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Abstract

Liberal political philosophy advocates for the policy of equal treatment as blindness, which
seeks to achieve fairness by treating individuals without considering their protected character-
istics directly. However, this policy has faced longstanding criticism for perpetuating existing
inequalities. In machine learning, this policy can be translated into the concept of fairness as
unawareness, and be measured using disparate treatment metrics such as Demographic Parity
(a.k.a. Statistical Parity). Our analysis reveals that Demographic Parity does not faithfully
measure whether individuals are being treated independently of the protected attribute by
the model. We introduce the Explanation Disparity metric to measure fairness under equal
treatment as blindness policy. Our metric evaluates the fairness of predictive models by
analyzing the extent to which the protected attribute can be inferred from the distribution of
explanation values, specifically using Shapley values. The proposed metric tests for statistical
independence of the explanation distributions over populations with different protected
characteristics. We show the theoretical properties of "Explanation Disparity" and devise an
equal treatment inspector based on the AUC of a Classifier Two-Sample Test. We experiment
with synthetic and natural data to demonstrate and compare the notion with related ones.
We release explanationspace, an open-source Python package with methods and tutorials.

1 Introduction

Liberal-oriented politics, put forward by scholars such as Friedman et al. (1990) and Nozick (1974), often
advocate for a policy of equal treatment as blindness, where fairness is aimed to be achieved by making
decisions without directly considering protected attributes. This principle can be translated to machine
learning as fairness by unawareness, where protected attributes are excluded from the training data (Simons
et al., 2021; Cornacchia et al., 2023; Chen et al., 2019a; Fabris et al., 2023). However, this policy of ignoring
the protected attribute has been historically widely criticized, by gender and ethnic studies (MacKinnon,
1989; Crenshaw, 1997; Minow, 1990), for example:

A notion of equality that demands disregarding a “difference” calls for assimilation to
an unstated norm. To strip away difference, then, is often to remove or ignore a feature
distinguishing an individual from a presumed norm [. . . ] but leaving that norm in place as
the measure for equal treatment.
Martha Minow, 1990. Making all the difference. 59-60

These critiques suggest that simply ignoring the protected attribute does not achieve equality; instead, it
risks perpetuating the very inequalities it seeks to eliminate. By analyzing the college admission use case in
Appendix A, we collect a set of requirements towards measuring the criticism of this policy and argue that
existing fairness metrics do not manage to account for inequalities in this policy. For example, individual
fairness (Dwork et al., 2012) cannot identify group discrimination. The measure of equal opportunity (Hardt
et al., 2016) focuses on discrepancies in error rates rather than differences in treatment and necessitates
labelled data. Similarly, causal fairness (Plecko and Bareinboim, 2024) demands background knowledge.
Unfortunately, both labelled data and sufficient background knowledge are often unavailable in many practical
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scenarios. Demographic Parity (DP), also called Statistical Parity, which compares the distributions of
predicted outcomes of a model f for different social groups has been proposed as a potential metric to measure
this effect by researchers(Simons et al., 2021; Heidari et al., 2019; Wachter et al., 2020). However, we show
that Demographic Parity may indicate fairness, even when groups are being treated differently by the model.

We propose the fairness metric of Explanation Disparity for supervised machine learning models, to measure
the longstanding criticism of the policy of equal treatment as blindness. The notion of Explanation Disparity
considers the contribution of non-protected features to the machine learning model output as explained by
Shapley values (Lundberg and Lee, 2017). If two social groups are treated the same, the distributions of
feature contributions, which we call explanation distributions, will not be distinguishable. Thus, Explanation
Disparity tests the independence of Shapley values with the protected feature, via a classifier two-sample
test that infers the protected attribute. We introduce a decision tool, the “Equal Treatment Inspector”, that
implements this idea. When detecting unequal treatment, it explains the features involved in such inequality,
supporting understanding the roots of unequal treatment in the machine learning model.

In summary, our contributions are:

1. The definition of Explanation Disparity metric, that measures the independence of the protected
attribute based on explanation distributions.

2. The definition of an “Equal Treatment Inspector” workflow, based on a classifier two-sample test, for
recognizing and explaining un-equal treatment.

3. The study of the formal relationships between Demographic Parity and Explanation Disparity.
4. Extensive experiments, both on synthetic and natural datasets, to demonstrate our method and

compare it with related work.
5. An open-source Python package explanationspace implementing the “Equal Treatment Inspector”,

which is scikit-learn compatible, and includes documentation and tutorials.

2 Foundations and Related work

Table 1: Fairness metrics alignment with criticism of equal treatment as blindness criteria. Requirements are
derived from a use case explained in Appendix A, and metrics are further discussed and defined in Section A.3

Metric
Group

Discrimination
(R1)

Unlabelled
Data
(R2)

No Background
Knowledge

(R3)

Proxy
Discrim.

(R4)

Explanation
Capabilities

(R5)
Explanation Disparity
Demographic Parity

Conditional DP
Equal Opportunity
Treatment Equality

Feature Importance Disp.
Counterfactual Fairness
Fairness-Unawareness

Individual Fairness

We briefly survey the philosophical and technical foundations of our contribution as well as related work. We
build on Shapley values, which are generally known in the machine learning community, but we provide their
mathematical definition in Appendix B for the paper to be self-contained.

2.1 Basic Notation and Definitions of Fairness

A supervised learning model is a function fθ : X → Y induced from a set of observations, called the training set,
where X = {X1, . . . , Xp} are p predictive features, Y is the target feature, and θ are the models’ parameters.
The domain of the target feature is dom(Y ) = {0, 1} (binary classification) or dom(Y ) = R (regression). For
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binary classification, we assume a probabilistic classifier, and we denote by fθ(x) the estimate of the probability
P (Y = 1|X = x) over the (unknown) distribution of X × Y . For regression, fθ(x) estimates E[Y |X = x]. A
dataset of observations from the distribution of X × Y is denoted by D = {(x1, y1), . . . , (xn, yn)} ∼ X × Y .
We call the projection of D on X, written DX = {x1, . . . ,xn} ∼ X, the empirical input distribution. The
dataset fθ(DX) = {fθ(x) | x ∈ DX} is called the empirical prediction distribution.

We assume a feature Z representing social groups, called the protected feature, and assume it to be binary
valued in the theoretical analysis – thus modeling membership to a protected social group. Z can either
be included in the predictive features X or not. If not, we assume that it is still available for a test dataset.

We write A ⊥ B to denote statistical independence between the two sets of random variables A and B, or
equivalently, between two multivariate probability distributions. We define two common fairness notions and
corresponding fairness metrics that quantify a model’s degree of discrimination or unfairness (Mehrabi et al.,
2022).
Definition 2.1. (Demographic Parity (DP)). A model fθ achieves Demographic Parity if fθ(X) ⊥ Z.

Thus, Demographic Parity holds if ∀z. P (fθ(X)|Z = z) = P (fθ(X)). For binary Z’s, we can derive an
unfairness metric as d(P (fθ(X)|Z = 1), P (fθ(X)), where d(·) is a distance between probability distributions.
Definition 2.2. (Equal Opportunity (EO)) A model fθ achieves equal opportunity if ∀z. P (fθ(X)|Y = 1, Z =
z) = P (fθ(X) = 1|Y = 1).

Unfairness can be measured for binary Z’s as d(P (fθ(X)|Y = 1, Z = 1), P (fθ(X) = 1|Y = 1)).

2.2 Philosophical Foundations and Computable Fairness Metrics

Political and moral philosophers from the egalitarian school of thought often consider equal opportunity to be
the key promoter of fairness and social justice, providing qualified individuals with equal chances to succeed
regardless of their background or circumstances Rawls (1958; 1991); Dworkin (1981a;b); Arneson (1989);
Cohen (1989). In fair-ML, Hardt et al. (2016) proposed translating equal opportunity into the inter-group
difference of the true positive rates. Heidari et al. (2019) provided a moral framework to ground such a
metric of Equal Opportunity. Gabriel (2022) explored the relationship between AI and principles of Rawlsian
distributive justice. Kuppler et al. (2021); Baumann et al. (2022) discuss the mismatches of egalitarian
distributive justice with fairness metrics. From a machine learning perspective, the technical drawback is
that metrics for equal opportunity require label annotations for true positive outcomes, which are not always
available after the deployment of a model. Acquiring labelled data post-deployment poses a considerable
challenge and is often impractical, or even impossible, exhibiting well-known biases, such as confounding,
selection, and missingness (Feng et al., 2023; Ruggieri et al., 2023).

The liberalism school of thought argues that individuals should be treated equally independently of
outcomes (Friedman et al., 1990; Nozick, 1974). Equal treatment has also been defined as “equal treatment-
as-blindness" or neutrality Sunstein (1992); Miller and Howell (1959). A policy that can be translated
as “fairness through unawareness” (Grgic-Hlaca et al., 2018; Cornacchia et al., 2023; Chen et al., 2019a;
Fabris et al., 2023), which considers an algorithm fair if the protected attribute(s) Z is not explicitly used
in decision-making. Any mapping fθ : X → Y that excludes Z from X satisfies this policy. The criticism
relies that even without learning from or using the protected feature, a model can discriminate against the
protected groups through correlated features in X as a proxy of the protected one (Pedreschi et al., 2008).

From a technical perspective, a potential metric to measure the impact of equal treatment as blindness policy
can be Demographic Parity or Statistical Parity (used synonymously) (Dwork et al., 2012). As we will
analyze in Section 4.1, Demographic Parity implies that demographic groups experience the same distribution
of model outcomes. However, we might still observe Demographic Parity while individuals from different
groups are treated differently. One instance is when the contribution of some features that correlates with the
protected attributes cancel out (Ruggieri et al., 2023). In a hypothetical hiring scenario, this might represent
a situation in which men are hired for a reason (e.g., they have university degrees), while women are hired for
a different reason (e.g. they have industrial working experience). In this situation, Demographic Parity might
still be satisfied, but individuals of different groups are treated differently, thus not accurately measuring the
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criticism of equal treatment as blindenss political philosophy policy. Our metric of Explanation Disparity
remedies this drawback.

Demographic Parity implies that two demographic groups experience the same distribution of model outcomes,
even if the first has much better prospects for achieving the predicted outcome. Thus, a model f that achieves
Demographic Parity may have to prefer individuals from one group over those from another, violating the
requirement for equal treatment of all individuals. In Appendix A.3, we illustrate the use-case of college
admissions, where equal treatment is desirable, but neither equal opportunity nor equal outcomes achieve it.

2.3 Related Work

We briefly review related works below. See Appendix C for an in-depth comparison.

