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ABSTRACT

We consider the problem of how to learn a step-size policy for the Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. This is a lim-
ited computational memory quasi-Newton method widely used for deterministic
unconstrained optimization but currently avoided in large-scale problems for re-
quiring step sizes to be provided at each iteration. Existing methodologies for
the step size selection for L-BFGS use heuristic tuning of design parameters and
massive re-evaluations of the objective function and gradient to find appropriate
step-lengths. We propose a neural network architecture with local information of
the current iterate as the input. The step-length policy is learned from data of simi-
lar optimization problems, avoids additional evaluations of the objective function,
and guarantees that the output step remains inside a pre-defined interval. The cor-
responding training procedure is formulated as a stochastic optimization problem
using the backpropagation through time algorithm. The performance of the pro-
posed method is evaluated on the training of classifiers for the MNIST database
for handwritten digits and for CIFAR-10. The results show that the proposed al-
gorithm outperforms heuristically tuned optimizers such as ADAM, RMSprop,
L-BFGS with a backtracking line search and L-BFGS with a constant step size.
The numerical results also show that a learned policy can be used as a warm-start
to train new policies for different problems after a few additional training steps,
highlighting its potential use in multiple large-scale optimization problems.

1 INTRODUCTION

Consider the unconstrained optimization problem

minimize
x

f(x) (1)

where f : Rn → R is an objective function that is differentiable for all x ∈ Rn, with n being the
number of decision variables forming x. Let ∇xf(x0) be the gradient of f(x) evaluated at some
x0 ∈ Rn. A general quasi-Newton algorithm for solving this problem iterates

xk+1 = xk − tkHkgk (2)

for an initial x0 ∈ Rn until a given stop criterion is met. At the k-th iteration, gk = ∇xf(xk) is the
gradient,Hk is a positive-definite matrix satisfying the secant equation (Nocedal and Wright, 2006,
p. 137) and tk is the step size.

In this paper, we develop a policy that learns to suitably determine step sizes tk when the product
Hkgk is calculated by the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algo-
rithm (Liu and Nocedal, 1989). The main contributions of the paper are:

1. We propose a neural network architecture defining this policy taking as input local information
of the current iterate. In contrast with more standard strategies, this policy is tuning-free and
avoids re-evaluations of the objective function and gradients at each step. The training procedure
is formulated as a stochastic optimization problem and can be performed by easily applying
backpropagation through time (TBPTT).
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2. Training classifiers in the MNIST database (LeCun et al., 1998), our approach is competitive
against heuristically tuned optimization procedures. Our tests show that the proposed policy
is not only able to outperform competitors such as ADAM and RMSprop in wall-clock time
and optimal/final value, but also performs better than L-BFGS with backtracking line searches,
which is the gold standard, and with constant step sizes, which is the baseline.

3. According to subsequent experiments on CIFAR-10 (Krizhevsky et al., 2009), the proposed pol-
icy can generalize to different classes of problems after a few additional training steps on exam-
ples from these classes. This indicates that learning may be transferable between distinct types
of tasks, allowing to explore transfer learning strategies.

This result is a step towards the development of optimization methods that frees the designer from
tuning control parameters as it will be motivated in Section 2. The remaining parts of this paper are
organized as follows: Section 3 presents the classical L-BFGS algorithm and discuss some method-
ologies to determine step sizes; Section 4 contains the architecture for the proposed policy and also
discussions on how it was implemented; Section 5 describes the training procedure; and, finally,
Section 6 presents experiments using classifiers to operate on MNIST and CIFAR-10 databases.
The notation is mainly standard. Scalars are plain lower-case letters, vectors are bold lower-case,
and matrices are bold upper-case. The clip function is defined as clipul (y) := min (u,max (l, y)).

2 MOTIVATION

Most algorithms used in artificial intelligence and statistics are based on optimization theory, which
has widely collaborated for the success of machine learning applications in the last decades. How-
ever, this two-way bridge seems not to be currently leveraging its full potential in the other sense,
that is, to learn how to automate optimization procedures. Indeed, performing satisfactory opti-
mization, or solving learning problems, still relies upon the appropriate tuning of parameters of the
chosen algorithm, which are often grouped with other hyper-parameters of the learning task. Despite
the existence of several methodologies to obtain good values for these parameters (Bengio, 2000;
Bergstra et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2015; Daniel et al., 2016; Dong et al.,
2018), the search for tuning-free algorithms that perform better than heuristically designed ones is
of great interest among practitioner and theoreticians. Indeed, besides the generally-desirable faster
convergence, the ready-to-use nature of such algorithms allows the user to focus his attention on
other problem-level hyper-parameters while the optimization procedure is automatically performed,
resulting in better time and effort allocation. As recent advancements of machine learning have
helped automatize the solution of numberless problems, optimization theory should equally benefit
from these, balancing the bridge flows.

