
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

APPROXIMATING FULL CONFORMAL PREDICTION
FOR NEURAL NETWORK REGRESSION WITH GAUSS-
NEWTON INFLUENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Uncertainty quantification is an important prerequisite for the deployment of
deep learning models in safety-critical areas. Yet, this hinges on the uncer-
tainty estimates being useful to the extent the predictive prediction intervals are
well-calibrated and sharp. In the absence of inherent uncertainty estimates (e.g.
pretrained models), popular approaches that operate post-hoc include Laplace’s
method and split conformal prediction (split-CP). However, Laplace’s method can
be miscalibrated when the model is misspecified and split-CP requires sample
splitting, and thus comes at the expense of statistical efficiency. In this work, we
construct prediction intervals for neural network regressors post-hoc without held-
out data. This is achieved by approximating the full conformal prediction method
(full-CP). Whilst full-CP nominally requires retraining the model for every test
point and candidate label, we propose to train just once and locally perturb model
parameters using Gauss-Newton influence to approximate the effect of retraining.
Coupled with linearization of the network, we express the absolute residual non-
conformity score as a piecewise linear function of the candidate label allowing
for an efficient procedure that avoids the exhaustive search over the output space.
On standard regression benchmarks and bounding box localization, we show the
resulting prediction intervals are locally-adaptive and often tighter than those of
split-CP.

1 INTRODUCTION

Despite the impressive advancements in machine learning over recent years, most models, partic-
ularly neural networks, are still designed and trained to provide only point estimates, lacking the
ability to rigorously quantify uncertainty in their predictions. This poses a significant challenge, as
reliable decision-making depends on having a trustworthy representation of the uncertainty of each
prediction. This need has drawn increased attention to uncertainty quantification in machine learn-
ing research, especially as the use of these models becomes more widespread and starts to permeate
safety-sensitive fields such as healthcare and autonomous driving.

Conformal Prediction (CP) (Vovk et al., 2005; Angelopoulos & Bates, 2021) is a class of uncertainty
quantification methods that represent uncertainty through prediction intervals. These intervals intu-
itively convey the degree of uncertainty—the larger the interval, the greater the uncertainty. What
sets CP methods apart is their rigorous, distribution-free coverage guarantee: these intervals will
encompass the true label with a probability of at least 1 − α, where α is a user-defined miscover-
age rate. In recent years, a variant known as split or inductive conformal prediction (Papadopoulos
et al., 2002) has gained traction within the machine learning community due to its ease of use and
low computational cost. Split-CP, as the name suggests, divides the available data into training and
calibration sets, using the former to fit a model and the latter to construct prediction intervals. How-
ever, this approach is statistically inefficient because it does not leverage all available data for model
fitting, which would ideally ensure the best possible model fit while maintaining coverage. Full (or
transductive) CP addresses this inefficiency, utilizing all data for both training and calibration, but
it incurs a significant computational cost. It requires retraining the model multiple times—once for
each test point and possible label—which is prohibitively expensive for deep learning applications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000

Test point index

2× 102

3× 102

4× 102

In
te

rv
al

w
id

th

ACP-GN(ours) SCP LA

Figure 1: Our approx. full-CP via Gauss-Newton influence (ACP-GN) produces adaptive intervals
(right figure)—similar to Bayes via Laplace approximation (LA)—while satisfying coverage as seen
in the high-overlap with split-CP (SCP) close to the data (white dots with black edge in left figure).

In this work, we scale full-CP to neural network regression by (i) eliminating the need for retraining
through a Gauss-Newton influence approximation and (ii) avoiding an exhaustive search over the
label space via network linearization. This gives a new and scalable full-CP method for neural net-
work regression we dub approximate full-CP via Gauss-Newton influence (ACP-GN). As a second
contribution, we show the same tools can be applied to improve split-CP via normalization (Johans-
son et al., 2021), resulting in a new adaptable split-CP method we call (SCP-GN). We empirically
validate ACP-GN and SCP-GN in multiple regression tasks and bounding box localization, showing
they not only satisfy coverage but also produce tight and adaptable prediction intervals (see Fig. 1
for results with ACP-GN).

2 BACKGROUND ON CONFORMAL PREDICTION

Neural network regression follows the canonical empirical risk minimization framework. Given a
dataset DN := {(xi, yi)}Ni=1 consisting of N examples with inputs xi ∈ RD and targets yi ∈ R, we
minimize the (regularized) empirical risk:

θ∗ = argminθ

(∑N
i=1 ℓ(yi, fi(θ)) +

1
2δ ∥θ∥

2
)

(1)

where fi(θ) is shorthand for f(xi;θ), the output of a deep neural network (DNN) at xi with param-
eters θ ∈ RD, ℓ(y, f) is a loss function, and δ is an L2 regularizer (i.e. weight decay). In this work,
we restrict our attention to the squared-error loss: ℓ(y, f) = 1

2 (y − f)
2. As is standard practice,

the problem in Eq. (1) is approached using stochastic-gradient methods. For an unseen input xN+1,
this gives us a point prediction fN+1(θ∗). However, in an ideal scenario, we would like a prediction
interval whose width reflects the uncertainty associated with that input. This is where conformal
prediction (Vovk et al., 2005) comes into play. It provides a framework for constructing prediction
intervals while satisfying the following frequentist coverage guarantee known as marginal coverage

P (yN+1 ∈ Cα(xN+1)) ≥ 1− α, (2)

where yN+1 is the unseen target, Cα(xN+1) is the prediction interval with desired miscoverage rate
α ∈ (0, 1), and the probability is over all samples {(xi, yi)}N+1

i=1 , hence the name marginal coverage.

The prediction interval Cα(xN+1) is constructed using nonconformity scores, which quantify how
unusual a sample (xi, yi) is compared to other samples in a set. In the context of regression, which
is the focus of this paper, the absolute residual Ri = R(xi, yi) = |yi − fi(θ)| is the most common
score (Kato et al., 2023). Given the data DN and a score function, Cα(xN+1) is defined as

Cα(xN+1) = {y ∈ R : π(y) ≤ ⌈(1− α)(N + 1)⌉} , (3)

where π(y) =
∑N+1

i=1 1{Ri ≤ R(xN+1, y)} is the rank of R(xN+1, y) among the other N resid-
uals. Remarkably, the only requirement for prediction intervals constructed as in Eq. (3) to satisfy
marginal coverage is that the set of scores {R(xi, yi)}N+1

i=1 be exchangeable. This is equivalent to
assuming the data is exchangeable and the score function (and consequently the regressor) preserves

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

this exchangeability by treating data points symmetrically. Thus, Eq. (2) is a distribution-free guar-
antee that remains valid even if the model is misspecified. This contrasts with Bayesian methods, the
dominant approach for uncertainty quantification in deep learning, which are often poorly calibrated
under model misspecification (Dawid, 1982; Fraser, 2011; Grünwald & van Ommen, 2017).

2.1 SPLIT CONFORMAL PREDICTION

As stated in the introduction, CP methods can generally be categorized into split-CP and full-CP
variants. The primary distinction between these two families of methods lies in how they ensure
the exchangeability of the set of scores {R(xi, yi)}Ni=1 ∪ {R(xN+1, y)}. Essentially, this means
that all samples, including the test sample (xN+1, yN+1), must exert the same influence over the
prediction model f(·;θ). Split-CP offers the simplest and most computationally efficient solution.
By keeping the model fixed when computing the scores of each of the N + 1 samples, it ensures
the scores are exchangeable, as the score function is applied elementwise. However, this approach
is data inefficient because it prevents using the first N samples to fit the model, requiring a separate
training dataset. This statistical inefficiency can negatively impact the quality of the final prediction
intervals in two key ways. Since any conformal prediction method is designed to achieve coverage
as described in Eq. (2), different approaches are compared in terms of their efficiency—how small
the prediction intervals are—and adaptability—how much the size of the prediction intervals varies
across samples. To be informative about both the true label and predictive uncertainty, prediction
intervals must be both efficient and adaptable. However, in split-CP, efficiency is compromised
because not all data is used for calibration, while fixing the model parameters reduces adaptability.

2.2 FULL CONFORMAL PREDICTION

Full-CP uses all available data for both training the model and computing prediction intervals. The
main challenge in full-CP is that exchangeability of scores requires treating all data points symmet-
rically, meaning the model should be fit on {(xi, yi)}Ni=1 as well as (xN+1, yN+1). Since yN+1 is
unknown a priori, this necessitates retraining the model for all possible values yN+1 can take. To be
precise, full-CP requires the following modification to the optimization problem in Eq. (1)

θ+
∗ (y) = argminθ

(∑N
i=1 ℓ(yi, fi(θ)) + ℓ(y, fN+1(θ)) +

1
2δ ∥θ∥

2
)
, (4)

where θ+
∗ (y) is the optimal model parameters for the augmented training set DN+1(y) := DN ∪

{(xN+1, y)} that includes the test point xN+1 plus a candidate label y for yN+1. With a slight abuse
of notation, we use Ri(y) to denote the residual with model parameters θ+

∗ (y), that is,
Ri(y) = |yi − fi(θ

+
∗ (y))| ∀i = 1, . . . , N and RN+1(y) = |y − fN+1(θ

+
∗ (y))|. (5)

From here we can construct prediction intervals as in Eq. (3), but now the residuals vary for each
test point xN+1 and candidate label y ∈ R. As mentioned before, this has two major limitations.
Firstly it requires retraining the model for every candidate label y which is infeasible for DNNs.
Secondly in theory the method asks to consider an uncountable set (i.e. all real numbers). Therefore,
in practice a finite grid of possible labels for y is used, typically delimited by the training targets.
Evidently, the grid imposes computation-precision trade-off and has implications for the coverage
if a valid candidate happens to lie between two grid points (Chen et al., 2018). In a few cases, the
prediction set can be computed efficiently and exactly without the need to trial candidate labels of y.
In addition, this procedure only depends on a single fit on the original (unaugmented) dataset which
can be efficiently updated not only for variations in y but also for different inputs xN+1. These
include the Lasso (Lei, 2019), k-Nearest Neighbours Regression (Papadopoulos et al., 2011), and
ridge regression (Nouretdinov et al., 2001; Burnaev & Vovk, 2014). In the following section, we
review conformalized ridge regression which is the basis of our approximate full-CP procedure.

2.3 CONFORMALIZED RIDGE REGRESSION (CRR)

Ridge regression is a special case of Eq. (1) where we have a linear model fi(θ) := x⊤
i θ. In this

case, the absolute residual can be written as a piecewise linear function of the candidate y with
Ri(y) = |ai + biy|, where ai and bi are coefficients capturing information from the training data
and test point, resp. It is then convenient to express the rank as π(y) =

∑N+1
i=1 1{y ∈ Si}, with

Si = {y : Ri(y) ≤ RN+1(y)} = {y : |ai + biy| ≤ |aN+1 + bN+1y|}. (6)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Each set Si can be an interval, a point, a ray, a union of two rays, the real line, or the empty set.
Eq. (6) suggests that the rank for a given y can only change at points where Ri(y) = RN+1(y) to
which we refer as “changepoints”. For the absolute residual, these changepoints fall into one of the
following two cases, where we assume bi ≥ 0 (if needed, multiplying ai and bi by −1):

• If bi ̸= bN+1, then Si is an interval or a union of two rays, and we have two changepoints,
−(ai − aN+1)/(bi − bN+1) and −(ai + aN+1)/(bi + bN+1).

• If bi = bN+1 ̸= 0, then Si is a ray, unless ai = aN+1, in which case Si = R. Here we
have single changepoint −(ai + aN+1)/2bi.

This leads to an exact form of the prediction set by taking the union of finitely many intervals and
rays whose endpoints are given by the changepoints sorted in increasing order. Given the change-
points, different implementations have been proposed with varying time complexity. For the smaller
datasets, we use the conformal ridge regression confidence machine algorithm (Nouretdinov et al.,
2001; Vovk et al., 2005), which uses the absolute residual and changepoints described above.

There is also a simpler, asymmetric version of CRR that uses the signed residuals (Burnaev & Vovk,
2014). In this case, we can compute the lower and upper bounds of the prediction interval separately,
using residuals fi(θ)−yi for the lower bound, and yi−fi(θ) for the upper bound. This is the version
we use for the larger datasets and that appears in the depiction of our method in Alg. 2, where we
use li and ui to denote the changepoints for the lower and upper bounds, resp. When using signed
residuals, Si is either a ray with changepoint li = ui = (ai−aN+1)/(bN+1−bi) if bN+1 − bi > 0
or otherwise, Si = R with li = −∞ and ui =∞.

Finally, we need to write down the expression for coefficients ai and bi. Using the Sherman-
Morrison formula, a widely-used tool of the regressions diagnostics literature (Cook, 1977), Burnaev
& Vovk (2014) showed that the required coefficients a1, . . . , aN+1 and b1, . . . , bN+1 for the CRR
procedure can be efficiently computed for different xN+1 by a simple rank-1 update or perturbation
to the ridge solution on DN (see App. A for derivation):

yi − xT
i θ

+
∗ (y) = yi − xT

i θ∗ +
hi,N+1

1 + hN+1
x⊤
N+1θ∗︸ ︷︷ ︸

ai

− hi,N+1

1 + hN+1︸ ︷︷ ︸
bi

y (7)

y − xT
N+1θ

+
∗ (y) = −

1

1 + hN+1
x⊤
N+1θ∗︸ ︷︷ ︸

aN+1

+
1

1 + hN+1︸ ︷︷ ︸
bN+1

y (8)

where hN+1 = x⊤
N+1H

−1
∗ xN+1 with Hessian matrix H∗ =

∑N
i=1 xix

⊤
i + δI.

2.4 NORMALIZED NONCONFORMITY SCORES

In the previous section, we derived CRR using the nonconformity score given in Eq. (5), which is
often referred to as add-one-in (AOI). In this section, we also consider the leave-one-out (LOO) and
studentized scores, which lead to the variants CRR-deleted and CRR-studentized and their corre-
sponding extensions to neural network regression given by our approximate full-CP method. All
those variants are valid choices (Vovk et al., 2005; Shafer & Vovk, 2008), and the literature is not
conclusive regarding which one is to be preferred (Fong & Holmes, 2021; Fontana et al., 2023). Yet,
in our neural network regression experiments, the studentized variant outperformed the other two.