Related Fairness Metrics In recent years, fairness metrics have proliferated. Yet, a significant gap
exists in their alignment with distributive justice principles and political philosophy (Baumann et al., 2022;
Hertweck et al., 2024; Fazelpour and Lipton, 2020; Fazelpour et al., 2022). To bridge this gap in the criticism
of liberal-oriented politics, our focus is on establishing a set of criteria that align with these principles. (R1)
Group Discrimination, decisions based on protected characteristics that individuals did not choose at birth.
(R2) Unlabelled Data metrics should prioritize assessing disparities in treatment rather than fixating on error
disparities. (R3) No Background Knowledge not necessitating understanding of causal or structural aspects.
(R4) Mitigating Proxy Discrimination detecting that certain features may indirectly contribute to biased
decisions. (R5) Explanation Capability offer both theoretical underpinnings and empirical validation of the
sources driving discrimination. We add a base requirement, (R0) Predictive Performance, which requires the
model fθ to have predictive performance, as a random classifier achieves several fairness metrics. In Table 1
and Appendix A.3, we present a comparison of various fairness metrics against these criteria. Furthermore,
in the detailed use case presented in Appendix A, we extract and emphasize philosophical requirements to
underscore the alignment with liberal political philosophy.

Testing for Demographic Parity (DP) Most related works measure DP using statistics such as
Mann–Whitney, Kolmogorov-Smirnov or Wasserstein distance, and related statistical tests (Raji et al., 2020;
Kearns et al., 2018; Cho et al., 2020). Other research lines have aimed at measuring DP when the protected
attribute is a continuous variable (Jiang et al., 2022). We also measure and test for DP through the AUC of
a classifier two-sample test. Detailed comparisons are reported in Appendix G.5.

Classifier Two-Sample Test (C2ST) We formalize a classifier two-sample test (C2ST) based on the
AUC to measure the independence of sets of random variables. Lopez-Paz and Oquab (2017) explored C2ST
using accuracy metrics. Chakravarti et al. (2023) used AUC for C2ST without providing a formal proof
of correctness. Moreover, we use a Brunner-Munzel test statistics, which exhibits a better power than the
previous two approaches – more in Appendix G.1.

Explainability for Fair Supervised Learning Lundberg (2020), and the related work by Chang et al.
(2023), apply Shapley values to DP. Their approach can be rephrased as decomposing fθ(X) ⊥ Z by examining
S(fθ,X)i ⊥ Z individually for every Shapley value component S(fθ,X)i, with i ∈ [1, p]. First, they intend to
tackle DP, not the Explanation Disparity notion we will introduce. Moreover, even when considering DP,
their approach suffers from statistical pitfalls as we show in Appendix A.3.2. Other recent lines of work
assume knowledge about causal relationships between random variables, such as Grabowicz et al. (2022).
Our work does not rely on knowledge of causal graphs but exploits the Shapley values’ theoretical properties
to obtain fairness model auditing guarantees.

3 A Model for Monitoring Equal Treatment

3.1 Formalizing Equal Treatment

To establish a criterion for equal treatment, we rely on the notion of explanation distributions.
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Definition 3.1. (Explanation Distribution) An explanation function S : F × X → Rp maps a model fθ ∈ F
and an input instance x ∈ X into a vector of reals S(fθ,x) ∈ Rp. An (empirical) explanation distribution is
then defined on an input distribution DX as S(fθ,DX) = {S(fθ,x) | x ∈ DX} ⊆ Rp.

We use Shapley values as an explanation function (cf. Appendix B). In Appendix H, we discuss the usage of
LIME. Next, we introduce our new fairness criterion, Explanation Disparity, which asks for the independence
of a model’s explanations from the protected feature.

Definition 3.2. (Explanation Disparity (ED)) A model fθ achieves ED if S(fθ,X) ⊥ Z.

Such a definition aims to characterize the philosophical notion of equal treatment by encoding the “treatment”
performed by the model through the attribution of the importance of its input features. As we will see later
in Section 4, Explanation Disparity is a stronger metric than Demographic Parity since it not only requires
that the distributions of the predictions are similar but that the processes of how predictions are made (i.e.,
the explanations) are also similar.

3.2 Equal Treatment Inspector

Train Model
Input Data

Explanations Train Classifier for
Two-Sample Test

Equal treatmentUn-Equal TreatmentExplain
Equal Treatment Inspector

Not RejectReject

Figure 1: Equal Treatment Inspector workflow. The model fθ is learned based on training data, Dtr =
{(xi, yi)}, and outputs the explanations S(fθ,Dval

X ). The C2ST receives the explanations to predict the
protected attribute, Z on validation data Dval. The AUC of the C2ST classifier gψ on test data Dte decides
for or against equal treatment. We can interpret the driver for unequal treatment on gψ with explainable AI
techniques.

Our approach is based on the properties of the Shapley values (cf. Appendix B) and on a novel classifier
two-sample test. We partition the available data into three sets Dtr,Dval,Dte ⊆ X × Y . Dtr is the training
set of fθ ∈ F (not required if fθ is already trained). The dataset {(S(fθ,x), zx)|x ∈ Dval

X\Z}, where zx ∈ Z is
the social group of x, is used to train the “Equal Treatment Inspector”, gψ. Here, gψ is any ML method with
parameters ψ that optimizes a loss function ℓ:

ψ = arg min
ψ̃

∑
x∈Dval

X\Z

ℓ(gψ̃(S(fθ,x)), zx) (1)

To evaluate whether there is an equal treatment violation, we perform a statistical test of independence based
on the AUC of gψ on a test set Dte (and related social group, if not already included in it). We also use Dte

for testing the approach w.r.t. baselines. Besides detecting fairness violations, a common desideratum is to
understand which specific features drive such violations. The “Equal Treatment Inspector” gψ can provide
information on the features’ contribution to the un-equal treatment either by-design, if it is an interpretable
model, or by applying post-hoc explainations techniques, e.g., by applying again Shapley values on gψ. See
Figure 1 for a visualization of the whole workflow.
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4 Theoretical Analysis

4.1 Explanation Disparity vs Demographic Parity vs Fairness of the Input

We start by observing that Explanation Disparity (independence of the explanation distribution from
the protected attribute) is a sufficient condition for Demographic Parity (independence of the prediction
distribution from the protected attribute).
Lemma 4.1. If S(fθ,X) ⊥ Z then fθ(X) ⊥ Z.

Proof. By the propagation of independence in probability distributions, the premise implies (
∑
i Si(fθ,X) +

c) ⊥ Z where c is any constant. By setting c = E[f(X)] and by the efficiency property (6), we have the
conclusion.

Therefore, a DP violation (on the prediction distribution) is also a ED violation (in the explanation
distribution). ED accounts for a stricter notion of fairness. In general, the other direction does not hold (in
Appendix D, we study a simple condition when ED and DP are equivalent). We can have dependence of
Z from the explanation features, but the sum of such features cancels out resulting in perfect DP on the
prediction distribution. This issue is also known as the Yule’s effect (Ruggieri et al., 2023).
Example 4.1. Consider the model f(x) = x1 + x2. Let Z ∼ Ber(0.5), A ∼ U(−3,−1), and B ∼ N(2, 1) be
independent, and let us define:

X1 = A · Z +B · (1 − Z) X2 = B · Z +A · (1 − Z)

We have f(X) = A + B ⊥ Z since A,B,Z are independent. Let us calculate S(f,X) in the two cases
Z = 0 and Z = 1. If Z = 0, we have X1 = B,X2 = A, and then S(f,X)1 = B − E[B] = B − 2 ∼ N(0, 1)
and S(f,X)2 = A − E[A] = A + 2 ∼ U(−1, 1). Similarly, for Z = 1, we have X1 = A,X2 = B, and then
S(f,X)1 = A− E[A] = A+ 2 ∼ U(−1, 1) and S(f,X)2 = B − E[B] = B − 2 ∼ N(0, 1). This shows:

P (S(f,X)|Z = 0) ̸= P (S(f,X)|Z = 1)

and then S(f,X) ̸⊥ Z. Notice this example holds both for the interventional and the observational variants
of Shapley values, as we consider a linear model over independent features (cf. Lemma B.1).

Statistical independence between the input X and the protected attribute Z, i.e., X ⊥ Z, is another fairness
notion. It targets fairness of the (input) dataset, disregarding the model fθ. For fairness-aware training
algorithms, which are able not to (directly or indirectly) rely on Z, violation of such a notion of fairness does
not imply ED violation nor DP violation.
Example 4.2. Let X be three independent features such that E[X1] = E[X2] = E[X3] = 0, and X1,X2 ⊥ Z,
and X3 ̸⊥ Z. The target feature is defined as Y = X1 + X2, hence it is also independent from Z. Assume a
linear regression model fβ(x) = β1 ·x1 +β2 ·x2 +β3 ·x3 trained from a sample data from X×Y with β1, β2 ≈ 1
and β3 ≈ 0. Intuitively, the inclusion of X3 in the model is due to an unclear understanding of which of the
features contribute to the target feature. It turns out that X ̸⊥ Z but, for β3 = 0 (which can be obtained by
some fairness regularization method (Kamishima et al., 2011)), we have fβ(X) = β1 · X1 + β2 · X2 ⊥ Z. It
turns out (see Lemma B.1) that S(fβ , X) = (β1 · X1, β2 · X2, 0) and then S(fβ ,X) ⊥ Z. This holds both in
the interventional and in the observational variants.

The above represents an example where the input data depends on the protected feature, but the model and
the explanations are independent from it.

4.2 Equal Treatment Inspection via Explanation Disparity

4.2.1 Statistical Independence Test via Classifier AUC Test

In this subsection, we formalize a statistical test of independence based on the AUC of a binary classifier.
The test of W ⊥ Z is stated in general form for multivariate random variables W and a binary random
variable Z with dom(Z) = {0, 1}. In the next subsection, we will instantiate it to the case W = S(fθ,X).
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Let D = {(wi, zi)}ni=1 be a dataset of realizations of the random sample (W ×Z)n ∼ Fn where F is unknown.
The independence W ⊥ Z can be tested via a two-sample test. In fact, we have W ⊥ Z iff P (W|Z) = P (W)
iff P (W|Z = 1) = P (W|Z = 0). We test whether the positive and negative instances in D are drawn from
the same distribution by a classifier two-sample test, which does not rely on permutation of data nor it
assumes equal proportion of positive and negatives as in (Lopez-Paz and Oquab, 2017, Sections 2 and 3). We
rely on a probabilistic classifier f : W → [0, 1], for which f(w) estimates P (Z = 1|W = w), and on its AUC:

AUC(f) = (2)
E(W,Z),(W′,Z′)∼F [I((Z − Z′) · (f(W) − f(W′)) > 0)]
+ 1/2 · I(f(W) = f(W′))|Z ̸= Z′]

Under the null hypothesis H0 : W ⊥ Z, no classifier f can be better than random guessing.
Lemma 4.2. If W ⊥ Z then AUC(f) = 1/2 for any f .

