymBa (Lee & Song, 2023) and (6) CaFo (Zhao et al., 2023), which are two extensions of the
FF algorithm (Hinton, 2022); and (7) PEPITA (Dellaferrera & Kreiman, 2022), a prior state-of-the-
art forward learning method preceding FF. Note that FF-SymBa is not directly applicable to node
classification, so we adapted it to operate on top of the proposed virtual node method (Sec. 3.1).

Table 1: Top-down signals improve classification results. Aver-
age classification accuracy obtained with SF and SF-TopDown.

Method CITESEER CORAML PUBMED AMAZON GITHUB

SF 91.14 84.95 81.90 89.69 83.16
SF-TopDown 93.58 86.01 82.21 92.09 83.68

Figure 3 shows classification ac-
curacy (y-axis) versus memory
usage (x-axis), as GNNs (denoted
by the symbol shape) are trained
with the above learning methods
(denoted by the symbol color). In
this section, we report results ob-
tained with two-layer GNN models (Figures 3 and 4 and Table 1).
• The best classification accuracy is achieved by either the proposed single-forward approaches

(SF and SF-TopDown) or forward-forward (FF) methods (FF-VN, FF-LA, and FF-SymBa).
• However, FF methods (FF-VN, FF-LA, and FF-SymBa) are often unstable, and are signif-

icantly outperformed by the single-forward (SF) approaches. Also, they require much larger
memory than the SF methods, as they need to construct multiple negative inputs to train GNNs.

8

Published as a conference paper at ICLR 2024

0 1000
Mem usage (MB)

25

50

75
A

cc
ur

ac
y

(%
)

Better

B
et

te
r

Amazon

0 1000
Mem usage (MB)

70

80

A
cc

ur
ac

y
(%

)

Better

B
et

te
r

GitHub

0 100
Mem usage (MB)

25

50

75

100

A
cc

ur
ac

y
(%

)

Better

B
et

te
r

CiteSeer

0 200
Mem usage (MB)

40

60

80

A
cc

ur
ac

y
(%

)

Better

B
et

te
r

PubMed

0 200
Mem usage (MB)

20

40

60

80

A
cc

ur
ac

y
(%

)

Better

B
et

te
r

CoraML

GCN GAT SAGE SF-TopDown (Sec 3.3) SF (Sec 3.2) FF-LA (Sec 3.1) FF-VN (Sec 3.1) FF-SymBa CaFo PEPITA

Figure 3: Node classification accuracy (y-axis) and memory usage (x-axis) as three GNNs (denoted
by symbol shape) are trained with different forward learning approaches (denoted by symbol color).

• CaFo uses the least amount of memory, but performs significantly worse than the proposed meth-
ods. This is because CaFo optimizes only the layer-wise predictors, but not the GNN model itself.
Also, PEPITA fails to train GNNs effectively for node classification.

• Incorporating top-down signals enables SF to perform node classification more accurately as
shown in Table 1, which reports the classification accuracy on five graphs, averaged over different
GNN models and varying number of layers.

Link Prediction. We evaluate the following forward learning methods, which are applicable for link
prediction: (1) ForwardGNN-CE, (2) ForwardGNN-FF, and (3) ForwardGNN-SymBa, which
are all based on the proposed single-forward framework (Sec. 3.4), while using different learning
objectives (i.e., binary cross entropy (BCE), forward-forward objective (Eq. 3), and the objective
in (Lee & Song, 2023), respectively); and (4) CaFo (Zhao et al., 2023), which uses layer-wise link
predictors trained with BCE. Other forward learning methods used above (e.g., PEPITA) are not
applicable for link prediction as they are designed specifically for node classification.

Fig. 4 shows the link prediction result (y-axis) and memory usage (x-axis) of different GNNs.
• The proposed forward learning methods, especially ForwardGNN-CE and ForwardGNN-

SymBa, consistently outperform CaFo by a large margin. Freezing the GNN layers is too strin-
gent a restriction for CaFo to effectively learn to do link prediction.

• ForwardGNN-CE shows the overall best results considering both the accuracy and stability of
predictions. ForwardGNN-SymBa often suffers from high variability in the prediction accuracy.

200 400
Mem usage (MB)

80

90

R
O

C
 A

U
C

 (%
)

Better

B
et

te
r

Amazon

500 1000
Mem usage (MB)

80

90

R
O

C
 A

U
C

 (%
)

Better

B
et

te
r

GitHub

20 30
Mem usage (MB)

70

80

90

R
O

C
 A

U
C

 (%
)

Better

B
et

te
r

CiteSeer

100 150
Mem usage (MB)

70

80

90

R
O

C
 A

U
C

 (%
)

Better

B
et

te
r

PubMed

25 50 75
Mem usage (MB)

70

80

90

R
O

C
 A

U
C

 (%
)

Better

B
et

te
r

CoraML

GCN GAT SAGE ForwardGNN-CE ForwardGNN-FF ForwardGNN-SymBa CaFo

Figure 4: Link prediction performance (y-axis) and memory usage (x-axis) as three GNNs (denoted
by symbol shape) are trained with different forward learning approaches (denoted by symbol color).

Further Results. We present the performance and memory usage for all learning methods, GNNs,
and graphs in Tables 3 and 4 for node classification, and in Tables 5 and 6 for link prediction.

5 CONCLUSION

Backpropagation (BP) has been the standard algorithm for training graph neural networks (GNNs).
However, despite its effectiveness, BP introduces several constraints in learning GNNs. In this work,
we investigate the potential of forward-only training in the context of graph learning, and propose
FORWARDGNN, a forward learning framework for GNNs. Overall, our contributions are as follows.

• Forward Graph Learning. We systematically investigate the potential of biologically plausible
forward learning of GNNs for fundamental GL tasks, i.e., node classification and link prediction.

• Novel Learning Framework. We develop FORWARDGNN, a novel forward learning framework
for GNNs. FORWARDGNN can be used with GNNs with different message passing schemes.

• Effectiveness. Extensive experiments show that (1) FORWARDGNN outperforms, or performs on
par with BP on link prediction and node classification tasks, while being more scalable in memory
usage; and (2) the proposed single-forward approach improves upon the FF-based methods.

9

Published as a conference paper at ICLR 2024

ETHICS STATEMENT

This paper develops a new learning framework for graph neural networks. To evaluate the proposed
framework, we use public datasets, which do not contain any personally identifiable information or
offensive materials to the best of our knowledge. Also, experiments in this work focus on evaluating
the prediction accuracy and memory usage, and do not involve human subjects. We do not foresee
any ethical concerns with this work.

REPRODUCIBILITY STATEMENT

For reproducibility, we describe our experimental settings in Section 4.1 and Appendices A and B,
including details of data splitting, evaluation tasks and metrics (Sec. 4.1); dataset description and
statistics (App. A and Table 2); and hyperparameter settings, software, and hardware specifications
(App. B). All datasets used in this work are publicly accessible (Sec. 4.1). We release our code at
https://github.com/facebookresearch/forwardgnn.

REFERENCES

Miltiadis Allamanis. Graph neural networks in program analysis. Graph neural networks: founda-
tions, frontiers, and applications, pp. 483–497, 2022.

Abel A. Reyes Angulo and Sidike Paheding. The forward-forward algorithm as a feature extractor
for skin lesion classification: A preliminary study. CoRR, abs/2307.00617, 2023.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 583–593.
PMLR, 2019.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. CoRR, abs/1407.7906, 2014.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In ICLR (Poster). OpenReview.net, 2018.

Miguel Á. Carreira-Perpiñán and Weiran Wang. Distributed optimization of deeply nested systems.
In AISTATS, volume 33 of JMLR Workshop and Conference Proceedings, pp. 10–19. JMLR.org,
2014.

Insik Chung, Isaac Han, and Kyung-Joong Kim. Imitation learning using the forward-forward algo-
rithm, 2023. URL https://openreview.net/forum?id=baF9FqIdTY.

Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

Wojciech Marian Czarnecki, Grzegorz Swirszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,
and Koray Kavukcuoglu. Understanding synthetic gradients and decoupled neural interfaces. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 904–912. PMLR, 2017.

Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, and Le Song. Learning steady-states
of iterative algorithms over graphs. In ICML, volume 80 of Proceedings of Machine Learning
Research, pp. 1114–1122. PMLR, 2018.

Ameya Daigavane, Balaraman Ravindran, and Gaurav Aggarwal. Understanding convolutions on
graphs. Distill, 2021. doi: 10.23915/distill.00032. https://distill.pub/2021/understanding-gnns.

Fabrizio De Vita, Rawan M. A. Nawaiseh, Dario Bruneo, Valeria Tomaselli, Marco Lattuada, and
Mirko Falchetto. µ-ff: On-device forward-forward training algorithm for microcontrollers. In
2023 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 49–56, 2023.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: Solving the credit as-
signment problem without a backward pass. In ICML, volume 162 of Proceedings of Machine
Learning Research, pp. 4937–4955. PMLR, 2022.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In WWW, pp. 417–426. ACM, 2019.

10

https://github.com/facebookresearch/forwardgnn
https://openreview.net/forum?id=baF9FqIdTY

Published as a conference paper at ICLR 2024

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019.

Manas Gupta, Arulmurugan Ambikapathi, and Savitha Ramasamy. Hebbnet: A simplified hebbian
learning framework to do biologically plausible learning. In ICASSP, pp. 3115–3119. IEEE, 2021.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pp. 1024–1034, 2017.

Alois P. Heinz. Pipelined neural tree learning by error forward-propagation. In ICNN, pp. 394–397.
IEEE, 1995.

Geoffrey E. Hinton. How to represent part-whole hierarchies in a neural network. CoRR,
abs/2102.12627, 2021.

Geoffrey E. Hinton. The forward-forward algorithm: Some preliminary investigations. CoRR,
abs/2212.13345, 2022.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In ICML,
volume 70 of Proceedings of Machine Learning Research, pp. 1627–1635. PMLR, 2017.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert Syst.
Appl., 207:117921, 2022.

Adrien Journé, Hector Garcia Rodriguez, Qinghai Guo, and Timoleon Moraitis. Hebbian deep
learning without feedback. In ICLR. OpenReview.net, 2023.

Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, pp. 462–466, 1952.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR (Poster). OpenReview.net, 2017.

Adam Kohan, Edward A Rietman, and Hava T Siegelmann. Signal propagation: The framework for
learning and inference in a forward pass. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Adam A. Kohan, Edward A. Rietman, and Hava T. Siegelmann. Error forward-propagation: Reusing
feedforward connections to propagate errors in deep learning. CoRR, abs/1808.03357, 2018.

Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulating
hebbian plasticity with errors. Current opinion in neurobiology, 46:170–177, 2017.

Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
feedback alignment. CoRR, abs/1906.04554, 2019.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In ECML/PKDD (1), volume 9284 of Lecture Notes in Computer Science, pp. 498–515. Springer,
2015.

Heung-Chang Lee and Jeonggeun Song. Symba: Symmetric backpropagation-free contrastive learn-
ing with forward-forward algorithm for optimizing convergence. CoRR, abs/2303.08418, 2023.

WB Levy and O Steward. Temporal contiguity requirements for long-term associative potentia-
tion/depression in the hippocampus. Neuroscience, 8(4):791–797, 1983.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Ralph Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117, 1988.

11

Published as a conference paper at ICLR 2024

Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng Tao.
Graph pooling for graph neural networks: Progress, challenges, and opportunities. In IJCAI, pp.
6712–6722. ijcai.org, 2023.

Yue Liu, Jun Xia, Sihang Zhou, Siwei Wang, Xifeng Guo, Xihong Yang, Ke Liang, Wenxuan Tu,
Stan Z. Li, and Xinwang Liu. A survey of deep graph clustering: Taxonomy, challenge, and
application. CoRR, abs/2211.12875, 2022.

Guy Lorberbom, Itai Gat, Yossi Adi, Alexander G. Schwing, and Tamir Hazan. Layer collaboration
in the forward-forward algorithm. CoRR, abs/2305.12393, 2023.

Chenxiang Ma, Rui Yan, Zhaofei Yu, and Qiang Yu. Deep spike learning with local classifiers. IEEE
Trans. Cybern., 53(5):3363–3375, 2023.

Alexander Meulemans, Francesco S. Carzaniga, Johan A. K. Suykens, João Sacramento, and Ben-
jamin F. Grewe. A theoretical framework for target propagation. In NeurIPS, 2020.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using
local errors. Frontiers in neuroscience, 12:371677, 2018.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In NIPS, pp.
1037–1045, 2016.

Ilker Oguz, Junjie Ke, Qifei Wang, Feng Yang, Mustafa Yildirim, Niyazi Ulas Dinç, Jih-Liang
Hsieh, Christophe Moser, and Demetri Psaltis. Forward-forward training of an optical neural
network. CoRR, abs/2305.19170, 2023.

Alexander Ororbia. Brain-inspired machine intelligence: A survey of neurobiologically-plausible
credit assignment. CoRR, abs/2312.09257, 2023.

Alexander Ororbia and Ankur Arjun Mali. Biologically motivated algorithms for propagating local
target representations. In AAAI, pp. 4651–4658. AAAI Press, 2019.

Alexander Ororbia and Ankur Arjun Mali. The predictive forward-forward algorithm. CoRR,
abs/2301.01452, 2023.

Alexander Ororbia, Ankur Arjun Mali, Daniel Kifer, and C. Lee Giles. Conducting credit assignment
by aligning local representations. CoRR, abs/1803.01834, 2018.

