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ABSTRACT

Large language models are exposed to privacy risks since they are trained on large
text corpus, which may include sensitive or private information. Therefore, ex-
isting studies have attempted to unlearn undesirable knowledge exposed without
permission from a language model. However, they are limited in that they have
overlooked the complex and interconnected nature of knowledge, where related
knowledge must be carefully examined. Specifically, they have failed to evalu-
ate whether an unlearning method faithfully erases interconnected knowledge that
should be removed, retaining knowledge that appears relevant but exists in a com-
pletely different context. To resolve this problem, we first define a new concept
called superficial unlearning, which refers to the phenomenon where an unlearn-
ing method either fails to erase the interconnected knowledge it should remove or
unintentionally erases irrelevant knowledge. Based on the definition, we introduce
a new benchmark, FaithUnBench, to analyze and evaluate the faithfulness of un-
learning in real-world knowledge QA settings. Furthermore, we propose a novel
unlearning method, KLUE, which identifies and updates only knowledge-related
neurons to achieve faithful unlearning. KLUE categorizes knowledge neurons us-
ing an explainability method and updates only those neurons using selected un-
forgotten samples. Experimental results demonstrate that widely-used unlearning
methods fail to ensure faithful unlearning, while our method shows significant
effectiveness in real-world QA settings.

1 INTRODUCTION

Large language models (LLMs) are trained using a vast text corpus and perform various tasks,
demonstrating outstanding achievements (Radford et al., 2019; Chowdhery et al., 2023; Kassem
et al., 2023; Gemma et al., 2024). However, LLMs may show privacy risks since sensitive or private
information may be unintentionally included in the large text corpus used for training (Jang et al.,
2023; Patil et al., 2023; Huang et al., 2024). Therefore, prior studies have investigated unlearning
undesirable knowledge in language models (Jang et al., 2023; Chen & Yang, 2023; Maini et al.,
2024; Jin et al., 2024). To assess the results of unlearning, most existing studies primarily focus
on whether a model successfully forgets the specific knowledge to unlearn, while ensuring that
irrelevant knowledge remains unaffected.

However, they are limited in that they have overlooked the complex and interconnected nature of
knowledge, where related knowledge must be carefully investigated. Specifically, these studies have
failed to evaluate whether an unlearning method effectively erases interconnected knowledge that
should be removed, retaining knowledge that appears relevant but exists in a completely different
context. This phenomenon can be further exacerbated when attempting to unlearn complicated world
knowledge. Figure 1 presents an example of faithful unlearning in the world knowledge setting. In
this case, an unlearning method aims to unlearn the specific knowledge related to the target question,
“What is the country of citizenship of Tom Cruise?” from a language model. To ensure successful
unlearning, the language model should forget the knowledge for answering the paraphrased question,
“Which country is Tom Cruise a citizen of?”, and the multi-hop question, “What is the continent of
the country where Tom Cruise holds citizenship?” since they share interconnected knowledge with
the target question. However, another question, “What country is Andy Warhol a citizen of?” should
be responded unchanged after the unlearning process, even though it shares the same answer as the
target question and superficially appears to involve interconnected knowledge.
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Faithful Unlearning Evaluation Process

What is the country of citizenship 
of Tom Cruise?Which country is Tom Cruise

a citizen of?

What is the continent of the 
country where Tom Cruise
holds citizenship?

What country is Andy 
Warhol a citizen of?

Base Question (unlearned)
Paraphrased Question

Multi-hop Question

Same-answer Question

Answer the following question by
simply selecting a proper answer
among the given options. You must
generate only the exact word without
an explanation.
Question: {question}
Options: {option1}, {option2}, {option3}
Your Answer:

Multiple-Choice QA Form

Faithful Unlearning

Tom Cruise (Target)
U.S.A

Andy Warhol

North America

Faithful Unlearning Test Datasets

An Unlearned LLM

country

country

continent

Multi-hop Knowledge (should be forgotten):
(Tom Cruise, country, U.S.A), (U.S.A, continent, North America)

Same-answer Knowledge (should be retained):
(Andy Warhol, country, U.S.A)

Unlearned Knowledge:
(Tom Cruise, country, U.S.A)

Figure 1: FaithUnBench proposes three types of datasets to evaluate the faithfulness of unlearning
methods (i.e., Paraphrased, Multi-hop, and Same-answer datasets). Each target knowledge to be
unlearned is mapped with questions corresponding to these three dataset types for evaluation.

