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ABSTRACT

This paper seamlessly integrates several fundamental learning tasks under the um-
brella of subspace clustering, namely orthogonal nonnegative matrix factorization,
and K-means clustering. Within this framework, we unveil a unified, closed-form
solution that elegantly addresses these tasks. Our main theoretical contribution es-
tablishes that our deterministic solution achieves perfect accuracy when the data
exhibits sufficiently well-defined clusters. Furthermore, the immediate relaxation
of our solution yields practical algorithms that not only rival but also surpass the
current state-of-the-art in these complex problem domains. This achievement is
corroborated by a comprehensive array of experiments conducted on synthetic
datasets, as well as on a diverse set of five real-world datasets.

1 INTRODUCTION

A series of groundbreaking papers have shown the profound interplay between principal component
analysis (PCA), orthogonal nonnegative matrix factorization (ONMF), and the classical K-means
clustering problem (Ding & He, 2004; Ding et al., 2005; Li & Ding, 2006). In this paper we demon-
strate that these challenges are, in fact, special cases of the more general task known as subspace
clustering (SC) (Elhamifar & Vidal, 2013). Through this perspective, we present an overarching de-
scription of the closed-form solution to all problems. The main insight behind our solution is that in
all these models, the features of the data lie near a subspace whose projection operator encodes the
clustering. Our main theoretical result is an exact, universal, and deterministic clustering guarantee
that is applicable to all these problems, and does not depend on the data or noise distribution. Intu-
itively, our findings show that the closed-form solution will be correct whenever the clusters formed
by the data are sufficiently separated from one another, and data in each cluster not too scattered, or
equivalently, whenever the clusters are well-defined. Stemmed from the connection between these
learning tasks, we are able to engineer state-of-the-art algorithms for ONMF and K-means that are
based on powerful SC clustering methods. These algorithms may improve on the closed-form so-
lution in some settings (even though our theoretical guarantees do not directly apply to them). Our
analytical findings are complemented with an exhaustive series of empirical experiments, meticu-
lously conducted on both synthetic and authentic datasets.

2 EVERY MODEL ALL AT ONCE

In this section we will show that PCA, K-means, and ONMF are all special cases of SC. To this
end, we first describe the SC model. We will then express it in an intuitive way, and describe how it
simplifies to each of the other models.

SUBSPACE CLUSTERING

Let {x;} be a collection of n samples lying near the union of K r-dimensional subspaces of R™.
Specifically, let {Q } be a partition of {1, .. ., n} indicating the true clustering of the samples among
the K < min(m, n)/r subspaces. Let Uy, € R™*" be a basis of the k'" true subspace Uy. Suppose

n
xi = Y Uk viljiea,) + 2, (1)

i=1
where v; € R" is the vector of coefficients of x; with respect to the basis Uy, 1 denotes the indicator
function, and z; € R™ determines the separation of x; from its corresponding subspace, which can
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be interpreted as noise. Given {x;}, the goal of SC is to estimate the true clusters {2 } and the true
subspaces {Uy}.

To express SC in a canonical form where the connection to all other models is evident, first, let U :=
[Uy,..., Uk] be the concatenation of the bases { Uy }. Next, define Vi, € R"*" as the matrix whose
i*h row is equal to v if i € Qy, and zero otherwise. Similar to U, let V := [V, ..., V]| € R2*Kr
be the concatenation of {V }. Notice that V encodes the information of the clustering, because the
i*® row of V can only be nonzero in the k™ block of width r if and only if i € €. This way, (1) can
be written compactly for every i as

X = UV' + Z, 2)

where Z € R™" is the matrix formed with the columns in {z;}. For example, if the k*" block of
columns in X lie in the k*" subspace, then X would look something like this:

X U \'Al Z

i

Here, the white and shaded areas represent zero and non-zero entries, respectively.

PCA, ONMF, AND K-MEANS ARE SPECIAL CASES OF SC

From (2), it is evident that:

* PCA is the special case of SC where K = 1, so that U = U; € R™*", and V = V; € R**",
Given X, the goal of PCA is to estimate U, and V (up to direction and permutation).

* ONMF is the special case of SC where r = 1, so that each Uy is a single column, same as
V., with the additional assumptions that X, U € R™*K and V € R"*K have no negative
entries, and that V is orthogonal. The disjoint support of V is induced precisely by these two
assumptions. Given X, the goal of ONMF is to estimate U and V (up to scaling and permutation).