In the leave-one-out (LOO) variety (also known as jackknife), scores RLOO
i are computed by ex-

cluding the ith data point from the augmented data DN+1(y) before retraining the model. The only
exception being RLOO

N+1, which requires no retraining, as θ∗ already ignores the (N +1)th data point.
In the case of ridge regression with absolute residuals, we can derive the jackknife score from the
standard one as (Vovk et al., 2005)

RLOO
i = Ri/(1−h̄i), (9)

where we have introduced the leverage score defined with respect to the augmented problem
h̄i = x⊤

i H̄
−1
∗ xi, where H̄∗ =

∑N+1
i=1 xix

⊤
i + δI. The leverage score can be viewed as a kind

of diagnostics measure for measuring the sensitivity of the prediction to changes in the target. The
formula is a consequence of the exact rank-1 updates available in ridge regression. This leads to the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

deleted-CRR method which proceeds in the same way as standard CRR except it uses the normal-
ized coefficients: ai ← ai/(1− h̄i) and bi ← bi/(1− h̄i) for i = 1, . . . , N + 1. Such relations can
also be used to recover the standard score starting from the jackknife one:

Ri = RLOO
i /

(
1+h̄

\i
i

)
, (10)

where h̄\i
i = x⊤

i H̄
\i
∗ xi with H̄

\i
∗ =

∑N+1
j=1,j ̸=i xjx

⊤
j + δI. Papadopoulos (2024) gave an interpreta-

tion of this relation as locally-weighted conformal prediction (Papadopoulos et al., 2008) where the
expression in the denominator can be seen as the leave-one-out predictive variance from a Bayesian
perspective. This can be seen as a measure of the difficulty of the ith example. Similar normalizations
can also be applied to nonconformity scores in a split-CP framework (Vovk et al., 2005). Finally, the
studentized-CRR can be interpreted as a compromise between standard and deleted-CRR. It uses a
similar normalization and defines nonconformity scores as

Rstudent
i = Ri/

√
1−h̄i. (11)

This transformation is applied analogously to the CRR coefficients with ai and bi.

3 APPROXIMATE FULL-CP FOR NEURAL NETWORK REGRESSION

We propose to leverage the conformalized ridge regression framework (Nouretdinov et al., 2001)
along with a carefully constructed perturbation to the NN solution θ∗ that approximates the solution
to the augmented problem. The former avoids the need to specify a grid of candidate labels y and the
latter allows us to express the absolute residual nonconformity score as a piecewise linear function
of the candidate label akin to that in ridge regression. Most importantly, these choices mean that a
neural network is trained only once on the original data DN .

We propose to use Gauss-Newton influence (St Laurent & Cook, 1992) to approximate the solution
to the augmented problem θ+

∗ (y) in Eq. (4). Whilst originally proposed for leave-one-out (LOO)
estimation to evaluate the influence of individual (or groups of) training examples on the model, we
adapt this for add-one-in (AOI) estimation. This approximation θ̂+

∗ (y) ≈ θ+
∗ (y) is given by

θ̂+
∗ (y) = θ∗ +

êN+1(y)

1 + ĥN+1

H−1
GNϕN+1, (12)

where ϕi := ∇θfi(θ∗)
⊤ is the Jacobian of the neural network at θ∗, HGN =

∑N
i=1 ϕiϕ

⊤
i + δI is

the Gauss-Newton approximation to the Hessian, êN+1(y) = y − fN+1(θ∗) is the residual for the
(N + 1)th example and ĥN+1 = ϕ⊤

N+1H
−1
GNϕN+1 can be interpreted as a leverage score. Eq. (12)

can be understood as taking a single step of the Gauss-Newton algorithm at θ∗ on the augmented
objective in Eq. (4). St Laurent & Cook (1992) showed that this can be expressed as a least-squares
solution to a surrogate “linear” model allowing it to be reformulated as a deviation from θ∗.

Next we show that using Eq. (12) along with linearization of the neural network, we can approximate
the residual as a linear function of the postulated label y recovering an identical form to that of
conformalized ridge regression in Eqs. (7) and (8),

yi − fi(θ
+
∗ (y)) ≈ yi − fi(θ∗) +

ĥi,N+1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
ai

− ĥi,N+1

1 + ĥN+1︸ ︷︷ ︸
bi

y (13)

y − fN+1(θ
+
∗ (y)) ≈ −

1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
aN+1

+
1

1 + ĥN+1︸ ︷︷ ︸
bN+1

y (14)

where ĥi,N+1 = ϕ⊤
i H

−1
GNϕN+1 (see App. B for the derivation and App. C for the extension to the

multi-output setting). The coefficients can be readily adapted for the case of normalized nonconfor-
mity scores in the same way as outlined in Sec. 2.4.

In Alg. 2, we provide a simplified but complete algorithmic depiction of our method, which we
dub approximate full-CP via Gauss-Newton influence (ACP-GN). We contrast it against standard

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

full-CP in Alg. 1, highlighting the expensive grid search and retraining steps. Note that in ACP-
GN there is no grid search and the model is fit only once using all available DN , as highlighted in
blue. At test time, when a new point xN+1 is received, instead of retraining the model, ACP-GN
only computes the CRR coefficients {(ai, bi)}N+1

i=1 using Gauss-Newton influence as in Eq. (13) and
Eq. (14), which are then used to derive the prediction set in closed form either using the method of
(Nouretdinov et al., 2001) or the asymmetric one of (Burnaev & Vovk, 2014) that we show in Alg. 2.

Algorithm 1: Standard Full-CP.
for each test point xN+1 do

for each y in a given grid do
optimize θ+

∗ (y) as in Eq. (4)
RN+1(y) = |y − fN+1(θ

+
∗ (y))|

for i ∈ {1, . . . N} do
Ri(y) = |yi − fi(θ

+
∗ (y))|

π(y) =
∑N+1

i=1 1{Ri(y)≤RN+1(y)}
if π(y) ≤ ⌈(1− α)(N + 1)⌉ then

include y in Cα(xN+1)

Algorithm 2: ACP-GN (ours).

optimize θ∗ as in Eq. (1)
for each test point xN+1 do

compute aN+1, bN+1 as in Eq. (14)
for i ∈ {1, . . . N} do

compute ai, bi as in Eq. (13)
if bN+1 − bi > 0 then

li = ui = (ai−aN+1)/(bN+1−bi)
else

li = −∞ and ui =∞

sort {li}Ni=1 and {ui}Ni=1 in ascending order
Cα(xN+1) =
[l(⌊(N+1)(α/2)⌋), u(⌈(N+1)(1−α/2)⌉)]

3.1 CONFORMALIZING LINEARIZED LAPLACE

We can show that our approximate full conformal regression by Gauss-Newton influence can be
interpreted as conformalizing Linearized Laplace (MacKay, 1992; Khan et al., 2019; Immer et al.,
2021b) for regression. This relates to the result of Burnaev & Vovk (2014) who showed the CRR
procedure can be viewed as conformalizing or “de-Bayesing” Bayesian Linear Regression (with
Gaussian assumptions) (Burnaev & Vovk, 2014). They provide asymptotic results indicating that
in well-specified settings, the conformal prediction intervals and Bayesian credible intervals closely
align. This places our method within the wider context of Conformal Bayes (Melluish et al., 2001;
Wasserman, 2011) for recalibrating Bayesian intervals in case of model misspecification.

The Laplace approximation constructs a Gaussian posterior approximation centered around the point
estimate θ∗ and covariance given by the inverse of the Hessian (local curvature) of the empirical risk
evaluated at θ∗. When the Hessian is approximated by the generalized Gauss-Newton matrix, we
refer to the resulting Laplace approximation as the Laplace-GGN posterior, q∗(θ) = N(θ|θ∗,Σ∗)
where Σ∗ = H−1

GN. This is often accompanied by linearizing the output of the neural network about
θ∗ (Foong et al., 2019; Immer et al., 2021b):

fi(θ) ≈ f lin
i (θ) = fi(θ∗) +∇θfi(θ∗)

⊤ (θ − θ∗) . (15)
The overall method is referred to as Linearized Laplace and retains the original NN point prediction
as the mean of the posterior predictive. Analogous to the add-one-in estimate in Eq. (12), we can
derive an approximation to the add-one-in posterior q̂+∗ (θ) by perturbing the Laplace-GGN posterior
(see App. D for derivation) whose mean is equal to θ̂+

∗ (y):

q̂+∗ (θ) = N(θ|θ̂+
∗ (y), Σ̂

+
∗) where Σ̂+

∗ =
(
HGN + ϕN+1ϕ

⊤
N+1

)−1
(16)

This is a simple extension of the leave-one-out results in (Nickl et al., 2023) to the add-one-in case.
Using this perturbed posterior in combination with the linearized predictor in Eq. (15), we recover
Eqs. (13) and (14). From the perspective of Linearized Laplace, the Gauss-Newton influence gives
the exact AOI solution with respect to the linearized network and in particular its feature expansion
given the Jacobian of the network. However, it is often the case in practice that θ∗ is not a minimum
of the empirical risk (i.e. neural network not trained to convergence). Consequently, θ∗ is not a
minima of the linearized network’s objective. This can be corrected by solving for the following
objective,

θ̃ = argminθ

(∑N
i=1

1
2 (ỹi − ϕ⊤

i θ)
2 + 1

2δ ∥θ∥
2
)

(17)

where ỹi := ϕ⊤
i θ∗ + ei with residual ei = yi − fi(θ∗). This is a linear-Gaussian system and hence

can be solved for in a single step. This process is often referred to as “refinement” in the Linearized

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Laplace literature and has been shown to improve predictions (Immer et al., 2021b). The exact AOI
solution with respect to Eq. (17) is then given by,

θ̃+
∗ (y) = θ̃ +

y − f lin
N+1(θ̃)

1 + ĥN+1

H−1
GNϕN+1 (18)

which reduces to Eq. (12) when θ̃ = θ∗. We can derive analagous expressions to Eqs. (13) and (14)
which are exact for the linearized neural network in Eq. (15),

yi − f lin
i (θ̃+

∗ (y)) = yi − f lin
i (θ̃) +

ĥi,N+1

1 + ĥN+1

f lin
N+1(θ̃)−

ĥi,N+1

1 + ĥN+1

y (19)

y − f lin
N+1(θ̃

+
∗ (y)) = −

1

1 + ĥN+1

f lin
N+1(θ̃) +

1

1 + ĥN+1

y (20)

where the main distinction is the use of linearized versions of the original neural network prediction.

Normalized Split-CP with Gauss Newton Influence It turns out the tools we used to derive our
approximate full-CP method are also effective to improve the adaptability and efficiency of split-
CP. In vanilla split conformal regression, all prediction intervals have the same width because the
model remains fixed. One way to alleviate this issue is to normalize the scores as Ri = Ri/σi,
where σi estimates the difficulty in predicting the ith data point correctly (Papadopoulos et al., 2008;
Johansson et al., 2021). As observed in (Papadopoulos, 2024), the normalized scores described in
Sec. 2.4 are scaled by the predictive variance, which is closely related to how difficult yi is to predict.
This motivates our Gauss-Newton split-CP variant, with scores,

Ri = |yi−fi(θ∗)|/
√

1+ĥi, (21)

where ĥi = ϕ⊤
i H

−1
GNϕi is marginal variance given by Linearized Laplace. This is similar to Eq. 4.10

in (Vovk et al., 2005) and is analogous to the studentized scores in the full-CP case.

4 RELATED WORK

Ours is not the first work to alleviate the need for model refitting in full conformal prediction. In
fact, split-CP (Papadopoulos et al., 2002; Lei et al., 2018) and cross-conformal predictors (Vovk,
2015) were also explicitly designed to avoid retraining the model, albeit at the cost of statistical
efficiency. Some other notable examples that also try to preserve statistical efficiency include the use
of homotopy continuation technique (Ndiaye & Takeuchi, 2019) and algorithmic stability Ndiaye
(2022). Recently, Guha et al. (2024) showed one can bypass some of the challenges in conformal
regression by framing it as a classification problem (Guha et al., 2024), but that requires binning the
output space, incurring an accuracy/precision trade-off.

The work of (Martinez et al., 2023) is particularly relevant, since it leverages influence function
(Hampel, 1974; Cook & Weisberg, 1980) to approximate the full-CP algorithm. However, they
only considered classification problems and their solution still requires an exhaustive search over
possible labels, which is critical for the regression setting we consider in this paper. Moreover,
in this work, we apply the closely-related Gauss-Newton influence rather than influence function.
Firstly, the Hessian is often approximated by the Gauss-Newton matrix when used in influence
functions for deep learning (Bae et al., 2022) since it is guaranteed to be positive semi-definite
(Martens, 2010). Secondly, it is possible to recover the typical inverse Hessian vector product form
of influence function by taking an infinitesimal variant of the Gauss-Newton influence.