Sidike Paheding and Abel A. Reyes Angulo. Forward-forward algorithm for hyperspectral image
classification: A preliminary study. CoRR, abs/2307.00231, 2023.

Daniele Paliotta, Mathieu Alain, Bálint Máté, and François Fleuret. Graph neural networks go
forward-forward. CoRR, abs/2302.05282, 2023.

Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos. MultiImport:
Inferring node importance in a knowledge graph from multiple input signals. In KDD, pp. 503–
512. ACM, 2020.

Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana Cristofor, Christos Faloutsos, and Yuxiao
Dong. EvoKG: Jointly modeling event time and network structure for reasoning over tempo-
ral knowledge graphs. In WSDM, pp. 794–803. ACM, 2022a.

Namyong Park, Ryan A. Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan
Du, Nesreen K. Ahmed, and Christos Faloutsos. CGC: contrastive graph clustering for community
detection and tracking. In WWW, pp. 1115–1126. ACM, 2022b.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

David C Plaut, Steven J Nowlan, and Geoffrey E Hinton. Experiments on learning by back propa-
gation. 1986.

12

Published as a conference paper at ICLR 2024

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. J.
Complex Networks, 9(2), 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009.

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

Jürgen Schmidhuber. Networks adjusting networks. In Proceedings of” Distributed Adaptive Neural
Information Processing”, pp. 197–208, 1990.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit B. Patel, and Tom Goldstein. Train-
ing neural networks without gradients: A scalable ADMM approach. In ICML, volume 48 of
JMLR Workshop and Conference Proceedings, pp. 2722–2731. JMLR.org, 2016.

Matteo Tiezzi, Giuseppe Marra, Stefano Melacci, Marco Maggini, and Marco Gori. A lagrangian
approach to information propagation in graph neural networks. In ECAI, volume 325 of Frontiers
in Artificial Intelligence and Applications, pp. 1539–1546. IOS Press, 2020.

Matteo Tiezzi, Giuseppe Marra, Stefano Melacci, and Marco Maggini. Deep constraint-based prop-
agation in graph neural networks. IEEE Trans. Pattern Anal. Mach. Intell., 44(2):727–739, 2022.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR (Poster). OpenReview.net, 2018.

Yewen Wang, Jian Tang, Yizhou Sun, and Guy Wolf. Decoupled greedy learning of graph neural
networks. 2020.

James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends
in cognitive sciences, 23(3):235–250, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32
(1):4–24, 2021.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-GCN: layer-wise and learned
efficient training of graph convolutional networks. In CVPR, pp. 2124–2132. Computer Vision
Foundation / IEEE, 2020.

Zehong Zhang, Lifan Chen, Feisheng Zhong, Dingyan Wang, Jiaxin Jiang, Sulin Zhang, Hualiang
Jiang, Mingyue Zheng, and Xutong Li. Graph neural network approaches for drug-target interac-
tions. Current Opinion in Structural Biology, 73:102327, 2022.

Gongpei Zhao, Tao Wang, Yidong Li, Yi Jin, Congyan Lang, and Haibin Ling. The cascaded forward
algorithm for neural network training. CoRR, abs/2303.09728, 2023.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI Open, 1:57–81, 2020.

13

Published as a conference paper at ICLR 2024

In the appendix, we provide the dataset description (Appendix A), experimental settings (Ap-
pendix B), algorithms of the proposed forward graph learning framework FORWARDGNN (Ap-
pendix C), discussion on the extensibility of FORWARDGNN to other graph learning tasks (Ap-
pendix D), additional related work (Appendix E), and additional experimental results (Appendix F).

A DATASET DESCRIPTION
Table 2: Summary of the graph datasets.

Dataset # Nodes # Edges # Features # Classes

PUBMED 19,717 88,648 500 3
CITESEER 4,230 10,674 602 6
CORAML 2,995 16,316 2,879 7
AMAZON 7,650 238,162 745 8
GITHUB 37,700 578,006 128 2

In experiments, we use the following five real-
world graphs drawn from three different domains.
PUBMED, CITESEER, and CORAML are citation
networks from Bojchevski & Günnemann (2018),
where nodes represent documents, and edges de-
note citations between the corresponding papers.
Node labels denote the topic of the paper, and node
features correspond to the bag-of-words representa-
tion of the paper. AMAZON is a co-purchase network from Shchur et al. (2018), which corresponds
to the Photo segment, where nodes represent goods, and edges denote that two goods are frequently
bought together. Node labels represent item categories, and node features denote the bag-of-words
representation of the product review. GITHUB is a followership graph from Rozemberczki et al.
(2021), where nodes are developers, and edges denote mutual follower relationships. Nodes are
classified into two groups of web and ML developers, and node features denote the developer’s in-
formation, such as employer name and email address. Table 2 provides the statistics of these graphs.

B EXPERIMENTAL SETTINGS

Hyperparameter Settings, Model Configurations, and Evaluation Details. Following the default
configurations, we ran graph convolutional network (GCN) (Kipf & Welling, 2017) with a normal-
ized adjacency matrix, i.e., self-loops were added and symmetric normalization was applied. We
used the mean aggregator with GraphSAGE (SAGE) (Hamilton et al., 2017). For graph attention
network (GAT) (Velickovic et al., 2018), we used four attention heads, and concatenated the multi-
head attention. Also, based on the default settings of GAT, we added self-loops to the graph, and
used a negative slope of 0.2 for LeakyReLU nonlinearity. For all GNNs and across all graph learning
tasks, we set the size of hidden units to 128. We used the Adam optimizer with a learning rate of
0.001, and a weight decay of 0.0005. For both tasks, we split the data (i.e., nodes and edges) ran-
domly into train-validation-test sets, with a ratio of 64%-16%-20%. Also, we set the max training
epochs to 1000, and applied validation-based early stopping with a patience of 100, for both tasks.
In the node classification tasks, some learning algorithms, such as the Forward-Forward algorithm
(FF), explicitly construct negative samples for training. For those algorithms, we used all available
classes to create negative samples for each node, i.e., given K node classes, K− 1 negative samples
were used for the training of each node. For memory usage, we measured the memory used by the
GPU for loading the model parameters, activations, gradients, and the first and second moments of
the gradients. For FF and its variants, we set the threshold parameter θ to 2.0, and for FF-SymBa, we
set its α parameter to 4.0, following the settings in the original papers. We set the temperature pa-
rameter τ to 1.0 in Eq. (6). We define the Merge function in Eq. (7) to incorporate the signal from the
immediate upper layer, i.e., h(ℓ+1)

i,t−1 , and concatenate it with the input h(ℓ−1)
i,t . For Eq. (8), we define

the Merge function to incorporate signals from upper layers, which affect only the loss, but are not
fed into the input for the next layer. To apply FF-SymBa (Lee & Song, 2023) for node classification,
we used FF-SymBa on top of the virtual node technique (Sec. 3.1) so it can be used for GNNs.

Software. We implemented FORWARDGNN in Python 3.8, using PyTorch (Paszke et al., 2019)
v1.13.1. We build upon the implementation of the forward-forward algorithm for image classi-
fication provided by Nebuly1. We used PyTorch Geometric (Fey & Lenssen, 2019) v.2.2.0 for the
implementations of GCN, SAGE, and GAT, and for the module that performs edge splitting and sam-
pling used in link prediction. For PEPITA (Dellaferrera & Kreiman, 2022), we adapted the original
implementation2 for GNNs, i.e., after performing forward passes through GNN layers, we compute
the error with respect to node labels, and use it to construct modulated inputs for the training nodes.

Hardware. Experiments were performed on a Linux server running CentOS 9, with an NVIDIA
H100 GPU, AMD EPYC 9654 96-Core Processors, and 2.2TB RAM.

1https://github.com/nebuly-ai/nebuly
2https://github.com/GiorgiaD/PEPITA

14

https://github.com/nebuly-ai/nebuly
https://github.com/GiorgiaD/PEPITA

Published as a conference paper at ICLR 2024

C ALGORITHMS

We present the algorithms of the proposed forward graph learning approach for node classification,
i.e., the forward-forward learning approach (Alg. 1), the single-forward learning approach (Alg. 2),
and the single-forward learning approach with top-down signal incorporation (Alg. 3). We then
present the forward learning algorithm for link prediction (Alg. 4).

Algorithm 1: Forward-Forward Learning of GNNs for Node Classification (Section 3.1)
Input: GNN G, graph G, input features X, node labels y
Output: trained GNN G
/* Construct positive and negative inputs */

1 if extending graph G with virtual nodes then
2 Gpos′, Gneg′ ← positive and negative graphs built using virtual nodes and labels y (Sec. 3.1)
3 Xpos′,Xneg′ ←X,X
4 else if extending input features X by appending labels then
5 Gpos′, Gneg′ ← G,G

6 Xpos′,Xneg′ ← positive and negative features built by appending labels using y (Sec. 3.1)
7 end

/* Train layer by layer progressively from the bottom to the top */
8 Hpos′,Hneg′ ←Xpos′,Xneg′

9 for layer in GNN G ’s layers do
10 while not converged do
11 H

pos′
fwd ← layer.forward(Gpos′, Hpos′)

12 H
neg′
fwd ← layer.forward(Gneg′, Hneg′)

13 Compute the local loss (e.g., the FF loss (Eq. 3)) for layer using H
pos′
fwd and H

neg′
fwd

14 Update layer’s parameters using an optimizer of choice, e.g., SGD and Adam
15 end
16 best layer← load the layer with the best params. found during the local training (lines 10 to 15)
17 if extending graph G with virtual nodes then
18 Hpos′,Hneg′ ← best layer.forward(Gpos′, Hpos′), best layer.forward(Gpos′, Hpos′)
19 else if extending input features X by appending labels then
20 Hpos′,Hneg′ ← best layer.forward(Gpos′, Hpos′), best layer.forward(Gneg′, Hneg′)
21 end
22 Hpos′,Hneg′ ←Hpos′.detach(),Hneg′.detach()
23 end

Algorithm 2: Single-Forward Learning of GNNs for Node Classification (Section 3.2)
Input: GNN G, graph G, input features X, node labels y
Output: trained GNN G

1 G′ ← a positively augmented graph using virtual nodes and node labels y (Section 3.2)
/* Train layer by layer progressively from the bottom to the top */

2 H ←X
3 for layer in GNN G ’s layers do
4 while not converged do
5 Hfwd ← layer.forward(G′, H)
6 Compute the local loss given by Eq. (6) for layer using Hfwd
7 Update layer’s parameters using an optimizer of choice, e.g., SGD and Adam
8 end
9 best layer← load the layer with the best parameters found during the local training (lines 4 to 8)

10 H ← best layer.forward(G′, H)
11 H ←H .detach()
12 end

Note that in Alg. 3 with the top-to-input signal path, we set the top-down signal for the topmost
hidden layer to come from the context vector (we used one hot encoding corresponding to the node

15

Published as a conference paper at ICLR 2024

label for training nodes, and a uniform distribution vector of the same size for other nodes), following
Hinton (2022). Also, in updating the GNN layers with the incorporation of top-down signals, we
support both synchronous and asynchronous updates. With asynchronous (i.e., alternating) updates,
even-numbered layers are updated based on the activities of odd-numbered layers, and then odd-
numbered layers are updated based on the new activities of even-numbered layers. With synchronous
updates, updates to all layers occur simultaneously.

Algorithm 3: Single-Forward Learning of GNNs with Top-Down Signal Paths for Node Classi-
fication (Section 3.3)
Input: GNN G, graph G, input features X, node labels y
Output: trained GNN G

1 G′ ← a positively augmented graph using virtual nodes and node labels y (Section 3.2)
2 Initialize {H(ℓ)

t−1}ℓ and {H(ℓ)
t }ℓ // to store embeddings at the previous and current time steps

/* Forward-only training with top-down signal incorporation */
3 while not converged do
4 for ℓ, layer in enumerate(GNN G ’s layers) do

// layer index ℓ starts from 1
5 if signal-path = “top-to-input” then
6 Construct H(ℓ−1)′

t by applying Eq. (7) with {H(ℓ)
t−1}ℓ and {H(ℓ)

t }ℓ
7 else
8 H

(ℓ−1)′
t ←H

(ℓ−1)
t

9 end
10 H

(ℓ)
t ← layer.forward(G′, H(ℓ−1)′

t).detach()

11 if signal-path = “top-to-loss” then
12 Compute the local loss given by Eq. (8) for layer using {H(ℓ)

t−1}ℓ and {H(ℓ)
t }ℓ

13 else
14 Compute the local loss given by Eq. (6) for layer using H

(ℓ)
t

15 end
16 Update layer’s parameters using an optimizer of choice, e.g., SGD and Adam
17 end
18 foreach ℓ ∈ J1, LK do
19 H

(ℓ)
t−1 ←H

(ℓ)
t

20 end
21 end

Algorithm 4: Single-Forward Learning of GNNs for Link Prediction (Section 3.4)
Input: GNN G, graph G, input features X
Output: trained GNN G

1 Epos′, Eneg′ ← positive and negative edges sampled from graph G (Section 3.4)
/* Train layer by layer progressively from the bottom to the top */

2 H ←X
3 for layer in GNN G ’s layers do
4 while not converged do
5 Hfwd ← layer.forward(G, H)
6 Compute the local loss for layer using the link probability (Eq. 9) with node embeddings

Hfwd, and positive and negative edge sets Epos′ and Eneg′

7 Update layer’s parameters using an optimizer of choice, e.g., SGD and Adam
8 end
9 best layer← load the layer with the best parameters found during the local training (lines 4 to 8)

10 H ← best layer.forward(G, H)
11 H ←H .detach()
12 end

16

Published as a conference paper at ICLR 2024

D EXTENSIBILITY OF FORWARDGNN TO OTHER GRAPH LEARNING TASKS

In this work, we demonstrate how FORWARDGNN can be applied to the two fundamental graph
learning tasks, namely, node classification and link prediction. Here we discuss the extensibility of
FORWARDGNN to two other important graph learning tasks.

