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Abstract

The COVID-19 pandemic generates new real-world data-driven problems such as
predicting case surges, managing resource depletion, or modeling geo-spatial infec-
tion spreading. Though reinforcement learning (RL) has been previously proposed
to optimize regional lock-downs, the availability of mobility tracking data with
offline RL allows us to push decision making from the top-down perspective (i.e.,
driven by governments) to the bottom up perspective (i.e., driven by individuals).
Rather than predicting the outcome of the outbreak, we utilize offline RL as a tool,
along with epidemic modeling, to empower collaborative decision-making at the
individual level. In our investigations, we ask whether we can train the population
of a city to become more resilient against infectious diseases? To investigate, we
deploy a ’city’ of 10,000 agents loaded with real visits at Points of Interest (POIs)
(e.g., restaurants, gyms, parks) throughout Austin, Texas during the COVID-19
pandemic (July 2020). Using a standard disease compartmental model, we find
that the city of trained agents can reduce disease transmissions by 60%. This opens
a new direction in using offline RL as a springboard to further the research at the
intersection of artificial intelligence and disease mitigation.
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1 Introduction

Though large populations, bustling commerce, and inter-regional travel mark the success of a
modern society, these conditions offer a favorable environment for infectious disease spreading
[1]. Considering the vulnerabilities of big cities to disease outbreaks, we ask whether we can train
a population of agents to optimize their visits at POIs, (e.g., restaurants, gyms, parks, etc.) to
collaboratively mitigate the disease spread.

With access to Foursquare location tracking data that logs real visits and dwell times, we load a large
population of RL agents with decisions made by real people during the COVID-19 pandemic. Because
we do not have access to the health status of the anonymous individuals within the Foursquare dataset,
we fill in the gap by simulating a viral outbreak. Thus, we propose using a hybrid offline multi-agent
RL and an online epidemic simulation model to optimize human mobility under a viral attack.

We organize the paper as follows: Section 2 discusses previous work, Section 3 outlines the approach,
Section 4 shows preliminary results, and Section 5 concludes with a discussion.

2 Previous Work

Early in the COVID-19 pandemic, hospitals deployed a cohort model that sectioned off health care
providers and patients to reduce population mixing [2]. Schools then followed suit by organizing
student-teacher cohorts to reduce disease spreading [3]. If one cohort experiences an outbreak, the
others can continue functioning without going into a full lockdown. In this paper, we propose pushing
this cohort paradigm to highly dynamic systems (e.g., population in a city) by training RL agents to
self-organize into mobility cohorts where we can incentivize ’Infectious’ people to frequent different
locations from the ’Susceptible’ people at any given moment.

At a large scale, in response to COVID-19, governments enacted regional shut downs and travel bans
that aimed to reduce population mixing. Though successful in reducing cases, the cost of maintaining
long term lock-downs led to pandemic fatigue [4]. As a means to manage economic and social costs,
Kompella et. al. introduce RL to optimize disease mitigation mandates at the government level [5].
In their work, the agent (i.e., government) decides to manage a city while under a disease attack.

Though helpful in advising decision making at the macro-scale, we are rather interested in informing
distributed decisions at the micro-scale (i.e., individual level). We envision an anti-fragile society
whose individuals can continue their daily lives while collaboratively avoiding infection hot-spots.
By self-organizing into mobility cohorts, people can section off avenues for disease spread, thereby
mitigating a disease without the need for a complete shutdown. To this end, we investigate the
feasibility of using on- and offline multi-agent RL to mitigate a highly infectious disease.

3 Approach

We combine offline multi-agent RL with online epidemic simulation to train a population of agents
to reduce the disease spread. We utilize the Foursquare dataset which consists of visits from over
36,000 individuals to various POIs throughout a metropolitan area during the 2020 pandemic (i.e., for
each anonymous person, we know when, where, and how long they visit a location) [6]. For example,
a ’visit’ entry in the dataset consists of a device’s anonymous identification, the location (POI), time
of visit (hour), and how long the visit lasts (in seconds). This highly granular ’visit’ entry is then
aggregated to make up an agent’s destination queue.

3.1 Epidemic Model

We apply the SEIR model [7] to individuals where an agent moves from the initial Susceptible
state to the Exposed state when coming into contact with Infectious individuals. We then transition
a Susceptible person to incubating when they visit a POI where the Infectious population density
exceeds their immunity δ threshold (equation 1). After an agent is incubating, they transition to being
Infectious after the incubation period (5 days), and to Recovered state after an illness period (7 days).