5 EXPERIMENTS & RESULTS

We evaluate the performance of our method, approximate full-CP via Gauss-Newton influence
(ACP-GN), against Linearized Laplace (LA) (MacKay, 1992; Immer et al., 2021b), a recently
popular Bayesian method for post-hoc uncertainty quantification, split conformal prediction (SCP)
(Papadopoulos et al., 2002), conformalized residual fitting (CRF) (Papadopoulos et al., 2002) and
conformalized quantile regression (CQR) (Romano et al., 2019). We also evaluate two further pro-
posals, “ACP-GN (split + refine)” and “SCP-GN” which we proceed to describe along with the
aforementioned methods:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Our proposed approximate full-CP via Gauss-Newton influence (ACP-GN) almost always
gives the tightest intervals in limited data regimes whilst satisfying the desired coverage (cf. yacht,
boston, energy). On larger datasets, ACP-GN remains competitive on efficiency compared with
other conformal methods but can sometimes miscover. As a remedy, we propose two variants in-
spired by ACP-GN that generally fix the miscoverage issue. Average prediction interval width and
coverage for our proposed approaches (shaded gray) against baselines (non-shaded) for three dif-
ferent settings of the confidence level. The best average widths over well-calibrated approaches
(indicated by ✓/✗) appear in bold. Reported metrics are accompanied by standard error from re-
peated runs.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

yacht
N=308
I=6

LA 1.690±0.017 2.014±0.020 2.647±0.027 88.73±0.61 (✓) 90.78±0.59 (✗) 93.89±0.60 (✗)
SCP 2.553±0.093 4.001±0.115 10.018±0.361 89.56±0.66 (✓) 94.07±0.39 (✓) 99.32±0.08 (✓)
CRF 2.526±0.092 3.947±0.115 9.674±0.294 89.53±0.64 (✓) 94.10±0.38 (✓) 99.29±0.10 (✓)
CQR 4.090±0.105 5.845±0.187 18.650±0.484 89.94±0.42 (✓) 94.42±0.32 (✓) 99.02±0.17 (✓)
ACP-GN 1.594±0.016 2.385±0.029 6.915±0.067 87.36±0.58 (✓) 92.56±0.68 (✓) 99.03±0.11 (✓)
SCP-GN 2.270±0.086 3.349±0.098 7.216±0.254 89.85±0.51 (✓) 94.91±0.32 (✓) 99.19±0.15 (✓)
ACP-GN (split + refine) 1.993±0.020 2.954±0.037 7.307±0.178 89.35±0.62 (✓) 94.90±0.51 (✓) 99.45±0.08 (✓)

boston
N=506
I=13

LA 9.398±0.046 11.199±0.055 14.718±0.072 91.24±0.31 (✓) 94.34±0.22 (✓) 97.53±0.11 (✗)
SCP 10.635±0.123 14.509±0.171 36.272±1.847 89.56±0.42 (✓) 94.64±0.32 (✓) 99.11±0.13 (✓)
CRF 11.932±0.605 16.073±0.862 40.690±3.333 90.01±0.33 (✓) 94.77±0.22 (✓) 99.30±0.08 (✓)
CQR 11.692±0.129 15.115±0.213 31.628±1.822 90.10±0.33 (✓) 95.12±0.24 (✓) 99.07±0.14 (✓)
ACP-GN 9.182±0.046 12.111±0.038 20.512±0.057 90.64±0.26 (✓) 95.49±0.16 (✓) 99.11±0.08 (✓)
SCP-GN 10.301±0.089 13.418±0.151 24.714±0.865 89.52±0.50 (✓) 94.82±0.32 (✓) 99.05±0.12 (✓)
ACP-GN (split + refine) 13.103±0.072 16.729±0.134 27.561±0.445 90.12±0.26 (✓) 95.41±0.20 (✓) 99.27±0.10 (✓)

energy
N=768
I=8

LA 1.502±0.006 1.790±0.007 2.353±0.009 88.96±0.35 (✓) 92.92±0.33 (✗) 96.95±0.23 (✗)
SCP 1.942±0.032 2.486±0.046 3.772±0.093 89.44±0.28 (✓) 94.80±0.20 (✓) 99.18±0.08 (✓)
CRF 1.923±0.031 2.454±0.046 3.728±0.092 89.39±0.28 (✓) 94.78±0.22 (✓) 99.14±0.08 (✓)
CQR 4.670±0.030 5.139±0.029 6.438±0.120 90.08±0.26 (✓) 95.24±0.21 (✓) 98.96±0.09 (✓)
ACP-GN 1.462±0.006 1.884±0.008 3.076±0.015 88.28±0.33 (✓) 93.69±0.33 (✓) 98.88±0.11 (✓)
SCP-GN 1.911±0.029 2.449±0.044 3.609±0.071 89.69±0.29 (✓) 94.79±0.18 (✓) 99.21±0.09 (✓)
ACP-GN (split + refine) 1.745±0.016 2.174±0.021 3.300±0.045 90.54±0.25 (✓) 94.96±0.22 (✓) 99.18±0.10 (✓)

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
CRF 127.836±0.894 174.362±1.376 311.580±5.077 90.39±0.19 (✓) 95.26±0.14 (✓) 99.01±0.07 (✓)
CQR 141.329±5.943 167.682±5.835 244.863±4.952 89.83±0.23 (✓) 94.80±0.14 (✓) 98.89±0.07 (✓)
ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
ACP-GN (split + refine) 128.336±4.336 170.782±5.859 281.632±10.176 89.98±0.22 (✓) 94.94±0.16 (✓) 99.01±0.06 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
CRF 12.645±0.127 16.931±0.146 26.973±0.202 89.86±0.09 (✓) 94.84±0.07 (✓) 98.93±0.04 (✓)
CQR 13.541±0.144 14.798±0.129 18.239±0.041 90.07±0.10 (✓) 95.07±0.09 (✓) 98.96±0.04 (✓)
ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
ACP-GN (split + refine) 12.660±0.028 16.073±0.031 23.445±0.057 89.83±0.09 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)

facebook 2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
CRF 15.088±0.188 29.679±0.396 102.326±2.552 89.94±0.07 (✓) 94.98±0.06 (✓) 99.03±0.02 (✓)
CQR 17.605±0.645 21.571±0.960 30.852±1.303 90.16±0.28 (✓) 95.13±0.12 (✓) 99.01±0.03 (✓)
ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
ACP-GN (split + refine) 21.469±0.906 42.184±0.788 152.460±2.499 90.14±0.08 (✓) 95.10±0.06 (✓) 99.13±0.02 (✗)

• LA: The Laplace approximation with the Hessian approximated by the generalized Gauss-
Newton matrix. The linearized predictive in Eq. (15) is used for inference. We use the
implementation provided in the Laplace PyTorch library (Daxberger et al., 2021a) as
well as to implement our ACP-GN method.

• SCP: Uses absolute residual nonconformity score in the procedure outlined in Sec. 2.1.

• CRF: Trains an additional network to predict the absolute residuals of the original network
which is then used to normalize the absolute residual nonconformity score.

• CQR: Trains a quantile regression network using the pinball loss function. The predicted
lower and upper quantile functions are then used in the split conformal quantile regression
algorithm.

• ACP-GN: Uses the studentized nonconformity score of Eq. (11). We found this score
performed best, but we also report results for the standard and deleted versions in App. H.

• SCP-GN: Normalizes the absolute residual nonconformity score by the posterior predictive
standard deviation given by the LA method (trained only on the same split as SCP) as shown
in Eq. (21).

• ACP-GN (split + refine): Uses a train-calibration split like in SCP, where we pretrain the
model on the training set before running ACP-GN on the calibration set. More precisely,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

it solves the linearized network’s objective in Eq. (17) but defined on the calibration set.
It then uses the linearized network prediction in Eq. (15) in lieu of the original network to
evaluate the coefficient in Eqs. (19) and (20), again on the calibration set.

5.1 UCI REGRESSION

We conduct experiments on popular benchmark datasets for regression taken from the UCI Machine
Learning repository (Nottingham et al., 2024). These are varying in size and consequently lead to
slight variations in experimental setup. Hence we place them into 3 groups for easy referencing:
small (boston, concrete, energy, wine, yacht); medium (kin8nm, power); large (bike, community,
protein, facebook 1, facebook 2). A subset of these are shown in Table 1 and the remainder are
reported in App. G.1. For the small datasets, the reported metrics result from 10 repeats of a 10-fold
cross-validation process. For the other datasets, we perform 20 different train-test splits. In both
cases, 90% of the examples are used for the training set and the remaining 10% for the test set.
When the method requires a calibration set, the training set is divided into two chunks of equal size.
We show results for a desired miscoverage rate of α ∈ {0.1, 0.05, 0.01}.
All methods use neural networks which are trained to convergence using the Adam optimizer
(Kingma, 2014). Throughout we use fully-connected networks with 50 units/layer and GeLU ac-
tivation function. The small and medium datasets have a single hidden layer whereas the large
datasets use 3 hidden layers. For these architectures, it is feasible to evaluate the Gauss-Newton
matrix without any approximations. However, we expect this to be prohibitive for larger architec-
tures – inversion of the Gauss-Newton matrix scales cubically in the number of parameters. For
this reason in App. H.1, we repeat the experiments using two scalable approximations: Kronecker-
factored approximate curvature (KFAC) (Martens & Grosse, 2015) and last-layer approximation
(Daxberger et al., 2021b) (i.e. neural linear model approach (Ober & Rasmussen, 2019)). As de-
scribed in Sec. 2.3, to construct the predictive intervals given the coefficients in ACP-GN we use the
ridge regression confidence machine algorithm (Nouretdinov et al., 2001) on the small datasets and
the asymmetric version (Burnaev & Vovk, 2014) for the medium and large datasets. See App. G.1
for further details on the experimental setup.

To assess the efficiency (tightness) and well-calibratedness of our proposed methods for obtaining
prediction intervals, we report their average prediction interval width and coverage against the base-
lines in Table 1. A method is reported as satisfying validity if its empirical coverage lies within the
1% and 99% quantiles of the exact marginal coverage distribution as given by the train/calibration
set size (depending on the method) (Angelopoulos & Bates, 2021; Vovk, 2012). In the case of lim-
ited data regimes (yacht, boston, energy), ACP-GN gives the tighest intervals, with the exception
of boston at 95% target coverage where LA is the most efficient (being one of the few cases when
LA does not miscover). On the larger datasets, ACP-GN remains competitive on efficiency with
the exception of facebook 2 at the higher values of target coverage, but we find it miscovers. Our
proposed variant, “ACP-GN (split+refine)”, generally gives the correct coverage although incurring
a trade-off in efficiency due to the sample splitting. We also observe that our novel normalization
strategy inspired by ACP-GN, SCP-GN, improves over CRF for most datasets and settings of the
target coverage.

5.2 BOUNDING BOX LOCALIZATION

We consider single-object localization and in particular adapt the task from Phan et al. (2018), which
predicts bounding boxes localizing the face of different breeds of cats and dogs in varying conditions
not limited to scale, pose and lighting. Conformal methods have recently been adapted for this task
(De Grancey et al., 2022; Timans et al., 2024). We construct two-sided intervals similar to Timans
et al. (2024) but without considering uncertainty in the classifier, following De Grancey et al. (2022).

All images with ground-truth bounding box annotations in the Oxford-IIIT Pet dataset (Parkhi et al.,
2012) are extracted resulting in 3 686 images overall. The experiment is repeated with 20 different
train-test splits where 20% of the data is used for testing. When calibration data is needed, a 25%
split is partitioned from the train set. The VGG-19 architecture (Simonyan & Zisserman, 2015)
pretrained on ImageNet is used as the object detection backbone but with the original output layer
removed. The network is trained jointly with two heads, a regression head predicting 2D bounding
box coordinates (4 outputs) and a binary classification head predicting between cat or dog. We only

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: On a bounding box regression task using a deep convolutional neural network, our split and
refine variant of ACP-GN results in the most efficient confidence regions whilst achieving compara-
ble coverage to the split-CP baselines. We target coverage rates of {85%, 90%, 95%} and reported
metrics are accompanied by standard error from repeated runs.

Avg. Volume (×10−2) Avg. Coverage
85% 90% 95% 85% 90% 95%

LA 0.710±0.009 0.945±0.013 1.405±0.019 92.11±0.18 (✗) 94.49±0.18 (✗) 96.65±0.16 (✗)
SCP 0.809±0.025 1.166±0.035 2.261±0.106 87.80±0.42 (✓) 91.82±0.41 (✓) 95.85±0.32 (✓)
CRF 0.713±0.021 1.098±0.044 2.130±0.087 87.47±0.44 (✓) 91.61±0.34 (✓) 95.85±0.23 (✓)
CQR 0.947±0.028 1.451±0.046 3.680±0.113 87.45±0.51 (✓) 91.29±0.38 (✓) 96.06±0.26 (✓)
ACP-GN 0.384±0.004 0.605±0.007 1.225±0.017 90.97±0.20 (✗) 94.09±0.20 (✗) 97.41±0.16 (✗)
SCP-GN 0.768±0.020 1.071±0.030 1.854±0.066 87.17±0.45 (✓) 91.43±0.40 (✓) 95.58±0.28 (✓)
ACP-GN (split + refine) 0.311±0.006 0.472±0.014 1.031±0.046 87.34±0.41 (✓) 91.31±0.35 (✓) 96.12±0.27 (✓)

consider the regression head for constructing predictive intervals. Without calibration split, the net-
work achieves 99.6% classification accuracy and 20.1% localization error with 0.5 IoU (Intersection
over Union) threshold. With calibration split, the model achieves 99.5% classification accuracy and
27.5% localization error.

The training setup is adapted from Girshick (2015) using SGD optimizer and simple data augmenta-
tion involving random horizontal flips of probability 0.5. The robust L1 loss is used for the bounding
box regression head and logistic loss for the classification head. With L1 loss, Eqs. (12) to (14) no
longer hold but we demonstrate the efficacy of our procedure when the objectives for training and
predictive interval construction are different. We use the last-layer approximation to the Gauss-
Newton matrix throughout for computational reasons. The asymmetric implementation of CRR is
used due to its efficiency and we target miscoverage rates α ∈ {0.15, 0.1, 0.05}. See App. G.2 for
further details on the experimental setup. Since bounding box localization is a type of multi-output
regression, we obtain confidence regions given by hyperrectangles except for Laplace approxima-
tion (LA) that results in a hyperellipsoid. All conformal prediction methods are run for each output
dimension independently and we evaluate the confidence region volumes (as shown in Table 2) by
simply taking the product over interval widths per output dimension. We apply a multiple testing
correction, the Bonferroni correction, to mitigate the miscoverage that arises when conformalizing
the outputs separately. Although we find that all methods still consistently overcover suggesting
further improvements are still possible.

In Table 2, we observe that ACP-GN gives the tightest intervals as compared with the baseline
conformal methods despite having a greater empirical coverage than those methods. Surprisingly our
split and refine variant of ACP-GN gives even tighter intervals whilst matching the coverage of the
conformal baselines. We observed a similar effect in our ablation of the previous UCI experiments
with the last-layer approximation in App. H.1.