Graph Classification. Given a set of graphs, the goal of graph classification is to assign a label
to each graph, i.e., the prediction is done at the graph level as opposed to the node- and edge-level
predictions made for node classification and link prediction, respectively. In the case of graph clas-
sification, GFF (Paliotta et al., 2023) presented the first FF-based approach. FORWARDGNN can
be extended to improve upon GFF for graph classification by replacing the multiple forward passes
required by GFF with a single forward pass. Similar to how FORWARDGNN learns to generate rep-
resentatives of node classes to address node classification via a single forward pass, this extension
requires effective mechanisms to learn class representatives at the graph level. To that end, we can
investigate different approaches, e.g., application of graph pooling methods (Liu et al., 2023), possi-
bly in combination with virtual nodes, which can be used to identify and connect related nodes and
graphs. Once we can generate class representatives of graph instances, the local contrastive learning
objective used for node classification (Equation (6)) can be used similarly for graph classification.

Graph Clustering. Given a graph, the goal of graph clustering is to assign the nodes in the graph
into (potentially overlapping) clusters. The major difference from node classification is that we do
not have ground truth node labels for model training in graph clustering problems, and the number of
clusters in the graph is usually not available. Due to this difference, the techniques presented in Sec-
tion 3.1, including the use of virtual nodes, cannot be used for graph clustering. Thus, the learning
signals (Equation (6)) designed for node classification cannot be directly utilized. Instead, the con-
trastive forward learning objective given by Equation (6) can be extended to incorporate the learning
signals of deep graph clustering approaches (Liu et al., 2022), which can operate when node labels
are unavailable and the number of classes are not known in advance. For instance, they construct
self-supervised learning signals by utilizing input node features, and the characteristics of real-world
graphs such as network homophily and hierarchical community structure (Park et al., 2022b). With
the extended local learning objective, the proposed single-forward learning framework (Section 3.2)
can be applied in nearly the same way for clustering the input graph.

E ADDITIONAL RELATED WORK

In Sec. 2, we discuss alternatives to backpropagation (BP) for learning GNNs based on the forward-
forward algorithm (Hinton, 2022). Here we present a review of other alternative approaches and re-
lated works for learning GNNs, as well as an overview of biologically-inspired learning algorithms.

E.1 ALTERNATIVE APPROACHES AND RELATED WORK FOR LEARNING GNNS

Carreira-Perpiñán & Wang (2014) and Taylor et al. (2016) proposed alternative approaches to BP
for learning neural networks (NNs), where the learning of NNs is cast as a constrained optimization
problem in the Lagrangian framework, with neural computations expressed as constraints. These
approaches are inherently local, in the sense that the gradient computation relies on neighboring
neurons, not on the BP over the entire network. However, they are not scalable due to the high mem-
ory requirement, and thus are inapplicable to large-scale problems. Based on this Lagrangian-based
approach, Tiezzi et al. (2020; 2022) presented an alternative method for learning GNNs. Specifi-
cally, they simplified the learning process of the GNN* model (Scarselli et al., 2009), a representa-
tive recurrent GNN model, which performs graph diffusion repeatedly until it converges to a stable
fixed point. The LP-GNN proposed in Tiezzi et al. (2020; 2022) adopts a mixed strategy to enable
a more efficient training of GNN*, which employs a constraint-based propagation scheme, thereby
avoiding the explicit computation of the fixed point of the diffusion process in GNN*, while using
BP in updating the NNs that model the state transition and output functions. Accordingly, although
LP-GNN departs from the usual BP-based GNN training, it still relies on BP for learning GNNs. By
contrast, FORWARDGNN is free from BP as a forward-only learning scheme for GNNs.

Stochastic steady-state embedding (SSE) (Dai et al., 2018) presents another learning scheme, in the
context of learning steady-state solutions of iterative algorithms over graphs, e.g., PageRank scores
and connected components. To obtain steady-state solutions efficiently, SSE proposes a stochas-

17

Published as a conference paper at ICLR 2024

tic fixed-point gradient descent process, inspired by the policy iteration in reinforcement learning.
While SSE is an alternative learning approach, SSE is not, per se, a general training scheme for
GNNs like FORWARDGNN, as its goal is to learn an algorithm achieving steady-state solutions of
iterative graph algorithms, which differs from the task of GNN training FORWARDGNN addresses.

Another line of works investigated layer-wise approaches for learning GNNs. A layer-wise learning
idea closely related to our work first appeared in the vision domain (Belilovsky et al., 2019), which
proposed a greedy layer-wise learning technique for deep convolutional neural networks (CNNs),
and obtained promising results on large-scale datasets such as ImageNet. In Belilovsky et al. (2019),
a CNN model gets trained progressively and greedily, i.e., layer by layer from the bottom to the top.
To enable a layer-wise training, they formulate and solve an auxiliary problem for each layer, where
an auxiliary classifier is attached to the layer, forming a block, and the original CNN layer and the
auxiliary classifier in the block are jointly optimized in terms of the training accuracy of the auxiliary
classifier. You et al. (2020) extended this approach for a layer-wise training of GNNs, in which the
CNN layers are replaced with the GNN layers. Furthermore, You et al. (2020) streamlined the graph
convolution operation by decoupling the feature aggregation and transformation, and introduced a
learnable RNN controller, which automatically decides when to stop the training of each layer via
reinforcement learning. A follow-up work by Wang et al. (2020) further improved the efficiency
of layer-wise GNN training of You et al. (2020) via the proposed parallel training and lazy update
scheme. While these methods train GNNs layer by layer, they still rely on BP, since each block
is a multi-layer architecture in general, and as a result, the error derivatives are propagated across
the layers in the block for optimization. By contrast, FORWARDGNN operates in the forward-only
learning regime, which is the focus of this work. Also, their optimization framework allows only
bottom-up signal propagation, and does not provide a way to incorporate the top-down signals. Thus,
using the above layer-wise methods, the training of each layer cannot be informed by what the upper
layers have learned as in FORWARDGNN. Further, they only investigate the node classification task,
and miss out the other fundamental GL task of link prediction. In this work, we systematically
explore the potential of forward-only learning for both node classification and link prediction tasks.

E.2 BIOLOGICALLY-INSPIRED LEARNING ALGORITHMS

For the past several decades, many biologically-inspired algorithms have been developed to train
neural networks without relying on the biologically implausible backpropagation of errors. A recent
survey (Ororbia, 2023) organizes them based on how they address the central question of a learning
algorithm, namely, “Where do the signals for learning the elements of a neural network come from,
and how they are produced?” Following the taxonomy of Ororbia (2023), biologically-inspired al-
gorithms can be grouped as follows.

Implicit Signal Algorithms. No explicit targets or signals are involved in these algorithms. Instead,
they utilize implicit signals, which are produced by the feedforward process of the neural network.
The computations for inference in these methods are the same as those for model training, and
parameter updates are done using purely local information. For example, in Hebbian learning-based
approaches (Journé et al., 2023; Gupta et al., 2021; Levy & Steward, 1983), only the pre-synaptic
and post-synaptic activations are used to adjust the weights connecting the adjacent layers (i.e.,
two-factor Hebbian), rendering the parameter adaptation to be a correlation-based learning.

Global Explicit Signal Algorithms. In algorithms in this and the following categories, the learning
process is driven by explicit signals. Among them, approaches in this category adopt a global
approach, in which a global feedback pathway is employed to carry signals for adjusting synaptic
weights. Random feedback alignment and its variants (Lillicrap et al., 2016; Nøkland, 2016; Launay
et al., 2019) construct teaching signals using random feedback weights, and establish asymmetric
forward and backward pathways, thereby addressing the weight transport problem of BP, in which
the same parameter matrices are used for both the inference and model training. Neuromodulatory
approaches, such as three-factor Hebbian plasticity (Kuśmierz et al., 2017), are another family of
algorithms in this category, which produce and broadcast modulatory signals that drive synaptic
adjustments, e.g., binary gating variables to either accept or reject a synaptic adjustment.

Non-Synergistic Local Explicit Signal Algorithms. Algorithms in this category adopt exclusively
local machinery, such as a local classifier, to produce signals based on locally available information
(e.g., information from a pair of adjacent layers), which drive the learning of a network. One group
of algorithms in this category can be referred to as synthetic local updates (SLU) (Jaderberg et al.,

18

Published as a conference paper at ICLR 2024

2017; Czarnecki et al., 2017; Schmidhuber, 1990). The basic idea of SLU is to extend each layer
with a learnable parametric model (e.g., an additional weight matrix) to approximate and predict the
weight updates or gradients based on the local information from adjacent layers. Local signalers
(predictors) (Mostafa et al., 2018; Ma et al., 2023) present a different yet related approach based on
non-synergistic signals, where each layer is augmented with a local predictor (e.g., classifier), which
projects the layer’s activation into the class score distribution via a fixed random weight matrix, and
gets adjusted according to the local cost.

Synergistic Local Explicit Signal Algorithms. In contrast to the non-synergistic schemes discussed
above, algorithms in this category produce local learning signals via varying degrees of (indirect)
coordination among the layers of a network. Note that this coordination across layers is not through
a single global pathway as in the global explicit signal algorithms or BP. One group of algorithms
in this class are based on discrepancy reduction, which performs synaptic updates by reducing the
mismatch between the model’s current representations and the the target representations produced
by complementary neural processes, which may span several layers, e.g., an approximate inversion
pathway of the network in the case of target propagation approaches (Bengio, 2014; Lee et al., 2015;
Meulemans et al., 2020), and synaptic message passing structure in the case of local representation
alignment schemes (Ororbia & Mali, 2019; Ororbia et al., 2018).

Forward-only learning approaches (Hinton, 2022; Heinz, 1995; Kohan et al., 2023; 2018; Linsker,
1988; Zhao et al., 2023; Dellaferrera & Kreiman, 2022) are another family of algorithms in this
category, which performs synaptic updates only using the inference process of a neural system, i.e.,
without involving (recurrent) feedback mechanisms as in some of the aforementioned algorithm
families. Forward-only approaches can be divided into two groups, one based on supervised context
and the other based on self-supervised context. The first group of methods (Kohan et al., 2023; 2018;
Zhao et al., 2023; Dellaferrera & Kreiman, 2022) presents a forward-only scheme that performs
synaptic adjustments driven by signals arising in supervised context, e.g., they learn the model such
that the representations of an input and the corresponding context are closely located via a set of local
loss functions. We notice that this idea is related to FORWARDGNN as both generate local learning
signals for the inputs and contexts, although the way they are produced as well as the inference
process greatly differs. Importantly, prior works are not applicable to graphs and GNNs, and provide
no or limited mechanisms for incorporating top-down signals. The second group consists of self-
supervised context-driven approaches (Hinton, 2022; Lee & Song, 2023; Ororbia & Mali, 2023;
Paliotta et al., 2023), such as the forward-forward algorithm (FF) (Hinton, 2022), which aim to
distinguish between positive samples (i.e., items taken from the real data distribution) and negative
samples (i.e., incorrect, adversarially generated items). Training with these algorithms is performed
so as to maximize the goodness for positive samples, while minimizing it for negative samples.
With this objective, the loss of a neural network is defined to be the sum of local layer-wise loss
functionals based on the goodness. Thus, the design of goodness and how negative samples are
generated are key to the effectiveness of these approaches. These algorithms perform two forward
passes on positive and negative samples, where the second forward pass replaces the usual backward
pass of BP. Building upon FF and follow-up works, FORWARDGNN makes further improvements
for an effective forward learning of GNNs by removing the need to design and generate negative
inputs via its single-forward learning framework, and letting each layer learn from both bottom-up
and top-down signals without relying on BP. Section 2.2 provides a more detailed discussion on
FF (Hinton, 2022) as well as its extensions and applications.

For a comprehensive review and discussion of biologically-inspired learning algorithms, we refer
the reader to Ororbia (2023).

19

Published as a conference paper at ICLR 2024

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 NODE CLASSIFICATION RESULTS

• Figure 5 presents the node classification accuracy (y-axis) vs. memory usage increase (x-axis) per
graph neural networks.

• Table 3 presents the node classification performance of GCN, SAGE, and GAT models averaged
over five runs on five real-world graphs, obtained with a different number of layers, and using
different learning approaches.

• Table 4 presents the GPU memory usage (in MB) during the GNN training for node classification,
observed with a different number of layers, and using different learning approaches.