* K-means is the special case of SC where r = 1 and v; = 1 V i, so each Uy, is a single column
(the cluster center, typically denoted as py), same as V.. Hence, the (i, k)" entry of V € R**K
is either 1 (if the i*® sample corresponds to the kth cluster), or O (otherwise). Given X, the goal
of K-means is to estimate the cluster centers U = [Uy,..., Uk| = [pu1,..., ux] € R™*K and
the clusters {2} (encoded in V).

3 ONE CLOSED-FORM SOLUTION FOR EVERYTHING

Here we describe a unified closed-form solution to these four problems. The key observation is that
under each of these models, the features of the data lie near a subspace whose projection operator
P encodes the clustering, which in turn determines U and V. To see this, observe that the supports
of {V} are disjoint. So we can obtain orthonormal bases { Vi } with the same spans and supports
as {Vi}, such that V = [Vy,..., V] is orthonormal and spans the same subspace as V. Since
projection operators are unique, it follows that the projection operator onto span(V) = span(V) is

P=VV" 3)
From (3) we can see that the columns and rows of P have the exact same supports as the columns

in V (and V), which encode the clustering. For example, the supports of a pair (V,P), with V as
above, would look like:
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A closed-form solution can be trivially obtained by estimating P using a singular value decomposi-
tion, and a threshold operation to reveal the clustering. More precisely, let V € R**K" e the matrix
containing the Kr leading right singular vectors of X. It is clear that even if Z = 0, V may be an en-
tirely different basis from V, and it may not reveal the desired clustering. However, since projection
operators are unique, and P does encode the clustering, we can estimate P as P:=VVT c Roxn,
To estimate the support of P (and hence the clustering), we can then define P, as the entry-wise
thresholded version of P with entries

R P if [Py > A
[P/\]ij p— { J | J|

0 otherwise,

where A € [0, 1] is a parameter that depends on the positions of the subspaces, and the intra-cluster
dispersion level determined by {z;} (more details below). The cluster estimates, denoted as {{2},
are the distinct supports (i.e., non-zero patterns) of the columns in Py. The k'" subspace estimate

is spanned by the matrix Ui € R™*T formed with the leading left singular vectors of the matrix
X, formed with the columns assigned to the k' cluster, i.e., {x; : i € Q}. Finally, the k't

coefficient matrix is given by Vi = IAJIXk (the coefficients of the orthogonal projection of Xy
onto span(Uy)).

Notice that this solution gives approprlate outputs in each case. For PCA we only need to keep the
factors U = U; € R™* and V = V; € R»** (recall that PCA is the special case with K = 1). In

K-means we only need to keep U = [Uy, ..., U] € R™*¥ and {Q,} (recall that K-means is the
special case with r = 1). In ONMEF, due to the nonnegativity constraint (more on this below), we
need to keep U = [|U4/,...,|Uxk|] € R®*¥X and V € R**K, whose k' column is equal to | V]

in the locations of €y, and zero elsewhere.

4 EXACT, DETERMINISTIC, GLOBAL GUARANTEES EVERYWHERE

Our main theoretical result shows that the closed-form clusterings described above are determinis-
tically correct as long as the samples in each cluster are not too scattered relative to the location of
the subspaces. We summarize this in the following theorem.

Theorem 1. Let & > 0 be the gap between the (Kr)®™ singular value of UV and the (Kr + 1)
singular value of X. Suppose

§ > VBKr||Z||/e, )

where € > 0 denotes the entry in the support of P with the smallest absolute value. Then the
estimates {§) } obtained with A\ = €/2 are the true clusters {Q}.

Intuitively, the (Kr)*" and (Kr+1)*® singular values of UV and X can be respectively interpreted
as the smallest separation between subspaces, and the largest separation of a sample from its sub-
space. The condition on J essentially requires that the former (distance between subspaces) is large
enough relative to the later (noise variance), so that the clusters are discernible from our estimator
P, and no sample is missclustered. The proof is in Section 6, and it essentially uses the Davis-Kahan

sin(®) Theorem (Davis & Kahan, 1970; Stewart & Sun, 1990) to show that the support of P \ will
coincide with that of the true P (projection operator onto the span of {2). For incoherent matrices
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P, the condition on d can be relaxed by a factor of O((Kr)*/\/n) using the £, perturbation bound
in (Fan et al., 2018) instead.