6 CONCLUSION

In this work, we show how to efficiently construct predictive prediction intervals with full conformal
prediction (CP) for neural networks in regression tasks. While full-CP requires retraining the model
from scratch on all of the training data and for each postulated label for the test point, we show that
we can efficiently construct approximate full-CP predictive intervals with the Gauss-Newton influ-
ence (St Laurent & Cook, 1992) and the methods described at Nouretdinov et al. (2001); Burnaev
& Vovk (2014) without retraining the model. In doing so, we also avoid creating a grid over pos-
sible regression targets for the test point, which incurs an undesirable accuracy/precision trade-off
due to the uncountable set of real numbers. We demonstrate how such an approach corresponds to
exact full-CP on a linearized version of the neural network and further show how it corresponds to
“conformalizing” the linearized Laplace method (MacKay, 1992; Khan et al., 2019; Immer et al.,
2021b), a popular method for getting uncertainty estimates in a Bayesian deep learning setting. Fi-
nally, we consider several alternative nonconformity scores, which lead to different variants of our
method, and, through the conformal linearized Laplace lens, we also introduce a novel adaptive
split-CP method. Experimentally, we see that our approximate full-CP methods typically provide
tighter prediction intervals in limited data regimes across the well-calibrated approaches. For future
work, we would like to extend our method to other real-world tasks such as pose estimation (Yang
& Pavone, 2023) and tracking (Lindemann et al., 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Javier Antorán, David Janz, James U Allingham, Erik Daxberger, Riccardo Rb Barbano, Eric Nal-
isnick, and José Miguel Hernández-Lobato. Adapting the linearised laplace model evidence for
modern deep learning. In International Conference on Machine Learning, pp. 796–821. PMLR,
2022.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

Evgeny Burnaev and Vladimir Vovk. Efficiency of conformalized ridge regression. In Conference
on Learning Theory, pp. 605–622. PMLR, 2014.

Wenyu Chen, Kelli-Jean Chun, and Rina Foygel Barber. Discretized conformal prediction for effi-
cient distribution-free inference. Stat, 7(1):e173, 2018.

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):
15–18, 1977.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

A Philip Dawid. The well-calibrated bayesian. Journal of the American Statistical Association, 77
(379):605–610, 1982.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021a.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian deep learning via subnetwork inference. In International Conference on Ma-
chine Learning, pp. 2510–2521. PMLR, 2021b.

Florence De Grancey, Jean-Luc Adam, Lucian Alecu, Sébastien Gerchinovitz, Franck Mamalet,
and David Vigouroux. Object detection with probabilistic guarantees: A conformal prediction
approach. In International Conference on Computer Safety, Reliability, and Security, pp. 316–
329. Springer, 2022.

Edwin Fong and Chris C Holmes. Conformal bayesian computation. Advances in Neural Informa-
tion Processing Systems, 34:18268–18279, 2021.

Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a unified review of
theory and new challenges. Bernoulli, 29(1):1–23, 2023.

Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. ’in-
between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

DAS Fraser. Is bayes posterior just quick and dirty confidence? Statistical Science, 26(3):299–316,
2011.

R Girshick. Fast r-cnn. arXiv preprint arXiv:1504.08083, 2015.

Peter Grünwald and Thijs van Ommen. Inconsistency of bayesian inference for misspecified linear
models, and a proposal for repairing it. Bayesian Analysis, 12(4):1069–1103, 2017.

Etash Kumar Guha, Shlok Natarajan, Thomas Möllenhoff, Mohammad Emtiyaz Khan, and Eugene
Ndiaye. Conformal prediction via regression-as-classification. In The Twelfth International Con-
ference on Learning Representations, 2024.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan.
Scalable marginal likelihood estimation for model selection in deep learning. In International
Conference on Machine Learning, pp. 4563–4573. PMLR, 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian neural
nets via local linearization. In International conference on artificial intelligence and statistics,
pp. 703–711. PMLR, 2021b.

Ulf Johansson, Henrik Boström, and Tuwe Löfström. Investigating normalized conformal regres-
sors. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 01–08. IEEE,
2021.

Yuko Kato, David MJ Tax, and Marco Loog. A review of nonconformity measures for conformal
prediction in regression. Conformal and Probabilistic Prediction with Applications, pp. 369–383,
2023.

Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule. Journal of Machine Learn-
ing Research, 24(281):1–46, 2023.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
inference turns deep networks into gaussian processes. Advances in neural information processing
systems, 32, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jing Lei. Fast exact conformalization of the lasso using piecewise linear homotopy. Biometrika, 106
(4):749–764, 2019.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094–1111, 2018.

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dy-
namic environments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448–472, 1992.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, pp. 735–742, 2010.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Javier Abad Martinez, Umang Bhatt, Adrian Weller, and Giovanni Cherubin. Approximating full
conformal prediction at scale via influence functions. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 6631–6639, 2023.

Thomas Melluish, Craig Saunders, Ilia Nouretdinov, and Volodya Vovk. Comparing the bayes
and typicalness frameworks. In Machine Learning: ECML 2001: 12th European Conference
on Machine Learning Freiburg, Germany, September 5–7, 2001 Proceedings 12, pp. 360–371.
Springer, 2001.

Eugene Ndiaye. Stable conformal prediction sets. In International Conference on Machine Learn-
ing, pp. 16462–16479. PMLR, 2022.

Eugene Ndiaye and Ichiro Takeuchi. Computing full conformal prediction set with approximate
homotopy. Advances in Neural Information Processing Systems, 32, 2019.

Peter Nickl, Lu Xu, Dharmesh Tailor, Thomas Möllenhoff, and Mohammad Emtiyaz Khan. The
memory-perturbation equation: Understanding model’s sensitivity to data. Advances in Neural
Information Processing Systems, 36, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kolby Nottingham, Rachel Longjohn, and Markelle Kelly. UCI Machine Learning Repository, 2024.
URL https://archive.ics.uci.edu/datasets. Accessed: September, 2024.

Ilia Nouretdinov, Thomas Melluish, and Volodya Vovk. Ridge regression confidence machine.
In Proceedings of the Eighteenth International Conference on Machine Learning, pp. 385–392,
2001.

Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite width neural tangent
kernel. In International Conference on Machine Learning, pp. 17018–17044. PMLR, 2022.

Sebastian W Ober and Carl E Rasmussen. Benchmarking the neural linear model for regression. In
Second Symposium on Advances in Approximate Bayesian Inference, 2019.

Harris Papadopoulos. Guaranteed coverage prediction intervals with gaussian process regression.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Harris Papadopoulos and Haris Haralambous. Reliable prediction intervals with regression neural
networks. Neural Networks, 24(8):842–851, 2011.

Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive confidence
machines for regression. In Machine learning: ECML 2002: 13th European conference on ma-
chine learning Helsinki, Finland, August 19–23, 2002 proceedings 13, pp. 345–356. Springer,
2002.

Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity measures
for regression conformal prediction. In Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications (AIA 2008), pp. 64–69, 2008.

Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression conformal prediction with
nearest neighbours. Journal of Artificial Intelligence Research, 40:815–840, 2011.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Buu Phan, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Taylor Denouden, and Sachin
Vernekar. Calibrating uncertainties in object localization task. arXiv preprint arXiv:1811.11210,
2018.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th international conference on learning representations, ICLR 2018-conference
track proceedings, volume 6. International Conference on Representation Learning, 2018.

Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Ad-
vances in neural information processing systems, 32, 2019.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015.

Roy T St Laurent and R Dennis Cook. Leverage and superleverage in nonlinear regression. Journal
of the American Statistical Association, 87(420):985–990, 1992.

Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, and Eric Nalisnick. Adaptive
bounding box uncertainties via two-step conformal prediction. In Proceedings of the European
Conference on Computer Vision, 2024.

Vladimir Vovk. Conditional validity of inductive conformal predictors. In Asian conference on
machine learning, pp. 475–490. PMLR, 2012.

Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74:
9–28, 2015.

13

https://archive.ics.uci.edu/datasets

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Larry Wasserman. Frasian inference. Statistical Science, 26(3):322–325, 2011.

Heng Yang and Marco Pavone. Object pose estimation with statistical guarantees: Conformal key-
point detection and geometric uncertainty propagation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8947–8958, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DERIVATION OF CRR COEFFICIENTS

The ridge solution on DN is given by θ∗ = H−1
∗ X⊤y where X is the (N × I) feature matrix with

x⊤
i as rows and y is the N -dim vector of targets. We can express the ridge solution on DN+1(y),

referred to as the add-one-in (AOI) solution, as a deviation from θ∗:

θ+
∗ (y) = (H∗ + xN+1x

⊤
N+1)

−1
(
X⊤y + xN+1y

)
(22)

▷ use Sherman-Morrison formula

=

(
H−1

∗ −
H−1

∗ xN+1x
⊤
N+1H

−1
∗

1 + x⊤
N+1H

−1
∗ xN+1

)(
X⊤y + xN+1y

)
(23)

= H−1
∗ X⊤y +H−1

∗ xN+1

(
y − x⊤

N+1H
−1
∗ X⊤y

1 + x⊤
N+1H

−1
∗ xN+1

− yx⊤
N+1H

−1
∗ xN+1

1 + x⊤
N+1H

−1
∗ xN+1

)
(24)

▷ substitute θ∗ = H−1
∗ X⊤y and hN+1 = x⊤

N+1H
−1
∗ xN+1

= θ∗ +H−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1
− yhN+1

1 + hN+1

)
(25)

= θ∗ +H−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(26)

Using this, it is easy to show the residuals can be expressed in terms of the postulated label y:

yi − x⊤
i θ

+
∗ (y) = yi − x⊤

i θ∗ − x⊤
i H

−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(27)

▷ substitute hi,N+1 = x⊤
i H

−1
∗ xN+1

= yi − xT
i θ∗ +

hi,N+1

1 + hN+1
x⊤
N+1θ∗ −

hi,N+1

1 + hN+1
y (28)

y − x⊤
N+1θ

+
∗ (y) = y − x⊤

N+1θ∗ − x⊤
N+1H

−1
∗ xN+1

(
y − x⊤

N+1θ∗

1 + hN+1

)
(29)

▷ substitute hN+1 = x⊤
N+1H

−1
∗ xN+1

= − 1

1 + hN+1
x⊤
N+1θ∗ +

1

1 + hN+1
y (30)

B DERIVATION OF ACP-GN COEFFICIENTS

We present the derivation for expressing the residual in the neural network regression setting as a
linear function of the postulated label y,

yi − fi(θ
+
∗ (y)) (31)

▷ linearize neural network about θ∗
≈ yi −

[
fi(θ∗) +∇θfi(θ∗)

(
θ+
∗ (y)− θ∗

)]
(32)

▷ approximate θ+
∗ (y) ≈ θ̂+

∗ (y) and substitute Gauss-Newton influence

= yi − fi(θ∗)− ϕ⊤
i

(
êN+1(y)

1 + ĥN+1

H−1
GNϕN+1

)
(33)

▷ definition of residual êN+1(y) to reveal postulated label y and substitute ĥi,N+1 = ϕ⊤
i H

−1
GNϕN+1

= yi − fi(θ∗) +
ĥi,N+1

1 + ĥN+1

fN+1(θ∗)︸ ︷︷ ︸
ai

− ĥi,N+1

1 + ĥN+1︸ ︷︷ ︸
bi

y (34)

The residual of the postulated point proceds in an almost identical manner.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C EXTENSION OF ACP-GN FOR MULTI-OUTPUT REGRESSION

In the case of multi-output regression with vector-valued targets yi ∈ RO and outputs of a DNN
fi(θ) ∈ RO, the coefficients needed in the CRR procedure {ai,Bi} now correspond to a O-dim
vector and a O×O matrix respectively. Since CRR was only proposed for single-output regression,
we also need to adapt the procedure. Considering the asymmetric version of CRR (Burnaev &
Vovk, 2014), we simply need to solve for the O-dim changepoints which are given by (BN+1 −
Bi)

−1(ai− aN+1) as long as BN+1−Bi is positive-definite (generalizing the positivity constraint
in the single-output case). Then we propose to sort the set of changepoints followed by taking the
quantile component-wise analogous to the existing algorithm. Now we proceed to derive {ai,Bi}.
Firstly the multi-output analogue of the AOI estimator in Eq. (12) is given by,

θ̂+
∗ (y) = θ∗ +H−1

GNΦ
⊤
N+1

(
I+ V̂N+1

)−1
êN+1(y) (35)

where Φi := ∇θfi(θ∗) ∈ RO×D, HGN =
∑N

i=1 Φ
⊤
i Φi + δI, êN+1(y) = y − fN+1(θ∗) and

V̂N+1 = ΦN+1H
−1
GNΦ

⊤
N+1. There is a change in notation in the last expression of the multi-output

leverage score to avoid confusion with the Hessian. Using this we can derive analogous expressions
to Eqs. (13) and (14):

yi − fi(θ
+
∗ (y)) ≈ yi −

[
fi(θ∗) +∇θfi(θ∗)

(
θ̂+
∗ (y)− θ∗

)]
(36)

= yi − fi(θ∗)−ΦiH
−1
GNΦ

⊤
N+1

(
I+ V̂N+1

)−1
êN+1(y) (37)

= yi − fi(θ∗) + V̂i,N+1

(
I+ V̂N+1

)−1
fN+1(θ∗)︸ ︷︷ ︸

ai

(38)

−V̂i,N+1

(
I+ V̂N+1

)−1︸ ︷︷ ︸
Bi

y

and

y − fN+1(θ
+
∗ (y)) ≈ −

(
I+ V̂N+1

)−1
fN+1(θ∗)︸ ︷︷ ︸

aN+1

+
(
I+ V̂N+1

)−1︸ ︷︷ ︸
BN+1

y (39)

where V̂i,N+1 = ΦiH
−1
GNΦ

⊤
N+1. The normalized nonconformity scores can also be extended to the

multi-output setting. In the case of deleted-CRR, we have:

ai ←
(
I− V̄i

)−1
ai, Bi ←

(
I− V̄i

)−1
Bi ∀i = 1, . . . , N + 1 (40)

where,

V̄i = V̂i − V̂i,N+1

(
I+ V̂N+1

)−1
V̂⊤

i,N+1 ∀i = 1, . . . , N (41)

V̄N+1 = V̂N+1

(
I+ V̂N+1

)−1
(42)

and we introduced V̂i = ΦiH
−1
GNΦ

⊤
i .

D DERIVATION OF APPROXIMATE ADD-ONE-IN POSTERIOR WITH
LAPLACE-GGN

Khan et al. (2019) show that the Laplace-GGN posterior can be equivalently stated as exact inference
in the following linear regression model (see their Theorem 1):

q∗(θ) ∝
N∏
i=1

e−
1
2 (ỹi−ϕ⊤

i θ)
2

p(θ) (43)

where p(θ) ∝ exp(12δ ∥θ∥
2
), ϕi := ∇θfi(θ∗)

⊤ and ỹi := ϕ⊤
i θ∗ + ei with ei = yi − fi(θ∗).