From a wider viewpoint, most optimization problem requires the user to select an algorithm and
tune it to some extent. Although intuition and knowledge about the problem can speed-up these
processes, trial-and-error methodologies are often employed which can be a time-consuming and
inefficient task. With that in mind, the concept of Learned optimizers has been gathering attention
in the last few years and, basically, refers to optimization policies and routines that were learned by
looking at instances of optimization problems, here called tasks. This idea was introduced by Li and
Malik (2016) and Andrychowicz et al. (2016) building upon previous results of “learning to learn” or
“meta-learning” (Thrun and Pratt, 1998; Hochreiter et al., 2001). In the former, the authors presented
an optimization policy based on a neural network trained by reinforcement learning and taking
as input the history of gradient vectors at previous iterations. The latter adopts a long short-term
memory (LSTM) to achieve a similar task, but the learning is done by truncated backpropagation
through time after unrolling the proposed optimizer for a certain number of steps. Subsequently,
it was shown in Metz et al. (2019) how multilayer perceptrons (MLP), adequately trained using a
combined gradient estimation method, can perform faster in wall-clock time compared to current
algorithms of choice. Also within this scenario, in Xu et al. (2019) a reinforcement learning-based
methodology to auto-learn an adaptive learning rate is presented. Following this same fashion, in
this present paper, instead of completely learning an optimizer from data, we propose a mixture
of these ideas into a classical optimization procedure. Thus, the resulting optimizer, composed by
a combination of L-BFGS and the proposed policy, will be learned in a constrained domain that
assures valuable mathematical properties. The idea is to leverage both frameworks, inheriting the
theoretical aspects assured by optimization theory while learning a policy to rule out the hand-design
of parameters.
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Algorithm 1: L-BFGS algorithm

Input: si = xi+1 − xi, yi = gi+1 − gi and ρi = 1/(sTi yi) for all i ∈ k −m, . . . , k − 1;
and current gradient gk,
Result: update direction dk = −Hkgk

1 q ← gk;
2 for i = k − 1, . . . , k −m do
3 αi ← ρis

T
i q;

4 q ← q − αiyi;
5 end
6 γ = |sTk−1yk−1|/(yTk−1yk−1) ;

7 r ← γq;
8 for i = k −m, . . . , k − 1 do
9 β ← ρiy

T
i r;

10 r ← r + si(αi − β);
11 end
12 dk ← −r;

3 L-BFGS ALGORITHM

The L-BFGS algorithm was originally presented in Liu and Nocedal (1989) and is here transcribed
into Algorithm 1. It is a quasi-Newton method derived from the BFGS algorithm (Nocedal and
Wright, 2006) lowering space complexity from quadratic to linear in the problem dimension at the
expense of precision. This algorithm calculates a descending direction in the search space taking
into account an estimate of the inverse hessian matrix of f(x), given by Hk. This matrix is not
explicitly constructed but rather the product dk := −Hkgk is obtained from the past m values
of xk and gk, which have to be stored. This property makes it often the algorithm of choice for
large-scale deterministic non-linear optimization problems. If f(x) is convex in x, this algorithm
is guaranteed to provide a descending update direction, but the same does not apply for non-convex
objective functions. However, a simple way to circumvent this is by removing iterations i in lines
2 and 8 of Algorithm 1 such that ρi ≤ 0 (Nocedal and Wright, 2006, p. 537), which is used in this
paper.