Proof. Recall the definition of the Bayes Optimal classifier fopt(w) = P (Z = 1|W = w). For any classifier f :

AUC(fopt) ≥ AUC(f) ≥ 1 −AUC(fopt) (3)

The first bound AUC(fopt) ≥ AUC(f) follows because the Bayes Optimal classifier minimizes the Bayes
risk (Gao and Zhou, 2015). Assume the second bound does not hold, i.e., for some f we have AUC(fopt) <
1 −AUC(f). Consider the classifier f̄(w) = 1 − f(w). We have AUC(f̄) ≥ 1 −AUC(f), and then f̄ would
contradict the first bound because AUC(fopt) < AUC(f̄).

If W ⊥ Z, then P (Z = 1|W = w) = P (Z = 1), and then fopt(w) is constant. By (2), this implies
AUC(fopt) = 1/2. By (3), this implies AUC(f) = 1/2 for any classifier f .

As a consequence, any statistics to test AUC(f) = 1/2 can be used for testing w ⊥ Z. A classical choice is to
resort to the Wilcoxon–Mann–Whitney test, as done by Chakravarti et al. (2023), which, however, assumes
that the distributions of scores for positives and negatives have the same shape. Alternatives with a better
power include the Brunner–Munzel test (Neubert and Brunner, 2007) and the Fligner–Policello test (Fligner
and Policello, 1981). The former is preferable, and it will be our choice in experiments, as the latter assumes
that the distributions are symmetric.

4.2.2 Testing for Explanation Disparity via the Equal Treatment Inspector

We instantiate the previous AUC-based method for testing independence to the case of testing for Explanation
Disparity via the Equal Treatment Inspector.
Theorem 4.3. Let gψ : S(fθ,X) → [0, 1] be an “Equal Treatment Inspector” for the model fθ, and α a
significance level. We can test the null hypothesis H0 : S(fθ,X) ⊥ Z at 100 · (1 − α)% confidence level using
a test statistics of AUC(gψ) = 1/2.

Proof. Under H0, by Lemma 2 with W = S(fθ,X) and f = gψ, we have AUC(gψ) = 1/2.

Results of the test can report the p-value of the adopted test for AUC(gψ) = 1/2, or the confidence interval
for AUC(gψ), as returned by the Brunner–Munzel test or by the methods (DeLong et al., 1988; Cortes and
Mohri, 2004; Gonçalves et al., 2014). AUC(gψ), or its confidence intervals, can be used to quantify the
Explanation Disparity unfairness.

4.2.3 Explanation Capabilities of Equal Treatment Inspector

The following example showcases one of our main contributions: detecting the sources of Explanation Disparity
through interpretable by-design inspectors. Here, we assume that the model is linear. In the Appendix G.4,
we will experiment with non-linear models.
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Example 4.3. Let X be three independent features such that E[X1] = E[X2] = E[X3] = 0, and X1,X2 ⊥ Z,
and X3 ̸⊥ Z. Given a random sample of i.i.d. observations from X×Y , a linear model fβ(x) = β0 +β1 ·x1 +β2 ·
x2 +β3 ·x3 can be built by OLS (Ordinary Least Square) estimation, possibly with β1, β2, β3 ̸= 0. It turns out
(see Lemma B.1) that S(fβ ,x)i = βi ·xi. Consider now a linear ET Inspector gψ(s) = ψ0+ψ1 ·x1+ψ2 ·s2+ψ3 ·s3,
which can be written in terms of the x’s as: gψ(x) = ψ0 + ψ1 · β1 · x1 + ψ2 · β2 · x2 + ψ3 · β3 · x3. By OLS
estimation properties, we have ψ1 ≈ cov(β1 · X1, Z)/var(β1 · X1) = cov(X1, Z)/(β1 · var(X1)) = 0 and
analogously ψ2 ≈ 0. Finally, ψ3 ≈ cov(X3, Z)/(β3 · var(X3)) ̸= 0. In summary, the coefficients of gψ provide
information about which feature contributes (and how much it contributes) to the dependence between the
explanation S(fβ ,X) and the protected feature Z. Notice that fβ(X) ̸⊥ Z as well, but we cannot explain
which features contribute to such a dependence by looking at fβ(X), since βi ≈ cov(Xi, Y )/var(Xi) can be
non-zero also for i = 1, 2.

5 Experimental Evaluation

We conduct experiments on equal treatment by systematically varying the model f , its parameters θ, and
the input data distributions DX. We complement experiments described in this section by adding further
experimental results in the Appendix that: (i) compare the different types of Shapley values estimation
(Appendix E), (ii) add experiments on natural datasets (Appendix F), (iii) exhibit a larger range of modeling
choices (Appendix G.3), (iv) compare AUC vs accuracy for the C2ST independence test (Appendix G.1),
(v) extend the comparison against DP (Appendix G.5), and (vi) include LIME as an explanation method
(Appendix H).
We adopt xgboost (Chen and Guestrin, 2016) for the model fθ, and a logistic regression for the inspector.
We compare the AUC performances of several inspectors: gψ (see Eq. 1) for ED (see Def. 3.2), gv for DP
(see Def. 2.1), gΥ for fairness of the input (i.e., X ⊥ Z as discussed in Section 4.1), and a combination gϕ of
the last two inspectors to test (fθ(X),X) ⊥ Z. These are the formal definitions:

Υ = arg min
Υ̃

∑
x∈Dval

X\Z

ℓ(gΥ̃(x), zx) υ = arg min
υ̃

∑
x∈Dval

X\Z

ℓ(gυ̃(fθ(x)), zx)

ϕ = arg min
ϕ̃

∑
x∈Dval

X\Z

ℓ(gϕ̃(fθ(x), x), zx)

5.1 Experiments with Synthetic Data

We generate synthetic datasets by first drawing 10, 000 samples from normally distributed features X1 ∼

N(0, 1),X2 ∼ N(0, 1), (X3,X4) ∼ N

([
0
0

]
,

[
1 γ
γ 1

])
. Then, we define a binary protected feature Z with

values Z = 1 if X4 > 0 and Z = 0 otherwise. We compare the methods and baselines while varying the
correlation γ = r(X3, Z) from 0 to 1. We define two experimental scenarios below. In both of them, the
model fβ is a function over the domain of the features X1,X2,X3 only.

Indirect Case: Unfairness in the data and in the model. We consider all of the three features in the dataset
X1,X2,X3. This gives rise to unfairness of the input parameterized by γ = r(X3, Z). To generate DP
violation in the model, we create the target Y = σ(X1 + X2 + X3), where σ is the logistic function.

Uninformative Case: Unfairness in the data and fairness in the model. The unfairness in the input data
remains the same as in the previous case, while we now remove unfairness in the model. The target feature is
now defined as Y = σ(X1 + X2). The γ parameter controls unfairness in the dataset, which should not be
captured by the model, since X1,X2 ⊥ Z implies Y ⊥ Z by propagation of independence.

In Figure 2, we compare the AUC performances of the different inspectors on synthetic data split into 1/3
for training the model, 1/3 for training the inspectors and 1/3 for testing them. Overall, the ED Inspector
gψ is able to detect unfairness in both scenarios. The DP inspector gv works fine in the uninformative case,
but for the indirect, it is less sensitive than the other methods. Finally, the inspectors gΥ and gϕ detect
unfairness in the input but not in the model. Further experiments are shown in Appendix G.4 to investigate
the contribution of the explanation distribution features, namely the S(fθ,x)i’s, to the ED Inspector gψ.
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Figure 2: In the “Indirect case” (left): good unfairness detection methods should follow an increasing steady
slope to capture the fairness violation; the DT inspector appears less sensitive due to the low dimensionality
of its input. In the “Uninformative case” (right): good unfairness detection methods should remain constant
with an AUC ≈ 0.5; the inspectors based on input data (gΥ and gϕ) flag a false positive case of unfairness.

5.2 ACS Travel Time Data
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0.048 0.061 0.049 0.023 0.066 0.12 0.041 0.049 0.044
0.011 0.033 0.16 0.065 0.018 0.029 0.037 0.05 0.071
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Figure 3: The left figure compares ED and DP measures on the US Travel Time data. The AUC range for
ED is notably wider, and aligning with the theoretical section, there are instances where DP fails to identify
discrimination that ED successfully detects. “Random” refers to the scenario where two disjoint groups
were created by random sampling from the overall population. For a detailed statistical analysis, please
refer to Appendix G.5. The right figure provides insight into the influential features contributing to unequal
treatment. Higher feature values correspond to a greater likelihood of these features being the underlying
causes of unequal treatment.

We experiment here with the ACS Travel Time dataset (Ding et al., 2021), and in the Appendix F with three
other ACS datasets. The fairness notions are tested against all pairs of groups from the protected attribute
“Race”. Figure 3 (left) shows the AUC performances of the ED Inspector gψ and the DP inspector gv. The
standard deviation of the AUC is calculated over 30 bootstrap runs, each one splitting the data into 1/3 for
training the model, 1/3 for training the inspectors and 1/3 for testing them. The AUCs for the ED Inspectors
are greater than the ones for the DP inspectors, which is expected due to Lemmma 4.1. In the Appendix G.1,
the results of the C2ST tests are discussed.

Figure 3 (right) shows the Wasserstein distance between the coefficients of the linear regressor gψ compared
to a baseline where groups are assigned at random in the input dataset. The mean orders the matrix in
both dimensions. This feature importance post-hoc explanation method provides insights into the impact
of different features as sources of unequal treatment. We observe “Education” as a highly discriminatory
proxy of ethnicity while the role of the feature “Employment” is less relevant. This allows us to identify areas
where adjustments or interventions may be needed to move closer to the ideal of equal treatment.
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6 Conclusions

The policy of equal treatment as blindness, often referred to in machine learning as fairness as unawareness,
has long been critiqued by social scientists. In this work, we argue that existing fairness metrics fail to
adequately address these criticisms. To address this gap, we introduce a novel metric that aims to more
effectively capture these concerns. While related work applied Demographic Parity, we have provided
theoretical and experimental evidence that this fairness metric does not adequately measure fairness. Our
notion of Explanation Disparity is more fine-grained, accounting for the usage of attributes by the model via
explanation distributions. Consequently, Explanation Disparity implies Demographic Parity, but the converse
is not necessarily true, which we confirmed theoretically and experimentally.