This can be viewed as approximating the original non-conjugate terms by conjugate factors (see
Sec. 5.4 in (Khan & Rue, 2023)): e−ℓ(yi,fi(θ)) ≈ e−

1
2 (ỹi−ϕ⊤

i θ)
2

, which take a similar interpretation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

to site functions in expectation propagation. This is used along with the standard formula for online
Bayesian updating to derive the approximate AOI posterior q̂+∗ (θ) ≈ p(θ|DN+1),

p(θ|DN+1) ∝
N+1∏
i=1

e−ℓ(yi,fi(θ))p(θ) (44)

▷ split off the (N + 1)th likelihood from the others

= e−ℓ(y,fN+1(θ))
N∏
i=1

e−ℓ(yi,fi(θ))p(θ) (45)

▷ apply the Laplace-GGN posterior approximation

≈ e−ℓ(y,fN+1(θ))q∗(θ) (46)

▷ approximate the (N + 1)th likelihood by its site function

≈ e−
1
2 (ỹ−ϕ⊤

N+1θ)
2

q∗(θ) (47)
▷ this corresponds to an unnormalized Gaussian distribution

∝ N(θ|θ̂+
∗ (y), Σ̂

+
∗) (48)

E MULTI-OUTPUT REGRESSION PREDICTION INTERVALS

For a Bayesian posterior predictive distribution (under Gaussian assumptions) in the multi-output
case, p(y∗|x∗,D) = N(y∗|ŷ∗,Σy∗), the confidence region is given by an ellipsoid,

Cα(x∗) = {y ∈ RO : (y − ŷ∗)
⊤Σ−1

y∗
(y − ŷ∗) ≤ χ2

O,α} (49)

where χ2
O,α is the quantile function for the chi-squared distribution with O degrees of freedom.

Using this definition, it is straightforward to evaluate empirical coverage. Efficiency is then given
by the volume of the corresponding ellipsoid,

Vol
[
Cα(x∗)

]
= (χ2

O,α)
O
2 det(Σy∗)

1
2 Vol[BO] (50)

where BO is the unit ball with O dimensions.

F TIME COMPLEXITY: FCP VS. ACP-GN

Table 3: We have number of test points (M), number of grid points (K), number of train points (N),
parameter count (D), total epochs (E), and cost of forward pass/gradient computation/Jacobian
computation ([FP]). We highlight the additional complexity of FCP over ACP-GN (purple), ACP
over ACP-GN (green), ACP-GN over ACP (blue) and ACP/ACP-GN over FCP (red).

Train Predict

FCP — MKN2E[FP]
ACP NE[FP] +ND2 +D3 MK([FP] +ND2)
ACP-GN NE[FP] +ND2 +D3 M([FP] +ND2 +N logN)

We write the time complexity for our ACP-GN and compare it against full conformal prediction
(FCP) and approximate full conformal prediction (ACP) (Martinez et al., 2023) in Table 3. This
is shown for the deleted nonconformity score similar to Sec. A.2 in Martinez et al. (2023) and for
scalar targets only. For the standard score, ACP and ACP-GN are unchanged but the factor of N is
dropped in FCP. “Train” refers to the upfront time complexity that can be re-used when constructing
prediction intervals (“predict”) for new batches of test points.

We state the best time complexity of the ridge regression confidence machine routine given the co-
efficients {(ai, bi)}N+1

i=1 as O(N logN) (see Sec. 2.3 in (Vovk et al., 2005)). This is the same as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the asymmetric implementation of Burnaev & Vovk (2014) shown in Alg. 2 (sorting the N change-
points). The cost of network prediction (single forward pass) is architecture-dependent but since this
is constant across the methods we do not expand on this here. We also regard the cost of gradient
and Jacobian computation as comparable to a forward pass (see the discussion in App. D in Novak
et al. (2022)).

FCP has a complexity multiplicative in the number of test points, grid points, train points (twice)
and epochs. Whereas for ACP-GN, it is just multiplicative in the number of test points, given an
upfront cost which is cubic in the number of parameters. We can further reduce the time complexity
for ACP-GN when scalable approximations to the Gauss-Newton Hessian are used (as investigated
in App. H.1). These extensions could also be adapted for ACP which was in fact left as future work
in Martinez et al. (2023). This is shown in Table 4 for the cases of Kronecker-factored approximate
curvature (KFAC) and last-layer approximation (LL). Most crucially, both these approximations
relax the cubic dependence on the parameter count P which typically exceeds millions of parameters
for modern architectures. Instead the cubic dependence shifts to the input and output dimensionality
of the network layers in the case of KFAC or just the last layer which are typically far smaller than
P .

Table 4: We have number of network layers (L), layer input/output dimensionality (Il,in/Il,out), cost
of Gauss-Newton Hessian evaluation/inversion (HN) along with its KFAC (Hkfac

N) and last-layer
(HLL

N) approximation, and cost of operations related to Gauss-Newton influence in the KFAC case
[INF]kfac. Other terms are defined in Table 3.

Train Predict

ACP-GN NE[FP] +HN
a M([FP] +ND2 +N logN)

ACP-GN(kfac) NE[FP] +Hkfac
N

b
M([FP] + [INF]kfacd

+N logN)
ACP-GN(LL) NE[FP] +HLL

N
c

M([FP] +NI2L,in +N logN)
aHN = N [FP] +ND2 +D3

bHkfac
N = N [FP] +N

∑L
l=1(I

2
l,in + I2l,out) +

∑L
l=1(I

3
l,in + I3l,out)

cHLL
N = N [FP] +NI2L,in + I3L,in

d[INF]kfac = N
(
D +

∑L
l=1(Il,outI

2
l,in + Il,inI

2
l,out)

)

G EXPERIMENTAL DETAILS

G.1 UCI REGRESSION

For every dataset, both the input features and targets are standardized to have zero mean and unit
variance. We use a batch size of 256 in SGD training with an initial learning rate of 10−2 that is
decayed to 10−5 using a cosine schedule. All methods require tuning the L2 regularizer/prior preci-
sion. Additionally, for Linearized Laplace we have the observation noise. For the small and medium
datasets, these are tuned using online marginal likelihood optimization (Immer et al., 2021a) that
alternates between standard neural network training and gradient-based updates to the hyperparam-
eters using the differentiable marginal likelihood estimate. We use a layerwise structure in the prior
precision. The marginal likelihood estimate is also used for early stopping. The prior precision and
observation noise are initialized to 1. Overall, using Adam optimizer we run for 5000 epochs with a
hyperparameter learning rate of 10−2 decayed to 10−3 using a cosine schedule, 100 burn-in epochs,
and take 50 hyperparameter steps on single marginal likelihood evaluation every 50 epochs.

For the large datasets, the (scalar) prior precision is tuned via grid-search for each order of magnitude
from 10−2 to 104. 10% of the training set is used for validation and once the best prior precision is
found, the network is retrained on full training set. The observation noise is fit to the training data
via maximum likelihood after training.

We follow the above procedure for all methods except “ACP-GN (split + refine)” where we first train
with L2 regularizer fixed to δ/N = 10−4. For the small datasets, the hyperparameters are tuned via
post-hoc marginal likelihood training with 5000 steps and the same learning rate schedule described

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: We repeat the bounding box localization experiment in Table 2 but with 50% calibration
split.

Avg. Volume (×10−2) Avg. Coverage
85% 90% 95% 85% 90% 95%

LA 0.710±0.009 0.945±0.013 1.405±0.019 92.11±0.18 (✗) 94.49±0.18 (✗) 96.65±0.16 (✗)
SCP 1.177±0.023 1.723±0.037 3.137±0.081 87.36±0.27 (✗) 91.87±0.27 (✗) 95.91±0.19 (✓)
CRF 1.248±0.030 1.900±0.044 3.781±0.092 87.48±0.34 (✗) 91.96±0.25 (✗) 96.02±0.20 (✓)
CQR 1.627±0.027 2.739±0.052 7.971±0.159 87.46±0.31 (✗) 91.42±0.28 (✓) 95.97±0.14 (✓)
ACP-GN 0.384±0.004 0.605±0.007 1.225±0.017 90.97±0.20 (✗) 94.09±0.20 (✗) 97.41±0.16 (✗)
SCP-GN 1.149±0.025 1.615±0.034 2.643±0.054 86.84±0.29 (✓) 91.35±0.31 (✓) 95.56±0.21 (✓)
ACP-GN (split + refine) 0.365±0.006 0.556±0.010 1.104±0.028 87.78±0.37 (✗) 91.75±0.31 (✓) 95.62±0.17 (✓)

earlier. In Fig. 2 we demonstrate the trade-off between coverage and efficiency in the split variant of
ACP-GN.

We set the sensitivity hyperparameter (β) of CRF (see Eq. 16 in (Papadopoulos & Haralambous,
2011)) to 1 as used in Romano et al. (2019). The additional network is identical to the original one
and re-uses the same hyperparameters and training configuration. It is worth mentioning that the
original proposal of CRF in the context of neural networks (Papadopoulos et al., 2002) used a ridge
regression model to predict residuals.

The quantile regression network in CQR uses the same architecture as that used in the other methods
except there are two output units. As done in CRF, hyperparameters from SCP are re-used along
with the training configuration. Rather than retraining for each desired significance level, the output
layer is appended with additional units and trained jointly. We do not perform tuning of the quantiles
so it is expected the intervals can be made more efficient (Romano et al., 2019).

Results on additional UCI datasets are reported in Table 8. Furthermore, in Table 9 and 10 we repeat
all experiments with 25% calibration split.

G.2 BOUNDING BOX LOCALIZATION

Images are resized to 224× 224 followed by scaling the pixel values to [0, 1] and then normalizing
to statistics computed from the ImageNet dataset as required by the VGG-19 backbone. Bounding
box coordinates denote the top-left and bottom-right corners and are scaled to [0, 1]. The reported
volumes use the standardized targets.

For SGD training we use a batch size of 128 for 200 epochs and an initial learning rate of 10−2. A
learning rate schedule is used that takes incremental steps towards the base learning rate for the first
5 epochs (warm-up) and then decays to 0 using a cosine schedule. The SGD optimizer uses nesterov
momentum 0.9 and weight decay 5× 10−4. At inference with squared-error loss, we perform post-
hoc finetuning of hyperparameters (regularization coefficient, observation noise) using the marginal
likelihood. This is optimized using Adam for 250 epochs with a learning rate of 10−1. For LA, we
use the expressions outlined in App. E to evaluate the volume and coverage.

Due to the last-layer approximation, the off-diagonal entries of the O × O multi-output leverage
scores are zero. We can understand this by realizing the Jacobian of an output with respect to a
parameter tied to a different output is zero. Due to this inherent output independence, we can simply
use the expressions given in the single-output case in parallel over the output dimensions rather than
use the expressions derived for the multi-output setting in App. C.

When training the additional network in CRF and the quantile regression network in CQR, the
backbone parameters are initialized to those of the original network and not updated. They are
trained in a similar fashion except for 100 epochs, without warm-up in the learning rate schedule
and without data augmentation. The sensitivity hyperparameter (β) of CRF is set to 0.01 after trying
a few different values on a single seed.

In Table 5, we repeat the experiment but with 50% calibration split. In this case the model achieves
99.4% classification accuracy and 37.0% localization error.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

H ADDITIONAL EXPERIMENTS

H.1 ABLATION WITH SCALABLE APPROXIMATIONS TO THE GAUSS-NEWTON MATRIX

For most deep architectures, storing and inverting the full Gauss-Newton matrix is infeasible. We
investigate two choices for scalable approximations to the Gauss-Newton matrix in the context of
our experiments involving the large UCI datasets. These are inspired by two popular choices for
scalable Laplace approximations.

The first is the use of Kronecker-factored approximate curvature (KFAC) (Martens & Grosse, 2015)
as an approximation to the GN. By approximating each layer’s Gauss Newton independently as a
Kronecker product, this leads to a block-diagonal factorization for the overall GN matrix enabling
efficient storage and computation of inverses. We use the specific form proposed in Immer et al.
(2021b) that performs an eigendecomposition of the Kronecker factors and avoids the “dampening”
approximation of Ritter et al. (2018). With regards to refinement, we observed that the one-step solve
with KFAC approximation performs much worse than without refinement. Hence, we instead take
a gradient-based approach as outlined in Antorán et al. (2022) optimizing the linearized network’s
objective using a similar configuration to the original NN training. The linearized network’s loss
gradients are evaluated without explicitly instantiating Jacobians via vector-Jacobian and Jacobian-
vector products.

The results are shown in Table 11. For LA, we observe that KFAC leads to slightly tighter intervals
but the miscoverage increases. In the case of SCP-GN, we find KFAC to be very competitive to
the full Gauss-Newton with little change to the interval width or coverage. For ACP-GN we show
results for the standard (i.e. AOI) nonconformity score as opposed to the studentized nonconformity
score reported in Table 1 and 8. This is because we found that the deleted and studentized noncon-
formity scores combined with the KFAC approximation performed poorly. However for the reported
standard nonconformity score, we observe KFAC leads to much tighter intervals with just a slight
increase in miscoverage. For the “ACP-GN (split + refine)”, on all datasets except bike, we observe
tighter intervals with KFAC however the miscoverage is often slightly greater.

The second choice is a last-layer approximation or neural linear model approach (Ober & Ras-
mussen, 2019) that can be considered a special case of subnetwork inference for Linearized Laplace
(Daxberger et al., 2021b). This makes the AOI estimation exact with respect to a linear model whose
basis features are given by the activations of the penultimate layer. This can be recovered as a special
case of Gauss-Newton influence. This leads to storing and inverting a much smaller matrix whose
size corresponds to the number of parameters in the final layer. In the context of Linearized Laplace,
the last-layer approximation can be combined with KFAC for increased scalability but we do not
investigate this configuration here.

The results are shown in Table 12. The last-layer approximation has the effect of making the ex-
isting undercoverage in LA much worse. In the case of SCP-GN, the approximation leads to the
intervals being no more efficient than SCP, that is without normalization, whilst maintaining correct
coverage. For ACP-GN, the intervals undercover by a large margin on the bike, community and
protein datasets. The split and refine variant is still able to successfully correct this attaining the
desired coverage whilst being competitive to the full Gauss-Newton on tightness. We also observed
the different varieties of nonconformity score all performed similarly – results reported are those of
the studentized variety as in Table 1 and 8.