To address this gap, we first define superficial unlearning, which refers to the phenomenon where
an unlearning method either fails to erase the interconnected knowledge it should remove or uninten-
tionally erases irrelevant knowledge. Based on the definition, we introduce FaithUnBench (Faithful
Unlearning Evaluation Benchmark for Real-world Knowledge Question Answering), a new bench-
mark for more deep analysis and evaluation of unlearning methods. FaithUnBench consists of three
types of datasets for evaluating faithful unlearning: Paraphrased QA, Multi-hop QA, and Same-
answer QA datasets. Three datasets are used to evaluate whether unlearning methods faithfully un-
learn the interconnected knowledge while retaining knowledge that appears superficially relevant
but exists in a different context.

Furthermore, we propose a novel method, KLUE, which stands for Knowledge-Localized
UnlEarning, to achieve faithful unlearning by precisely identifying and updating only knowledge-
related neurons. Specifically, we utilize attribution (Yang et al., 2023), an explainability method for
language models, to categorize neurons for updating by quantifying the amount of information each
neuron contains for predicting the answer to a particular question. However, the quantified score
may include superficial knowledge simply influencing the probability of a target output, regardless
of the context. Therefore, we newly propose a robust knowledge regularization method to accurately
quantify the knowledge score of each neuron, removing the superficial contribution of neurons.
After identifying knowledge neurons, our method precisely unlearns the target knowledge without
affecting other knowledge by updating only the knowledge-related neurons with selected unforgot-
ten samples. We demonstrate that most unlearning methods fail to ensure faithful unlearning in the
FaithUnBench setting. However, our method significantly outperforms the baselines in the FaithUn-
Bench setting, and these results prove that the knowledge-localized unlearning effectively achieves
faithful unlearning. In summary, this work makes the following contributions:

• We first define superficial unlearning and construct a new benchmark, FaithUnBench, to eval-
uate various aspects of it in real-world knowledge QA settings.

• We reveal that existing unlearning methods do not ensure faithful unlearning, raising new
research questions in the field of knowledge unlearning.

• To achieve faithful unlearning, we propose a novel unlearning method, KLUE, which accu-
rately identifies and updates only knowledge-related neurons. We demonstrate that KLUE sig-
nificantly outperforms the widely-used baselines in the FaithUnBench setting.

2 BACKGROUNDS

2.1 MACHINE UNLEARNING FOR LANGUAGE MODELS

Machine unlearning has been utilized as a solution to address privacy and copyright issues in the
generation process of large language models (Jang et al., 2023; Patil et al., 2023; Chen & Yang,
2023; Huang et al., 2024; Barbulescu & Triantafillou, 2024; Yao et al., 2024). Notable examples
include the gradient ascent method, which reduces the probability of generating an unlearning target
(Jang et al., 2023; Yao et al., 2023; Barbulescu & Triantafillou, 2024), and the preference optimiza-
tion approach (Rafailov et al., 2024; Zhang et al., 2024; Jin et al., 2024) for performing unlearning.
Benchmark datasets for evaluating these unlearning methods include WHP (Who is Harry Potter)
(Eldan & Russinovich, 2023), which prevents the generation of content related to Harry Potter, and
TOFU (Maini et al., 2024), which focuses on erasing information about fictionally created charac-
ters. However, existing studies (Shi et al., 2024; Tian et al., 2024; Li et al.; Maini et al., 2024; Jin
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et al., 2024) on unlearning world knowledge remain limited in that they have overlooked the intri-
cate traits of world knowledge. World knowledge is highly complex and intricately interconnected,
meaning that in addition to unlearning the target knowledge, related knowledge must also be care-
fully examined (Zhong et al., 2023). Our research is particularly attentive to this aspect, analyzing
and achieving faithful unlearning. We describe the comparison with other datasets in Table 7.

2.2 KNOWLEDGE LOCALIZATION FOR LANGUAGE MODELS

Although language models demonstrate remarkable performance, illuminating the exact role of each
parameter in dealing with specific knowledge remains challenging. Therefore, Yang et al. (2023;
2024) has identified knowledge neurons by extending the attribution (Shrikumar et al., 2016), an
explainability method that determines the importance of individual features in solving a task. Yang
et al. (2023; 2024) has confirmed that attribution effectively identifies knowledge neurons of various
categories (e.g., language understanding, social bias) and introduced a knowledge neuron detection
method suitable for language modeling tasks. In this study, we follow Yang et al. (2023; 2024) to
localize world knowledge neurons for unlearning language models, ensuring faithful unlearning.