1× 4× 8× 12× 16×

60

80

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

1× 4× 8× 12× 16×

60

80

100

B
et

te
r

Better

1× 4× 8× 12× 16×

60

80

100

B
et

te
r

Better

1× 4× 8× 12× 16×
40

60

80

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

1× 4× 8× 12× 16×
40

60

80

100

B
et

te
r

Better

1× 4× 8× 12× 16×
40

60

80

100

B
et

te
r

Better

1× 2× 4× 6× 8×
Mem usage relative to 1-layer model

70

80

90

100

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(1) 2-layer models

1× 2× 4× 6× 8×
Mem usage relative to 1-layer model

70

80

90

100

B
et

te
r

Better

(2) 3-layer models

1× 2× 4× 6× 8×
Mem usage relative to 1-layer model

70

80

90

100

B
et

te
r

Better

(3) 4-layer models

 G
C

N

 G
AT

 S

A
G

E

SF-GCN
BP-GCN

SF-GAT
BP-GAT

SF-SAGE
BP-SAGE

Amazon
GitHub

CiteSeer
PubMed

CoraML

Figure 5: Node classification accuracy (y-axis) vs. memory usage increase (x-axis). The proposed
single forward graph learning (SF, empty symbols) performs similarly to backpropagation (BP, filled
symbols) in many cases (i.e., near horizontal lines), or even better than BP in several cases (i.e., lines
going towards the lower right corner), with no increase in memory usage as more layers are used.
Lines towards the lower right corner (SF outperforms BP), and upper right corner (BP outperforms
SF); horizontal lines (both perform the same).

20

Published as a conference paper at ICLR 2024

Table 3: Node classification performance of GCN, SAGE, and GAT averaged over five runs on five
real-world graphs, obtained with a different number of layers, and using different learning methods.
The best results are in bold font, and the best results among the forward learning methods are in red.

(a) AMAZON

Method
Accuracy (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 45.83±0.4 64.88±16.1 91.03±1.3 90.21±2.2
SymBa-GCN 60.80±1.4 60.86±1.3 60.95±1.1 61.06±1.2
CaFo-GCN 42.52±1.2 61.02±8.9 60.82±8.9 60.69±9.4
PEPITA-GCN 13.87±6.8 21.82±4.9 19.80±3.5 15.57±4.0
FF-LA-GCN (Sec 3.1) 91.20±1.0 48.54±10.4 48.08±10.5 49.74±10.5
FF-VN-GCN (Sec 3.1) 22.69±1.6 26.43±4.5 22.92±3.8 20.84±3.3
SF-GCN (Sec 3.2) 93.67±0.6 93.73±0.4 93.48±0.2 93.48±0.3
SF-Top-To-Loss-GCN (Sec 3.3) 93.76±0.5 83.18±3.8 60.43±6.9 47.40±2.9
SF-Top-To-Input-GCN (Sec 3.3) 93.19±0.6 92.88±0.7 92.16±0.7 92.30±0.6

Backpropagation-SAGE 33.79±6.9 91.58±0.9 94.55±0.4 93.27±0.4
SymBa-SAGE 91.87±1.1 91.87±0.9 91.75±0.9 91.71±0.9
CaFo-SAGE 35.86±5.6 36.07±5.8 36.16±5.8 33.80±6.3
PEPITA-SAGE 14.54±7.3 23.56±1.4 24.59±0.4 17.49±4.6
FF-LA-SAGE (Sec 3.1) 88.95±1.1 88.80±1.3 88.80±1.3 88.75±1.2
FF-VN-SAGE (Sec 3.1) 76.44±2.3 80.93±1.9 82.44±2.0 82.80±2.4
SF-SAGE (Sec 3.2) 92.90±0.3 93.63±0.4 93.70±0.4 93.71±0.3
SF-Top-To-Loss-SAGE (Sec 3.3) 93.01±0.8 87.88±2.4 87.62±1.9 84.92±1.8
SF-Top-To-Input-SAGE (Sec 3.3) 92.18±0.9 92.99±0.9 93.28±0.8 92.92±0.8

Backpropagation-GAT 37.63±5.4 46.54±16.1 90.33±1.7 89.33±0.7
SymBa-GAT 92.12±0.5 92.30±0.5 92.30±0.5 92.31±0.4
CaFo-GAT 44.88±1.6 45.33±1.5 50.86±11.8 52.10±10.8
PEPITA-GAT 17.19±6.1 16.27±7.1 22.80±7.4 18.94±5.9
FF-LA-GAT (Sec 3.1) 90.93±1.2 39.28±16.0 39.05±16.0 39.74±16.0
FF-VN-GAT (Sec 3.1) 47.65±28.5 49.40±27.9 50.20±28.3 50.16±28.6
SF-GAT (Sec 3.2) 60.07±1.4 87.02±0.7 90.18±0.6 90.68±0.8
SF-Top-To-Loss-GAT (Sec 3.3) 63.14±3.1 90.26±1.1 90.73±1.1 91.46±0.9
SF-Top-To-Input-GAT (Sec 3.3) 89.96±0.9 90.55±1.6 91.53±1.1 91.10±1.0

(b) GITHUB

Method
Accuracy (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 74.16±0.5 74.17±0.5 78.76±6.0 86.34±0.2
SymBa-GCN 74.16±0.5 74.19±0.5 74.46±0.3 74.47±0.4
CaFo-GCN 74.16±0.5 74.17±0.5 74.16±0.5 74.17±0.5
PEPITA-GCN 55.11±22.4 74.14±0.5 74.17±0.5 74.16±0.5
FF-LA-GCN (Sec 3.1) 80.90±0.5 77.19±1.7 75.69±1.1 74.91±0.5
FF-VN-GCN (Sec 3.1) 74.16±0.5 67.87±13.4 59.29±19.1 61.67±15.8
SF-GCN (Sec 3.2) 85.74±0.2 85.90±0.2 85.86±0.2 85.87±0.3
SF-Top-To-Loss-GCN (Sec 3.3) 85.91±0.2 76.56±1.5 74.17±0.5 74.17±0.5
SF-Top-To-Input-GCN (Sec 3.3) 80.66±0.4 82.69±1.0 83.94±0.6 83.92±0.5

Backpropagation-SAGE 74.17±0.5 86.06±0.3 86.57±0.2 86.71±0.4
SymBa-SAGE 86.44±0.4 86.31±0.5 86.37±0.4 86.45±0.4
CaFo-SAGE 74.16±0.5 74.17±0.5 74.17±0.5 74.17±0.5
PEPITA-SAGE 56.53±22.1 74.16±0.5 74.17±0.5 74.40±0.9
FF-LA-SAGE (Sec 3.1) 76.21±3.0 75.58±2.5 75.11±1.4 74.67±0.8
FF-VN-SAGE (Sec 3.1) 85.66±0.1 85.88±0.3 86.02±0.4 86.09±0.4
SF-SAGE (Sec 3.2) 80.27±1.4 81.96±0.9 82.92±0.7 83.54±0.6
SF-Top-To-Loss-SAGE (Sec 3.3) 79.80±0.8 82.15±1.5 82.27±1.3 83.03±0.8
SF-Top-To-Input-SAGE (Sec 3.3) 81.98±0.4 84.96±0.3 84.70±0.7 84.80±0.5

Backpropagation-GAT 74.17±0.5 74.17±0.5 74.17±0.5 86.24±0.2
SymBa-GAT 86.76±0.4 86.67±0.4 86.66±0.4 86.32±0.6
CaFo-GAT 74.16±0.5 74.17±0.5 74.17±0.5 74.17±0.5
PEPITA-GAT 63.50±18.4 75.26±2.1 74.20±0.5 74.22±0.6
FF-LA-GAT (Sec 3.1) 82.14±0.3 79.59±2.2 79.47±2.1 80.18±2.6
FF-VN-GAT (Sec 3.1) 85.97±0.3 86.29±0.3 86.70±0.3 86.64±0.3
SF-GAT (Sec 3.2) 74.29±0.7 83.01±0.8 83.83±0.6 84.71±0.6
SF-Top-To-Loss-GAT (Sec 3.3) 74.27±0.6 79.88±1.8 82.87±1.2 81.45±1.7
SF-Top-To-Input-GAT (Sec 3.3) 79.82±1.0 85.44±0.2 85.57±0.4 85.69±0.5

21

Published as a conference paper at ICLR 2024

Table 3: (Continued from the previous table) Node classification performance of GCN, SAGE, and
GAT averaged over five runs on five real-world graphs, obtained with a different number of layers,
and using different learning methods. The best results are in bold font, and the best results among
the forward learning methods are in red.

(c) CITESEER

Method
Accuracy (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 84.28±3.0 94.28±0.7 94.89±0.8 94.87±0.5
SymBa-GCN 87.33±1.5 88.06±1.3 88.01±1.4 88.01±1.4
CaFo-GCN 68.25±2.2 69.79±0.5 69.31±0.7 69.29±1.3
PEPITA-GCN 19.22±4.5 19.53±3.4 17.09±1.7 19.31±2.1
FF-LA-GCN (Sec 3.1) 95.39±0.4 95.86±0.7 95.89±0.6 95.89±0.6
FF-VN-GCN (Sec 3.1) 43.22±14.2 53.31±10.7 52.81±10.4 54.28±11.2
SF-GCN (Sec 3.2) 92.60±0.7 94.18±0.7 94.33±0.7 94.66±0.6
SF-Top-To-Loss-GCN (Sec 3.3) 92.62±0.4 94.11±0.5 94.56±0.5 94.02±0.7
SF-Top-To-Input-GCN (Sec 3.3) 94.30±0.4 94.78±0.2 94.87±0.5 94.96±0.7

Backpropagation-SAGE 87.28±0.9 94.56±0.8 95.20±0.7 95.20±0.7
SymBa-SAGE 88.53±0.9 91.99±1.6 93.85±0.4 93.76±0.5
CaFo-SAGE 61.70±2.0 61.68±2.0 60.99±2.2 61.02±3.2
PEPITA-SAGE 20.45±4.0 21.80±4.2 19.03±3.1 18.13±1.7
FF-LA-SAGE (Sec 3.1) 95.41±0.7 95.53±0.6 95.58±0.8 95.63±0.7
FF-VN-SAGE (Sec 3.1) 89.95±1.0 93.85±0.6 95.39±0.6 95.56±0.7
SF-SAGE (Sec 3.2) 79.88±2.1 89.60±1.8 92.27±1.1 92.74±1.0
SF-Top-To-Loss-SAGE (Sec 3.3) 79.39±1.7 92.51±0.7 94.02±0.8 93.43±0.9
SF-Top-To-Input-SAGE (Sec 3.3) 90.57±0.5 93.90±0.5 93.40±0.7 93.22±0.7

Backpropagation-GAT 79.17±1.5 94.18±0.7 94.78±1.0 94.49±0.8
SymBa-GAT 91.51±0.8 95.01±1.1 95.25±0.9 95.18±0.9
CaFo-GAT 73.29±0.7 72.60±1.0 72.34±0.7 71.51±0.8
PEPITA-GAT 15.65±2.8 16.93±1.5 17.94±3.2 18.79±3.3
FF-LA-GAT (Sec 3.1) 95.34±0.4 95.48±0.6 95.27±0.5 95.37±0.6
FF-VN-GAT (Sec 3.1) 90.99±1.2 94.04±1.0 95.48±0.6 95.39±0.6
SF-GAT (Sec 3.2) 82.06±2.4 93.33±0.9 93.78±1.1 94.21±1.0
SF-Top-To-Loss-GAT (Sec 3.3) 81.21±2.6 91.96±0.8 92.03±0.7 91.89±0.8
SF-Top-To-Input-GAT (Sec 3.3) 91.16±0.8 94.02±0.7 93.95±0.8 93.83±0.6

(d) PUBMED

Method
Accuracy (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 63.82±1.0 86.74±0.3 86.98±0.7 86.01±0.5
SymBa-GCN 82.13±0.8 82.10±0.7 82.06±0.7 82.04±0.7
CaFo-GCN 69.90±1.4 69.16±2.1 69.78±2.0 68.89±1.5
PEPITA-GCN 33.35±4.6 39.66±4.7 42.17±2.4 41.91±2.7
FF-LA-GCN (Sec 3.1) 81.33±0.4 83.57±0.4 83.88±0.3 83.97±0.3
FF-VN-GCN (Sec 3.1) 51.69±1.2 52.89±1.5 52.96±1.1 54.07±4.0
SF-GCN (Sec 3.2) 86.98±0.2 87.61±0.3 87.66±0.4 87.61±0.4
SF-Top-To-Loss-GCN (Sec 3.3) 86.82±0.5 86.59±0.6 86.17±0.3 85.69±0.8
SF-Top-To-Input-GCN (Sec 3.3) 77.91±0.9 83.36±0.7 84.01±0.7 84.55±0.5

Backpropagation-SAGE 70.66±3.3 88.42±0.5 89.11±0.4 88.69±0.4
SymBa-SAGE 88.27±0.6 88.33±0.5 88.44±0.4 88.30±0.3
CaFo-SAGE 62.66±2.8 63.69±3.1 63.01±3.3 63.34±3.2
PEPITA-SAGE 33.24±5.3 40.19±4.8 41.20±1.7 40.62±2.0
FF-LA-SAGE (Sec 3.1) 83.54±0.5 83.48±0.6 83.54±0.6 83.50±0.6
FF-VN-SAGE (Sec 3.1) 88.83±0.5 88.93±0.5 88.95±0.5 88.89±0.4
SF-SAGE (Sec 3.2) 78.49±1.3 81.33±0.7 82.87±0.7 83.54±0.8
SF-Top-To-Loss-SAGE (Sec 3.3) 78.23±1.0 80.84±0.7 81.95±0.6 82.07±0.4
SF-Top-To-Input-SAGE (Sec 3.3) 79.53±0.5 83.00±0.6 83.11±0.5 83.32±0.5

Backpropagation-GAT 63.68±0.5 85.45±0.4 85.86±0.6 85.37±0.6
SymBa-GAT 88.93±0.4 89.47±0.2 89.60±0.4 89.53±0.5
CaFo-GAT 73.23±0.9 73.03±0.8 71.85±1.4 71.61±1.6
PEPITA-GAT 32.23±8.4 35.69±7.0 41.99±2.2 39.28±1.7
FF-LA-GAT (Sec 3.1) 81.62±0.4 83.55±0.6 83.40±0.4 83.43±0.4
FF-VN-GAT (Sec 3.1) 88.22±0.4 88.77±0.6 88.86±0.6 88.86±0.6
SF-GAT (Sec 3.2) 64.41±7.4 78.41±2.6 81.34±1.5 82.57±1.1
SF-Top-To-Loss-GAT (Sec 3.3) 63.64±6.5 79.11±1.5 81.71±0.9 82.15±0.9
SF-Top-To-Input-GAT (Sec 3.3) 77.24±4.1 83.34±0.7 83.53±0.5 83.61±0.4

22

Published as a conference paper at ICLR 2024

Table 3: (Continued from the previous table) Node classification performance of GCN, SAGE, and
GAT averaged over five runs on five real-world graphs, obtained with a different number of layers,
and using different learning methods. The best results are in bold font, and the best results among
the forward learning methods are in red.