H.2 COMPARISON AGAINST APPROXIMATE FULL CONFORMAL PREDICTION

We compare ACP-GN and ACP-GN (split+refine) to Approximate full Conformal Prediction (ACP)
(Martinez et al., 2023) on several UCI datasets taken from Table 1 and 8. ACP uses the AOI non-
conformity score (referred to as the ordinary scheme in (Martinez et al., 2023)). Whilst the exact
Hessian is computed in (Martinez et al., 2023) with a damping term to ensure positive eigenvalues,
we approximate the Hessian by a (damped) Gauss-Newton matrix in order to keep approximations
consistent in the comparison. The damping term is tuned in the same way as ACP-GN, as described
in App. G.1. The Gauss-Newton matrix has been used in previous works when evaluating influence
function (Bae et al., 2022; Nickl et al., 2023). Furthermore, we use “direct approach” (see Eq. 4 in
(Martinez et al., 2023)). Martinez et al. (2023) only considered classification tasks so ACP needs to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

be adapted for regression. We define a grid of candidate targets using a simple discretization strategy
that constructs a fine, uniform grid of 200 points delimited by the training targets.

Table 6 shows that in some datasets and target coverage levels, ACP-GN is more efficient but in
others ACP is more efficient. However, we used 200 grid points which exceeds the upper end of
what was investigated in prior work (Chen et al., 2018). We also emphasise that ACP-GN has lower
space complexity since it only computes changepoints for each combination of test and train point,
whereas ACP computes residuals for each combination of test point, train point and candidate target
value. For the datasets considered we did not observe a considerable difference in the running time
between the two methods but we do expect for larger datasets ACP to be slower due to the need for
batched computation.

Table 6: We compare against Approximate full Conformal Prediction (ACP) that uses a target dis-
cretization strategy.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

energy
N=768
I=8

ACP 1.706±0.045 2.219±0.055 3.694±0.070 87.41±0.28 (✓) 93.44±0.31 (✓) 98.58±0.16 (✓)
ACP-GN 1.467±0.010 1.882±0.013 3.097±0.015 88.32±0.40 (✓) 93.87±0.29 (✓) 99.01±0.09 (✓)
ACP-GN (split + refine) 1.745±0.016 2.174±0.021 3.300±0.045 90.54±0.25 (✓) 94.96±0.22 (✓) 99.18±0.10 (✓)

concrete
N=1,030

I=8

ACP 17.854±0.104 21.966±0.119 31.068±0.139 90.36±0.15 (✓) 94.97±0.13 (✓) 98.43±0.07 (✓)
ACP-GN 15.690±0.112 19.856±0.141 29.179±0.190 89.95±0.18 (✓) 94.96±0.13 (✓) 98.91±0.06 (✓)
ACP-GN (split + refine) 18.907±0.103 24.012±0.129 35.949±0.387 90.26±0.20 (✓) 95.23±0.27 (✓) 99.17±0.06 (✓)

wine
N=1,599
I=11

ACP 2.158±0.003 2.676±0.005 3.630±0.008 90.46±0.13 (✓) 94.88±0.08 (✓) 98.22±0.07 (✓)
ACP-GN 2.091±0.005 2.651±0.006 3.797±0.013 90.91±0.11 (✓) 95.50±0.10 (✓) 99.14±0.05 (✓)
ACP-GN (split + refine) 2.474±0.007 3.054±0.008 4.324±0.020 89.56±0.27 (✓) 94.81±0.13 (✓) 98.99±0.09 (✓)

kin8nm
N=8,192

I=8

ACP 0.207±0.001 0.255±0.001 0.355±0.001 88.83±0.28 (✗) 94.16±0.19 (✓) 98.77±0.10 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
ACP-GN (split + refine) 0.232±0.001 0.284±0.001 0.406±0.003 90.45±0.17 (✓) 95.02±0.22 (✓) 99.10±0.07 (✓)

power
N=9,568

I=4

ACP 12.131±0.022 14.840±0.017 20.804±0.050 89.28±0.25 (✓) 94.68±0.18 (✓) 98.82±0.10 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
ACP-GN (split + refine) 12.744±0.045 15.442±0.039 22.043±0.151 90.17±0.29 (✓) 95.26±0.17 (✓) 98.98±0.09 (✓)

community
N=1,994
I=100

ACP 0.401±0.001 0.502±0.003 0.700±0.005 89.71±0.48 (✓) 94.00±0.36 (✓) 97.71±0.30 (✗)
ACP-GN 0.459±0.003 0.594±0.004 0.936±0.007 90.68±0.55 (✓) 95.21±0.38 (✓) 99.18±0.14 (✓)
ACP-GN (split + refine) 0.521±0.006 0.654±0.008 1.011±0.017 90.95±0.64 (✓) 95.26±0.43 (✓) 99.16±0.17 (✓)

bike
N=10,886

I=18

ACP 93.647±1.300 121.850±1.603 186.090±2.393 89.03±0.31 (✓) 94.36±0.22 (✓) 98.43±0.14 (✗)
ACP-GN 97.966±1.193 130.732±1.565 216.677±2.917 89.12±0.21 (✗) 94.32±0.18 (✗) 98.72±0.09 (✗)
ACP-GN (split + refine) 130.933±5.221 174.190±7.065 288.603±12.066 90.09±0.25 (✓) 94.93±0.19 (✓) 99.06±0.07 (✓)

H.3 COMPARISON AGAINST FULL CONFORMAL PREDICTION

We compare full conformal prediction (FCP) against ACP-GN and ACP (Martinez et al., 2023) as
well as LA and SCP. This is evaluated on a synthetic dataset with outliers (500 train points and 100
test points) taken from Papadopoulos (2024) (see Sec. 5.2). This generates data from a Gaussian
Process prior with RBF kernel. There is a coin flip of probability 0.1 for which the observation
noise standard deviation is increased by a factor of 10. The experiment is repeated 20 times with
different seeds also controlling the data generation. A MLP with a single hidden layer, 100 units and
Tanh activation function is used throughout. This is trained using Adam for 500 epochs (full-batch
training) with an initial learning rate of 10−2 that decays following a cosine schedule to 10−5. We
use a uniform grid of 50 points for the target discretization in FCP which is on the lower end as
suggested by previous works (Chen et al., 2018) and enough to give valid coverage. ACP follows
the configuration outlined in App. H.2 with 200 grid points. The AOI nonconformity score is used
throughout for FCP, ACP and ACP-GN. SCP uses a 50% calibration split. Hyperparameters are
tuned using the online marginal likelihood procedure as described in App. G.1 which we exclude
from the running time.

As Table 7 shows, all conformal methods give the correct coverage but FCP is indeed the most
efficient. However, the running time is a factor of 104 slower than all other methods including ACP
and ACP-GN. This experiment was run on a NVIDIA A100 GPU.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: We compare against Full Conformal Prediction (FCP) on a synthetically-generated dataset.

Avg. Width Avg. Coverage Time (×102)90% 95% 99% 90% 95% 99%

LA 1.061±0.025 1.264±0.030 1.661±0.039 94.45±0.56 (✗) 95.15±0.52 (✓) 96.60±0.45 (✗) 0.034±0.001

SCP 0.623±0.024 1.466±0.090 3.632±0.131 91.10±0.82 (✓) 96.10±0.45 (✓) 99.50±0.15 (✓) 0.023±0.001

FCP 0.451±0.011 1.287±0.053 3.090±0.092 87.00±1.06 (✓) 95.25±0.52 (✓) 98.90±0.32 (✓) 169.527±3.560

ACP 0.532±0.013 1.370±0.054 3.177±0.094 90.35±0.79 (✓) 95.50±0.49 (✓) 99.00±0.32 (✓) 0.035±0.001

ACP-GN 0.581±0.021 1.450±0.053 3.529±0.105 91.00±0.81 (✓) 95.60±0.48 (✓) 99.25±0.27 (✓) 0.034±0.000

80% 85% 90% 95% 100%
Avg. Coverage

ACP-GN
(jackknife)

ACP-GN
(studentized)

ACP-GN

LA

90%

80% 85% 90% 95% 100%
Avg. Coverage

95%

80% 85% 90% 95% 100%
Avg. Coverage

99%

10 15 20 25
Avg. Width

ACP-GN
(jackknife)

ACP-GN
(studentized)

ACP-GN

LA

10 15 20 25
Avg. Width

10 15 20 25
Avg. Width

protein

ACP-GN w/ Calibration Split

none 50% 25%

Figure 2: Our extension to ACP-GN that employs a separate calibration set to evaluate nonconfor-
mity scores combined with refinement of the linearized model shows considerable improvement to
the coverage. Unsurprisingly it leads to larger average interval widths due to a smaller training set.
This is shown for protein dataset at {90%, 95%, 99%} confidence levels.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 8: Additional results on UCI regression datasets.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

concrete
N=1,030

I=8

LA 15.523±0.087 18.497±0.103 24.310±0.136 89.30±0.17 (✓) 93.53±0.10 (✓) 97.37±0.11 (✗)
SCP 19.216±0.124 24.526±0.194 42.110±0.802 89.92±0.29 (✓) 94.97±0.14 (✓) 99.11±0.05 (✓)
CRF 18.623±0.117 23.737±0.167 40.390±0.506 89.75±0.36 (✓) 94.97±0.13 (✓) 99.05±0.06 (✓)
CQR 22.486±0.081 27.145±0.091 39.827±0.212 90.51±0.27 (✓) 95.24±0.16 (✓) 99.01±0.08 (✓)
ACP-GN 15.727±0.114 19.810±0.147 29.192±0.179 89.60±0.20 (✓) 94.77±0.14 (✓) 98.85±0.08 (✓)
SCP-GN 18.851±0.118 23.780±0.121 36.686±0.313 89.68±0.28 (✓) 94.87±0.14 (✓) 99.15±0.07 (✓)
ACP-GN (split + refine) 18.907±0.103 24.012±0.129 35.949±0.387 90.26±0.20 (✓) 95.23±0.27 (✓) 99.17±0.06 (✓)

wine
N=1,599
I=11

LA 2.099±0.001 2.501±0.002 3.287±0.002 91.12±0.13 (✓) 94.58±0.10 (✓) 98.34±0.05 (✓)
SCP 2.183±0.009 2.768±0.012 3.941±0.020 90.41±0.19 (✓) 95.07±0.12 (✓) 99.12±0.04 (✓)
CRF 2.304±0.009 2.921±0.015 4.381±0.031 90.14±0.18 (✓) 95.16±0.15 (✓) 99.02±0.05 (✓)
CQR 1.977±0.005 2.490±0.016 3.867±0.027 90.24±0.12 (✓) 95.05±0.06 (✓) 99.07±0.06 (✓)
ACP-GN 2.103±0.003 2.665±0.006 3.827±0.007 91.16±0.12 (✓) 95.80±0.05 (✓) 99.17±0.04 (✓)
SCP-GN 2.134±0.007 2.676±0.015 3.753±0.026 90.06±0.24 (✓) 95.09±0.16 (✓) 99.01±0.05 (✓)
ACP-GN (split + refine) 2.474±0.007 3.054±0.008 4.324±0.020 89.56±0.27 (✓) 94.81±0.13 (✓) 98.99±0.09 (✓)

kin8nm
N=8,192

I=8

LA 0.213±0.001 0.254±0.001 0.334±0.001 89.66±0.29 (✓) 93.88±0.23 (✗) 98.09±0.10 (✗)
SCP 0.231±0.001 0.285±0.001 0.409±0.003 90.54±0.29 (✓) 95.31±0.20 (✓) 99.18±0.08 (✓)
CRF 0.229±0.001 0.282±0.001 0.401±0.002 90.59±0.31 (✓) 95.41±0.23 (✓) 99.18±0.06 (✓)
CQR 0.254±0.001 0.304±0.001 0.426±0.003 90.24±0.27 (✓) 95.21±0.25 (✓) 99.02±0.09 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
SCP-GN 0.230±0.001 0.282±0.001 0.400±0.002 90.57±0.29 (✓) 95.20±0.22 (✓) 99.18±0.07 (✓)
ACP-GN (split + refine) 0.232±0.001 0.284±0.001 0.406±0.003 90.45±0.17 (✓) 95.02±0.22 (✓) 99.10±0.07 (✓)

power
N=9,568

I=4

LA 13.345±0.028 15.901±0.034 20.898±0.045 92.08±0.23 (✗) 95.86±0.17 (✗) 98.86±0.09 (✓)
SCP 12.732±0.040 15.359±0.041 21.688±0.143 90.27±0.24 (✓) 94.94±0.17 (✓) 98.98±0.10 (✓)
CRF 12.573±0.039 15.130±0.039 21.548±0.145 90.26±0.27 (✓) 94.93±0.18 (✓) 98.98±0.09 (✓)
CQR 12.860±0.026 15.180±0.042 21.946±0.154 90.37±0.24 (✓) 94.93±0.14 (✓) 98.89±0.06 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
SCP-GN 12.736±0.041 15.362±0.044 21.680±0.146 90.25±0.25 (✓) 94.95±0.18 (✓) 98.98±0.10 (✓)
ACP-GN (split + refine) 12.744±0.045 15.442±0.039 22.043±0.151 90.17±0.29 (✓) 95.26±0.17 (✓) 98.98±0.09 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
SCP 0.534±0.010 0.731±0.020 1.159±0.028 90.30±0.42 (✓) 95.53±0.24 (✓) 99.12±0.16 (✓)
CRF 0.526±0.010 0.721±0.020 1.154±0.029 90.20±0.43 (✓) 95.33±0.25 (✓) 99.12±0.13 (✓)
CQR 0.554±0.020 0.701±0.034 1.077±0.038 90.90±0.57 (✓) 95.70±0.30 (✓) 99.35±0.15 (✓)
ACP-GN 0.570±0.108 0.755±0.158 1.224±0.285 90.90±0.62 (✓) 95.30±0.47 (✓) 99.25±0.14 (✓)
SCP-GN 0.474±0.013 0.656±0.024 1.104±0.034 90.58±0.37 (✓) 94.95±0.27 (✓) 99.00±0.15 (✓)
ACP-GN (split + refine) 0.519±0.006 0.652±0.008 1.010±0.016 90.97±0.61 (✓) 95.28±0.41 (✓) 99.12±0.16 (✓)