From our discussion in Section 2, is easy to see that Theorem 1 applies to all SC, PCA, ONMF, and
K-means. In the later, e simplifies to 1/ maxy |€|. To see this, recall that the (i,k)'" entry of V
is equal to 1 if i € Qy, and O otherwise. Then the k*2 column of its normalized version V takes
the value 1/+/|Q4] if i € Q, and 0 otherwise. Then the smallest entry in P = VVT is equal to
1/ maxy |Q2|. In general, € is always larger than zero for subspaces in general position.

As direct consequence of a correct clustering, we obtain the following corollary:

Corollary 1 (Optimal estimators). Under the assumptions of Theorem 1, the closed-form estimates
U and 'V are the optimal mean-squared estimators of U and V.

Again, notice that Corollary 1 applies to all, SC, PCA, ONMEF, and K-means. In some cases it might
be desired to obtain estimators that minimize some other loss. Corollary 1 can be trivially general-
ized to those settings. In the particular case of ONME, Corollary 1 does not explicitly guarantee the
nonnegativity of U nor V. However, since Xy, is nonnegative, its leading singular vectors Uy and
Vk (or ffjk and f\A/'k) point in the nonnegative orthant (recall that in the ONMF case, r = 1, so
Uy and Vy only have one column). We thus obtain the following corollary:

Corollary 2 (ONMF). In the special case of ONMF, and under the assumptions of Theorem I,
either (Uy, Vi) or (=Uy, — V) are nonnegative. In other words, the closed-form estimates U and
V satisfy the nonnegative constraint.

PRACTICAL CONSIDERATIONS

Notice that in general, € is unknown, and therefore, so is A\. However, since Theorem 1 guarantees
the existence of a parameter A that results in a perfect recovery of (the support of) P, A\ can be
trivially found by searching for the threshold that produces a matrix P, with exactly K distinct
disjoint supports that cover all the columns and all the rows. One may even re-scale P asin (Ding
& He, 2004), so that its entries can be interpreted as a connectivity probability, and use a direct
threshold of 0.5.

However, perfect recovery of P is a sufficient condition for clustering, convenient for analysis, but
by no means necessary in practice. In practice, even if the support of P, is different than that of P for

every A € [0,1], P may still contain enough information to reveal the clustering through a relaxed
method. Examples of such methods could be a form of hierarchical clustering that agglomerates

samples (i, ]) if [Py] ij > 0 as we decrease A from 1 to 0, a direct application of Lloyd’s algorithm

on P, spectral clustering of P, or SC variants of the closed-form solution (see Section 5). Our
experiments show that this type of approaches lead to perfect clusterings even if the exact support
of P is not perfectly recovered. Our future work will investigate theoretical properties of such
strategies, in hopes to find tighter guarantees.

5 RELATED WORK

The connection between some of the models under study has been previously pointed out. In par-
ticular, (Ding & He, 2004) showed that K-means is equivalent to PCA, and shows that the PCA
closed-form solution gives an answer to K-means. Similarly, (Li & Ding, 2006) showed the equiva-
lence between several clustering methods and NMF, in particular the equivalence between K-means
and ONMF (Ding et al., 2005). On the other hand, the closed-form solution has been long-used for
SC, for example for object tracking (Costeira & Kanade, 1998). Several seminal works have focused
on interesting variants of such solution. Examples include (i) the renowned low-rank representation
(LRR) algorithm (Liu et al., 2010), which relaxes the rank constraint for the nuclear norm of P, and
adds a term to account for outliers and optimizes using an iterative Augmented Lagrange Multiplier
method, (ii) the least-squares representation (LSR) (Lu et al., 2012), which adds a Frobenius regu-
larization to overcome higher levels of noise and results in an alternative closed-form solution, or
(iii) the block-diagonal representation (BDR) (Feng et al., 2014; Lu et al., 2018), which includes a
block-diagonal prior to favor clustering.
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To the best of our knowledge, none of these SC techniques have been adapted for K-means and
ONMEF, where the prevalent methodologies remain variants of Lloyd’s algorithm (Lloyd, 1982;
Arthur & Vassilvitskii, 2007; Ahmed et al., 2020), or variants of NMF that integrate the orthog-
onality constraint, and can only guarantee local convergence (Asteris et al., 2015; Fathi Hafshejani
& Moaberfard, 2022; Choi, 2008; Yang & Oja, 2010; Li et al., 2007a; Cao et al., 2007; Li et al.,
2007b; Chen et al., 2009; Pompili et al., 2014; Del Buono & Pio, 2015; vCopar et al., 2019; He
et al., 2020; Li & ZHANG, 2008; Wang & Zhang, 2012; Huang et al., 2012; Li & Ding, 2018; Gan
et al., 2021; Chen et al., 2022). In contrast, we give a perfect clustering deterministic guarantee, ap-
plicable to all these problems. Moreover, in our experiments we adapt these SC methods to perform
K-means and ONMF to obtain state-of-the-art performance in these problems.