A matter of great relevance within this scope is how to choose an appropriate step size tk to apply the
update rule in Eq. (2). To the best of our knowledge, there does not seem to exist a consensus on how
to choose tk in a general way for non-convex objective functions. The scaling factor γ in lines 6-7 of
Algorithm 1 is known to assure that the step size tk = 1 is accepted in most iterations in the convex
optimization context, but not always. We will refer to a constant step-size policy that outputs tk = 1
as the baseline L-BFGS. However, a line search (LS) procedure is often combined with L-BFGS to
assure its convergence. Ideally, this should be performed by solving tk = arg mint>0 f(xk + tdk)
but this exact approach is often too expensive to be adopted, motivating the use of inexact ones. An
example is the backtracking line search (BTLS), which takes an initial length tk for the step size
and shrinks it repeatedly until the so-called sufficient decrease Wolfe Condition f(xk + tkdk) ≤
f(xk) + c1tkg

T
k dk is fulfilled, where c1 ∈ (0, 1) is a control parameter to be tuned. Another

parameter that has to be designed is the contraction factor c2 ∈ (0, 1) that shrinks the step size, i.e.,
tk ← c2tk, see Nocedal and Wright (2006, p. 37). This method assures convergence to a local-
minima at the cost of re-evaluating the objective function several times per iteration. This is a price
that the user is, in some cases, willing to pay, but for large-dimensional problems this procedure is
likely to become the bottle-neck of the optimization task. It is important to highlight that the method
to be presented may also apply to other optimization algorithms that deeply rely on line searches
to perform well. However, this paper focus on L-BFGS as it is often the algorithm of choice in
large-scale deterministic optimization.

In the context of stochastic optimization, many modified versions of Algorithm 1 together with
methodologies for choosing tk are available (Moritz et al., 2016; Zhou et al., 2017; Bollapragada
et al., 2018; Wills and Schön, 2019), but for sake of simplicity, our work will deal exclusively with
deterministic non-linear optimization problems.

4 LEARNED POLICY FOR SELECTING STEP SIZES

Recalling the definition of sk and yk in Algorithm 1, our policy is defined as tk =
π(dk, gk, sk−1,yk−1;θ) and selects an adequate step size for L-BFGS but neither relying on
any parameter tuning nor requiring additional evaluations of the objective function. Instead, its
parameters that are represented by θ should be learned from data. Let us, from now on, de-
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π(·;θ)

dk, gk, sk−1,yk−1 tkexp (·)dotln(·) u0

Linear Layer 1
(R16 → Rnh)

Linear Layer 2
(R16 → Rnh)

p(·)
(Rnh → R)

u1

u2

τk

Figure 1: Neural network architecture for the proposed policy to generate step sizes tk.

fine this policy combined with Algorithm 1 as the L-BFGS-π approach. The architecture of
the policy π(dk, gk, sk−1,yk−1;θ) is shown in Fig. 1. To allow the policy to be independent
from the problem size n, only the inner products between its inputs are used. These values de-
fine u0 = dotln(dk, gk, sk−1,yk−1) where dotln(·) returns the component-wise application of
f(x) = ln(min(x, ε)) to the elements of X = [dk gk sk−1 yk−1]T [dk gk sk−1 yk−1] but with the
superdiagonal entries having their signs reversed. We have chosen ε = 10−8 to avoid imaginary-
valued entries.

The vector u0 is the input to two parallel input layers, which are fully connected linear layers that
transport information in u0 to another vector space Rnh (in our tests, we adopted nh = 6). Their
outputs, as usual, are defined as u1 = W01u0 + b01 and u2 = W02u0 + b02. The logarithm
operation was adopted to let the linear layers evaluate products and divisions between powers of the
inputs by simply summing and subtracting them. Moreover, as the output is positive, working in the
logarithmic vector space allows us to use a wider range of numerical values. Subsequently, let us
define the normalized vectors ū1 = u1/‖u2‖ and ū2 = u2/‖u2‖ to calculate the scalar projection
of ū1 onto ū2 and clip the result to some interval [τm, τM ], yielding the log-step size

τk = clipτMτm
(
ūT2 ū1

)
=: p(u1,u2) (3)

Finally, the selected step size is obtained as tk = eτk . To geometrically interpret this, we sketch three
different scenarios in Fig. 2. The dashed lines represent orthogonal axes spanned by some arbitrary
ū2 and the gray strip represents the interval [τm, τM ] along the direction of ū2 whence τk should be
taken. When the Linear Layer 1 maps u0 into u′1, the scalar projection of ū′1 onto ū2 is beyond the
maximal τM , so τk is clipped to it. In the same way, for ū′′′1 the step size will be the minimal one tk =
eτm whereas for the intermediate ū′′1 we have τk ∈ (τm, τM ). The two layers, jointly trained, should
learn how to position ū1 and ū2 in the lifted space to represent important directional information of
dk and gk by looking at similar optimization tasks, being thus able to produced suitable step sizes.

