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Abstract

The potential for Large Language Models001
(LLMs) to generate new information offers a002
potential step change for research and innova-003
tion. This is challenging to assert as it can be004
difficult to determine what an LLM has previ-005
ously seen during training, making “newness”006
difficult to substantiate. In this paper we ob-007
serve that LLMs are able to perform sophis-008
ticated reasoning on problems with a spatial009
dimension, that they are unlikely to have previ-010
ously directly encountered. While not perfect,011
this points to a significant level of understand-012
ing that state-of-the-art LLMs can now achieve,013
supporting the proposition that LLMs are able014
to yield significant emergent properties. In par-015
ticular, Claude 3 is found to perform well in016
this regard.017

1 Introduction018

Large Language models (LLMs) based on trans-019

formers have made a significant impact over just a020

few years. Particular surprise has concerned their021

capabilities as the models have progressively in-022

creased in scale. LLMs are now comparable with023

the brain sizes of small animals. While GPT-3’s024

architecture exceeded the brain size of a rat with025

an estimated 1011 parameters (Tom et al., 2020),026

GPT-4 is an order of magnitude larger still, with027

over 1012 parameters. This is a small step closer028

to the human brain, having around 1014 parame-029

ters (Pakkenberg et al., 2003). When combined030

with large-scale online training through the Inter-031

net and worldwide web, these models have sur-032

passed expectations on the level of intelligence033

that a machine can achieve. Indeed, despite limita-034

tions, “sparks of artificial general intelligence” are035

reported across a range of domains, including areas036

of mathematical reasoning (Bubeck et al., 2023).037

Across multiple domains, a main point of inter-038

est concerns so-called emergent properties (Wei039

et al., 2022) that models seemingly possess, rep-040

resenting capabilities in which they haven’t been 041

explicitly trained. This is something that is not cur- 042

rently understood, and ripe for investigation. The 043

extent and nature of general capabilities have also 044

sought to divide the AI community (Michael et al., 045

2022; Mitchell and Krakauer, 2023; Dell’Acqua 046

et al., 2023), particularly concerning i) the level 047

of understanding that LLMs possess, and ii) the 048

extent of their creative abilities beyond their auto- 049

regressive training (Bender et al., 2021; Shana- 050

han, 2024; Hinton, 2024; Yadlowsky et al., 2023; 051

Bubeck et al., 2023; Verdon, 2024; Blaiszik, 2024). 052

Our aim in this paper is to report further insights 053

as to where LLMs can create new knowledge be- 054

yond their training. Spatial reasoning problems 055

are used as the basis for investigation here be- 056

cause these offer multidimensional challenges that 057

rapidly become complex. The problems identified 058

here are intentionally obscure, to ensure limited 059

related literature. While overall performance in 060

the tasks provided across the different LLMs is 061

highly variable with some degree of hallucination, 062

we find that Claude 3 provides notable results that 063

show how LLMs can directly support new knowl- 064

edge creation, alongside supporting researchers in 065

abstract ideation. 066

2 Background 067

The question of whether LLMs can consistently 068

create new information which is genuinely new 069

and useful is a topic of ongoing debate within the 070

AI research community. Many claim that LLMs 071

are empty“stochastic parrots" (Bender et al., 2021; 072

Naughton, 2023) and are simply combining in- 073

formation from their training dataset (Shanahan, 074

2024). This would limit LLMs to at best combinato- 075

rial creativity and restrict their ability to generalise. 076

Furthering these claims, recent work proposed that 077

Transformer based models were unable to gener- 078

alise beyond their training dataset (Yadlowsky et al., 079
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2023). This being said, others have noted caution080