(e) CORAML

Method
Accuracy (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 31.72±4.8 86.84±1.0 88.65±1.4 86.61±2.3
SymBa-GCN 82.94±1.7 82.97±1.7 83.37±1.8 83.34±1.9
CaFo-GCN 31.45±2.8 30.28±4.1 29.65±4.0 28.95±2.4
PEPITA-GCN 13.19±1.9 16.76±5.8 15.63±2.0 18.30±8.0
FF-LA-GCN (Sec 3.1) 81.74±1.9 63.77±2.7 63.71±2.7 64.54±3.0
FF-VN-GCN (Sec 3.1) 28.61±1.9 28.11±3.2 27.25±3.5 25.81±4.6
SF-GCN (Sec 3.2) 87.75±1.4 87.95±1.4 88.15±1.5 88.48±1.2
SF-Top-To-Loss-GCN (Sec 3.3) 87.55±1.4 84.07±0.9 85.64±1.6 84.67±2.6
SF-Top-To-Input-GCN (Sec 3.3) 87.05±1.4 86.08±1.6 87.05±1.5 87.68±1.3

Backpropagation-SAGE 42.87±5.0 88.75±1.1 88.21±1.8 85.98±2.2
SymBa-SAGE 87.45±0.8 87.28±0.7 87.21±0.7 86.98±1.0
CaFo-SAGE 28.98±2.1 28.71±2.1 28.58±1.9 28.95±1.6
PEPITA-SAGE 13.39±1.2 25.31±4.4 17.13±5.2 19.13±8.9
FF-LA-SAGE (Sec 3.1) 85.41±1.4 85.34±0.8 85.08±1.3 85.18±1.3
FF-VN-SAGE (Sec 3.1) 86.01±0.7 87.68±1.6 87.85±1.4 87.71±1.3
SF-SAGE (Sec 3.2) 85.14±1.6 87.35±1.4 87.61±1.5 87.55±1.5
SF-Top-To-Loss-SAGE (Sec 3.3) 84.77±1.4 85.94±1.3 85.28±1.3 85.31±1.8
SF-Top-To-Input-SAGE (Sec 3.3) 86.08±2.4 86.58±1.2 86.84±1.2 86.84±1.1

Backpropagation-GAT 33.82±2.1 80.97±1.1 87.58±1.6 86.04±1.7
SymBa-GAT 86.68±1.3 87.51±1.2 87.68±0.7 87.38±0.6
CaFo-GAT 30.98±3.7 32.95±4.9 37.96±15.8 36.29±16.9
PEPITA-GAT 15.13±4.3 22.54±6.6 15.13±2.7 16.66±6.7
FF-LA-GAT (Sec 3.1) 82.67±1.2 61.80±6.4 63.57±4.9 63.24±4.1
FF-VN-GAT (Sec 3.1) 84.61±1.5 85.64±1.5 86.48±2.1 86.74±2.1
SF-GAT (Sec 3.2) 66.81±2.0 83.17±2.0 84.34±1.9 85.14±2.2
SF-Top-To-Loss-GAT (Sec 3.3) 65.21±2.9 79.50±2.4 83.57±1.5 84.17±1.8
SF-Top-To-Input-GAT (Sec 3.3) 83.27±2.0 84.51±2.1 85.28±1.7 84.84±2.8

Table 4: GPU memory usage (in MB) for node classification. The best results are in bold font, and
the best results among the forward learning methods are in red.

(a) CITESEER

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 0.52 4.01 6.61 9.21
SymBa-GCN 30.56 30.62 30.62 30.62
CaFo-GCN 3.40 3.40 3.40 3.40
PEPITA-GCN 16.56 22.04 25.28 29.70
FF-LA-GCN (Sec 3.1) 24.50 25.20 25.20 25.20
FF-VN-GCN (Sec 3.1) 25.23 25.29 25.29 25.29
SF-GCN (Sec 3.2) 15.51 15.51 15.51 15.51
SF-Top-To-Loss-GCN (Sec 3.3) 11.10 13.17 15.24 17.11
SF-Top-To-Input-GCN (Sec 3.3) 16.62 18.79 19.53 19.12

Backpropagation-SAGE 10.01 16.42 21.07 25.72
SymBa-SAGE 89.40 89.40 89.40 89.40
CaFo-SAGE 4.58 4.58 4.58 4.58
PEPITA-SAGE 25.99 34.26 40.29 46.54
FF-LA-SAGE (Sec 3.1) 84.54 84.54 84.54 84.54
FF-VN-SAGE (Sec 3.1) 83.45 83.45 83.45 83.45
SF-SAGE (Sec 3.2) 26.03 26.03 26.03 26.03
SF-Top-To-Loss-SAGE (Sec 3.3) 23.34 25.40 26.93 29.00
SF-Top-To-Input-SAGE (Sec 3.3) 28.30 33.05 33.79 33.52

Backpropagation-GAT 3.81 19.14 32.07 44.30
SymBa-GAT 111.56 111.87 111.87 111.87
CaFo-GAT 3.41 3.41 3.41 3.41
PEPITA-GAT 17.20 32.33 46.58 63.22
FF-LA-GAT (Sec 3.1) 88.15 88.18 88.60 88.60
FF-VN-GAT (Sec 3.1) 106.06 106.54 106.54 106.54
SF-GAT (Sec 3.2) 28.13 28.13 28.13 28.13
SF-Top-To-Loss-GAT (Sec 3.3) 24.39 26.27 28.53 30.60
SF-Top-To-Input-GAT (Sec 3.3) 30.16 32.56 32.46 32.56

23

Published as a conference paper at ICLR 2024

Table 4: (Continued from the previous table) GPU memory usage (in MB) for node classification.
The best results are in bold font, and the best results among the forward learning methods are in red.

(b) PUBMED

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 2.56 15.22 27.16 39.11
SymBa-GCN 62.58 63.22 63.93 63.96
CaFo-GCN 11.00 11.00 11.00 11.00
PEPITA-GCN 64.82 84.82 102.92 121.62
FF-LA-GCN (Sec 3.1) 55.26 55.26 55.26 55.26
FF-VN-GCN (Sec 3.1) 56.37 56.37 57.72 57.75
SF-GCN (Sec 3.2) 57.72 57.72 57.72 57.72
SF-Top-To-Loss-GCN (Sec 3.3) 41.14 50.77 60.39 69.59
SF-Top-To-Input-GCN (Sec 3.3) 58.71 69.43 69.72 69.95

Backpropagation-SAGE 38.12 59.38 79.21 99.04
SymBa-SAGE 168.62 168.62 168.62 168.62
CaFo-SAGE 11.98 11.98 11.98 11.98
PEPITA-SAGE 99.97 126.34 152.01 177.67
FF-LA-SAGE (Sec 3.1) 163.08 163.08 163.08 163.08
FF-VN-SAGE (Sec 3.1) 162.41 162.41 162.41 162.41
SF-SAGE (Sec 3.2) 93.77 93.77 93.77 93.77
SF-Top-To-Loss-SAGE (Sec 3.3) 76.98 86.61 96.24 105.87
SF-Top-To-Input-SAGE (Sec 3.3) 95.97 116.35 116.58 116.87

Backpropagation-GAT 16.96 98.61 179.90 261.51
SymBa-GAT 316.04 316.04 316.04 316.04
CaFo-GAT 11.00 11.75 11.75 11.75
PEPITA-GAT 68.37 156.77 243.17 333.78
FF-LA-GAT (Sec 3.1) 265.23 265.23 265.25 265.25
FF-VN-GAT (Sec 3.1) 309.59 309.62 309.62 309.62
SF-GAT (Sec 3.2) 141.61 141.61 141.61 141.61
SF-Top-To-Loss-GAT (Sec 3.3) 125.81 135.07 145.07 154.15
SF-Top-To-Input-GAT (Sec 3.3) 143.29 154.68 154.22 154.38

(c) AMAZON

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 5.20 15.01 23.69 32.36
SymBa-GCN 106.78 106.78 106.78 106.78
CaFo-GCN 5.55 5.55 5.56 5.56
PEPITA-GCN 41.12 53.31 64.39 75.46
FF-LA-GCN (Sec 3.1) 88.53 89.43 89.43 89.43
FF-VN-GCN (Sec 3.1) 92.33 92.33 92.33 92.33
SF-GCN (Sec 3.2) 34.81 34.81 34.81 34.81
SF-Top-To-Loss-GCN (Sec 3.3) 21.79 26.08 29.27 34.11
SF-Top-To-Input-GCN (Sec 3.3) 36.30 40.89 40.77 42.11

Backpropagation-SAGE 22.35 32.61 40.61 48.61
SymBa-SAGE 243.25 243.25 243.25 243.25
CaFo-SAGE 7.00 7.00 7.00 7.00
PEPITA-SAGE 58.43 69.47 79.58 89.69
FF-LA-SAGE (Sec 3.1) 230.49 230.49 230.49 230.49
FF-VN-SAGE (Sec 3.1) 228.54 228.54 228.54 228.54
SF-SAGE (Sec 3.2) 53.15 53.15 53.15 53.15
SF-Top-To-Loss-SAGE (Sec 3.3) 41.54 45.28 49.02 53.68
SF-Top-To-Input-SAGE (Sec 3.3) 56.36 64.81 65.04 64.81

Backpropagation-GAT 51.66 199.31 346.07 492.84
SymBa-GAT 1255.72 1255.72 1255.72 1255.72
CaFo-GAT 5.55 5.55 5.55 5.55
PEPITA-GAT 51.99 201.99 351.13 500.44
FF-LA-GAT (Sec 3.1) 1193.36 1193.36 1193.36 1193.36
FF-VN-GAT (Sec 3.1) 1241.26 1241.26 1241.26 1241.26
SF-GAT (Sec 3.2) 178.39 178.39 178.39 178.39
SF-Top-To-Loss-GAT (Sec 3.3) 166.81 170.87 174.34 178.02
SF-Top-To-Input-GAT (Sec 3.3) 181.03 185.83 185.01 185.83

24

Published as a conference paper at ICLR 2024

Table 4: (Continued from the previous table) GPU memory usage (in MB) for node classification.
The best results are in bold font, and the best results among the forward learning methods are in red.

(d) GITHUB

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 12.41 42.81 73.22 103.62
SymBa-GCN 86.64 87.01 87.01 87.01
CaFo-GCN 19.22 19.22 19.22 19.22
PEPITA-GCN 42.78 84.96 127.15 169.33
FF-LA-GCN (Sec 3.1) 84.49 84.49 84.49 84.49
FF-VN-GCN (Sec 3.1) 86.65 87.01 87.01 87.01
SF-GCN (Sec 3.2) 62.64 62.64 62.64 62.64
SF-Top-To-Loss-GCN (Sec 3.3) 81.30 99.71 118.12 136.00
SF-Top-To-Input-GCN (Sec 3.3) 63.19 81.49 81.80 82.38

Backpropagation-SAGE 19.08 56.54 94.00 131.46
SymBa-SAGE 98.07 98.07 98.07 98.07
CaFo-SAGE 19.47 19.47 19.47 19.47
PEPITA-SAGE 49.44 98.29 147.14 195.98
FF-LA-SAGE (Sec 3.1) 98.65 98.65 98.65 98.65
FF-VN-SAGE (Sec 3.1) 98.07 98.07 98.07 98.07
SF-SAGE (Sec 3.2) 68.10 68.10 68.10 68.10
SF-Top-To-Loss-SAGE (Sec 3.3) 87.01 105.42 123.83 142.24
SF-Top-To-Input-SAGE (Sec 3.3) 69.19 106.42 106.71 107.57

Backpropagation-GAT 70.46 456.12 842.55 1228.98
SymBa-GAT 850.82 850.82 850.82 850.82
CaFo-GAT 19.22 19.22 19.22 19.22
PEPITA-GAT 55.10 453.16 851.37 1250.04
FF-LA-GAT (Sec 3.1) 796.80 797.53 797.53 797.53
FF-VN-GAT (Sec 3.1) 850.83 850.83 850.83 850.83
SF-GAT (Sec 3.2) 444.83 444.83 444.83 444.83
SF-Top-To-Loss-GAT (Sec 3.3) 463.50 481.91 500.32 519.08
SF-Top-To-Input-GAT (Sec 3.3) 445.10 463.59 463.59 463.59