ū2

ū′
1

ū′′′
1

ū′′
1

[τm
, τM

]

Figure 2: Geometric representation of
the scalar projection and clip procedures
for 3 cases.

This approach is powerful enough to capture in-
teresting mathematical local properties of this prob-
lem. As an instance, it could calculate cosφk =

−dTk gk/
√
dTk dkg

T
k gk, where φk is the angle formed be-

tween dk and the steepest descend direction −gk, by let-
ting parameters θ := (W01, b01,W02, b02) and limits
τm and τM be given as described in Appendix A. Also,
sTk−1yk−1 defines the so-called curvature condition (No-
cedal and Wright, 2006, p. 137) and the occurrence of
small-valued gTk gk and sTk−1sk−1 with sTk−1yk−1 < 0
implies that the iterate xk approximates a local maximum
or a saddle point, as this inequality indicates that at least
one eigenvalue of the hessian matrix is negative at xk.

Indeed, the considered inner products formingu0 are also
employed in many procedures for determining step sizes,

for example, in the sufficient decrease Wolfe condition for backtracking line search, which makes
our policy comparable to them in the sense that π(·;θ) does not require additional information to
operate.

However, notice that the clip function is not suitable for training given that it is non-differentiable
and gradients cannot be backpropagated through it. Fortunately, the clip operation (3) can be cast as
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a convex optimization problem

τk = arg min
τ∈R
‖u2τ − u1‖2 (4)

s.t. τm ≤ τ ≤ τM (5)

allowing τk to be calculated by a convex optimization layer, defined here as a CVX Layer, (Agrawal
et al., 2019). This last layer can output the solution to a parameter-dependent convex optimization
problem. For the special case where a solution is not differentiable with respect to the input (e.g.,
in our case when an inequality constraint is active), the automatic differentiation procedure delivers
an heuristic quantity that can be employed as a gradient. The use of a CVX Layer is therefore
convenient for training our policy but, on the other hand, using Eq. (3) in its place when applying
the already-trained policy significantly speeds up the step-size evaluation, compared to solving (4).

It is important to remark that this policy is defined as independent from both the memory length
m of Algorithm 1 and the problem dimension n. Additionally, the lower and upper limits for the
log-step size are τm and τM , respectively, and can also be learned. In this work, however, we chose
τm = −3 and τM = 0, letting tk ∈ [0.0497, 1]. This interval is comprehensive enough to let our
method be compared in a fair way to backtracking line searches. Moreover, when we allowed τM to
be learned in our tests it converged to values that were very close to τM = 0, indicating that 1 was
already an adequate upper limit for the step size.

5 TRAINING THE POLICY

The L-BFGS-π procedure can be trained by truncated backpropagation through time (TBPTT), in a
similar way to Andrychowicz et al. (2016). From this point on, training the optimizer is referred to
as the outer optimization problem whereas an instance of a task in the form of (1) is called the inner
optimization problem. Therefore, this outer problem is defined as

minimize
θ

F (θ) := Ex0∼RnEf∼T
(∑K

k=1 wkf(xk)
)

(6)

s.t. xk+1 = xk + π(dk, gk, sk−1,yk−1;θ)dk (7)

where dk is given by Algorithm 1, K ∈ N is the truncated horizon over which optimization steps
are unrolled, wk, k = 1, . . . ,K are weight scalars, herein considered wk = 1, and T is some set
of tasks formed by inner objective functions f(x) to be optimized. In (6), the innermost expected
value is approximated by sampling tasks within a training set Ttrain, one at a time, and unrolling the
optimization for K inner steps for some random x0 with i.i.d. components. One outer optimization
step consists of, performing K inner steps, computing a gradient for the outer optimization problem
∇θF (θ) and updating θ, in our case, by ADADELTA with learning rate equals 1 (Zeiler, 2012).
To assure that different orders of magnitude of x are seen during this training, we set the initial
point for the next outer step to be the last iterate from the previous one, i.e., x0 ← xK , and perform
another whole outer optimization step. This is repeated for T outer steps or until ‖gk‖ < ε = 10−10,
when a new random x0 is then sampled. Backpropagation to calculate∇θF (θ) happens through all
operations with exception of the inner gradient evaluation gk, which is considered an external input.
Double floating-point precision is used to assure accurate results in the comparisons.