6 PROOF

To prove Theorem 1 we use the Davis-Kahan sin(®) Theorem (Davis & Kahan, 1970; Stewart &

Sun, 1990) to show that the entries of our estimator P cannot be too different from the entries in P.
Specifically, we will show that corresponding entries in these matrices cannot differ by more than
€/2. To see this, write

P — P = [P —2te(PTP) + [P} = 2Kr —2tx(PTP)

= 2Kr — 2e(VVTVV') = 2(Kr — [VTV||2)
=: 2(Kr—cosQ((~))) = 2sin2((~)) < 2HZH%/62,

where the last inequality follows directly by the Davis-Kahan sin(®) Theorem (Davis & Kahan,
1970; Stewart & Sun, 1990). Then

Vajzlr _ VEKT|Z
- .

PPl < [P=Plr < < Y

Substituting ¢ from (4), we see that

VIKI|Z|  VEKT||Zlle e

P-Pls < < = —.
: H 0 V2Kr|Z|| 2
This implies that the difference of any two entries in P and P is bounded as
—% <Py —Py < % Vi,j. (5)

On the other hand, from (3) and the definitions of V and V, we can see that the entries of P are

P, ifi,jeQ
Pij;:{ i hIE Sk (6)

0 otherwise.

Plugging (6) in the second inequality of (5), we see thatif i,j € (),

A € € €
.. - > —_ = = —,
P; > Py 5 = € 5 2

Similarly, plugging (6) in the first inequality of (5), we see that if i and j are not in the same {2y,
A € €

Py 0+- = —.
; < 0+ 3 5

Taking A = £, we see that after thresholding,

£
2

X P;>¢ ifi,jeq
[Pl = poa T
0 otherwise.

We thus see that the supports of P and P, are identical, which concludes the proof.
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Figure 1: Left: Error on the estimated support of P. Right: Singular value gap J, and its bound (4). These results verify Theorem 1, showing
that our clustering solution is exact if § satisfies (4).

7 EXPERIMENTS

This section presents a thorough series of experiments with two main purposes: (i) verify the deter-
ministic exact clustering guarantee in Theorem 1, and (ii) demonstrate the practical performance of
state-of-the-art SC algorithms in the K-means and ONMF settings. In these experiments we gener-
ated data according to (1), populating the entries of each Uy € R™*" with i.i.d. standard normal
random variables. According to our discussion in Section 2, to emulate the K-means setting, we set
r =1 and v; = 1V i. To emulate the ONMEF setting, we set r = 1, and populated v; with i.i.d. stan-
dard normal random variables. In all cases, we populated the entries of each z; with i.i.d normal with
zero mean and variance s?. The n generated samples are evenly distributed among the K clusters
{4} (up to rounding error).

7.1 VALIDATING THEORY

In our first experiment we verify Theorem 1. To this end, we measured (a) the singular value gap 9,
(b) the bound in the right hand side of (4), and (c) the error on the estimated support of P, i.e., the
average number of distinct nonzero entries in P and P A, as a function of s2, which represents the
intra-cluster variance, related to ||Z|| in (4). The results of 100 independent trials for each value of s
are in Figure 1, where we used a fixed A = s, with m = n = 100 and K = 5. Theorem 1 shows that
P can be perfectly recovered if ¢ satisfies the condition in (4) (whenever the magenta line is above
the purple line). Figure 1 verifies this result, and suggests that the bound in (4) can be tightened,
at least stochastically, if not deterministically, as the support of P can still be perfectly recovered
from P when § is outside the bound (see the range s € (1075,1072) in the ONMF experiments,
where § is outside the Theorem’s bound, yet the support of P, and hence the clustering, can be
perfectly recovered). We point out that recovering the exact support of P (as required by Theorem
1) is a sufficient, but by no means necessary condition for clustering. Our next experiments show
that using simple relaxations one can still perfectly recover the true clustering from P even if the

support of P, is not identical to that of P.