This paper seeks to improve the understanding of how theoretical concepts of fairness from liberalism-oriented
political philosophy align with technical measurements. Rather than merely comparing one social group
to another based on disparities within decision distributions, our metric of Explanation Disparity considers
differences through the explanation distribution of all non-protected attributes, which often act as proxies
for protected characteristics. Implications warrant further techno-philosophical discussions.

Limitations: Political philosophical notions and policies are more complex than we can account for in this
paper. Our research has focused on tabular data using Shapley values, which allow for theoretical guarantees
but may differ from their computational approximations. It is possible that alternative AI explanation tech-
niques, such as feature attribution methods, logical reasoning, argumentation, or counterfactual explanations,
could be useful and offer their unique advantages to definitions of equal treatment. It is important to note
that employing fair-ML techniques does not necessarily ensure fairness in socio-technical systems based on
AI, as stated in Kulynych et al. (2020). See impact statement in Appendix I for further information and
implications.
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A Notions of Fairness: from Philosophical Foundations to Implications in Practice

In this section, we present the philosophical intuitions behind different notions of fairness illustrated with an
applied case study.1 Next, we collect the technical requirements that fairness metrics must meet to align
with equal treatment as blindness criticism and to be viable for the practical applicability of fairness metrics
in real-world scenarios where data constraints and accountabilty on the results are often important. Finally,
we conduct a broader survey of fairness metrics and relate them to these requirements, examining how each
metric addresses the alignment and practical challenges.

A.1 An Overview of Notions of Fairness in Distributive Justice

To illustrate the difference between equal opportunity, equal outcomes, and equal treatment, we consider the
hypothetical use case of the admission process of a university.

In June 2023, the U.S. Supreme Court struck down race-conscious admission programs at some universities
(Killenbeck and Killenbeck, 2022)2, ruling these as discriminatory against certain racial groups. This decision
marked a significant shift from previous policies that used race as one of several factors in a holistic admissions
process to promote a diverse student body3. While the ruling does not completely forbid universities from
considering applicants’ racial features, it emphasizes a more colorblind approach to admissions. This move
towards equal treatment focuses less on achieving equal outcomes (diverse representation) and more on not
considering race as an admissions factor. Now we discuss these notions within the context of fair machine

1We do not claim to cover comprehensively different philosophical approaches to such a case study. While a comprehensive
philosophical treatise may require a whole book, we only want to illustrate some issues, on which we are basing our arguments.

2https://www.scotusblog.com/2023/06/supreme-court-strikes-down-affirmative-action-programs-in-college-admissions/
3https://www.politico.com/news/2023/06/29/supreme-court-ends-affirmative-action-in-college-admissions-00104179
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learning. We now compare to the different notions from distributive justice commonly discussed in the
literature.

Equal Outcomes. This notion requires that the distribution of acceptance rates is similar, independently of
the student (cf. Definition 2.1). This could mean setting targets or quotas to ensure representation from
various groups, regardless of their individual academic credentials. For instance, if 20% of applicants are from
a certain ethnicity, the university might aim to have 20% of their admits from that ethnicity as well. While
this promotes a diverse student body, it can overlook individual merit and potentially lead to tension between
equity and academic standards. Particularly given the recent ruling of the US Supreme Court, considering
ethnicity to match the proportion of applicants from that ethnicity would likely be considered illegal4. It’s
also important to note that outcomes can have similar rates due to random chance.

Equal Opportunity. In this approach, the university would ensure that students from different backgrounds
have an equal chance of being admitted if they have high potential or qualifications. For instance, students
from under-resourced high schools are given the same opportunity as those from well-funded schools if
they demonstrate the same exceptional talent or potential. The university may implement this strategy by
adjusting admission criteria based on educational opportunities tied to race. Policies following this notions
can lead to challenges like overcompensating for disadvantages or unintentionally lowering standards for
certain groups.

Equal Treatment. In this scenario, the university ensures that every application is evaluated based on uniform
criteria such as academic achievement, extracurricular involvement, and personal essays, without bias towards
the applicant’s background. This approach means that factors like a student’s socioeconomic status, high
school’s reputation, geographic location, or other attributes not chosen at birth (protected attributes) would
not directly influence the admission procedure.

In the university admission case, each approach to fairness in admissions — equal outcome, equal opportunity,
and equal treatment — has its merits and issues. Equal outcomes, strive for a representative student body,
assuming that all groups have inherently the same academic capabilities. Equal opportunity aims to level
the playing field based on the potential of the candidates. Equal treatment focuses on ignoring protected
attributes aiming to achieve a uniform and unbiased evaluation process. We leave the normative discussion of
which fairness paradigm should be pursued by policy to the discourse in the social sciences and the broad
public.

A.2 Requirements Collection

If we aim to measure the impact of equal treatment as blindness policy in the scenario involving college
admissions, liberal-oriented political scientists argue that the university should ensure that every application
is evaluated based on the same criteria, such as academic achievement, extracurricular involvement, and
personal essays, without bias towards the applicant’s background. This means that a student’s protected
attributes, such as ethnicity, socioeconomic status, or geographic location, should not influence their likelihood
of admission. From an application standpoint, this approach also necessitates practical measures to ensure
that the systems can be effectively monitored and maintained once deployed.

The challenge here is to ensure the following in the admissions process:

(R1) Group Discrimination: refers to making decisions based on inherent or protected characteristics of
individuals, such as race, gender, or ethnicity. This in in line with all three notions of equality, and
policies should ensure that individuals are not discriminated against based on characteristics beyond
their control (protected attributes)(Hertweck et al., 2024).

(R2) Unlabeled Data: Two common ways to evaluate notions of equality are on the decisions, or on the
consequences of the decisions (Driver, 2022). This criterion evaluates discriminatory behaviour on
the model’s decision instead of the statistical differences in errors. It was derived to align with the
intuition of disparate treatment of the model and measured if the metric looks at fθ(X) instead of
disparate impact fθ(X) − Y

4https://www.jdsupra.com/legalnews/the-impact-of-the-supreme-court-s-7330075/
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(R3) No Background Knowledge: Fairness metrics should not require an understanding of causal or
structural aspects of the data. This ensures that the metrics are practical and can be easily applied in
real-world scenarios where detailed background knowledge may be lacking. This criterion is essential
for making fairness assessments accessible to practitioners who may not have specialized knowledge
about the underlying data structures or causal relationships.

(R4) Proxy discrimination: Even if the protected attribute is not used directly in the decision-making
process, there might be features that have a dependency on it, this phenomenon is known as proxy
discrimination (Wachter et al., 2020).This criterion ensures that metrics can detect if the model’s
behavior is genuinely free from discriminatory features arising from proxy discrimination. It was
derived from statements such as the one in the introductionMinow (1990), to scrutinize the impact
of various features on predictions and prevent indirect biases. This requirement is measured if the
metric has theoretical properties and guarantees, such as independence, as we derive in Section 4.2.1.

(R5) Explanation Capabilities: This focuses on the need for fairness metrics to not only detect biases
or discrimination but also to explain them. This criterion is derived from technical requirement to
improve transparency and understanding of how and why biases occur in model predictions. This
requirement is met if a metric has theoretical evidence, as we derive in Section 4.2.3, or provides
software that allows for empirical evaluation, as we provide in the Python package explanationspace.

A.3 Survey of Fairness Metrics and their Relationship to Requirements

In this section, we compare our requirements to measure the impact of the policy of equal treatment as blindness
with respect to other metrics found in the literature. We distinguish between two discrimination types:
disparate treatment, aiming to prevent intentional model discrimination, and disparate impact, addressing
unintentional effects across subpopulations(Commission, 1964; Kuppler et al., 2021). The former examines
the system’s intentions, as realized in model predictions fθ(X), while the latter considers effects, interpreted
as the error fθ(X) − Y .

A.3.1 Disparate Impact Fairness Metrics: Approaches that Rely on Labeled Data

A notable technical limitation of disparate impact fairness metrics is that they necessitate labelled data for
computation. Acquiring labelled data post-deployment poses a considerable challenge and is often impractical,
exhibiting well-known biases, such as confounding, selection, and missingness (Feng et al., 2023; Ruggieri
et al., 2023). Thus, none of the following metrics meet the criterium (R2) Unlabelled data because they
require labeled data.

Equal Opportunity Two formulations of the Equal Opportunity fairness metric are defined in the literature.
First, it is the difference in the True Positive Rate (TPR) between the protected group and the reference
group (Hardt et al., 2016; Podesta et al., 2014; Munoz et al., 2016):

TPR = TP

TP + FN

EOFz = TPRz − TPR

Second – a formulation proposed by Heidari et al. (2019) and that does not rely on the false negatives – a
model fθ achieves equal opportunity if P (fθ(X) = 1|Y = 1, Z = z) = P (fθ(X) = 1|Y = 1).

Equal Opportunity comes with a technical limitation, as it necessitates the availability of labeled data for
true positives, hence it does not meet (R2). From the philosophical alignment perspective, both metrics may
align better with egalitarian ideals, as they prioritize access to good outcomes through error ratios.

In contrast, our conceptualization of equal treatment diverges in its alignment, finding resonance with
distributive justice principles rooted in liberal ideology and, in this particular requirement, not necessitating
labelled data.
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Treatment Equality Despite its similar name, Treatment Equality does not necessarily align with the
same distributive justice values as equal treatment, and the mathematical metric it employs is notably
distinct (Berk et al., 2021):

FPz
FNz

= FP

FN

From a technical perspective, the challenge relies on obtaining false positive and false negative data, therefore
not meeting the requirement (R2) on labelled data.

The authors do not specify the principle or value with which the notion should align, and this clarity is
absent from their definition. An illustrative sentence is “men and women are being treated differently by
the algorithm”. However, this statement may not be entirely accurate, as the algorithm may treat men and
women equally while exhibiting different error rates. For instance, a constant classifier that grants loans to
everyone treats everyone equally. Still, if males and females have distinct patterns of loan repayment, the
classifier will yield different errors, resulting in distinct FP

FN values. Then this metric of “treament equality” is
very distinct from our proposed notion due to not belonging to a clear distributive justice perspective and
the technical implementation.

A.3.2 Disparate Treatment Fairness Metrics: Approaches that Determine Unfairness without Labelled
Data

In this section we compare against metrics that rely only on X and fθ rather than on disparities of model
errors. Therefore they all meet the (R2) Unlabelled data requirement.

Fairness Through Unawareness. This bias mitigation method was initially proposed by Grgic-Hlaca
et al. (2018) and is often used as a baseline.
Definition A.1. (Fairness Through Unawareness). An algorithm is fair if no protected attributes Z is
explicitly used as an input of the algorithm.