facebook 1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
CRF 18.689±1.944 35.765±1.870 121.181±4.148 89.98±0.12 (✓) 95.10±0.09 (✓) 99.08±0.04 (✓)
CQR 19.625±0.878 25.970±1.322 59.922±12.774 90.16±0.24 (✓) 94.91±0.11 (✓) 98.97±0.04 (✓)
ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.00±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
ACP-GN (split + refine) 29.006±4.472 54.099±4.576 172.252±6.758 90.06±0.10 (✓) 95.20±0.08 (✓) 99.14±0.04 (✓)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 9: We repeat the UCI regression experiment in Table 1 but with 25% calibration split. In the
case of yacht, the desired coverage of 99% was too small a significance level to accurately evaluate
the quantile of the calibration scores.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

yacht
N=308
I=6

LA 1.690±0.017 2.014±0.020 2.647±0.027 88.73±0.61 (✓) 90.78±0.59 (✗) 93.89±0.60 (✗)
SCP 2.306±0.117 3.866±0.133 — 90.11±0.70 (✓) 95.88±0.43 (✓) —
CRF 2.281±0.112 3.818±0.130 — 90.11±0.67 (✓) 95.82±0.46 (✓) —
CQR 3.236±0.151 4.895±0.211 — 90.33±0.65 (✓) 95.85±0.39 (✓) —
ACP-GN 1.594±0.016 2.385±0.029 6.915±0.067 87.36±0.58 (✓) 92.56±0.68 (✓) 99.03±0.11 (✓)
SCP-GN 2.070±0.084 3.111±0.110 — 90.53±0.54 (✓) 95.95±0.51 (✓) —
ACP-GN (split + refine) 3.931±0.083 5.926±0.144 — 91.66±0.46 (✓) 96.66±0.41 (✓) —

boston
N=506
I=13

LA 9.398±0.046 11.199±0.055 14.718±0.072 91.24±0.31 (✓) 94.34±0.22 (✓) 97.53±0.11 (✗)
SCP 10.086±0.184 14.746±0.345 38.574±1.914 90.12±0.51 (✓) 96.03±0.34 (✓) 99.19±0.12 (✓)
CRF 9.874±0.194 14.204±0.270 37.421±2.132 90.03±0.45 (✓) 95.52±0.24 (✓) 99.28±0.11 (✓)
CQR 10.918±0.121 14.618±0.208 31.130±0.823 90.09±0.31 (✓) 95.65±0.21 (✓) 99.17±0.10 (✓)
ACP-GN 9.182±0.046 12.111±0.038 20.512±0.057 90.64±0.26 (✓) 95.49±0.16 (✓) 99.11±0.08 (✓)
SCP-GN 9.787±0.152 13.372±0.247 27.274±1.221 90.21±0.44 (✓) 95.49±0.29 (✓) 99.13±0.14 (✓)
ACP-GN (split + refine) 17.372±0.252 22.852±0.371 42.081±1.170 90.68±0.44 (✓) 95.79±0.28 (✓) 98.95±0.15 (✓)

energy
N=768
I=8

LA 1.502±0.006 1.790±0.007 2.353±0.009 88.96±0.35 (✓) 92.92±0.33 (✗) 96.95±0.23 (✗)
SCP 1.824±0.037 2.365±0.046 4.313±0.129 90.05±0.45 (✓) 95.04±0.25 (✓) 99.39±0.09 (✓)
CRF 1.807±0.037 2.341±0.046 4.316±0.133 89.97±0.47 (✓) 95.02±0.23 (✓) 99.36±0.10 (✓)
CQR 4.779±0.032 5.181±0.035 7.692±0.171 90.55±0.26 (✓) 95.51±0.22 (✓) 99.35±0.06 (✓)
ACP-GN 1.462±0.006 1.884±0.008 3.076±0.015 88.28±0.33 (✓) 93.69±0.33 (✓) 98.88±0.11 (✓)
SCP-GN 1.812±0.034 2.348±0.047 4.226±0.120 90.16±0.43 (✓) 95.19±0.24 (✓) 99.31±0.11 (✓)
ACP-GN (split + refine) 2.498±0.056 3.251±0.072 5.601±0.168 90.19±0.53 (✓) 95.28±0.37 (✓) 99.43±0.07 (✓)

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
SCP 113.594±1.370 159.114±2.297 287.486±5.425 90.48±0.22 (✓) 95.11±0.20 (✓) 98.87±0.08 (✓)
CRF 112.104±1.653 156.161±2.486 283.911±6.247 90.38±0.22 (✓) 95.17±0.19 (✓) 98.93±0.09 (✓)
CQR 107.141±3.598 130.756±3.259 212.513±5.131 90.34±0.26 (✓) 95.18±0.18 (✓) 98.97±0.09 (✓)
ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
SCP-GN 105.020±1.209 139.391±1.711 228.656±4.493 90.17±0.21 (✓) 95.10±0.16 (✓) 98.99±0.07 (✓)
ACP-GN (split + refine) 137.114±0.759 178.639±1.307 285.997±3.834 90.20±0.18 (✓) 95.05±0.16 (✓) 99.16±0.10 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
SCP 12.188±0.036 16.069±0.050 24.828±0.126 89.85±0.11 (✓) 94.91±0.07 (✓) 98.92±0.05 (✓)
CRF 11.532±0.047 15.398±0.071 25.006±0.147 89.89±0.09 (✓) 94.93±0.08 (✓) 98.92±0.03 (✓)
CQR 13.174±0.162 14.422±0.148 17.924±0.078 90.10±0.09 (✓) 95.04±0.05 (✓) 98.92±0.04 (✓)
ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
SCP-GN 11.743±0.035 15.312±0.035 23.243±0.097 89.87±0.09 (✓) 94.91±0.07 (✓) 98.95±0.04 (✓)
ACP-GN (split + refine) 13.229±0.042 16.741±0.055 23.927±0.068 89.96±0.11 (✓) 94.93±0.10 (✓) 98.94±0.05 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
SCP 15.739±0.240 34.114±0.646 145.543±1.431 89.85±0.09 (✓) 94.96±0.06 (✓) 99.01±0.03 (✓)
CRF 15.257±0.663 29.889±1.398 100.709±6.136 89.82±0.08 (✓) 94.97±0.05 (✓) 99.01±0.03 (✓)
CQR 17.929±0.703 22.314±1.070 32.257±1.604 89.85±0.06 (✓) 95.00±0.04 (✓) 99.02±0.03 (✓)
ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
SCP-GN 15.633±0.220 33.192±0.708 122.079±4.142 89.81±0.07 (✓) 94.96±0.06 (✓) 99.00±0.02 (✓)
ACP-GN (split + refine) 20.487±0.502 41.051±0.844 152.090±6.966 90.18±0.08 (✓) 95.08±0.07 (✓) 99.11±0.03 (✓)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: We repeat the UCI regression experiment in Table 8 but with 25% calibration split.

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

concrete
N=1,030

I=8

LA 15.523±0.087 18.497±0.103 24.310±0.136 89.30±0.17 (✓) 93.53±0.10 (✓) 97.37±0.11 (✗)
SCP 17.563±0.209 22.787±0.277 39.972±1.300 89.35±0.43 (✓) 94.93±0.27 (✓) 99.02±0.12 (✓)
CRF 16.946±0.176 21.898±0.271 38.480±1.287 89.44±0.33 (✓) 94.88±0.30 (✓) 99.03±0.12 (✓)
CQR 20.063±0.092 24.620±0.144 37.035±0.329 89.88±0.27 (✓) 94.90±0.19 (✓) 99.11±0.07 (✓)
ACP-GN 15.727±0.114 19.810±0.147 29.192±0.179 89.60±0.20 (✓) 94.77±0.14 (✓) 98.85±0.08 (✓)
SCP-GN 17.373±0.177 22.170±0.233 34.104±0.566 89.47±0.45 (✓) 94.94±0.25 (✓) 99.11±0.12 (✓)
ACP-GN (split + refine) 25.331±0.182 32.279±0.244 47.494±0.795 90.30±0.40 (✓) 95.45±0.21 (✓) 99.13±0.11 (✓)

wine
N=1,599
I=11

LA 2.099±0.001 2.501±0.002 3.287±0.002 91.12±0.13 (✓) 94.58±0.10 (✓) 98.34±0.05 (✓)
SCP 2.112±0.010 2.686±0.018 4.032±0.028 90.11±0.15 (✓) 95.00±0.11 (✓) 99.27±0.05 (✓)
CRF 2.186±0.013 2.753±0.013 4.397±0.075 89.92±0.15 (✓) 94.92±0.13 (✓) 99.20±0.06 (✓)
CQR 1.966±0.004 2.421±0.016 3.920±0.031 89.97±0.22 (✓) 94.95±0.09 (✓) 99.12±0.08 (✓)
ACP-GN 2.103±0.003 2.665±0.006 3.827±0.007 91.16±0.12 (✓) 95.80±0.05 (✓) 99.17±0.04 (✓)
SCP-GN 2.068±0.009 2.621±0.018 3.760±0.035 90.07±0.18 (✓) 95.00±0.11 (✓) 99.09±0.06 (✓)
ACP-GN (split + refine) 2.908±0.016 3.527±0.023 5.089±0.037 90.14±0.20 (✓) 94.93±0.21 (✓) 99.09±0.09 (✓)

kin8nm
N=8,192

I=8

LA 0.213±0.001 0.254±0.001 0.334±0.001 89.66±0.29 (✓) 93.88±0.23 (✗) 98.09±0.10 (✗)
SCP 0.223±0.001 0.275±0.001 0.394±0.003 90.10±0.27 (✓) 95.35±0.20 (✓) 99.15±0.09 (✓)
CRF 0.221±0.001 0.271±0.001 0.381±0.003 90.15±0.27 (✓) 95.36±0.19 (✓) 99.12±0.09 (✓)
CQR 0.241±0.001 0.286±0.001 0.392±0.003 90.41±0.24 (✓) 95.18±0.20 (✓) 98.98±0.09 (✓)
ACP-GN 0.213±0.001 0.262±0.001 0.365±0.002 89.68±0.28 (✓) 94.58±0.20 (✓) 98.85±0.08 (✓)
SCP-GN 0.222±0.001 0.273±0.001 0.386±0.003 90.05±0.27 (✓) 95.36±0.20 (✓) 99.12±0.08 (✓)
ACP-GN (split + refine) 0.243±0.001 0.298±0.001 0.423±0.004 90.60±0.27 (✓) 95.27±0.16 (✓) 99.17±0.09 (✓)

power
N=9,568

I=4

LA 13.345±0.028 15.901±0.034 20.898±0.045 92.08±0.23 (✗) 95.86±0.17 (✗) 98.86±0.09 (✓)
SCP 12.620±0.051 15.212±0.069 21.720±0.245 90.29±0.22 (✓) 95.01±0.19 (✓) 98.99±0.10 (✓)
CRF 12.457±0.049 15.019±0.069 21.553±0.189 90.32±0.24 (✓) 95.06±0.17 (✓) 98.96±0.10 (✓)
CQR 12.818±0.041 15.081±0.058 21.903±0.170 90.52±0.22 (✓) 94.90±0.18 (✓) 99.02±0.08 (✓)
ACP-GN 12.526±0.024 15.248±0.020 21.592±0.062 90.16±0.26 (✓) 95.13±0.19 (✓) 98.89±0.08 (✓)
SCP-GN 12.627±0.050 15.215±0.070 21.724±0.242 90.32±0.22 (✓) 95.01±0.18 (✓) 99.00±0.09 (✓)
ACP-GN (split + refine) 12.834±0.054 15.561±0.067 22.548±0.255 90.18±0.26 (✓) 95.18±0.19 (✓) 99.05±0.10 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
SCP 0.471±0.009 0.642±0.013 1.033±0.027 90.12±0.55 (✓) 95.20±0.46 (✓) 98.97±0.20 (✓)
CRF 0.464±0.010 0.617±0.015 0.992±0.029 90.35±0.53 (✓) 95.03±0.45 (✓) 98.90±0.18 (✓)
CQR 0.659±0.034 0.926±0.058 1.349±0.067 91.28±0.49 (✓) 96.00±0.37 (✓) 99.65±0.18 (✓)
ACP-GN 0.460±0.002 0.593±0.005 0.932±0.006 90.45±0.46 (✓) 95.05±0.42 (✓) 99.21±0.14 (✓)
SCP-GN 0.448±0.008 0.621±0.013 1.069±0.048 90.10±0.57 (✓) 95.35±0.42 (✓) 99.03±0.19 (✓)
ACP-GN (split + refine) 0.561±0.009 0.700±0.010 1.092±0.029 89.97±0.69 (✓) 94.92±0.45 (✓) 98.85±0.20 (✓)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
SCP 18.756±0.625 42.110±1.381 176.332±5.531 89.98±0.12 (✓) 95.08±0.09 (✓) 99.03±0.04 (✓)
CRF 16.845±0.513 34.078±0.936 114.769±4.111 90.04±0.13 (✓) 95.12±0.09 (✓) 98.98±0.05 (✓)
CQR 21.120±1.049 27.024±1.543 43.095±2.232 90.05±0.14 (✓) 95.04±0.08 (✓) 98.95±0.03 (✓)
ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
SCP-GN 18.696±0.612 39.460±1.552 130.967±6.779 90.04±0.13 (✓) 95.04±0.10 (✓) 99.03±0.04 (✓)
ACP-GN (split + refine) 24.639±1.195 51.864±2.687 181.585±11.155 90.27±0.13 (✓) 95.29±0.09 (✓) 99.14±0.04 (✓)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 11: KFAC approximation to the Gauss-Newton evaluated on large UCI datasets

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
LA(kfac) 91.501±3.058 109.030±3.644 143.290±4.789 87.24±1.01 (✗) 91.07±0.84 (✗) 95.20±0.55 (✗)

SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
SCP-GN(kfac) 121.401±0.708 160.214±1.328 259.909±3.247 90.46±0.21 (✓) 95.22±0.18 (✓) 98.99±0.07 (✓)