6 EXAMPLE: TRAINING A CLASSIFIER ON MNIST

All tests were carried out with the aid of PyTorch (Paszke et al., 2019) to backpropagate gradients
and of cvxpylayers (Agrawal et al., 2019) to implement the CVX layers. They were run on an
Intel Xeon Gold 6132 equipped with an NVidia V100. First, we carried out tests on convex opti-
mization problems, namely quadratic functions and logistic regression problems, but no significant
difference was noticed and these were, therefore, omitted.

In this example, we trained an MLP with nl = 1 hidden layer with nu = 20 units and sigmoid
activation functions to classify images of digits in MNIST database (LeCun et al., 1998). This model
is adapted from one example in Andrychowicz et al. (2016). We used a full-batch gradient at every
iteration, even though stochastic optimization is generally the most common strategy employed in
similar tasks. Nevertheless, our main interest in this example is not the classification problem itself
but rather to analyze the optimization problem and how our deterministic algorithm performs on it.
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Figure 3: Objective function f(xk) at the current iterate with respect to wall-clock time for all
optimizers and 3 selected tasks (top) and correspondent step sizes for π(·,θ) and BTLS (bottom).

The n = 16,280 parameters defining an MLP are concatenated in x and f(x) is the associated
cross-entropy loss function for a given set of images. This is known to be a non-convex optimization
problem, mainly because of the presence of non-linear activation functions. A training set of tasks
Ttrain was constructed by randomly grouping images in MNIST training set into 60 batches of
N = 1,000 images. For each of these batches one initial conditionx0 was sampled, which altogether
compose Ttrain with 60 tasks. The policy π(·; θ) was trained for 50 epochs,K = 50 and T = 8, and
its performance was compared to other methods, namely, ADAM, RMSProp, L-BFGS with a BTLS
and the baseline L-BFGS (referred to as L-BFGS-B). For running Algorithm 1, we selected m = 5.
The learning rates of ADAM and RMSProp were heuristically tuned to yield fast convergence by
exhaustive search within the set

{
i × 10j : i ∈ {1, 3}, j ∈ {−3, . . . ,−1}

}
and the values

0.03 and 0.01 were used, respectively. The BTLS parameters c1 and c2 were searched in the set
{0.25, 0.5, 0.75}2 and c1 = 0.25, c2 = 0.5 were chosen, associated to the best results, i.e., fastest
convergence on tasks in Ttrain. The initial step size for the BTLS was tk = 1. The following
comparisons were performed in a test set of tasks Ttest built similarly to Ttrain but considering all
images in the MNIST test set split into 10 batches of N = 1,000 images, and 100 random samples
of x0 were generated for each batch, resulting in 1,000 tasks. The optimization was performed for
K = 800 steps or until ‖gk‖ < 10−8. The first 3 samples for each optimizer were considered
“warm-up” runs and, therefore, were discarded to avoid having time measurement affected by any
initial overhead.

The objective function value for three selected tasks is shown in the upper plots of Fig. 3 along
with the correspondent selected step sizes by π(·;θ) and the BTLS, on the bottom ones. For Task 1,
L-BFGS-π was successful in attaining lower values for f(x) when compared to the other algorithms.
For some tasks, such as Task 2, poorer performance was noticed when compared to the other L-
BFGS approaches and, for some other tasks as Task 3, Adam and RMSprop are more successful
than the others. This suggests that none of these methods outperforms the others in a general case.
Notice that in these figures, the spikes in the curves associated with L-BFGS-π and with the baseline
L-BFGS-B represent steps at which tk = π(·;θ) and tk = 1, respectively, were not step sizes that
provided a decrease. Results for other tasks are presented in Appendix B.

For each individual task, the first instant of time tf at which the optimization procedure attained
some precision-based stop criteria ‖gk‖ < ε for different values of ε was computed for all four
optimization procedures, and a comparison between our methodology and others is shown in Fig. 4.
These plots compare algorithms two-by-two and the way to interpret them is by observing that a
point above the blue line represents a task for which the algorithm associated to the x axes reached
the precision criterion faster, and vice-versa. If such tf does not exist, we define tf = ∞ and the
two subplots, on the right and on the top, are use to represent tasks for which the given precision
was reached by one of the algorithms but not by the other. Tasks for which the criterion was not
reached by both algorithms are not displayed. Notice that better precision values were reached by
our approach when compared to ADAM and RMSProp but a similar performance was obtained
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Figure 4: Time tf (in seconds) at when the step criterion ‖gk‖ < ε was reached for all tasks in Ttest
compared for different optimizers and (nl, nu) = (1, 20).