Any mapping f : X → Y for which Z ̸∈ X satisfies such a definition. It has a clear shortcoming as features
in X can contain discriminatory information, known as proxy features for discrimination. Further, the
research requirement of detecting (R4) Proxy discrimination is not met. One of the main contributions
requirements for the notion of equal treatment and technical contributions of Explanation Disparitiy is that it
captures statistical relations of all the features with the protected attribute. In our approach, the model does
not consider the protected attribute to be present in the covariates X, therefore implying fairness through
unawareness. Furthermore, in Section 4.1 of the main body, we discuss the limitations of analyzing the
Shapley values of the protected attribute.

Demographic Parity. To define a quality metric, one must collect domain requirements and formalise
the metric such that its mathematical properties match the requirements. The domain requirements in this
paper are given by philosophical foundations (cf. Appendix A). From the mathematical perspective, we have
shown that Explanation Disparity is a more aligned notion to equal treatment than Demographic Parity to
the liberal notion of equal treatment.

A refined metric introduced by legal scholars aiming to align with the European Court of Justice “gold
standard” (Wachter et al., 2021) is Conditional Demographic Parity, which extends Demographic Parity by
fixing one or more attributes.
Definition A.2. (Conditional Demographic Parity (CDP)). A model fθ achieves conditional demographic
parity if P (fθ(X)|Xi = τ, Z = z) = P (fθ(X)|Xi = τ), where τ is any fixed value.

CDP differs from DP only in the sense that one or more additional covariate conditions are added. CDP,
therefore, is not able to detect proxy discrimination (R4) nor capable to account for the sources behind
discrimination (R5). Our notion for Explanation Disparity aims to align further with liberal-oriented equal
treatment, and this is only achieved if the contributions of all features to the prediction are equal for each of
the protected subgroups.
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Individual Fairness. We say that a model f achieves individual fairness if similar individuals receive
similar predictions:

∀x,x′ d(f(x), f(x′)) ≤ L · d(x,x′)

Where L > 0 is a constant and the two d(·, ·)’s are distance functiosn between models’ outputs and between
instances respectively (Dwork et al., 2012).

From a philosophical perspective, individual fairness is closest to the liberal point of view. However, it fails
the requirements of liberalist arguments. Liberalism argues for meritocracy, i.e., disparate treatment may
be considered fair if it is based on varying efforts or preferences of individuals but unfair if it is based on
protected characteristics that individuals did not choose. E.g., it’s fair to hire someone because of better
grades, but it is unfair if these grades depend on ethnicity. The definition of individual fairness does not
consider protected characteristics or proxies thereof failing research requirement (R1) of group discrimination..
While individual fairness may be easily combined with blindness or adjusted definitions of similarities (Fleisher,
2021; Yurochkin et al., 2020), the treatment of proxies to protected characteristics is hard to avoid, rendering
the alignment of an AI model with distributive justice values difficult. Therefore, individual fairness is not a
popular metric — unlike group fairness metrics (Fleisher, 2021).

Counterfactual Fairness. Counterfactual fairness, as defined by Kusner et al. (2017) captures the intuition
that a decision is fair towards an individual if it is the same in (i) the actual case and (ii) in a counterfactual
case where the individual belonged to a different protected attribute group.
Definition A.3. Counterfactual Fairness We say that the model fθ is counterfactually fair if:

∀x ∈ X ∀z, z′ ∈ Z P (fθ(xZ=z)|X = x, Z = z) = P (fθ(xZ=z′)|X = x, Z = z)

where xZ=z and xZ=z′ are the instances x in the (counterfactual) worlds where Z = z and Z = z′ respectively.

Rosenblatt and Witter (2023) have shown that: (i) an algorithm that satisfies counterfactual fairness also
satisfies demographic parity; and (ii) all algorithms that satisfy demographic parity can be modifed to satisfy
counterfactual fairness. These results conclude that counterfactual fairness is equivalent to demographic
parity, therefore failing the same requirements (R4), proxy discrimination and (R5) explanation capabilities.
Moreover, this fairness definition fails on our requirement (R3), of not needing background knowledge – since
counterfactuals can only be computed for a given causal graph.

Decomposition Method Specific of Demographic Parity. We formally compare our approach to the
prior work of Lundberg (2020) and the related SHAP Python package documentation. The authors addressed
DP using SHAP value estimation. This brief workshop paper emphasizes the importance of “decomposing a
fairness metric among each of a model’s inputs to reveal which input features may be driving any observed
fairness disparities”. In terms of statistical independence, the approach can be rephrased as decomposing
fθ(X) ⊥ Z by examining S(fθ,X)i ⊥ Z individually for i ∈ [1, p]. Actually, the paper limits itself to consider
only differences of means, namely testing for E[S(fθ,X)i|Z = 1] ̸= E[S(fθ,X)i|Z = 0]. However, the method
is not sufficient nor necessary to prove DP, as shown next.
Lemma A.4. fθ(X) ⊥ Z is neither implied by nor it implies (S(fθ,X)i ⊥ Z for i ∈ [1, p]).

Proof. Consider fθ(X) = X1 − X2 with X1,X2 ∼ Ber(0.5) and Z = 1 if X1 = X2, and Z = 0 otherwise.
Hence Z ∼ Ber(0.5). We have S(fθ,X)1 = X1 ⊥ Z and S(f,X)2 = −X2 ⊥ Z. However, fθ(X) ̸⊥ Z, e.g.,
P (Z = 0|fθ(X) = 0) = 1 ̸= 0.5 = P (Z = 0). Example 4.1 illustrates a case where fθ(X) ⊥ Z yet S(fθ,X)1
and S(fθ,X)2 are not independent of Z.

Our metric of Explanation Disparity considers the independence of the multivariate distribution of S(f,X)
with respect to Z, rather than the independence of each marginal distribution S(fθ,X)i ⊥ Z. With our
definition, we obtain a sufficient condition for DP, as shown in Lemma 4.1.

Chang et al. (2023) follows a similar approach but from the perspective of discovering which subgroup z ∈ Z
exhibits the largest importance disparity relative to a feature Xi.
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Definition A.5. (Feature Importance Disparity) Assume Z is discrete, not necessarily binary. The feature
importance disparity of z ∈ Z relatively to a feature Xi is defined as:

FID(z, i) = |E[S(fθ,X)i|Z = z] − E[S(fθ,X)i]|

From an alignment perspective, the authors of this method don’t clarify which philosophical equality criteria
the proposed metric measures. Moreover, assuming DP as the reference notion, the method shares the same
pitfalls illustrated by the lemma above for Lundberg (2020). From the requirements perspective, the definition
does not meet (R4) proxy discrimination detection due to using the expected value to measure distribution
differences.

B Definition and Properties of Shapley Values

Explainability has become an important concept in legal and ethical requirements of machine learning
applications (Selbst and Barocas, 2018). A wide variety of methods have been developed, aiming to account
for the decision of algorithmic systems (Guidotti et al., 2019; Mittelstadt et al., 2019; Arrieta et al., 2020).
One of the most popular approaches to explainability in machine learning is based on Shapley values.

Shapley values are used to attribute relevance to features according to how the model relies on them
(Lundberg et al., 2020; Lundberg and Lee, 2017; Rozemberczki et al., 2022). Shapley values are a coalition
game theory concept that aims to allocate the surplus generated by the grand coalition in a game to each of
its players (Shapley, 1997).
For set of players N = {1, . . . , p}, and a value function val : 2N → R, the Shapley value Si of the i’th player
is defined as the average marginal contribution of player i in all possibles coalitions of players:

Si =
∑

T ⊆N\{i}

|T |!(p − |T | − 1)!
p! (val(T ∪ {i}) − val(T ))

In the context of machine learning models, players correspond to features X = (X1, . . . ,Xp), and the
contribution of the feature Xi is with reference to the prediction of a model f for an instance x⋆ to be
explained. Thus, we write S(f,x⋆)i for the Shapley value of feature Xi in the prediction f(x⋆). We denote
by S(f,x⋆) the vector of Shapley values (S(f,x⋆)1, . . . ,S(f,x⋆)p).

There are two variants for the term val(T ) (Aas et al., 2021; Chen et al., 2020; Zern et al., 2023): the
observational and the interventional one. When using the observational conditional expectation, we consider
the expected value of f over the joint distribution of all features conditioned to fix features in T to the values
they have in x⋆:

val(T ) = E[f(x⋆T ,XN\T )|XT = x⋆T ] (4)
where f(x⋆T ,XN\T ) denotes that features in T are fixed to their values in x⋆, and features not in T are
random variables over the joint distribution of features. Opposed, the interventional conditional expectation
considers the expected value of f over the marginal distribution of features not in T :

val(T ) = E[f(x⋆T ,XN\T )] (5)

In the interventional variant, the marginal distribution is unaffected by the knowledge that XT = x⋆T . In
general, the estimation of (4) is difficult, and some implementations (e.g., SHAP) actually consider (5) as the
default one. In the case of decision tree models, TreeSHAP offers both possibilities.

The Shapley value framework is the only feature attribution method that satisfies the properties of efficiency,
symmetry, uninformativeness and additivity (Molnar, 2019; Shapley, 1997; Winter, 2002; Aumann and Dreze,
1974). We recall next the key properties of efficiency and uninformativeness.

Efficiency. Feature contributions add up to the difference of prediction for x⋆ and the expected value of f :∑
i∈N

S(f,x⋆)i = f(x⋆) − E[f(X)]) (6)
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The following property only holds for the interventional variant (e.g., for SHAP values), but not for the
observational variant.

Uninformativeness. A feature Xi that does not change the predicted value (i.e., such that f(x) = f(x′) if
x and x′ differ only in the i-th element) has a Shapley value of zero, i.e., S(f,x⋆)i = 0.

Finally, a full characterization of Shapley values can be given for linear models (see Aas et al. (2021)).
Lemma B.1. Consider a linear model fβ(x) = β0 +

∑
i βi · xi. The Shapley values of the interventional

variant turn out to be S(f,x⋆)i = βi(x⋆i − µi) where µi = E[Xi]. For the observational variant, this holds if
the features are independent.

C Detailed Related Work

This section provides an in-depth review of the related theoretical work that informs our research. We
contextualize our contribution within the broader field of explainable AI and fairness auditing. We discuss
the use of fairness measures such as demographic parity, as well as explainability techniques like Shapley
values and counterfactual explanations.