on being dismissive of what LLMs understand and081

can achieve as they scale. The neural network pi-082

oneer Geoffrey Hinton is one such expert, who in083

his recent lecture series “Will digital intelligence084

replace biological intelligence?” (Hinton, 2024),085

proposed that the latest LLMs deeply understand086

by virtue of their underlying model. Hinton argues087

that the billions of features and their interaction088

constitutes a sophisticated model for understand-089

ing, such that emergent properties are evident. To090

exemplify the ability to reason beyond training,091

Hinton uses a simple puzzle that was put to GPT-4,092

before it could access the Internet. Specifically:093

“The rooms in my house are painted blue or094

white or yellow. Yellow paint fades to white within095

a year. In two years time I want them all to be096

white. What should I do and why?”097

In response, GPT-4 replied:098

“Assuming that blue paint does not fade to white099

over time and you want all rooms to be white in100

two years, here’s what you should do:101

1. The rooms painted in white: You don’t have102

to do anything to these rooms since they are103

already white.104

2. The rooms painted in yellow: You don’t need105

to repaint these rooms either, because as per106

your information, yellow paint fades to white107

within a year. So in two years, they will be108

white.109

3. The rooms pained in blue: These rooms need110

to be repainted with white paint because the111

blue paint will not fade to white on its own.”112

This is a scenario likely unseen in training data113

that GPT-4 navigated with ease. And moreover,114

the approach to reasoning is elegant, with GPT-115

4 taking an approach that optimises for resources.116

This is an example of a powerful emergent property.117

Although somewhat trivial, it shows the possibility118

for an LLM to create new and useful ideas beyond119

its training.120

Where direct connections to training data cannot121

be made in support of problem solving, the scale122

of data on which LLMs are trained means that they123

have likely seen similar or related issues to those124

on which they are being queried. This allows the125

LLM to draw on useful knowledge that may be126

beyond the user’s awareness.127

Through such processes there is increasing evi-128

dence that LLMs can aid the creation of genuinely129

new information. Already LLMs have been used 130

within larger systems in order to obtain new and/or 131

useful artifacts. Notable examples of this include 132

FunSearch (Romera-Paredes et al., 2024), which 133

used LLMs in an evolutionaryalgorithm to lower 134

the bound of the capset problem; the usage of 135

LLMs as high-level game designers (Anjum et al., 136

2024); and the usage of LLMs in social science 137

to perform thematic analysis (Törnberg, 2023; Dai 138

et al., 2023; De Paoli, 2023). The impact of LLMs 139

can also been seen over different stages in the re- 140

search process (Ziems et al., 2024; Picard et al., 141

2023) and in a variety of fields (Oniani et al., 2024; 142

Stella et al., 2023; Ziems et al., 2024). While LLMs 143

in such instances are not performing academic re- 144

search on their own, as LLM capabilities improve 145

and autonomous agent systems like AutoGPT (Sig- 146

nificant Gravitas) and GPTdev (Qian et al., 2023) 147

improve, we might see LLMs being able to heavily 148

support or automate some research tasks. 149

Recently, after the release of Claude 3, it was 150

claimed that Claude 3 was able to reproduce unpub- 151

lished results (Verdon, 2024) and provide valuable 152

insights on unpublished results (Blaiszik, 2024). 153

Among the most notable critiques are claims that 154

both may have been in the training dataset, how- 155

ever it is hard to know for sure as the dataset is 156

proprietary and it is subject to the precise cutoff 157

point which matters in both cases 1 . Even if both 158

results were in the training datasets, the retrieval 159

and recreation of these from the massive data on 160

which Claude 3 was trained on is still impressive. 161

2.1 Approach 162

Based on the current early-stage progress in this 163

field, it remains important to further understand 164

how LLMs tackle problems beyond those seen 165

from within their training data. This governs the 166

extent that LLMs can significantly add to human 167

knowledge and accelerate research and innovation. 168

Accordingly, we address two test scenarios that 169

require sophisticated spatial understanding in a 170

mathematical context. These involve a decidable 171

game (Section 3) and polygons (Section 4). These 172

are presented to different LLMs, namely ChatGPT- 173

3.5-Turbo, Claude 3, and Bing Copilot, which were 174

at the time of writing state of the art. We consider 175

their respective performance in terms of being able 176

to make new assertions against particular spatial 177

problems. 178

1This wasn’t the only critique, but was perhaps the most
common one.
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3 Finding the winner of a decidable game179