(e) CORAML

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 0.83 7.99 10.07 12.58
SymBa-GCN 30.71 30.71 30.71 30.71
CaFo-GCN 7.22 7.61 7.61 7.61
PEPITA-GCN 55.80 63.90 66.92 69.93
FF-LA-GCN (Sec 3.1) 25.73 25.74 25.74 25.74
FF-VN-GCN (Sec 3.1) 25.99 26.14 26.14 26.14
SF-GCN (Sec 3.2) 41.56 41.56 41.56 41.56
SF-Top-To-Loss-GCN (Sec 3.3) 19.66 19.25 20.56 22.24
SF-Top-To-Input-GCN (Sec 3.3) 48.25 49.47 49.16 52.56

Backpropagation-SAGE 33.66 47.25 51.49 54.93
SymBa-SAGE 263.63 263.63 263.63 263.63
CaFo-SAGE 12.84 12.84 12.84 12.84
PEPITA-SAGE 87.37 96.56 100.67 105.23
FF-LA-SAGE (Sec 3.1) 259.62 259.62 259.62 259.62
FF-VN-SAGE (Sec 3.1) 258.92 258.92 258.92 258.92
SF-SAGE (Sec 3.2) 79.71 79.71 79.71 79.71
SF-Top-To-Loss-SAGE (Sec 3.3) 61.16 62.87 64.64 66.04
SF-Top-To-Input-SAGE (Sec 3.3) 92.35 98.58 98.57 94.90

Backpropagation-GAT 5.65 24.03 38.63 52.80
SymBa-GAT 134.08 134.08 134.08 134.08
CaFo-GAT 7.23 7.62 7.62 7.62
PEPITA-GAT 56.65 76.84 92.39 107.50
FF-LA-GAT (Sec 3.1) 110.94 111.28 111.28 111.28
FF-VN-GAT (Sec 3.1) 129.36 129.36 129.36 129.36
SF-GAT (Sec 3.2) 55.75 55.75 55.75 55.75
SF-Top-To-Loss-GAT (Sec 3.3) 34.49 33.53 34.91 38.37
SF-Top-To-Input-GAT (Sec 3.3) 62.67 63.76 67.17 64.20

25

Published as a conference paper at ICLR 2024

F.2 LINK PREDICTION RESULTS

• Figure 6 presents the link prediction accuracy (y-axis) vs. memory usage increase (x-axis) per
graph neural networks.

• Table 5 presents the link prediction performance of GCN, SAGE, and GAT models averaged over
five runs on five real-world graphs, obtained with a different number of layers, and using different
learning approaches.

• Table 6 presents the GPU memory usage (in MB) during the GNN training for link prediction,
observed with a different number of layers, and using different learning approaches.

1.00× 1.25× 1.50× 1.75×

80

90

100

R
O

C
 A

U
C

 (%
)

B
et

te
rBetter

1.00× 1.25× 1.50× 1.75×

80

90

100

B
et

te
rBetter

1.00× 1.25× 1.50× 1.75×

80

90

100

B
et

te
rBetter

1.0× 1.5× 2.0× 2.5× 3.0×

70

80

90

R
O

C
 A

U
C

 (%
)

B
et

te
rBetter

1.0× 1.5× 2.0× 2.5× 3.0×

70

80

90

B
et

te
rBetter

1.0× 1.5× 2.0× 2.5× 3.0×

70

80

90

B
et

te
rBetter

1.0× 1.2× 1.4× 1.6×
Mem usage relative to 1-layer model

70

80

90

R
O

C
 A

U
C

 (%
)

B
et

te
rBetter

(1) 2-layer models

1.0× 1.2× 1.4× 1.6×
Mem usage relative to 1-layer model

70

80

90

B
et

te
rBetter

(2) 3-layer models

1.0× 1.2× 1.4× 1.6×
Mem usage relative to 1-layer model

70

80

90

B
et

te
rBetter

(3) 4-layer models

 G
C

N

 G
AT

 S

A
G

E

SF-GCN
BP-GCN

SF-GAT
BP-GAT

SF-SAGE
BP-SAGE

Amazon
GitHub

CiteSeer
PubMed

CoraML

Figure 6: Link prediction performance (y-axis) vs. memory usage increase (x-axis). The proposed
single-forward approach (SF, empty symbols) outperforms backpropagation (BP, filled symbols)
(corresponding to most lines going towards the lower right corner), with no increase in memory
usage as more layers are used. Lines towards the lower right corner (SF outperforms BP), and upper
right corner (BP outperforms SF); horizontal lines (both perform the same).

26

Published as a conference paper at ICLR 2024

Table 5: Link prediction performance of GCN, SAGE, and GAT averaged over five runs on five
real-world graphs, obtained with a different number of layers, and using different learning methods.
The best results are in bold font, and the best results among the forward learning methods are in red.

(a) CITESEER

Method
ROC AUC (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 90.00±0.6 84.31±0.6 80.93±1.0 80.05±0.9
CaFo-GCN 81.35±0.9 86.89±0.7 87.60±0.7 88.17±0.7
ForwardGNN-SymBa-GCN 89.83±0.3 90.65±1.1 90.09±0.9 90.65±1.1
ForwardGNN-FF-GCN 85.11±0.7 91.94±0.5 91.95±0.5 91.94±0.5
ForwardGNN-CE-GCN 89.32±2.4 93.61±1.0 93.49±0.9 93.61±1.0
ForwardGNN-CE-Top-To-Input-GCN 92.15±0.6 88.39±1.1 88.47±0.7 88.06±0.6

Backpropagation-SAGE 86.46±0.5 70.63±0.8 68.35±1.4 67.71±1.5
CaFo-SAGE 73.42±1.1 65.64±4.0 60.20±2.0 57.99±1.6
ForwardGNN-SymBa-SAGE 73.68±0.9 71.31±3.0 71.34±3.0 71.31±3.0
ForwardGNN-FF-SAGE 85.31±0.4 85.01±0.4 85.13±0.4 85.01±0.4
ForwardGNN-CE-SAGE 87.16±0.6 88.02±0.5 87.94±0.5 88.02±0.5
ForwardGNN-CE-Top-To-Input-SAGE 75.51±1.0 79.31±0.5 80.15±0.9 79.28±0.3

Backpropagation-GAT 88.42±0.5 84.83±0.8 81.02±3.0 77.27±0.9
CaFo-GAT 69.67±1.5 84.61±1.2 85.15±1.0 85.05±1.0
ForwardGNN-SymBa-GAT 85.16±0.4 86.49±0.4 86.49±0.4 86.49±0.4
ForwardGNN-FF-GAT 78.14±5.5 89.64±0.7 89.62±0.7 89.64±0.7
ForwardGNN-CE-GAT 87.68±0.4 90.22±0.6 90.12±0.5 90.22±0.6
ForwardGNN-CE-Top-To-Input-GAT 88.21±0.7 84.98±0.7 84.20±1.0 85.06±0.4

(b) PUBMED

Method
ROC AUC (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 91.83±0.3 88.90±0.2 89.20±0.2 89.41±0.2
CaFo-GCN 86.35±1.7 89.92±1.2 90.70±1.2 91.08±1.0
ForwardGNN-SymBa-GCN 96.20±0.2 95.56±0.5 95.74±0.3 95.56±0.5
ForwardGNN-FF-GCN 96.53±0.1 96.86±0.1 96.87±0.1 96.86±0.1
ForwardGNN-CE-GCN 95.30±0.1 96.31±0.1 96.23±0.1 96.31±0.1
ForwardGNN-CE-Top-To-Input-GCN 96.84±0.1 94.15±0.3 94.03±0.2 93.96±0.2

Backpropagation-SAGE 59.38±0.8 81.41±0.5 80.81±1.0 77.06±2.4
CaFo-SAGE 73.47±1.0 68.17±1.4 66.22±1.5 66.95±1.0
ForwardGNN-SymBa-SAGE 77.61±0.2 77.56±0.2 77.56±0.2 77.56±0.2
ForwardGNN-FF-SAGE 82.92±0.5 82.69±0.5 82.81±0.5 82.69±0.5
ForwardGNN-CE-SAGE 83.81±0.4 87.07±0.4 86.71±0.4 87.07±0.4
ForwardGNN-CE-Top-To-Input-SAGE 86.46±0.4 85.51±1.1 84.05±0.7 84.71±0.6

Backpropagation-GAT 81.36±0.6 78.85±0.4 78.59±0.4 78.31±0.4
CaFo-GAT 77.25±0.7 81.92±3.1 81.78±3.2 82.06±3.0
ForwardGNN-SymBa-GAT 91.96±0.3 92.01±0.3 91.97±0.3 92.01±0.3
ForwardGNN-FF-GAT 92.33±0.3 92.36±0.3 92.36±0.3 92.36±0.3
ForwardGNN-CE-GAT 89.22±0.3 90.36±0.2 90.53±0.2 90.36±0.2
ForwardGNN-CE-Top-To-Input-GAT 92.38±0.2 89.14±0.2 89.71±0.2 89.30±0.4

27

Published as a conference paper at ICLR 2024

Table 5: (Continued from the previous table) Link prediction performance of GCN, SAGE, and GAT
averaged over five runs on five real-world graphs, obtained with a different number of layers, and
using different learning methods. The best results are in bold font, and the best results among the
forward learning methods are in red.

(c) AMAZON

Method
ROC AUC (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 82.41±0.3 81.38±0.3 88.69±0.1 89.47±0.2
CaFo-GCN 81.11±1.1 94.02±0.6 94.05±0.6 94.00±0.6
ForwardGNN-SymBa-GCN 82.26±7.4 83.95±6.2 84.06±6.4 83.95±6.2
ForwardGNN-FF-GCN 96.18±0.2 96.16±0.2 96.17±0.2 96.16±0.2
ForwardGNN-CE-GCN 93.84±0.2 95.49±0.2 95.38±0.2 95.49±0.2
ForwardGNN-CE-Top-To-Input-GCN 97.13±0.1 96.81±0.3 96.32±0.6 95.84±0.7

Backpropagation-SAGE 70.73±0.4 83.43±0.1 86.10±0.2 87.07±2.5
CaFo-SAGE 70.93±1.0 75.30±1.9 77.28±1.6 78.20±1.7
ForwardGNN-SymBa-SAGE 96.25±0.1 96.46±0.1 96.46±0.1 96.46±0.1
ForwardGNN-FF-SAGE 94.07±0.5 94.94±0.6 94.86±0.5 94.94±0.6
ForwardGNN-CE-SAGE 93.28±0.1 94.96±0.1 94.88±0.1 94.96±0.1
ForwardGNN-CE-Top-To-Input-SAGE 97.13±0.1 95.11±0.6 95.15±0.6 95.12±0.6

Backpropagation-GAT 71.67±0.8 68.54±1.2 67.02±1.8 66.50±1.8
CaFo-GAT 73.73±1.1 88.09±3.9 90.58±2.1 91.38±2.3
ForwardGNN-SymBa-GAT 97.09±0.1 94.86±4.4 97.01±0.1 94.86±4.4
ForwardGNN-FF-GAT 94.00±1.2 94.10±1.1 94.10±1.1 94.10±1.1
ForwardGNN-CE-GAT 92.31±0.5 94.34±0.2 94.36±0.2 94.34±0.2
ForwardGNN-CE-Top-To-Input-GAT 96.90±0.1 96.97±0.6 93.02±0.9 93.41±0.6

(d) CORAML

Method
ROC AUC (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 82.20±0.3 79.86±0.7 79.97±0.6 79.71±0.5
CaFo-GCN 73.23±0.6 83.88±3.2 85.26±2.7 85.41±2.8
ForwardGNN-SymBa-GCN 87.68±5.3 87.52±5.6 88.02±5.8 87.52±5.6
ForwardGNN-FF-GCN 91.91±1.3 92.46±0.9 92.39±1.1 92.46±0.9
ForwardGNN-CE-GCN 91.77±0.3 93.30±0.3 93.26±0.3 93.30±0.3
ForwardGNN-CE-Top-To-Input-GCN 93.64±0.2 91.03±0.6 91.57±0.4 91.53±0.9

Backpropagation-SAGE 65.48±0.6 76.75±2.0 74.65±0.5 74.21±0.8
CaFo-SAGE 63.28±0.9 67.46±2.3 69.46±0.7 70.67±0.5
ForwardGNN-SymBa-SAGE 71.12±8.7 78.22±1.8 78.00±1.9 78.22±1.8
ForwardGNN-FF-SAGE 89.06±0.5 88.96±0.5 89.00±0.5 88.96±0.5
ForwardGNN-CE-SAGE 90.36±0.6 91.96±0.5 91.93±0.4 91.96±0.5
ForwardGNN-CE-Top-To-Input-SAGE 89.39±0.3 89.72±0.5 89.32±0.5 89.18±0.4

Backpropagation-GAT 76.75±0.8 77.69±1.0 69.61±0.3 66.04±0.7
CaFo-GAT 71.80±0.6 83.29±2.3 84.71±1.3 85.06±1.1
ForwardGNN-SymBa-GAT 80.41±10.8 85.03±3.6 85.04±3.6 85.03±3.6
ForwardGNN-FF-GAT 89.42±0.8 90.45±0.9 90.45±0.9 90.45±0.9
ForwardGNN-CE-GAT 88.96±0.4 90.98±0.4 90.96±0.5 90.98±0.4
ForwardGNN-CE-Top-To-Input-GAT 91.07±0.4 88.87±0.8 89.90±0.5 89.70±0.6

28

Published as a conference paper at ICLR 2024

Table 5: (Continued from the previous table) Link prediction performance of GCN, SAGE, and GAT
averaged over five runs on five real-world graphs, obtained with a different number of layers, and
using different learning methods. The best results are in bold font, and the best results among the
forward learning methods are in red.