C.1 Explainability and Fair Supervised Learning

The intersection of fairness and explainable AI has been an active research topic in recent years. The work
most close to our approach is Lundberg (2020) where Shapley values are aimed at testing for demographic
parity (we provide a formal comparison in section A.3.2). Similarly, Chang et al. (2023) proposes a method
that uses the expected feature importance and computes subgroups which maximize feature importance
disparity. Their work differs with respect to Lundberg (2020) and our work, in that they look for finding
those groups while our work assumes the groups as given.

Stevens et al. (2020) present an approach based on adapting the Shapley value function to explain model
unfairness. They also introduce a new meta-algorithm that considers the problem of learning an additive
perturbation to an existing model in order to impose fairness. In our work, we use the theoretical Shapley
properties to provide fairness auditing guarantees. Our Equal Treatment Inspector is not perturbation-based
but uses Shapley values to project the model to the explanation distribution, and then measures disparities.
It also allows us to pinpoint the specific features driving such a violation.

Grabowicz et al. (2022) present a post-processing method based on Shapley values aiming to detect and
nullify the influence of a protected attribute on the output of the system. For this, they assume there are
direct causal links from the data to the protected attribute and that there are no measured confounders.
Our work does not use causal graphs but exploits the theoretical properties of the Shapley values to obtain
fairness model auditing guarantees.

Begley et al. (2020) propose a meta-algorithm for applying fairness interventions to already-trained models,
wherein one trains a perturbation to the original model, rather than a new model entirely by adapting the
Shapley value function w.r.t. demographic parity. In our work, we do not adopt the Shapley value function,
but train a meta-algorithm in the testing phase, there is no need for labelled data, nor is our method based
on perturbations.

Other lines of work have studied the relationship between explanation quality and population subgroups. For
example,Dai et al. (2022), explores group-based disparities in explanation quality, focusing on metrics such as
fidelity, stability, consistency, and sparsity. Aïvodji et al. (2019), introduces the concept of “fairwashing”,
where rule-based explanation methods can be manipulated to justify unfair model decisions, making them
appear fair. Slack et al. (2020) demonstrate how machine learning algorithms can be deliberately designed so
that explanation methods like LIME and SHAP obscure the model’s explicitly unfair behavior, making it
harder to detect biases. While these works focus on individual or local explanations, our research examines
distributions of explanations, where individual differences might be masked by overall metric aggregation.
For example, Figure 10 shows that SHAP and LIME yield similar results despite their distinct explanation
mechanisms, and Appendix E analyzes various Shapley value approximations, which still produce comparable
results. Investigating errors in calculating explanation distributions remains an avenue for future research.
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Few works have researched fairness using other explainability techniques such as counterfactual explanations
(Kusner et al., 2017; Manerba and Guidotti, 2021; Mutlu et al., 2022). We do not focus on counterfactual
explanations but on feature attribution methods that allow us to measure unequal feature contribution to the
prediction. Further work can be envisioned by applying explainable AI techniques to the Equal Treatment
Inspector, or by constructing the explanation distribution out of other techniques.

C.2 Classifier Two-Sample Test (C2ST)

The use of classifiers as a statistical tests of independence W ⊥ Z for a binary Z’s has been previously
explored in the literature (Lopez-Paz and Oquab, 2017). The approach relies on testing accuracy of a classifier
trained to distinguish Z = 1 (positives) from Z = 0 (negatives) given W = w. In the null hypothesis, i.e., the
distributions of positives and negatives are the same, no classifier is better than a random answer with
accuracy 1/2. This assumes equal proportion of positive and negative instances. Our approach builds on this
idea, but it considers testing the AUC instead of the accuracy. Thus, we remove the assumption of equal
proportions5. We also show in Section G.1 that using AUC may achieve a better power than using accuracy.
Chakravarti et al. (2023) have also used C2ST together with the AUC, with their implementation using
bootstrap and asymptotic methods. Their work does not provide a formal proof as we do. Also, we use the
Brunner–Munzel test, which has a better power; see Section G.1 for an experimental comparison.

Liu et al. (2020) propose a kernel-based approach to two-sample test classification. Alike work has also
been used in Kaggle competitions under the name of “Adversarial Validation” (Ellis, 2023; Guschin et al.,
2018; Barrabés et al., 2023), a technique which aims to detect which features are distinct between train
and leaderboard datasets to avoid possible leaderboard shakes. Other works have integrated predicting the
protected attribute in their pipeline. Edwards and Storkey (2016) remove statistical imparity from images by
using an adversary that tries to predict the relevant sensitive variable from the model representation and
censoring the learning of the representation of the model and data on images and neural networks. Our
approach does not aim to censor or mitigate bias on the learned representation but to propose a measure of
fairness that is more aligned with the liberal-oriented politics notion of equal treatment.

D Explanation Disparity Given Shapley Values of Protected Feature

Can we measure equal treatment by looking only at the Shapley value of the protected feature? The following
result considers a linear model (with unknown coefficients) over independent features. In such a very simple
case, resorting to Shapley values leads to an exact test of both DP and ED, which turn out to coincide.
Throughout this section, we assume an exact calculation of the Shapley values S(fθ,x) for instance x,
possibly for the observational and interventional variants – see (4,5) in Appendix B. In the following, we
write distinct(DX, i) for the number of distinct values in the i-th feature of dataset DX, and S(fβ ,DX)i ≡ 0
if the Shapley values of the i-th feature are all 0’s, i.e., if ∀ x ∈ DX.S(fβ ,x)i = 0.
Lemma D.1. Consider a linear model fβ(x) = β0 +

∑
j βj · xj. Let Z be the i-th feature, i.e., Z = Xi,

and let DX be such that distinct(DX, i) > 1. If the features in X are independent, then S(fβ ,DX)i ≡ 0 ⇔
S(fβ ,X) ⊥ Z ⇔ fβ(X) ⊥ Z.

Proof. By Lemma B.1, it turns out S(fβ ,x)i = βi(xi −E[Xi]). This holds both for the interventional variant,
and, given the independence assumption, also for the observational variant. Since distinct(DX, i) > 1, it
turns out that S(fβ ,DX)i ≡ 0 iff βi = 0. Let us show βi = 0 ⇒ S(fβ ,X) ⊥ Z ⇒ fβ(X) ⊥ Z ⇒ βi = 0.

If βi = 0, then S(fβ ,X) consists of βj(xj −E[Xj ]) in positions j ̸= i, and of 0 in position i. Since the features
in X are independent, by propagation of independence, S(fβ ,X) ⊥ Z.

The implication S(fβ ,X) ⊥ Z ⇒ fβ(X) ⊥ Z holds in general, as shown in Lemma 4.1.

Finally, by linearity of the model, fβ(X) ⊥ Z trivially implies βi = 0.

5For unequal proportions, one can consider the accuracy of the majority class, but this still make the requirement to know
the true proportion of positives and negatives.

24



Under review as submission to TMLR

However, the result does not extend to the case of dependent features.
Example D.1. Consider Z = X2 = X2

1, and the linear model fβ(x) = β0 + β1 · x1 with β1 ̸= 0 and β2 = 0,
i.e., the protected feature is not used by the model. In the interventional variant, the uninformativeness
property implies that S(fβ ,x)2 = 0. However, this does not mean that Z = X2 is independent of the output
because fβ(X) = β0 + β1 · X1 ̸⊥ X2. In the observational variant, Aas et al. (2021) show that:

val(T ) =
∑

i∈N\T

βi · E[Xi|XT = x⋆T ] +
∑
i∈T

βi · x⋆i

from which, we calculate: S(fβ ,x⋆)2 = β1
2 E[X1|X2 = x⋆2]. We have S(fβ ,DX)2 ≡ 0 ⇔ E[X1|X2 = x⋆2] = 0

for all x⋆ in DX. For the marginal distribution P (X1 = v) = 1/4 for v = 1,−1, 2,−2, and considering
that X2 = X2

1, it holds that E[X1|X2 = v] = 0 for all v. Thus S(f,DX)2 ≡ 0. However, again fβ(X) =
β0 + β1 · X1 ̸⊥ X2.

The counterexample shows that focusing only on the Shapley values of the protected feature is not a viable
way to prove DP of a model – and, a fortiori by Lemma 4.1, neither to prove ED of the model.

E Observational vs Interventional Shapley Values: True to the Model or True to the
Data?

Many works discuss the application of Shapley values for feature attribution in ML models (Strumbelj and
Kononenko, 2014; Lundberg et al., 2020; Lundberg and Lee, 2017; Lundberg et al., 2018). However, the
correct way to connect a model to a coalitional game, which is the central concept of Shapley values, is a
source of controversy, with two main approaches: an interventional (Aas et al., 2021; Frye et al., 2020; Zern
et al., 2023), and an observational (Sundararajan and Najmi, 2020; Datta et al., 2016; Mase et al., 2019)
formulation of the conditional expectation, see Eqs. (4) and (5).

In the following experiment, we compare the impact of the two approaches on our Equal Treatment Inspector
to measure Explanation Disparity. We benchmark this experiment on the four prediction tasks based on the
US census data (Ding et al., 2021) and use linear models for both the fθ(X) and gψ(S(fθ,X)). We calculate
the two variants of Shapley values using the SHAP linear explainer.6 The comparison will be parametric to
a feature perturbation hyperparameter. The interventional SHAP values break the dependence structure
between features in the model to uncover how the model would behave if the inputs was changed (as it was
an intervention). This option is said to stay “true to the model”, meaning it will only give allocation credit to
the features that the model actually uses. On the other hand, the full conditional approximation of the SHAP
values respects the correlations of the input features. If the model depends on one input that is correlated
with another input, then both get some credit for the model’s behaviour. This option is said to say “true to
the data”, meaning it only considers how the model would behave when respecting the correlations in the
input data (Chen et al., 2020). We measure the difference between the two approaches by looking at the
AUC and the linear coefficients of the inspector gψ, for this case only for the pair of values White-Other of
the “Race" attribute. Table 2 and Table 3 show that differences in AUC and coefficients are negligible.

Table 2: AUC comparison of the “Equal Treatment Inspector” to measure Explanation Disparity between
estimating the Shapley values between the interventional and the observational approaches for the four
prediction tasks based on the US census dataset. The % column is the relative difference.

Interventional Observational %
Income 0.736438 0.736439 1.1e-06
Employment 0.747923 0.747923 4.44e-07
Mobility 0.690734 0.690735 8.2e-07
Travel Time 0.790512 0.790512 3.0e-07

6https://shap.readthedocs.io/en/latest/generated/shap.explainers.Linear.html
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Table 3: Linear regression coefficients comparison of the “Equal Treatment Inspector” between estimating the
Shapley values between the interventional and the observational approaches for the ACS Income prediction
task. The % column is the relative difference.