#infectionsPOI

total people
≥ δ (1)
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3.2 RL Problem Definition

We define the RL problem as follows. The ’environment’ consists of the POIs within a city. Each
agent is loaded with destination queues pulled from the Foursquare visits dataset. At each time step
(e.g., hour), the agents can choose from three actions, namely ’go to location’, ’stay at home’, or
’choose a safer location’. We define the reward functions for each health status as a composition
of sub-reward functions: Rexposure (equation 2), Rfatigue (equation 3), and Rglobal (equation
4). The Rexposure ∈ [0, 1] is meant to incentivize agents to reduce exposure to infections with
respect to their own immunity threshold δ ∈ [0, 1]. For example, a Susceptible agent with a higher
immunity δ receives less of a penalty for frequenting POIs with more #infectionsPOI (number of
infections at a POI) than an agent with a lower immunity threshold. The Rfatigue ∈ [0, 1] is meant
to incentivize agents to socially cooperate by changing their intended behavior with respect to their
own fatigue parameter α ∈ [0, 1]. For example, an agent with a high pandemic fatigue α will be
penalized for choosing to deviate from their intended visits by ’staying at home’ or ’going to safer
location’ more times than the threshold α allows. To keep track of the number of deviations, at each
timestep, T , we calculate the cumulative #deviations and #actions from the beginning of the
episode t. The Rglobal ∈ [0, 1] is meant to motivate agents to socially cooperate if the population’s
global infectionst are high at each time step t, even if they are not personally getting exposed.

Rexposure =
1

(1 + #infectionsPOI)× (1− δ)
(2)

Rfatigue = (1− α)− #deviationst:T
#actionst:T

(3)

Rglobal =
1

global infectionst
(4)

The rewards for each health status are defined in Table 1. We incentivize Susceptible agents to take
into account their risk of exposure at a POI with respect to their own willingness to change behavior
for the social good. When Infectious, they no longer worry about being exposed, but instead, they
keep track of the number of people they directly infect (#infectees) to weigh against their respective
pandemic fatigue α. The Incubating and Recovered reward functions are similar, as these agents do
not worry about being exposed.

Health Status Reward
Susceptible Rexposure ×Rfatigue +Rglobal

Incubating Rfatigue +Rglobal

Infectious Rfatigue −#infectees+Rglobal

Recovered Rfatigue +Rglobal

Table 1. Reward Functions for each Health Status

We deploy the standard REINFORCE [8] algorithm on each agent and implement policy approxima-
tion with a two layer sequential neural network. In each episode, we seed a Susceptible population
with 10% Infectious agents. We terminate the episode when the virus has no one left to infect.
Though our RL experiment is online, where agents can infect each other, they are incapable of visiting
locations outside of their destination queues (hence the offline aspect of our approach).

4 Preliminary Results

As a proof of concept, we evaluate our approach by simulating an infection throughout a naive
vs. trained population of 10,000 agents. The naive population exclusively follows the Foursquare
destination queues rather than a learned policy. In Figure 1a, the simulated disease cumulatively
infects 97% of the total naive population within the first 50 timesteps. However, when the agents
are incentivized to self-organize into mobility cohorts, they reduce overall infections by 60%.
The rewards averaged across the entire population of agents is shown in Figure 1b. We vary the
population’s immunity δ and pandemic fatigue α to see how they affect the average agent’s action
(Figure 1c). We notice that the Susceptible population opts to ’go to less risky location’ or ’stay
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Figure 1: (a) Comparison of mitigation strategies where ’no intervention’ refers to agents always
going to their next location, ’intervention’ refers to agents incentivized by the reward functions in
Table 1, and ’intervention without global incentive’ refers to agents incentivized by reward functions
in Table 1 without Rglobal. (b) Average reward variation during training. (c) Average action taken at
the end of training. (d) Percentage of Recovered agents at the end of a simulation run while varying
the skew of heterogenous pandemic fatigue α and immunity δ.

at home’ the most compared to the other health subgroups (Figure 1c). In contrast, the incubating
population, on average, decides to ’go to next location’ 95% of the time which makes sense
considering that they cannot infect, nor be infected by others. When the agents become Infectious,
their collective behavior is most dependent on the population’s immunity, as well as their respective
pandemic fatigue (Figure 1c). Then, when Recovered, they opt to adhere to their own desired
destinations less than expected which we believe is because the off-policy algorithm does not have
enough timesteps to tweak the policy after acquiring the penalties from being infectious. Furthermore,
we observe that the population trained with high compliance (low pandemic fatigue δ) reduces the
most infections in comparison to heterogeneous and low compliance (Figure 1d). These initial results
are the first step in exploring the feasibility of recommendation systems that mitigate spreading.

5 Discussion

Given the the urgency to find non-pharmaceutical interventions, offline multi-agent RL can serve
as a safe testbed to experiment with mitigation strategies while benefiting from mobility datasets.
We envision a smart phone recommendation system that advises people on how to optimize their
mobility during a disease outbreak. Rather than incentivizing people directly, the app’s virtual agent
learns how to minimize the exposure with respect to the user’s social cooperation while collaborating
with the other virtual agents to mitigate the disease. We believe this work addresses a largescale RL
problem that can benefit both the offline RL and multi-agent RL research communities when fully
realized. Our work is currently limited by the fact that we lack ground truth health labels that would
otherwise be self reported by app users, therefore we have to rely on disease spreading simulations.
Furthermore, our problem exemplifies the challenge of using policy gradient learning on agents
whose reward functions change throughout an episode; we leave this for future work.
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