(e) GITHUB

Method
ROC AUC (↑)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 89.60±0.1 91.36±0.1 91.71±0.1 91.79±0.1
CaFo-GCN 91.10±0.1 91.42±0.1 91.32±0.2 91.24±0.2
ForwardGNN-SymBa-GCN 81.41±15.7 81.51±15.8 81.51±15.8 81.51±15.8
ForwardGNN-FF-GCN 93.27±0.1 93.48±0.0 93.48±0.0 93.48±0.0
ForwardGNN-CE-GCN 91.87±0.1 91.30±0.1 91.45±0.1 91.30±0.1
ForwardGNN-CE-Top-To-Input-GCN 94.09±0.1 91.82±0.4 91.44±0.4 91.64±0.5

Backpropagation-SAGE 83.85±0.1 84.45±0.2 85.03±0.8 86.90±0.2
CaFo-SAGE 76.63±0.9 77.21±1.0 77.29±0.9 77.37±0.9
ForwardGNN-SymBa-SAGE 93.88±0.1 92.55±2.3 93.69±0.0 92.55±2.3
ForwardGNN-FF-SAGE 89.64±0.3 89.62±0.3 89.63±0.3 89.62±0.3
ForwardGNN-CE-SAGE 87.17±0.3 88.35±0.3 88.29±0.4 88.35±0.3
ForwardGNN-CE-Top-To-Input-SAGE 88.93±0.6 84.45±1.3 84.43±0.9 83.88±0.7

Backpropagation-GAT 78.75±0.4 73.41±1.1 73.94±1.4 68.26±0.5
CaFo-GAT 81.88±0.9 82.66±0.6 83.09±0.7 83.12±0.7
ForwardGNN-SymBa-GAT 92.99±0.2 92.53±0.2 92.49±0.2 92.53±0.2
ForwardGNN-FF-GAT 88.18±0.6 88.63±0.8 88.63±0.8 88.63±0.8
ForwardGNN-CE-GAT 82.72±0.4 82.10±0.5 82.13±0.6 82.10±0.5
ForwardGNN-CE-Top-To-Input-GAT 89.59±0.2 80.91±1.2 81.39±0.3 81.81±0.4

Table 6: GPU memory usage (in MB) for link prediction. The best results are in bold font, and the
best results among the forward learning methods are in red.

(a) CITESEER

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 10.16 13.48 16.41 18.14
CaFo-GCN 13.19 13.19 13.24 13.24
ForwardGNN-SymBa-GCN 17.82 18.04 18.04 18.04
ForwardGNN-FF-GCN 17.84 18.06 18.06 18.06
ForwardGNN-CE-GCN 14.47 14.47 14.47 14.47
ForwardGNN-CE-Top-To-Input-GCN 21.64 24.79 24.61 25.01

Backpropagation-SAGE 22.38 26.28 30.13 34.78
CaFo-SAGE 13.44 13.44 13.62 13.62
ForwardGNN-SymBa-SAGE 29.07 29.07 29.07 29.07
ForwardGNN-FF-SAGE 29.09 29.09 29.09 29.09
ForwardGNN-CE-SAGE 24.17 24.17 24.17 24.17
ForwardGNN-CE-Top-To-Input-SAGE 32.93 39.41 39.78 39.03

Backpropagation-GAT 18.39 30.70 41.60 53.16
CaFo-GAT 13.20 13.20 13.20 13.20
ForwardGNN-SymBa-GAT 25.66 26.23 26.23 26.23
ForwardGNN-FF-GAT 25.68 26.25 26.25 26.25
ForwardGNN-CE-GAT 21.91 21.91 21.91 21.91
ForwardGNN-CE-Top-To-Input-GAT 31.61 33.78 33.03 32.89

29

Published as a conference paper at ICLR 2024

Table 6: (Continued from the previous table) GPU memory usage (in MB) for link prediction. The
best results are in bold font, and the best results among the forward learning methods are in red.

(b) PUBMED

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 68.44 79.70 90.37 103.04
CaFo-GCN 76.86 76.86 76.86 76.86
ForwardGNN-SymBa-GCN 123.38 123.38 123.38 123.38
ForwardGNN-FF-GCN 123.59 123.59 123.59 123.59
ForwardGNN-CE-GCN 95.39 95.39 95.39 95.39
ForwardGNN-CE-Top-To-Input-GCN 106.89 118.13 118.13 118.05

Backpropagation-SAGE 104.82 124.65 144.48 164.31
CaFo-SAGE 77.76 77.76 77.76 77.76
ForwardGNN-SymBa-SAGE 161.00 161.00 161.00 161.00
ForwardGNN-FF-SAGE 161.22 161.22 161.22 161.22
ForwardGNN-CE-SAGE 133.19 133.19 133.19 133.19
ForwardGNN-CE-Top-To-Input-SAGE 144.99 166.28 166.36 165.61

Backpropagation-GAT 121.26 184.54 249.24 313.18
CaFo-GAT 76.11 76.11 76.86 76.86
ForwardGNN-SymBa-GAT 176.70 176.70 176.70 176.70
ForwardGNN-FF-GAT 176.92 176.92 176.92 176.92
ForwardGNN-CE-GAT 148.60 148.60 148.60 148.60
ForwardGNN-CE-Top-To-Input-GAT 160.54 170.59 171.04 170.29

(c) AMAZON

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 157.68 164.72 171.76 178.80
CaFo-GCN 158.62 158.62 158.62 158.62
ForwardGNN-SymBa-GCN 307.27 307.27 307.27 307.27
ForwardGNN-FF-GCN 307.85 307.85 307.85 307.85
ForwardGNN-CE-GCN 232.11 232.55 232.55 232.55
ForwardGNN-CE-Top-To-Input-GCN 182.17 186.42 186.42 186.47

Backpropagation-SAGE 177.82 185.83 193.83 201.83
CaFo-SAGE 160.07 160.07 160.07 160.07
ForwardGNN-SymBa-SAGE 326.97 326.97 326.97 326.97
ForwardGNN-FF-SAGE 327.55 327.55 327.55 327.55
ForwardGNN-CE-SAGE 252.25 252.25 252.25 252.25
ForwardGNN-CE-Top-To-Input-SAGE 203.32 212.05 212.05 212.05

Backpropagation-GAT 249.88 348.22 446.55 544.89
CaFo-GAT 158.62 158.62 158.62 158.79
ForwardGNN-SymBa-GAT 400.60 400.60 400.60 400.60
ForwardGNN-FF-GAT 401.18 401.18 401.18 401.18
ForwardGNN-CE-GAT 324.31 324.31 324.31 324.31
ForwardGNN-CE-Top-To-Input-GAT 273.61 277.97 277.97 277.86

30

Published as a conference paper at ICLR 2024

Table 6: (Continued from the previous table) GPU memory usage (in MB) for link prediction. The
best results are in bold font, and the best results among the forward learning methods are in red.

(d) CORAML

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 17.58 19.55 21.65 23.62
CaFo-GCN 19.92 19.92 19.92 19.92
ForwardGNN-SymBa-GCN 28.42 28.42 28.42 28.42
ForwardGNN-FF-GCN 28.46 28.46 28.46 28.46
ForwardGNN-CE-GCN 22.68 22.68 22.68 22.68
ForwardGNN-CE-Top-To-Input-GCN 61.34 61.34 61.36 62.08

Backpropagation-SAGE 55.84 59.28 63.43 66.87
CaFo-SAGE 24.66 25.00 25.00 25.00
ForwardGNN-SymBa-SAGE 66.06 66.06 66.06 66.06
ForwardGNN-FF-SAGE 66.10 66.10 66.10 66.10
ForwardGNN-CE-SAGE 60.94 60.94 60.94 60.94
ForwardGNN-CE-Top-To-Input-SAGE 100.92 107.69 107.72 104.29

Backpropagation-GAT 26.47 37.33 48.19 59.05
CaFo-GAT 19.05 19.05 19.05 19.05
ForwardGNN-SymBa-GAT 37.14 37.14 37.68 38.09
ForwardGNN-FF-GAT 37.18 37.18 37.72 38.13
ForwardGNN-CE-GAT 32.18 32.18 32.18 32.18
ForwardGNN-CE-Top-To-Input-GAT 65.54 68.17 68.17 67.25

(e) GITHUB

Method
GPU Memory Usage (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 390.25 416.72 442.69 469.09
CaFo-GCN 400.17 400.17 400.17 400.17
ForwardGNN-SymBa-GCN 751.07 751.07 751.07 751.07
ForwardGNN-FF-GCN 752.48 752.48 752.48 752.48
ForwardGNN-CE-GCN 569.88 569.88 569.88 569.88
ForwardGNN-CE-Top-To-Input-GCN 409.54 428.44 428.48 428.48

Backpropagation-SAGE 400.17 437.63 475.09 512.55
CaFo-SAGE 401.16 401.16 401.16 401.16
ForwardGNN-SymBa-SAGE 762.69 762.69 762.69 762.69
ForwardGNN-FF-SAGE 764.10 764.10 764.10 764.10
ForwardGNN-CE-SAGE 581.54 581.54 581.54 581.54
ForwardGNN-CE-Top-To-Input-SAGE 420.49 459.05 459.05 459.23

Backpropagation-GAT 633.29 901.83 1171.35 1441.82
CaFo-GAT 400.17 400.17 400.17 400.17
ForwardGNN-SymBa-GAT 994.10 994.10 994.10 994.10
ForwardGNN-FF-GAT 995.52 995.52 995.52 995.52
ForwardGNN-CE-GAT 812.95 812.95 812.95 812.95
ForwardGNN-CE-Top-To-Input-GAT 652.58 671.37 671.37 671.37

31

Published as a conference paper at ICLR 2024

F.3 TRAINING TIME

To evaluate the training efficiency of different learning approaches, we report in Table 7 the time
taken to train GNNs for 100 epochs for node classification on GITHUB and CITESEER, with a
varying number of GNN layers. From Table 7, we make the following observations.
• The proposed forward learning approaches in Sections 3.1 and 3.2 train GCN and SAGE

models much faster than backpropagation (up to 9 times when using four layers). With
these greedy forward learning approaches, such as those presented in Sections 3.1 and 3.2, GNN
training can be made much more efficient than with backpropagation by exploiting the fact that
the neighborhood aggregation procedure can be performed just once while the parameters of each
GNN layer are optimized over multiple training epochs. This is because, similar to You et al.
(2020), the input to each layer (i.e., the output from the lower layer) remains the same throughout
the training of the layer, and thus the neighborhood aggregation results also do not change due
to the way the greedy forward training scheme and GNNs work. This way, only the feature
update step after the aggregation needs to be performed multiple times during the training, while
the aggregation is done only once, which can lead to a significant speedup in training GNNs,
especially for large-scale graphs.

• While the training with forward learning approaches takes longer than BP in some cases, the
increase in training time in such cases is still modest in comparison to BP (e.g., up to 1.6 times
longer time to train four-layer GCNs on GITHUB). With forward learning approaches with top-
down signal paths, or with models like GAT, the aforementioned speedup cannot be used, as the
output from the neighborhood aggregation procedure does no longer remain the same throughout
the training of the layer, due to the changes in the input resulting from the incorporation of top-
down signals, or due to the changes in the parameters used for attentive neighborhood aggregation.
Still, the training time increase in such cases is not that significant, and the forward learning
methods can scale up in a much more memory-efficient manner than BP.

• The single-forward (SF) approach improves the training efficiency of the forward-forward
based approaches as SF avoids the computational overhead to perform multiple forward passes.

32

Published as a conference paper at ICLR 2024

Table 7: Training time (in seconds) for node classification. The best results are in bold font, and the
best results among the forward learning methods are in red.