Interventional Observational %
Marital 0.348170 0.348190 2.0e-05
Worked Hours 0.103258 -0.103254 3.5e-06
Class of worker 0.579126 0.579119 6.6e-06
Sex 0.003494 0.003497 3.4e-06
Occupation 0.195736 0.195744 8.2e-06
Age -0.018958 -0.018954 4.2e-06
Education -0.006840 -0.006840 5.9e-07
Relationship 0.034209 0.034212 2.5e-06

F Experiments on Datasets derived from the US Census

In the main body of the paper, we considered the ACS Income dataset. Here, we experiment with additional
datasets derived from the US census database (Ding et al., 2021): ACS Travel Time, ACS Employment and
ACS Mobility. We compare fairness of the prediction tasks for pairs of “Race" protected attribute groups over
the California 2014 district data. For instance, for the pair White-Other, this means that Z = 0 represents
Race=White, and Z = 1 represents Race=Other.

We follow the same methodology as in the experimental Section 5.2. The choice of xgboost (Chen and
Guestrin, 2016) for the model fθ is motivated as it achieves state-of-the-art performance Grinsztajn et al.
(2022); Elsayed et al. (2021); Borisov et al. (2021). The choice of logistic regression for the inspector gψ is
motivated by its direct interpretability.

F.1 ACS Employment

The goal of this task is to predict whether an individual is employed. Figure 4 shows a low DP violation,
compared to the other prediction tasks based on the US census dataset. The AUC of the Equal Treatment
Inspector is ranging from 0.60 to 0.75. Figure 4 (right) shows the Wasserstein distance between the coefficients
of the linear regressor gψ compared to a baseline where groups are assigned at random in the input dataset.
On average, the most important features across all group comparisons are “Education” and “Citizenship”.
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Figure 4: Left: AUC of the inspector for ET and DP, over the district of California 2014 for the ACS
Employment dataset. Right: contribution of features to the ET inspector performance.
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F.2 ACS Income

The goal of this task is to predict whether an individual’s income is above $50,000,. Figure 5 shows an AUC
for the ET inspector in the range of 0.60 to 0.80. By looking at the features, they highlight different ED
drivers depending on the pair-wise comparison made. Figure 5 (right) shows the Wasserstein distance between
the coefficients of the linear regressor gψ compared to a baseline where groups are assigned at random in the
input dataset. This feature importance post-hoc explanation method provides insights into the impact of
different features as sources of unequal treatment. We observe – on average – “Education” and “Occupation”
as a highly discriminatory proxy. This allows us to identify areas where adjustments or interventions may be
needed to move closer to the ideal of equal treatment.
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Figure 5: Left: AUC of the inspector for ED and DP, over the district of California 2014 for the ACS Income
dataset. Right: contribution of features to the ED inspector performance.

F.3 ACS Mobility

The goal of this task is to predict whether an individual had the same residential address one year ago, only
including individuals between the ages of 18 and 35. This filtering increases the difficulty of the prediction
task, as the base rate of staying at the same address is above 90% for the general population (Ding et al.,
2021). Figure 6 show an AUC of the Equal Treatment inspector in the range of 0.60 to 0.75. By looking at
the features, they highlight different source of the ED violation depending on the group pair-wise comparison.
On average, the feature “Ancestry”, i.e. “ancestors’ lives with details like where they lived, who they lived
with, and what they did for a living", plays a high relevance when predicting Explanation Disparity violation,
followed by the feature “education”.
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Figure 6: Left: AUC of the inspector for ED and DP, over the district of California 2014 for the ACS Mobility
dataset. Right: contribution of features to the ET inspector performance.
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G Additional Experiments

In this section, we run additional experiments on C2ST, hyperparameters, and models for estimators fθ and
inspectors gψ.

G.1 Statistical Independence Test via Classifier AUC Test

We complement the experiments of Section 5.2 by reporting in Table 4 the results of the C2ST for group
pair-wise comparisons. As discussed in Section 4.2.1, we perform the statistical test H0 : AUC = 1/2 of the
Equal Treatment Inspector using a Brunner-Munzel one tailed test against H1 : AUC > 1/2 as implemented
by Virtanen et al. (2020). Table 4 reports the empirical AUC on the test set, the confidence intervals at 95%
confidence level (columns “Low” and “High”), and the p-value of the test. The “Random” row regards a
randomly assigned group and represents a baseline for comparison. The statistical tests clearly show that the
AUC is significantly different from 1/2, also when correcting for multiple comparison tests.

Table 4: Results of the C2ST on the Equal Treatment Inspector.
Pair AUC Low High pvalue Test Statistic

Random 0.501 0.494 0.507 0.813 0.236
White-Other 0.735 0.731 0.739 < 2.2e-16 97.342
White-Black 0.62 0.612 0.627 < 2.2e-16 27.581
White-Mixed 0.615 0.607 0.624 < 2.2e-16 23.978
Asian-Other 0.795 0.79 0.8 < 2.2e-16 107.784
Asian-Black 0.667 0.659 0.676 < 2.2e-16 38.848
Asian-Mixed 0.644 0.634 0.653 < 2.2e-16 28.235
Other-Black 0.717 0.708 0.725 < 2.2e-16 48.967
Other-Mixed 0.697 0.688 0.707 < 2.2e-16 39.925
Black-Mixed 0.598 0.586 0.61 < 2.2e-16 15.451
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Figure 7: Comparing the power (the higher, the better) of C2ST based on AUC with Brunner-Munzel test
(AUC Test BM) vs Accuracy vs AUC with asymptotic normal approximation of the Wilcoxon–Mann–Whitney
statistics (AUC Test A). Left: balanced groups (P (Z = 1) = 0.5). Right: unbalanced groups (P (Z = 1) = 0.2).

We also compare the power of the C2ST based on the AUC using the Brunner-Munzel test against
the two-sample test of Lopez-Paz and Oquab (2017), which is based on accuracy, and against the
AUC test of Chakravarti et al. (2023), which is based on the asymptotic normal approximation of the
Wilcoxon–Mann–Whitney statistics. We generate synthetic datasets from X × Z, where Z ∼ Ber(0.5)
(balanced groups) or Z ∼ Ber(0.2) (unbalanced groups), and X = (X1,X2) with positives (Z = 1) distributed

as N(
[
µ µ

]
,Σ) and negatives (Z = 0) distributed as N(

[
−µ − µ

]
,Σ), where Σ =

[
1 0.5

0.5 1

]
. Thus, the

larger the parameter µ, the easier is to distinguish the distributions of positives and negatives. Figure 7
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reports the power (i.e., the probability of rejecting H0 when it does not hold) of the three tests using in all
cases a logistic regression classifier. The power is estimated by 1,000 runs for each of the µ’s ranging from
0.005 to 0.5. The figure highlights that, under such a setting, testing the AUC using the Brunner-Munzel test
achieves a better power than using accuracy or using an asymptotic test. Our approach exhibits the best
power, and the difference is higher in the case groups are unbalanced.

G.2 Hyperparameters Evaluation
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Figure 8: AUC of the Equal Treatment Inspector for Explanation Disparity, over the district of CA14 for the
US Income dataset.

This section extends our experimental setup, where we increase the model complexity by varying the model
hyperparameters. We use the US Income dataset for the population of the CA14 district. We consider three
models for fθ: Decision Trees, Gradient Boosting, and Random Forest. For the Decision Tree models, we
vary the depth of the tree, while for the Gradient Boosting and Random Forest models, we vary the number
of estimators. Shapley values are calculated by the TreeExplainer algorithm (Lundberg et al., 2020). For the
ET inspector gψ, we consider logistic regession, and XGB.

Figure 8 shows that less complex models, such as Decision Trees with maximum depth 1 or 2, are also less
unfair. However, as we increase the model complexity, the unequal treatment of the model becomes more
pronounced, achieving a plateau when the model has enough complexity. Furthermore, when we compare the
results for different inspectors, we observe minimal differences (note that the y-axis takes different ranges).
In our experiments of the main body, we used XGBoost due to its state-of-the-art performance.

G.3 Varying Estimator and Inspector

We vary here the model fθ and the inspector gψ over a wide range of well-known classification algorithms.
Table 5 shows that the choice of model and inspector impacts on the measure of Equal Treatment, namely
the AUC of the inspector. By Theorem 4.3, the larger the AUC of any inspector the smaller is the p-value of
the null hypothesis S(fθ,X) ⊥ Z. Therefore, inspectors able to achieve the best AUC (higher) should be
considered. Weak inspectors have a lower power, i.e., a lower probability of rejecting the null hypothesis
when it does not hold.

G.4 Experiment: Explaining Un-Equal Treament

We complement the results of the experimental Section 5.1 with a further experiment relating the correlation
hyperparameter γ to the coefficients of an explainable ET inspector. We consider a synthetic dataset with
one more feature, by drawing 10, 000 samples from a X1 ∼ N(0, 1), X2 ∼ N(0, 1), and (X3,X5) and (X4,X5)

following bivariate normal distributions N
([

0 0
]
,

[
1 γ
γ 1

])
and N

([
0 0

]
,

[
1 γ/2
γ/2 1

])
, respectively. We
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Table 5: AUC of the Equal Treatment inspector for different combinations of models and inspectors.
Model fθ

Inspector gψ DecisionTree SVC Logistic Reg. RF XGB
DecisionTree 0.631 0.644 0.644 0.664 0.634

KNN 0.737 0.754 0.75 0.744 0.751
Logistic Reg. 0.767 0.812 0.812 0.812 0.821

MLP 0.786 0.795 0.795 0.813 0.804
RF 0.776 0.782 0.781 0.758 0.795

SVC 0.743 0.807 0.807 0.790 0.810
XGB 0.775 0.780 0.780 0.789 0.790

define the binary protected feature Z with values Z = 1 if X5 > 0 and Z = 0 otherwise. As in Section 5.1,
we consider two experimental scenarios. In the first scenario, the indirect case, we have unfairness in the data
and in the model. The targe feature is Y = σ(X1 + X2 + X3 + X4), where σ is the logistic function. In the
second scenario, the uninformative case, we have unfairness in the data and fairness in the model. The target
feature is Y = σ(X1 + X2).

Figure 9 shows how the coefficients of the inspector gψ vary with correlation γ in both scenarios. In the
indirect case, coefficients for S(fθ,X)1 and S(fθ,X)2 correctly attributes zero importance to such variables,
while coefficients for S(fθ,X)3 and S(fθ,X)4 grow linearly with γ, and with the one for S(fθ,X)3 with higher
slope as expected. In the uninformative case, coefficients are correctly zero for all variables.
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Figure 9: Coefficient of gψ over γ for synthetic datasets in two experimental scenarios.