ACP-GN 102.401±6.037 133.781±7.394 212.144±11.677 89.27±0.35 (✗) 94.45±0.24 (✗) 98.69±0.10 (✗)
ACP-GN(kfac) 94.964±2.095 124.501±3.011 198.018±5.012 88.67±0.68 (✗) 94.06±0.52 (✗) 98.49±0.18 (✗)

ACP-GN (split + refine) 125.090±4.180 162.697±5.654 254.893±9.363 90.20±0.22 (✓) 94.95±0.13 (✓) 99.01±0.08 (✓)
ACP-GN(kfac) (split + refine) 162.693±2.312 211.953±2.906 334.975±5.205 91.31±0.19 (✗) 95.81±0.11 (✗) 99.24±0.05 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
LA(kfac) 0.472±0.003 0.562±0.004 0.739±0.005 90.45±0.42 (✓) 93.55±0.41 (✗) 96.95±0.30 (✗)

SCP 0.534±0.010 0.735±0.020 1.164±0.029 90.17±0.41 (✓) 95.33±0.22 (✓) 99.17±0.17 (✓)
SCP-GN 0.473±0.013 0.660±0.024 1.116±0.034 90.55±0.39 (✓) 95.10±0.25 (✓) 99.12±0.14 (✓)
SCP-GN(kfac) 0.476±0.012 0.657±0.023 1.095±0.030 90.62±0.41 (✓) 95.30±0.23 (✓) 98.90±0.18 (✓)

ACP-GN 0.611±0.151 0.784±0.191 1.222±0.289 90.92±0.62 (✓) 95.28±0.45 (✓) 99.25±0.13 (✓)
ACP-GN(kfac) 0.476±0.018 0.612±0.023 0.964±0.035 90.78±0.48 (✓) 95.20±0.37 (✓) 99.25±0.12 (✓)

ACP-GN (split + refine) 0.523±0.005 0.661±0.007 1.040±0.016 91.38±0.55 (✓) 95.45±0.44 (✓) 99.20±0.14 (✓)
ACP-GN(kfac) (split + refine) 0.530±0.005 0.674±0.008 1.067±0.019 91.20±0.64 (✓) 95.62±0.44 (✓) 99.35±0.12 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
LA(kfac) 9.132±0.027 10.881±0.032 14.301±0.042 84.33±0.18 (✗) 88.63±0.16 (✗) 94.04±0.12 (✗)

SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
SCP-GN(kfac) 12.679±0.084 16.570±0.096 24.981±0.133 89.76±0.10 (✓) 94.85±0.08 (✓) 98.94±0.03 (✓)

ACP-GN 10.127±0.020 13.156±0.027 19.943±0.061 87.62±0.15 (✗) 93.14±0.10 (✗) 98.35±0.04 (✗)
ACP-GN(kfac) 9.695±0.034 12.595±0.041 19.093±0.064 86.02±0.18 (✗) 91.92±0.15 (✗) 97.77±0.06 (✗)

ACP-GN (split + refine) 12.614±0.034 15.961±0.044 23.188±0.069 89.88±0.10 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)
ACP-GN(kfac) (split + refine) 12.129±0.105 15.363±0.128 22.260±0.152 88.39±0.14 (✗) 93.82±0.13 (✗) 98.49±0.07 (✗)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
LA(kfac) 67.534±3.806 80.471±4.535 105.757±5.960 97.39±0.15 (✗) 97.88±0.12 (✗) 98.57±0.09 (✗)

SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.01±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
SCP-GN(kfac) 20.303±2.476 40.531±2.973 128.583±5.746 90.01±0.11 (✓) 95.04±0.09 (✓) 99.03±0.03 (✓)

ACP-GN 30.466±7.858 62.895±13.942 223.609±45.677 90.56±0.19 (✗) 95.61±0.16 (✗) 99.26±0.05 (✗)
ACP-GN(kfac) 19.275±0.542 40.991±0.964 149.319±5.539 90.24±0.12 (✓) 95.38±0.09 (✗) 99.24±0.06 (✗)

ACP-GN (split + refine) 33.780±5.321 57.292±5.730 141.074±6.581 90.13±0.11 (✓) 95.23±0.06 (✓) 99.08±0.04 (✓)
ACP-GN(kfac) (split + refine) 23.732±1.180 45.239±2.220 121.631±3.699 89.81±0.10 (✓) 94.86±0.08 (✓) 98.90±0.04 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
LA(kfac) 63.591±3.085 75.774±3.675 99.584±4.830 97.26±0.15 (✗) 97.84±0.12 (✗) 98.54±0.08 (✗)

SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
SCP-GN(kfac) 16.213±0.195 33.686±0.530 116.672±2.618 89.96±0.08 (✓) 94.98±0.06 (✓) 99.02±0.02 (✓)

ACP-GN 26.536±3.513 56.470±7.754 197.251±27.935 90.54±0.11 (✗) 95.46±0.08 (✗) 99.23±0.04 (✗)
ACP-GN(kfac) 20.497±1.859 43.246±3.955 147.832±13.223 90.34±0.08 (✗) 95.22±0.05 (✗) 99.18±0.03 (✗)

ACP-GN (split + refine) 23.095±1.120 42.653±1.161 123.337±2.954 90.17±0.08 (✓) 95.15±0.05 (✓) 99.08±0.03 (✓)
ACP-GN(kfac) (split + refine) 20.487±0.257 39.636±0.582 117.994±2.407 90.11±0.09 (✓) 95.15±0.06 (✓) 99.11±0.03 (✓)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: Last-layer (LL) approximation to the Gauss-Newton evaluated on large UCI datasets

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%

bike
N=10,886

I=18

LA 100.451±2.394 119.694±2.853 157.305±3.749 89.82±0.39 (✓) 93.29±0.33 (✗) 96.83±0.16 (✗)
LA(LL) 79.923±3.087 95.234±3.679 125.159±4.835 82.80±1.32 (✗) 86.98±1.21 (✗) 92.19±0.95 (✗)

SCP 131.138±0.812 180.477±1.244 324.756±4.635 90.33±0.21 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)
SCP-GN 122.245±1.073 160.505±1.761 254.409±3.767 90.34±0.24 (✓) 95.26±0.15 (✓) 99.02±0.08 (✓)
SCP-GN(LL) 130.965±0.796 180.227±1.213 324.427±4.404 90.26±0.22 (✓) 95.17±0.15 (✓) 99.00±0.07 (✓)

ACP-GN 98.813±2.485 130.893±3.231 213.131±5.630 89.36±0.43 (✓) 94.41±0.27 (✗) 98.67±0.09 (✗)
ACP-GN(LL) 76.808±2.933 100.920±4.078 160.448±6.648 81.69±1.31 (✗) 88.20±1.23 (✗) 95.17±0.78 (✗)

ACP-GN (split + refine) 128.336±4.336 170.782±5.859 281.632±10.176 89.98±0.22 (✓) 94.94±0.16 (✓) 99.01±0.06 (✓)
ACP-GN(LL) (split + refine) 128.853±1.101 178.079±1.464 325.171±3.916 90.12±0.23 (✓) 95.12±0.20 (✓) 99.02±0.07 (✓)

community
N=1,994
I=100

LA 0.548±0.074 0.653±0.088 0.858±0.116 90.90±0.59 (✓) 93.83±0.50 (✓) 97.05±0.33 (✗)
LA(LL) 0.455±0.013 0.542±0.015 0.712±0.020 89.28±1.00 (✓) 92.33±0.94 (✗) 96.05±0.79 (✗)

SCP 0.534±0.010 0.735±0.020 1.164±0.029 90.17±0.41 (✓) 95.33±0.22 (✓) 99.17±0.17 (✓)
SCP-GN 0.473±0.013 0.660±0.024 1.116±0.034 90.55±0.39 (✓) 95.10±0.25 (✓) 99.12±0.14 (✓)
SCP-GN(LL) 0.533±0.010 0.730±0.020 1.157±0.028 90.33±0.42 (✓) 95.50±0.24 (✓) 99.15±0.16 (✓)

ACP-GN 0.570±0.108 0.755±0.158 1.224±0.285 90.90±0.62 (✓) 95.30±0.47 (✓) 99.25±0.14 (✓)
ACP-GN(LL) 0.438±0.012 0.564±0.016 0.887±0.026 88.83±1.06 (✓) 93.78±0.99 (✗) 98.42±0.65 (✗)

ACP-GN (split + refine) 0.519±0.006 0.652±0.008 1.010±0.016 90.97±0.61 (✓) 95.28±0.41 (✓) 99.12±0.16 (✓)
ACP-GN(LL) (split + refine) 0.495±0.005 0.648±0.006 1.040±0.014 90.75±0.40 (✓) 95.70±0.29 (✓) 99.35±0.12 (✓)

protein
N=45,730

I=9

LA 9.385±0.022 11.183±0.027 14.697±0.035 85.43±0.18 (✗) 89.69±0.15 (✗) 94.81±0.10 (✗)
LA(LL) 8.667±0.026 10.328±0.031 13.573±0.041 82.51±0.17 (✗) 87.08±0.17 (✗) 92.81±0.12 (✗)

SCP 13.041±0.088 17.161±0.098 26.181±0.119 89.78±0.08 (✓) 94.83±0.06 (✓) 98.94±0.04 (✓)
SCP-GN 12.426±0.085 16.102±0.096 24.032±0.138 89.78±0.10 (✓) 94.86±0.08 (✓) 98.94±0.03 (✓)
SCP-GN(LL) 13.035±0.088 17.150±0.098 26.167±0.119 89.77±0.08 (✓) 94.82±0.06 (✓) 98.94±0.04 (✓)

ACP-GN 10.243±0.019 13.294±0.027 20.101±0.053 87.54±0.15 (✗) 93.04±0.11 (✗) 98.24±0.05 (✗)
ACP-GN(LL) 8.731±0.032 11.341±0.038 17.192±0.060 82.62±0.18 (✗) 89.16±0.15 (✗) 96.29±0.08 (✗)

ACP-GN (split + refine) 12.660±0.028 16.073±0.031 23.445±0.057 89.83±0.09 (✓) 94.90±0.09 (✓) 98.97±0.05 (✓)
ACP-GN(LL) (split + refine) 12.616±0.029 16.078±0.036 23.672±0.075 89.81±0.11 (✓) 94.77±0.09 (✓) 98.98±0.03 (✓)

facebook_1
N=40,948

I=53

LA 67.580±2.637 80.527±3.142 105.831±4.130 97.63±0.09 (✗) 98.15±0.08 (✗) 98.76±0.06 (✗)
LA(LL) 66.025±4.620 78.673±5.506 103.394±7.235 96.90±0.19 (✗) 97.45±0.17 (✗) 98.10±0.14 (✗)

SCP 20.771±2.452 44.192±2.799 178.890±4.596 90.00±0.10 (✓) 95.03±0.08 (✓) 99.05±0.04 (✓)
SCP-GN 20.460±2.463 39.712±3.148 125.078±8.075 90.01±0.10 (✓) 94.94±0.09 (✓) 99.04±0.03 (✓)
SCP-GN(LL) 20.735±2.454 44.237±2.780 177.595±4.404 90.02±0.11 (✓) 95.03±0.08 (✓) 99.04±0.03 (✓)

ACP-GN 17.986±0.480 41.063±0.770 199.331±10.821 90.36±0.16 (✓) 95.56±0.17 (✗) 99.37±0.08 (✗)
ACP-GN(LL) 17.305±0.514 36.951±1.220 134.876±6.983 89.54±0.12 (✗) 94.53±0.09 (✗) 98.63±0.09 (✗)

ACP-GN (split + refine) 29.006±4.472 54.099±4.576 172.252±6.758 90.06±0.10 (✓) 95.20±0.08 (✓) 99.14±0.04 (✓)
ACP-GN(LL) (split + refine) 19.198±0.585 42.501±0.841 175.527±2.964 90.02±0.11 (✓) 95.12±0.08 (✓) 99.06±0.03 (✓)

facebook_2
N=81,311

I=53

LA 66.088±2.760 78.749±3.289 103.493±4.322 97.47±0.12 (✗) 98.01±0.09 (✗) 98.65±0.06 (✗)
LA(LL) 64.783±4.014 77.194±4.783 101.450±6.286 97.02±0.15 (✗) 97.56±0.13 (✗) 98.23±0.09 (✗)

SCP 16.387±0.208 35.387±0.462 152.706±1.591 89.97±0.07 (✓) 95.00±0.06 (✓) 99.06±0.03 (✓)
SCP-GN 16.287±0.202 33.655±0.563 118.489±4.305 89.99±0.07 (✓) 94.98±0.06 (✓) 99.00±0.03 (✓)
SCP-GN(LL) 16.323±0.199 35.192±0.446 151.199±1.862 90.00±0.07 (✓) 94.99±0.06 (✓) 99.05±0.03 (✓)

ACP-GN 18.396±0.546 40.088±1.091 166.792±5.632 90.47±0.11 (✗) 95.45±0.08 (✗) 99.35±0.04 (✗)
ACP-GN(LL) 17.671±0.815 37.040±1.617 127.615±5.783 89.94±0.09 (✓) 94.74±0.06 (✗) 98.73±0.05 (✗)

ACP-GN (split + refine) 21.469±0.906 42.184±0.788 152.460±2.499 90.14±0.08 (✓) 95.10±0.06 (✓) 99.13±0.02 (✗)
ACP-GN(LL) (split + refine) 16.895±0.238 36.727±0.477 149.723±2.197 89.98±0.07 (✓) 95.03±0.06 (✓) 99.03±0.02 (✓)

27

	Introduction
	Background on Conformal Prediction
	Split Conformal Prediction
	Full Conformal Prediction
	Conformalized Ridge Regression (CRR)
	Normalized Nonconformity Scores

	Approximate Full-CP for Neural Network Regression
	Conformalizing Linearized Laplace

	Related Work
	Experiments & Results
	UCI Regression
	Bounding Box Localization

	Conclusion
	Derivation of CRR coefficients
	Derivation of ACP-GN coefficients
	Extension of ACP-GN for multi-output regression
	Derivation of approximate add-one-in posterior with Laplace-GGN
	Multi-output regression prediction intervals
	Time complexity: FCP vs. ACP-GN
	Experimental details
	UCI Regression
	Bounding Box Localization

	Additional experiments
	Ablation with scalable approximations to the Gauss-Newton matrix
	Comparison against Approximate full Conformal Prediction
	Comparison against Full Conformal Prediction