To explore whether LLMs can create knowledge180

beyond their training, the first example we con-181

sider comes from combinatorial game theory, with182

the game originally coming from a TikTok video183

(Flom, 2023). The game is played as follows:184

• There are n empty spaces in a row, and 2185

players: A and B. Player A goes first.186

• The players take it in turns to place a counter187

into one of the empty spaces on the line. They188

are not allowed to place a counter directly next189

to another counter, regardless of if it is their190

counter or not.191

• The winner is the last person able to place a192

counter whilst respecting the above rules.193

We believe there is no academic literature on194

this game - though it is worth noting that there are195

papers on similar topics. As an example, there is196

a paper on optimally picking a urinal such that the197

chances of having an adjacent urinal being occu-198

pied is minimised (Kranakis and Krizanc, 2010).199

While this presentation of scenario is somewhat200

sensational, the general principles of the game can201

be more widely applied, such as in choosing park-202

ing spaces for example.203

If both players play the game optimally, it is204

decidable by the Zermelo Theorem (Schwalbe and205

Walker, 2001) and as such one should know who206

will win for a given number of empty spaces n.207

Below we present the message used to prompt a208

range of LLMs where we ask about the case n = 7:209

“““Two players, A and B, play a game. There210

is a line of “n" empty spaces. The players take it211

in turns placing a counter into one of the empty212

spaces on the line. The players are not allowed213

to place a counter directly next to another counter,214

regardless of if it is their counter or not. The winner215

of the game is the last player to place a counter,216

making the objective of the game to make it so your217

opponent cannot place a counter. If both players218

play optimally, and player A goes first, who will219

win if the line has 7 spaces?"""220

3.1 LLM Responses221

Of the LLMs asked, Claude 3 did particularly well.222

Not only was it able to answer the question cor-223

rectly, by stating that Player A would win, Claude224

3 was also able to come up with a new, provably225

dominant strategy for if there is an odd number of226

spaces. When Claude 3 was asked if it recognised 227

the game, it responded saying that the game was 228

the ancient game of Nim (Bouton, 1901). Whilst 229

the statement is incorrect, it is worth noting that 230

we can prove the game is equivalent to Nim via the 231

Sprage-Grundy Theorem (Grundy, 1939). 232

GPT-3.5-Turbo and Bing Copilot, meanwhile, 233

were not able to correctly answer who would win, 234

and whilst both LLMs had a good attempted to 235

find optimal strategies, the strategies proposed by 236

GPT-3.5-Turbo and Bing Copilot did not work in 237

general. Bing Copilot did, notably, also recognised 238

the game as Nim however. 239

A full breakdown of the strategies, alongside 240

conversation screenshots, is available and can be 241

found in Appendix A.1.1 to A.1.3. 242

4 Polygons with special properties 243

For our next task, we asked GPT-3.5-Turbo, GPT- 244

4-Turbo, and Claude 3 about a family of polygons 245

with special properties via the following prompt: 246

“““Consider the family of polygons with 24 247

sides such that every side is the same length and 248

every angle is either 90 or 270 degrees. What prop- 249

erties must the polygons in this family have?""" 250

Whilst there is literature related to this problem, 251

predominantly from the mathematical field of poly- 252

ominos (Golomb, 1996) (of which our family of 253

polygons is a special case), we do not believe there 254

to be academic literature that directly discusses this 255

family of polygons. In Figure 1, all 7 of the poly- 256

gons which satisfy the prompt are exhibited. Note

Figure 1: All 7 polygons satisfying the prompt.

257
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that the LLMs were only provided with the prompt258