G.5 Statistical Comparison of Demographic Parity versus Explanation Disparity

So far, we measured ED and DP fairness using the AUC of an inspector, gψ and gv, respectively (see Section
5). For DP, however, other probability distance metrics can be considered, including the p-value of the
Kolmogorov–Smirnov (KS) test and the Wasserstein distance. Table 6 reports all such distances in the format
“mean ± stdev" calculated over 100 random sampled datasets. The pairs of group comparisons are sorted by
descending AUC values. We highlight in red the values below the mean threshold of 0.05 for the KS test
(above no violation), 0.55 for the AUC of the C2ST (below no violation), and 0.05 for the Wasserstein distance
(below no violation). They represent cases where ED violation occurs, but no DP violation is measured (with
different metrics).
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Table 6: Comparison of ED and DP measured in different ways. Cases of Explanation Disparity violations
but no Demographic Parity violations are highlighted in red.

Pair Data Explanation Disparity Demographic Parity
C2ST (AUC) C2ST (AUC) KS (pvalue) Wasserstein

Asian-Other Income 0.794 ± 0.004 0.709 ± 0.004 0.338 ± 0.007 0.256 ± 0.004
White-Other Income 0.734 ± 0.002 0.675 ± 0.003 0.282 ± 0.003 0.209 ± 0.002
Other-Black Income 0.724 ± 0.004 0.628 ± 0.006 0.216 ± 0.007 0.143 ± 0.004
Other-Mixed Income 0.707 ± 0.005 0.593 ± 0.005 0.169 ± 0.006 0.117 ± 0.004
Asian-Black Income 0.664 ± 0.008 0.587 ± 0.004 0.142 ± 0.005 0.111 ± 0.004
Asian-Mixed Income 0.644 ± 0.005 0.607 ± 0.006 0.159 ± 0.008 0.128 ± 0.006
White-Mixed Income 0.613 ± 0.005 0.546 ± 0.005 0.082 ± 0.004 0.058 ± 0.002
White-Black Income 0.613 ± 0.005 0.57 ± 0.007 0.113 ± 0.008 0.080 ± 0.006
Black-Mixed Income 0.603 ± 0.006 0.523 ± 0.007 0.055 ± 0.007 0.023 ± 0.004
Asian-Black TravelTime 0.677 ± 0.052 0.502 ± 0.011 0.021 ± 0.009 0.01 ± 0.003
Asian-Other TravelTime 0.653 ± 0.024 0.528 ± 0.006 0.053 ± 0.011 0.027 ± 0.004
Asian-Mixed TravelTime 0.647 ± 0.013 0.557 ± 0.003 0.096 ± 0.004 0.045 ± 0.002
White-Other TravelTime 0.636 ± 0.020 0.568 ± 0.007 0.107 ± 0.010 0.060 ± 0.005
Other-Mixed TravelTime 0.618 ± 0.017 0.546 ± 0.011 0.079 ± 0.012 0.043 ± 0.006
Other-Black TravelTime 0.615 ± 0.021 0.526 ± 0.011 0.049 ± 0.014 0.026 ± 0.006
White-Black TravelTime 0.599 ± 0.006 0.569 ± 0.004 0.120 ± 0.006 0.057 ± 0.003
Black-Mixed TravelTime 0.588 ± 0.012 0.557 ± 0.012 0.098 ± 0.015 0.056 ± 0.001
White-Mixed TravelTime 0.557 ± 0.008 0.497 ± 0.006 0.016 ± 0.004 0.006 ± 0.002
Other-Black Employment 0.744 ± 0.008 0.524 ± 0.005 0.036 ± 0.005 0.036 ± 0.004
Asian-Other Employment 0.711 ± 0.011 0.557 ± 0.003 0.066 ± 0.004 0.066 ± 0.003
White-Other Employment 0.695 ± 0.007 0.524 ± 0.003 0.019 ± 0.005 0.019 ± 0.002
Other-Mixed Employment 0.683 ± 0.022 0.557 ± 0.008 0.083 ± 0.005 0.083 ± 0.003
Black-Mixed Employment 0.678 ± 0.028 0.534 ± 0.007 0.049 ± 0.007 0.048 ± 0.004
Asian-Mixed Employment 0.671 ± 0.019 0.610 ± 0.006 0.014 ± 0.006 0.145 ± 0.004
Asian-Black Employment 0.655 ± 0.021 0.587 ± 0.004 0.106 ± 0.006 0.106 ± 0.004
White-Mixed Employment 0.651 ± 0.009 0.581 ± 0.006 0.095 ± 0.004 0.095 ± 0.003
White-Black Employment 0.619 ± 0.011 0.544 ± 0.004 0.049 ± 0.003 0.049 ± 0.002
Asian-Mixed Mobility 0.753 ± 0.020 0.511 ± 0.014 0.04 ± 0.012 0.014 ± 0.006
Other-Mixed Mobility 0.748 ± 0.020 0.573 ± 0.015 0.113 ± 0.017 0.062 ± 0.009
Asian-Other Mobility 0.714 ± 0.011 0.565 ± 0.01 0.114 ± 0.011 0.054 ± 0.005
Asian-Black Mobility 0.672 ± 0.012 0.503 ± 0.014 0.032 ± 0.011 0.012 ± 0.004
Other-Black Mobility 0.660 ± 0.012 0.526 ± 0.009 0.044 ± 0.009 0.02 ± 0.004
White-Mixed Mobility 0.655 ± 0.007 0.568 ± 0.005 0.105 ± 0.007 0.044 ± 0.003
White-Other Mobility 0.626 ± 0.017 0.555 ± 0.009 0.091 ± 0.010 0.046 ± 0.005
White-Black Mobility 0.611 ± 0.009 0.518 ± 0.008 0.043 ± 0.008 0.017 ± 0.004
Black-Mixed Mobility 0.602 ± 0.035 0.503 ± 0.016 0.031 ± 0.013 0.012 ± 0.006
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H LIME as an Alternative to Shapley Values

Def. 3.2 of ED is parametric in the explanation function. We used Shapley values for their theoretical
advantages (see Appendix B). Another widely used feature attribution technique is LIME (Local Interpretable
Model-Agnostic Explanations). The intuition behind LIME is to create a local linear model that approximates
the behavior of the original model in a small neighbourhood of the instance to explain (Ribeiro et al., 2016a;b),
whose mathematical intuition is very similar to the Taylor-Maclaurin series. This section discusses the
differences in our approach when adopting LIME instead of the SHAP implementation of Shapley values.
First of all, LIME has certain drawbacks:

• Computationally Expensive: Its current implementation is more computationally expensive than
current SHAP implementations such as TreeSHAP (Lundberg et al., 2020), Data SHAP (Kwon
et al., 2021; Ghorbani and Zou, 2019), or Local and Connected SHAP (Chen et al., 2019b). This
problem is exacerbated when producing explanations for multiple instances (as in our case). In fact,
LIME requires sampling data and fitting a linear model, which is a computationally more expensive
approach than the aforementioned model-specific approaches to SHAP. A comparison of the runtime
is reported in the next sub-section.

• Local Neighborhood: The randomness in the calculation of local neighbourhoods can lead to
instability of the LIME explanations. Works including Slack et al. (2020); Alvarez-Melis and Jaakkola
(2018); Adebayo et al. (2018) highlight that several types of feature attributions explanations,
including LIME, can vary greatly in their provided explanations.

• Dimensionality: LIME requires, as a hyperparameter, the number of features to use for the local
linear model. For our method, all features in the explanation distribution should be used. However,
linear models suffer from the curse of dimensionality. In our experiments, this is not apparent, since
our synthetic and real datasets are low-dimensional.
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Figure 10: AUC of the Equal Treatment Inspector using SHAP vs using LIME.

Figure 10 compares the AUC of the Equal Treatment Inspector using SHAP and LIME as explanation
functions over the synthetic dataset of Section 5.1. In both scenarios (indirect case and uninformative case),
the two approaches have similar results. In both cases, however, the stability of using SHAP is better than
using LIME.

H.1 Runtime

We conduct an analysis of the runtimes for generating the explanation distributions using TreeShap vs LIME.
We adopt shap version 0.41.0 and lime version 0.2.0.1 as software packages. In order to define the local
neighborhood for both methods in this example, we used all the data provided as background data. The
model fθ is set to xgboost. As data we produce a randon generated data matrix, of varying dimensions.
When varying the number of samples, we use 5 features, and when varying the number of features, we
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use 1000 samples. Figure 11 shows the elapsed time for generating explanation distributions with varying
numbers of samples and columns. The runtime required to generate explanation distributions using LIME is
considerably greater than using SHAP. The difference becomes more pronounced as the number of samples
and features increases.
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Figure 11: Elapsed time for generating explanation distributions using SHAP and LIME with different
numbers of samples (left) and features (right) on synthetically generated datasets. Note that the y-scale is
logarithmic.

I Impact Statements

I.1 Reproducibility Statement

To ensure the reproducibility of our results, we make source code publicly available at https://anonymous.
4open.science/r/xAIAuditing-F6F9/README.md. The Python package explanationspace, anonymously
available at https://anonymous.4open.science/r/explanationspace-B4B1/README.md, will be released
as open-source. We use default scikit-learn parameters (Pedregosa et al., 2011), unless stated otherwise.
Our experiments ran on a 4 vCPU server with 32 GB RAM.

I.2 Research Positionality Statement

Our backgrounds and experiences coming from Western education significantly influenced the trajectory
of this work. As interdisciplinary researchers, our diverse perspectives enriched the examination of the
notion of equal treatment in distributive justice in the context of AI fairness. Drawing from interdisciplinary
backgrounds, including philosophy and computer science, we integrated moral theories into technical domains.
Acknowledging our own positionalities, we recognize the importance of context-specific interpretations of
political philosophy in different socio-cultural settings.

I.3 Adverse Impact Statement

While we believe our exploration of liberalism-oriented politics for fairness metrics in AI contributes valuable
insights, we acknowledge the potential adverse impacts of our work. One unintended consequence may be the
oversimplification of philosophical considerations in AI systems. In social sciences, a longstanding critique
argues that when systematic differences exist between groups, applying equal treatment may perpetuate
discrimination by not providing equal opportunities to all individuals. We leave the normative discussion
of which political framework or philosophical paradigm should be pursued by policy to the discourse in the
social sciences and the broad public. We caution against the uncritical adoption of our proposed framework,
urging ongoing dialogue and adaptation to ensure that AI ethics remains responsive to emerging challenges
and ethical considerations.
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