Table 1: Percentages of wins (W) and ties (T) of L-BFGS-π trained for (nl, nu) = (1, 20) against
other algorithms on tasks in Ttest with respect to which one attained the stop criterion ‖gk‖ < ε first
for different (nl, nu).

(nl, nu) = (1, 20) (nl, nu) = (2, 400) (nl, nu) = (4, 800)

Competitor ε W (%) T (%) ε W (%) T (%) ε W (%) T (%)

ADAM
10−3 0 0 10−5 4.7 0 10−5 0 0
10−4 95.8 4.2 10−6 5.8 0 10−6 0.1 0
10−5 90.9 9.1 10−7 10.5 0 10−7 0.2 0.1

RMSProp
10−3 5.5 0 10−5 100 0 10−5 92.7 7.3
10−4 95.8 4.2 10−6 100 0 10−6 81.0 19.0
10−5 90.9 9.1 10−7 100 0 10−7 67.2 32.8

L-BFGS-B
10−3 32.1 0 10−5 5.7 0 10−5 9.2 1.2
10−4 49.3 0.5 10−6 5.5 0 10−6 8.5 2.1
10−5 54.9 3.3 10−7 5.5 0 10−7 7.6 3.0

L-BFGS-BTLS
10−3 40.8 0 10−5 1.0 0 10−5 0 0
10−4 55.6 0.6 10−6 1.0 0 10−6 0 0
10−5 59.0 2.5 10−7 1.2 0 10−7 0 0

when compared to the heuristically designed backtracking line search method, which is the gold
standard.

Additionally, Table 1 presents the percentage of times that L-BFGS-π reached the defined precision
before other methods, characterizing a “win”, and that both methods reached the precision at the
exact same time (which is very unlikely) or have not reached this precision after K = 800 inner
steps, denoting a “tie”. To investigate whether our policy is able to generalize and perform well on
higher-dimension problems, we also present these results for (nl, nu) equals to (2, 400) and (4, 800),
characterizing problems of size n = 637, 600 and n = 128, 317, 600 respectively. Different values
of ε were considered as smaller values for ‖gk‖ were reached for these two last cases.

For (nl, nu) = (1, 20), which contains problems of the same dimension as those seen during train-
ing, L-BFGS-π clearly outperforms RMSProp and ADAM whereas it presents a slightly faster con-
vergence than L-BFGS-B and L-BFGS-BTLS for smaller ε. Unfortunately, for higher dimension
problems, the proposed policy did not achieve the same level of performance as in the problem it
was trained for.

In spite of that, given the non-convexity of this problem, it is also important to observe what were the
minimum values obtained for f(x) by each algorithm. As the proposed policy does not assure a de-
creasing step size at each iteration, instead of the final value f(xK) we looked at f∗ := mink f(xk),
which can easily be stored and updated during the optimization. However an analogous discussion is
presented in Appendix C but considering only the final values f(xK) and the same conclusions are
drew. More than simply looking at the minimum values, we would like to verify whether L-BFGS-π
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Figure 5: Box plots for values of Ia, where a is the algorithm in the x-axis, encountered for all tasks
in Ttest by different algorithms and pairs (nl, nu).

attains lower values f∗ when compared to other algorithms. To this end we present the index

Ia(f) = ln
(
f
[a]
∗ /f

[L-BFGS-π]
∗

)
(8)

where f [a]∗ represents the minimum value reached by some algorithm a for f(x). Hence, Ia(f) > 0
implies that L-BFGS-π performs better than a in the task associated to f(x) and its initial condition.
Box plots of the obtained values for all tasks and each one of the other algorithms are presented in
Fig. 5. In these plots we can notice that L-BFGS-π reaches, in average, better values than all of its
competitors. Also, ADAM and RMSprop generalized very poorly to higher-dimension problems,
indicating that some re-tuning is required for these algorithms. Under this perspective, L-BFGS-π
had a similar performance to L-BFGS-BTLS and L-BFGS-B, despite the presence of some outliers
indicating cases where our policy reached bad local minima. This showed how the proposed policy
was successful in learning to provide step sizes in a single shot that are as good as those generated by
a heuristically designed line search, which benefits from the possibility of re-evaluating the objective
function as much as needed.