specified earlier, and were not provided any images259

of the polygons in Figure 1.260

4.1 Polygons with special properties results.261

Both Claude 3 and Bing Copilot proposed that the262

polygons in Figure 1 could tile the plane. Mathe-263

matically proving this is non-trivial, and their as-264

sertion on tiling is correct as we have established265

a tiling for each polygon. These tilings have been266

provided in the Appendix.267

Claude 3 additionally suggested that all the poly-268

gons from Figure 1 have an even number of right269

angles. This can be easily visually verified as cor-270

rect. It is worth noting here that finding this prop-271

erty is also non-trivial, given that Claude 3 was not272

provided any visual data.273

Whilst Claude 3 and Bing Copilot were able to274

provide new and interesting ideas, all of the LLMs275

also provided many ideas that were either incor-276

rect or uninteresting (i.e. “Every angle must be277

90 or 270 degrees"). More specifically, Claude 3278

suggested 7 properties of which 2 were interest-279

ing, 3 were uninteresting, and 2 were wrong; Bing280

Copilot suggested 11 properties of which 1 was in-281

teresting, 8 were uninteresting, and 2 were wrong;282

GPT-3.5-Turbo suggested 7 properties of which 5283

were interesting and 2 were wrong.284

In some sense the wider performance from285

LLMs is rather like a mathematician in training.286

Not all suggestions made by human mathemati-287

cians initially would be interesting or correct, but288

may prompt further thinking. A breakdown of the289

LLM’s responses, with conversational screenshots290

can be found in Appendix A.2.1 to A.2.3.291

5 Limitations292

Due to the nature of our study, there are fundamen-293

tal limitations to our work. Firstly, it is difficult294

to come up with complex and novel questions on295

which to test LLMs. As such, we have been unable296

to conduct tests on a large number of questions as297

compared to related literature (Bubeck et al., 2023).298

In a similar vein, evaluating whether a response to299

a complex and novel question is correct is difficult300

and time consuming. Therefore we were not able301

to test using a large number of models or over a302

large number of iterations. Finally, we note that303

as LLMs are trained on large amounts of data it304

is difficult to guarantee that the questions we have305

asked are not in the training dataset, even if such306

a prospect is unlikely. This is a problem in other 307

related literature, as well as the wider field of LLM 308

evaluation. Nevertheless it is important to expose 309

new observations on the capabilities of LLMs so 310

that the wider body of knowledge accumulates. It 311

is in this context that our findings are presented. 312

6 Conclusion 313

Whilst the creativity and originality of AI is still 314

a contentious issue both inside and outside of 315

academia, there is growing evidence that AI can 316

aid in many areas of research and design. There 317

are also claims that AI can achieve unpublished 318

results (Verdon, 2024; Blaiszik, 2024). We tested 319

these claims on two problems that are, to the best 320

of our knowledge, untouched by existing litera- 321

ture. In both cases, Claude 3 was able to provide 322

meaningful suggestions and contributions to the 323

questions even if its answers were not perfect. For 324

the decidable game, Claude 3 was able to find the 325

optimal strategy for an odd number of spaces and 326

elegantly use this result to correctly deduce winner 327

of the case when there were 7 spaces. For the poly- 328

gons task, meanwhile, Claude 3 made two novel 329

suggestions for properties of these polygons. 330

It is also worth noting that Bing Copilot was 331

also able to provide some useful contributions as 332

well, though certainly not to the same level as 333

Claude 3, with Bing Copilot’s most notable contri- 334

bution being the suggestion that the polygons from 335

the polygon question tiled the plane (which was 336

also suggested by Claude 3). ChatGPT-3.5-Turbo, 337

meanwhile, made few interesting correct sugges- 338

tions. Notably, this observation combined with the 339

above two observations indicates that newer mod- 340

els are more capable of providing novel insights 341

into unseen problems. A final interesting conclu- 342

sion comes from noting that in the decidable game 343

task, Claude 3 and ChatGPT-3.5-Turbo concluded 344

that the game was Nim (Bouton, 1901). Whilst 345

this was incorrect, the suggestion prompted us to 346

then check if an equivalence held via the Sprague- 347

Grundy Theorem (Grundy, 1939). This represents 348

an interesting case wherein the LLM, whilst in- 349

correct, was close enough to a correct statement 350

to steer us towards the correct idea. The fact that 351

these incorrect statements are able to provide in- 352

sights on the correct statements is certainly exciting 353

prospect, as it means that LLMs, in collaboration 354

with humans, may be better than the sum of their 355

parts in exposing new knowledge. 356
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Within this paper we see examples of LLMs pro-357

viding new insights into questions that are outside358

of the LLM’s training data. Whilst these questions359

are perhaps simpler than many advanced research360

questions, that the LLM is able to provide new361

ideas is highly notable even if the outputs aren’t362

perfect. We also see that current LLMs have consid-363

erable limitations. Complex questions are difficult364

for LLMs to address, and much of the information365

generated is incorrect, reaffirming that advancing366

the next word prediction approach is something367

that the future architecture of LLMs needs to con-368

sider. This observation is in line with previous369

research (Bubeck et al., 2023). Nevertheless, we370

acknowledge that the LLMs are a new and evolv-371

ing technology that appear to have considerable372

potential to support the generation of new results373

for research and innovation.374
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A Appendix 511

A.1 An analysis of the responses finding the 512

winner of a decidable game 513

A.1.1 Claude 3’s response to the decidable 514

game problem. 515

We begin our analysis of the game by exploring 516

Claude 3’s answer (see below): 517

Figure 2: Claude 3’s attempt to find the winner.