(a) GITHUB

Method
Training time (seconds) (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 1.77±1.7 5.54±1.7 10.37±3.2 13.04±1.7
SymBa-GCN 1.41±1.0 2.09±1.0 2.78±1.0 3.48±1.0
PEPITA-GCN 1.40±1.0 7.15±0.8 13.09±0.8 18.95±0.8
FF-LA-GCN (Sec 3.1) 1.47±1.2 2.06±1.2 2.65±1.3 3.24±1.3
FF-VN-GCN (Sec 3.1) 1.47±1.0 2.19±1.0 2.91±1.0 3.64±1.1
SF-GCN (Sec 3.2) 1.10±0.9 1.57±0.9 2.04±0.9 2.52±0.9
SF-Top-To-Loss-GCN (Sec 3.3) 5.66±0.8 11.23±1.5 16.06±1.1 21.15±1.1
SF-Top-To-Input-GCN (Sec 3.3) 5.67±0.8 10.80±0.9 15.91±0.8 21.12±1.1

Backpropagation-SAGE 4.54±2.4 7.99±2.3 11.01±1.6 14.91±2.1
SymBa-SAGE 1.28±1.4 1.55±1.4 1.82±1.4 2.09±1.4
PEPITA-SAGE 6.62±1.4 11.74±0.9 17.58±1.5 22.50±0.7
FF-LA-SAGE (Sec 3.1) 1.31±1.3 1.68±1.4 2.04±1.4 2.40±1.3
FF-VN-SAGE (Sec 3.1) 0.83±0.7 1.11±0.7 1.38±0.7 1.66±0.7
SF-SAGE (Sec 3.2) 0.82±0.7 1.08±0.7 1.34±0.7 1.61±0.7
SF-Top-To-Loss-SAGE (Sec 3.3) 4.60±1.5 7.53±0.8 10.99±0.8 14.61±1.0
SF-Top-To-Input-SAGE (Sec 3.3) 4.08±0.8 10.44±0.8 16.76±0.8 23.11±0.8

Backpropagation-GAT 1.89±2.4 1.79±1.7 3.45±3.4 2.64±1.5
SymBa-GAT 1.72±0.8 2.85±0.8 3.98±0.8 5.12±0.8
PEPITA-GAT 0.83±0.8 1.13±0.8 1.63±0.9 1.85±0.8
FF-LA-GAT (Sec 3.1) 1.70±0.9 2.78±0.9 3.85±0.9 4.93±0.9
FF-VN-GAT (Sec 3.1) 1.75±0.8 2.90±0.8 4.06±0.8 5.24±0.8
SF-GAT (Sec 3.2) 1.21±0.8 1.89±0.8 2.56±0.8 3.24±0.8
SF-Top-To-Loss-GAT (Sec 3.3) 1.59±1.3 2.36±1.4 2.70±1.0 3.35±0.9
SF-Top-To-Input-GAT (Sec 3.3) 1.25±0.8 2.41±1.5 3.45±2.0 3.24±0.8

(b) CITESEER

Method
Training time (seconds) (↓)

Layers=1 # Layers=2 # Layers=3 # Layers=4

Backpropagation-GCN 2.17±2.5 2.33±2.8 1.81±1.8 1.88±1.7
SymBa-GCN 1.96±1.5 2.81±1.5 3.67±1.5 4.54±1.5
PEPITA-GCN 1.02±1.0 1.33±1.0 1.84±1.3 2.16±1.5
FF-LA-GCN (Sec 3.1) 1.91±1.5 2.71±1.5 3.52±1.5 4.34±1.5
FF-VN-GCN (Sec 3.1) 2.09±1.7 3.00±1.7 3.92±1.7 4.83±1.8
SF-GCN (Sec 3.2) 1.44±1.7 1.67±1.7 1.90±1.7 2.13±1.7
SF-Top-To-Loss-GCN (Sec 3.3) 0.93±0.8 1.27±0.7 1.68±0.8 1.97±0.8
SF-Top-To-Input-GCN (Sec 3.3) 1.08±1.0 1.55±1.2 2.14±1.5 2.47±1.5

Backpropagation-SAGE 2.03±2.3 2.51±2.7 2.62±2.7 2.24±2.0
SymBa-SAGE 2.21±2.1 2.90±2.1 3.59±2.1 4.27±2.1
PEPITA-SAGE 1.27±0.8 1.49±0.9 1.66±0.9 2.47±1.7
FF-LA-SAGE (Sec 3.1) 1.90±1.7 2.57±1.7 3.19±1.8 3.83±1.9
FF-VN-SAGE (Sec 3.1) 1.34±1.0 1.92±1.0 2.49±1.0 3.07±1.0
SF-SAGE (Sec 3.2) 1.24±1.4 1.43±1.4 1.62±1.4 1.81±1.4
SF-Top-To-Loss-SAGE (Sec 3.3) 1.15±0.7 2.03±1.5 1.78±0.8 2.04±0.7
SF-Top-To-Input-SAGE (Sec 3.3) 1.22±0.8 2.44±2.0 1.93±0.8 2.28±0.7

Backpropagation-GAT 1.41±1.8 2.30±2.9 1.69±1.9 1.64±1.7
SymBa-GAT 1.52±0.7 2.43±0.7 3.31±0.7 4.21±0.7
PEPITA-GAT 0.76±0.8 0.89±0.8 1.50±1.4 1.16±0.8
FF-LA-GAT (Sec 3.1) 1.71±1.0 2.67±1.0 3.62±1.1 4.61±1.1
FF-VN-GAT (Sec 3.1) 1.46±0.8 2.29±0.9 3.13±0.9 3.97±0.9
SF-GAT (Sec 3.2) 1.09±1.2 1.32±1.2 1.55±1.2 1.77±1.2
SF-Top-To-Loss-GAT (Sec 3.3) 0.82±0.8 1.05±0.8 1.75±1.4 1.55±0.8
SF-Top-To-Input-GAT (Sec 3.3) 0.81±0.7 1.03±0.8 1.20±0.7 1.41±0.7

33

Published as a conference paper at ICLR 2024

1× 6× 12× 18× 24×
Mem usage relative to 1-layer model

50

60

70

80

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(1) 2-layer models

1× 6× 12× 18× 24×
Mem usage relative to 1-layer model

50

60

70

80

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(2) 3-layer models

1× 6× 12× 18× 24×
Mem usage relative to 1-layer model

50

60

70

80

A
cc

ur
ac

y
(%

)

B
et

te
r

Better

(3) 4-layer models

SF-GCN
BP-GCN

SF-GAT
BP-GAT

SF-SAGE
BP-SAGE

Planetoid-PubMed
Planetoid-Cora

Planetoid-CiteSeer

Figure 7: The single-forward approach (SF, empty symbols) vs. backpropagation (BP, filled sym-
bols) on node classification in terms of classification accuracy (y-axis) vs. memory usage increase
(x-axis). Lines towards the lower right corner (SF outperforms BP), and upper right corner (BP
outperforms SF); horizontal lines (both perform the same).

0 100 200
Mem usage (MB)

40

60

80

A
cc

ur
ac

y
(%

)

Better

B
et

te
r

Planetoid-PubMed

0 50 100
Mem usage (MB)

20

40

60

80

A
cc

ur
ac

y
(%

)

Better
B

et
te

r

Planetoid-Cora

0 200
Mem usage (MB)

20

40

60

A
cc

ur
ac

y
(%

)
Better

B
et

te
r

Planetoid-CiteSeer

GCN
GAT

SAGE SF-TopDown (Sec 3.3)
SF (Sec 3.2)

FF-LA (Sec 3.1)
FF-VN (Sec 3.1)

FF-SymBa
CaFo

PEPITA

Figure 8: Node classification accuracy (y-axis) and memory usage (x-axis) on Planetoid datasets
(Table 8) as three GNNs (denoted by symbol shape) are trained with different forward learning
approaches (denoted by symbol color).

Table 8: Summary statistics of the graph datasets with limited training data.

Dataset # Nodes # Edges # Training Nodes # Validation Nodes # Testing Nodes # Features # Classes

PLANETOID-CORA 2,708 10,556 140 500 1,000 1,433 7
PLANETOID-CITESEER 3,327 9,104 120 500 1,000 3,703 6
PLANETOID-PUBMED 19,717 88,648 60 500 1,000 500 3

F.4 NODE CLASSIFICATION RESULTS WITH LIMITED TRAINING DATA

In this section, we evaluate how well the proposed forward learning approach performs in compari-
son to BP when given a small amount of training data. To that end, we use three citation networks,
namely, PLANETOID-CORA, PLANETOID-PUBMED, and PLANETOID-CITESEER listed in Table 8,
which provide much less amount of training data than the graphs used in the main text (Table 2).

Figure 7 shows the classification accuracy (y-axis) versus memory usage increase (x-axis) obtained
with the single forward (SF) and backpropagation (BP) algorithms on the three graphs with limited
training data. From Figure 7, we make the following observations.
• In these datasets with sparse training data, the proposed SF (empty symbols) perform similarly to

BP (filled symbols), or even outperforms BP in a few cases, e.g., when four GNN layers are used.
These results are similar to the results obtained in the setup with richer training data (Figure 2a).

• With two layers (Figure 7(1)), BP mostly outperforms SF, which is different from the results in
the counterpart in Figure 2a(1), where BP and SF performed similarly. The contrastive single
forward learning mechanism tends to require more training data than BP to arrive at a similar
level of predictive accuracy, but the gap closes as more layers are used.

• SF shows a near-constant memory usage, while the relative memory usage of BP keeps increasing
(up to around 21×). as the number of layers increases.

34

Published as a conference paper at ICLR 2024

Figure 8 shows the node classification accuracy (y-axis) versus memory usage (x-axis), as GNNs
(denoted by the symbol shape) are trained with different forward learning approaches (denoted by
the symbol color). Overall, Figure 8 shows a similar pattern to Figure 3, which shows the perfor-
mance of forward learning approaches on datasets with richer training labels. Thus our discussion
on Figure 3 in Section 4.3 similarly applies to Figure 8.

F.5 IMPACT OF THE DIRECTIONALITY OF EDGES BETWEEN REAL AND VIRTUAL NODES

In the main text, the results of the proposed approaches that employ virtual nodes were obtained
using the augmented graph where real nodes and virtual nodes are connected via bidirectional edges
(i.e., in both ways between the real and virtual nodes). Since virtual nodes are processed in the
same way as the real nodes, they aggregate information from a large number of real nodes, and then
propagate aggregated information back to those real nodes, which can potentially adversely impact
the classification performance. Here we evaluate a different approach to utilize virtual nodes, which
is to connect the real and virtual nodes via unidirectional edges (i.e., in one way from the real to the
virtual nodes), such that virtual nodes only receive information from the real nodes, without sending
the aggregated message back to them. In Figure 9, we report the node classification performance
when the edges between the real and virtual nodes are bidirectional or unidirectional, obtained with
(a) the forward-forward (FF) approach (Section 3.1), (b) the single forward (SF) approach (Sec-
tion 3.2), and (c-d) the SF approaches with the top-down signal path (Section 3.3). Results show
that the impact of using unidirectional edges, in comparison to when bidirectional edges are used,
varies a lot among forward learning approaches. With the FF approach (Figure 9(a)) and the SF
approach with the top-to-loss signal path (Figure 9(d)), using bidirectional edges led to better results
than using unidirectional edges in most cases. In particular, for the FF approach, the information
from the virtual nodes to the real nodes, which lacks when unidirectional edges are used, tends to
play an important role for the model to learn to distinguish between correct and incorrect classes. By
contrast, with the SF approach (Figure 9(b)), using unidirectional edges led to better performance
in several cases, especially on PUBMED and GITHUB. With the SF approach that employs the
top-to-input signal path (Figure 9(c)), both types of edges performed similarly to each other.

35

Published as a conference paper at ICLR 2024

25 50 75
Both ways: Real Virtual

25

50

75

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(1) Accuracy (%) w/ 2-layers

25 50 75 100
Both ways: Real Virtual

25

50

75

100

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(2) Accuracy (%) w/ 3-layers

25 50 75 100
Both ways: Real Virtual

25

50

75

100

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(3) Accuracy (%) w/ 4-layers

GCN SAGE GAT CiteSeer PubMed CoraML Amazon GitHub

(a) Performance with the forward-forward approach (Section 3.1).

80 85 90 95
Both ways: Real Virtual

80

85

90

95

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(1) Accuracy (%) w/ 2-layers

85 90 95
Both ways: Real Virtual

85

90

95
O

ne
 w

ay
: R

ea
l

V
ir

tu
al

(2) Accuracy (%) w/ 3-layers

85 90 95
Both ways: Real Virtual

85

90

95

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(3) Accuracy (%) w/ 4-layers

GCN SAGE GAT CiteSeer PubMed CoraML Amazon GitHub

(b) Performance with the single forward approach (Section 3.2).

85 90 95
Both ways: Real Virtual

85

90

95

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(1) Accuracy (%) w/ 2-layers

85 90 95
Both ways: Real Virtual

85

90

95

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(2) Accuracy (%) w/ 3-layers

85 90 95
Both ways: Real Virtual

85

90

95

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(3) Accuracy (%) w/ 4-layers

GCN SAGE GAT CiteSeer PubMed CoraML Amazon GitHub

(c) Performance with the single forward approach with the top-to-input signal path (Section 3.3).

40 60 80
Both ways: Real Virtual

40

60

80

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(1) Accuracy (%) w/ 2-layers

40 60 80
Both ways: Real Virtual

40

60

80

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(2) Accuracy (%) w/ 3-layers

40 60 80
Both ways: Real Virtual

40

60

80

O
ne

 w
ay

: R
ea

l
V

ir
tu

al

(3) Accuracy (%) w/ 4-layers

GCN SAGE GAT CiteSeer PubMed CoraML Amazon GitHub

(d) Performance with the single forward approach with the top-to-loss signal path (Section 3.3).

Figure 9: Node classification accuracy using virtual node-based forward learning approaches when
the edges between the real and virtual nodes are bidirectional (i.e., in both ways between the real
and virtual nodes), and unidirectional (i.e., in one way from the real to the virtual nodes), obtained
with (a) the forward-forward (FF) approach (Section 3.1), (b) the single forward (SF) approach (Sec-
tion 3.2), and (c-d) the SF approaches with the top-down signal path (Section 3.3).

36

	Introduction
	Background and Related Work
	Graph Neural Networks
	The Forward-Forward Algorithm

	Forward Learning of Graph Neural Networks
	Adapting the Forward-Forward Algorithm for Graph Neural Networks
	Forward Graph Learning via a Single Forward Pass
	Incorporating Top-Down Signals
	Application to Link Prediction

	Experiments
	Evaluation Setup
	Comparison With the Backpropagation Algorithm
	Comparison Among Forward Learning Approaches

	Conclusion
	Dataset Description
	Experimental Settings
	Algorithms
	Extensibility of ForwardGNN to Other Graph Learning Tasks
	Additional Related Work
	Alternative Approaches and Related Work for Learning GNNs
	Biologically-Inspired Learning Algorithms

	Additional Experimental Results
	Node Classification Results
	Link Prediction Results
	Training Time
	Node Classification Results with Limited Training Data
	Impact of the Directionality of Edges Between Real and Virtual Nodes