Finally, as a last experiment, we applied the learned policy and these competitors to a class of tasks
comprising the training of a Convolutional Neural Network (CNN) to classify images in CIFAR-10,
see (Krizhevsky et al., 2009). The adopted architecture is described in Zhang (2016) but sigmoid
activation functions were replaced by ReLU to make this problem even more distant from the one π
was trained on. A training and a test set of tasks, T Ctrain and T Ctest, were built similarly to Ttrain and
Ttest but using images in CIFAR-10 instead. Evaluating these algorithms in T Ctest and computing
the index Ia(f) for each task allows us to present the first box plot in Fig. 6. This figure indicates
that π do not perform as good as before in these problems. This could be expected as a different
architecture directly affects the nature of the objective function. To investigate whether the learned
policy π can be used as a warm-start for the training a new policy πC , we perform additional training
steps on π corresponding to 10 epochs in the training set T Ctrain, but eliminating 5/6 of its tasks. This
is done to show that even with very low effort placed in this retraining phase and considering fewer
learning data, we can benefit from previous learning to speed-up new training procedures. The
corresponding results are presented in the second box plot of Fig. 6, which shows that the new
policy πC performs comparably to the competitors. Certainly, further investigation is required but
this suggests that some learning can be transferred across distinct problem domains.

7 CONCLUSIONS

In this work we demonstrate how to build and train a neural network to work as step-size policy
for the L-BFGS algorithm. The step sizes provided by this policy are of the same quality as those
of a backtracking line searches, hence making the latter superfluous. Moreover, L-BFGS with our
step-size policy outperforms, in wall-clock time and optimal/final value, ADAM and RMSprop with
heuristically tuned parameters in training classifiers for the MNIST database. Also, we showed
how a learned policy can be used to warm start the training of new policies to operate on different
classes of problems. In future work, we intend to extend this result for stochastic optimization,
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Figure 6: Box plots for values of Ia, where a is the algorithm in the x-axis, encountered for all tasks
in T Ctest by different algorithms when compared against π and πC on the training of a CNN.

allowing us to learn policies to determine, for example, learning rates in other classic machine
learning algorithms.
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A PARAMETERS FOR THE POLICY TO CALCULATE cosφk

In Section 4, it was stated that the policy π(·;θ) is able to calculate

cosφk =
−dTk gk√
dTk dkg

T
k gk

. (9)

In the simplest case, this can be done by choosing W01, b01, W02 and b02 adequate to make
u1 = ln(−dTk gk)− 0.5 ln(dTk dk)− 0.5 ln(gTk gk) and u2 = 1. The optimization problem becomes

τk = arg min
τ∈R

(
τ − ln

(
cosφk

))2
(10)

s.t. τm ≤ τ ≤ τM (11)

Recalling that cosφk > 0 as −dTk gk > 0, letting τM = 0 and τm small enough assures that
tk = etk = cosφk. It is important to say that this specific step size might not be a good one, but
this quantity can carry useful information when composing vectors u1 and u2 as it characterizes the
deviation between the update direction dk and the steepest descend direction.

B SAMPLES OF TEST TASKS

In this appendix we provide in Fig. 7 the objective function f(xk) obtained in our tests for the 10
first tasks in Ttest. Differently form the results in Fig. 3 that were chosen by inspection, the plots in
Figure 7 should represent a more uniform visualization of the policy behavior in this set.

C FINAL VALUE ANALYSIS

Here we present the results regarding the index Ia(f) defined in (8) but in the case where one
chooses to define f [a]∗ based on the final value f(xK) obtained after applying the algorithm a for
K = 800 iterations. The box plot in Fig. 5 is reconstructed and presented in Fig. 8. The conclusion
drawn from this analysis is the same as the one obtained in the former definition of f [a]∗ , based on the
minimum value f(xk) for all k. However, in the context of deterministic nonlinear optimization it
is a good idea to keep the best visited iterate so far and allow the algorithm to explore other areas of
the decision space. This is the reasoning that motivates considering the minimum over the iterations
in the main analysis.
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Figure 7: Objective function f(xk) at the current iterate with respect to wall-clock time for all
optimizers and the 10 first tasks in Ttest (top) and correspondent step sizes for π(·,θ) and BTLS
(bottom).
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Figure 8: Box plots for values of Ia, where a is the algorithm in the x-axis, encountered for all tasks
in Ttest by different algorithms and pairs (nl, nu) (for f [a]∗ defined as the final value f(xK) obtained
by algorithm a).
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