The part where Claude 3 attempts to solve the 518

problem in the above figure has been highlighted 519

in red. We first note that the "winning strategy" for 520

if the number of spaces is even is wrong, we find 521

this via picking the number of empty spaces to be 522

2 and letting player A go first: 523

Figure 3: The game when n = 2

In Figure 3, it can be seen that player B cannot 524

place a counter and thus loses the game, but this 525
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means that player B does not have a winning strat-526

egy for when there are two empty spaces. But 2 is527

an even number, and Claude 3 claimed that player528

B has a winning strategy if there is an even number529

of spaces. This contradicts Claude 3’s statement.530

A.1.2 Bing Copilot’s response to the decidable531

game problem.532

The strategy provided by Claude 3 in Figure 2 for533

when there is an odd number of empty spaces is cor-534

rect. This follows from the fact that placing a coin535

in the middle essentially splits the line of empty536

spaces into 2 lines of empty spaces of equal length,537

creating a symmetry that player A can utilise for538

the rest of the game. Claude 3 then correctly notes539

that this strategy can be used to allow player A to540

win when the number of empty spaces is 7. To our541

knowledge, this strategy and game do not currently542

exist in the academic literature.543

The next response we consider is Bing Copilot,544

which can be seen below:545

Figure 4: Bing Copilots’s attempt to find the winner

In Figure 4, Bing Copilot opts to approach the546

question by analysing specific cases. The cases547

for 1 empty spaces and 2 empty spaces are correct,548

however player A can win when there are 3 empty549

spaces by playing their first move in the centre of550

the row like so:551

Figure 5: The game when n = 3

Similarly, we can see a winning strategy for552

player A for when there are 5 empty spaces and 7553

empty spaces via using the strategy that Claude 3554

suggested in Figure 2. Bing Copilot’s suggestions555

for 4 empty spaces and 6 empty spaces are also 556

incorrect. The game when there are 4 empty spaces 557

cannot be won by player A. 558

The case of 6 empty spaces, meanwhile, is 559

winnable by player A, who can place their counter 560

at the very end of the line (reducing the problem to 561

the case with 4 empty spaces, which is unwinnable 562

for player B). 563

A.1.3 ChatGPT-3.5-Turbo’s response to the 564

decidable game problem. 565

Finally, we look at ChatGPT-3.5-Turbo’s response 566

(see below): 567

Figure 6: ChatGPT-3.5-Turbo’s attempt to find the win-
ner.

ChatGPT-3.5-Turbo attempts the question di- 568

rectly, and seems to get confused about turn orders. 569

The strategy suggested by ChatGPT-3.5-Turbo is 570

strikingly similar to the one suggested by Claude 3 571

in Figure 2. ChatGPT-3.5-Turbo also notably says 572

that the game is a version of nim (Claude 3 also 573

did this after being asked if it recognised the game, 574

however this interaction has not been included to 575

save space in the paper). The statement that the 576

game is actually nim is not fully correct, but it is 577

notable that the game can be proven to be equiv- 578

alent to a version of nim via the Sprague-Grundy 579

theorem (Grundy, 1939). 580
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A.2 An analysis of the responses to the581

polygons question582

A.2.1 Claude 3’s response to the polygon583

problem.584

We begin our analysis of the polygons question585

by exploring Claude 3’s answer. Initially, Claude586

3 was asked what properties it was aware of the587

polygons having:588

Figure 7: Claude 3’s first response to the polygon prob-
lem.

The properties suggested by Claude 3 in Figure589

7 are mosty non-trivial suggestions, however many590

of them are also unfortunately incorrect. The con-591

vexity suggestion is not correct, as a shape with an592

angle of 270 degrees is by definition not convex.593

Similarly, we can show symmetry to be incorrect594

as well via a counter example:595

Figure 8: A polygon meeting our rules that does not
have symmetries

The counter example in Figure 8 (see above)596

also shows that we will not always have a 90 de-597

gree angle followed by a 270 degree angle, which 598

shows another one of Claude 3’s suggestions to be 599

incorrect. 600

If we consider only polygons that do not self- 601

intersect and have no holes, we can see the third 602

suggestion made by Claude 3 in Figure 7, which 603

states that there must be an even number of 90 de- 604

gree angles within the polygons, is correct. We can 605

see this by checking each of the 7 unique polygons 606

for this number of sides directly (see below figure): 607

Figure 9: All 7 polygons

The observation that all of the above polygons 608

have an even number of right angles is surpris- 609

ing, both because it is a new result and because 610

this statement, in the related field of polyominoes 611

(polygons made up of squares), is not generally 612

true. Consider, for example, the following poly- 613

omino with 5 right angles (see below figure): 614

Figure 10: A polyomino with 5 right angles

When asked to justify the claim that all of the 615

polygons in Figure 9 had an even number of right 616

angles (note here that Claude 3 was never provided 617

an image of any of the polygons in Figure 9 during 618

this conversation), Claude 3 was not able to give 619

any correct reasoning. 620
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We next consider the statement by Claude 3 that621