7.2 PRACTICAL RELAXATION

In our second experiments we use a simple relaxation of the closed-form solution that runs spectral
clustering (Ng et al., 2001) on P (CF+SpC). This approach can be used in cases where the support
of P cannot be perfectly estimated directly from P . These experiments aim to show that even in
these cases, P still encodes enough information to reveal the clustering with typical methods that
minimize distortion (like spectral clustering).

Baselines. For comparison, we use a comprehensive mix of classical and state-of-the-art K-means,
ONMEF, and SC methods: Lloyd’s algorithm (Lloyd, 1982), K-means++ (Arthur & Vassilvitskii,
2007), alternating (AONMF) (Pompili et al., 2014), hierarchical alternating least-squares (HALS)
(Shiga et al., 2016), orthogonal nonnegative matrix T-factorizations (ONMTF) (Ding et al., 2006),
multiplicative updates (MU) (Lee & Seung, 2000), block-diagonal representation (BDR) (Lu et al.,
2018), low-rank representation (LRR) (Liu et al., 2010), least-squares representation (LSR) (Lu
et al., 2012), and sparse subspace clustering (SSC) (Elhamifar & Vidal, 2013). We used our own
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Figure 2: Clustering error and computation time as a function of different parameters under the ONMF setting. Our SC closed-form relaxation
(CF+SpC) generally matches and often improves the accuracy of the state-of-the-art, but it is orders of magnitude faster.
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relaxation (CF+SpC) generally matches and often improves the accuracy of the state-of-the-art, but it is orders of magnitude faster.
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I Algorithm | Buenrostro6 | Buenrostro7 | Larry | Nestorowa [ Stassen ||
BDR 0.4435 0.4031 0.6043 0.4042 0.696
LSR 0.3669 0.35 0.5816 0.4542 0.273
AONMF 0.3803 0.2271 0.5779 0.4318 0.485
HALS 0.4353 0.44 0.5607 0.3828 0.832
ONMTF 0.4581 0.4707 0.5682 0.4661 0.635
MU 0.4259 0.4433 0.5844 0.3417 0.615
CF+SpC (this paper) 0.2425 0.1974 0.5751 0.4505 0.6580

Table 1: Clustering error in several real datasets related to single-cell sequencing. The best result is highlighted in bold. our approach
significantly outperforms the state-of-the-art in several datasets. In other cases, classical ONMF methods are the best, and in other cases, other
SC methods are the best. The unified framework presented by this paper enables the use of all these methods in these tasks.

implementation of Lloyd’s and K-means++. All ONMF implementations were obtained from the
widely used library (Kasai, 2017), last updated in 2022. All SC implementations were obtained from
their respective authors.

Evaluation. As performance metric we use the number of missclassified samples after using the
Hungarian algorithm (Kuhn, 1955) to find the best labels assignment.

We compare these methods as a function of several parameters of the problem, namely, the number
of clusters K, the ambient dimension m, the number of samples n, and the intra-cluster variance s2,
The results of 100 trials for each parameter value are in Figures 2 and 3, where SC, ONMF, and K-
means algorithms are depicted with warm, cold, and green colors, respectively. The main takeaway
from these experiments is that our relaxation of the SC closed-form solution (CF+SpC) generally
matches and often improves the accuracy of the state-of-the-art in both ONMF and K-means, but it
is orders of magnitude faster.

7.3 REAL DATA EXPERIMENTS

We complement our experiments using five real datasets on single-cell sequencing, obtained from
the Gene Expression Omnibus (Edgar et al., 2002), namely the Buenrostro 2018 data with 6 and
7 classes, the Larry dataset with 5 classes, th Nestorowa dataset with 3 classes, and the Stassen
data with 10 classes. As the name suggests, these data contain gene activation levels of a collection
of cells of different types. The goal is to cluster the cells. Some of the methods we used for our
simulations were infeasible due to the large scale of these datasets. The results are summarized in
Table 1, where we can see that our approach significantly outperforms the state-of-the-art in several
datasets. In other cases, classical ONMF methods are the best, and in other cases, other SC methods
are the best. The unified framework presented by this paper enables the use of all these methods in
these tasks.
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