the polygons in Figure 9 can be split into rectangles622

and triangles. This is correct, and can be seen by623

noting that the polygons in Figure 9 are a subset624

of the polyominos, and thus can be decomposed625

into squares (which are rectangles). The squares626

can then, in turn, be decomposed into isosceles627

triangles via drawing a line between two diagonally628

opposite points in the square.629

Finally, we look into Claude 3’s suggestion that630

the polygons in Figure 9 tile the plane. This is631

difficult to rigorously prove, however we can see a632

potential tiling for each polygon on the next page633

(readers are encouraged to note there that at no634

point in this conversation was Claude 3 shown the635

polygons from Figure 9). See the figure on the636

right side of this page for a potential tiling for each637

polygon.638

We then asked Claude 3 if it could prove that639

the polygons from Figure 9 can tesselate the plane.640

The proof Claude 3 provided was incorrect. When641

Claude 3 was asked how many polygons exist in642

this family, it suggested that there were 2 with very643

poor reasoning for why this should be true.644

Figure 11: The potential tiling for each polygon.

A.2.2 ChatGPT-3.5-Turbo’s response to the 645

polygon problem. 646

Next, we asked Chat-GPT-3.5-Turbo about the 647

properties of polygons in this family: 648

ChatGPT-3.5-Turbo suggests that the polygon 649

family here is a family of skew polygons, meaning 650

that the polygon cannot be 2D. This was unex- 651

pected, but not disallowed by the rules set in place. 652

Suggestions 1, 3, 4, and 5 from figure 12 are all 653

obvious from the initial question. The claim of 654
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Figure 12: Chat-GPT-3.5-Turbo’s first response to the
polygon problem.

regularity is not true (as regular implies equilateral655

AND equiangular). If you have two consecutive656

sides in a skew polygon they must be in the same657

plane making suggestion 6 incorrect. Finally, we658

note that whilst some polygons from this family659

are symmetrical, not all of them are - and if we660

consider skew polygons, even if there is only 90 de-661

gree angles in the polygon we may not necessarily662

have rotational symmetry.663

After this, we asked ChatGPT-3.5-Turbo if664

it knew any less obvious properties, however665

ChatGPT-3.5-Turbo wasn’t able to give any inter-666

esting ideas, instead saying that the polygon family667

may or may not have certain properties. Finally, we668

asked how many polygons existed in this family:669

Figure 13: Chat-GPT-3.5-Turbo’s third response to the
polygon problem.

Whilst the reasoning given in Figure 13 would670

usually be correct, when considering skew poly-671

gons there are more arrangements not accounted672

for by ChatGPT-3.5-Turbo. 673

A.2.3 Bing Copilot’s response to the polygon 674

problem. 675

The final model we tested on this task was Bing 676

Copilot. Initially, we asked Bing Copilot what 677

properties this family of polygons have: 678

Figure 14: Bing Copilot’s first response to the polygon
problem.

Each one of the suggested properties was, un- 679

fortunately, properties of polygons in general or 680

just restatements of the problem it was given, there- 681

fore, we asked Bing Copilot if it knew of any less 682

obvious properties: 683

Figure 15: Bing Copilot’s second response to the poly-
gon problem.

Interestingly Bing Copilot, similarly to Claude 684

3, suggests that this family of polygons may tile 685
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the plane (a statement we have already seen to be686

correct). The rest of Bing Copilot’s suggestions -687

meanwhile - were unfortunately incorrect. Asking688

Bing Copilot if it could prove that the polygons689

could tile the plane resulted in an explanation of690

the history of plane tiling which, whilst interesting,691

was not what was requested.692

Finally, we asked Bing Copilot how many of693

these polygons existed in this family. Here, Bing694

Copilot re-iterated some properties suggested ear-695

lier, and then concluded that the polygons in this696

family were not regular polygons.697
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