3 THE FAITHUNBENCH BENCHMARK

3.1 PROBLEM DEFINITION

The FaithUnBench task evaluates unlearning algorithms under real-world knowledge QA settings.
Formally, given a language model Pθ(y|x) =

∏T
t=1 Pθ(yt|x, y1, ..., yt−1) with parameters θ, an un-

learning algorithm f updates θ to θ′, erasing the target knowledge from Pθ. FaithUnBench includes
various question-answer pairs (q, a) ∈ C, where C is a question-answer pair set. Our task provides
forget set Cf , which contains target question-answer pairs to be forgotten, where Cf ⊂ C. FaithUn-
Bench also provides retain set Cr ⊂ C\Cf and test set Ct ⊂ C\(Cf ∪Cr). Cr is used in the unlearning
process as training samples to maintain the original knowledge of Pθ, and Ct is used as unseen data
to evaluate an unlearned model Pθ′ to reveal whether the unlearned model maintains the original
knowledge. Furthermore, our task provides other new types of datasets (i.e., paraphrased, multi-
hop, and same-answer sets) to evaluate the faithfulness of unlearning methods. Before introducing
the other datasets, we first define key aspects of our benchmark.

World Knowledge Graph. A world knowledge graph K is a directed multi-graph where nodes
are entities and edges are labeled with relations, i.e., elements of two sets E and R, respectively.
We define K as a collection of triples (s, r, o) ⊆ E × R × E , where s, r, o denote the subject,
relation, and object, respectively (Ruffinelli et al., 2020; Loconte et al., 2024). We assume that a
world knowledge question is mapped to triples of K; thus, we also define a knowledge mapping
function, τ : Q → P(K), where Q is a set of questions and P(K) represents the power set of K. For
example, if we have a multi-hop question, qi = “What is the continent of the country of citizenship
of Tom Cruise?”, the knowledge of the question can be denoted as a set of triples like κi = τ(qi) =
{(“Tom Cruise”, “country of citizenship”, “United States of America”), (“United States of America”,
“continent”, “North America”)}.

To quantify memorization during unlearning, we define knowledge memorization of a language
model following the structure of general QA tasks, as follows:

Definition 1 (Knowledge Memorization). Let Pθ be a language model, and let a be the correct
answer to the question q. Then, knowledge memorization Mθ : Q×A → {0, 1} is defined as

Mθ(q, a) =

{
1 if argmaxa′∈A Pθ(a

′|ι, q) = a

0 otherwise
(1)

where ι is an input prompt template for the language model Pθ, and Q and A are question and answer
sets, respectively. From the definition, Mθ(q, a) = 1 indicates that the language model retains the
knowledge of (q, a), while Mθ(q, a) = 0 signifies that it does not.

Furthermore, we define superficial unlearning using Definition 1 as follows:
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Definition 2 (Superficial Unlearning). Let g : Θ → Θ be an unlearning algorithm, and τ rep-
resent the knowledge mapping. Assume there is a forget set Cf , where Mθ(q, a) = 1 holds for all
(q, a) ∈ Cf , and that (qj , aj) /∈ Cf with Mθ(qj , aj) = 1. Furthermore, suppose we unlearn the
knowledge of Cf using g from a language model Pθ, and finally get an unlearned model Pθ′ . Then,
g is called a superficial unlearning algorithm for Cf if

((κf ∩ κj ̸= ø) ∧Mθ′(qj , aj) = 1) ∨ ((κf ∩ κj = ø) ∧Mθ′(qj , aj) = 0), (2)

where κf =
⋃

(q,a)∈Cf
τ(q) and κj = τ(qj).

For example, suppose that an unlearning algorithm g unlearns the knowledge of one question qi
= “Where is the country of citizenship of Tom Cruise?”, but it does not unlearn the knowledge of
the multi-hop question qj = “What is the continent of the country of citizenship of Tom Cruise?”.
Then, the knowledge of two questions can be denoted as a set of knowledge triples like κi = {(“Tom
Cruise”, “country of citizenship”, “United States of America”)} and κj = {(“Tom Cruise”, “coun-
try of citizenship”, “United States of America”), (“United States of America”, “continent”, “North
America”)}. In this case, g is called a superficial unlearning algorithm since κi ∩ κj ̸= ø and
Mθ′(qj , aj) = 1 is true; thus, the equation 2 is satisfied.

Faithful Unlearning Benchmark. Based on Definition 2, we construct three new types of
datasets: paraphrased, multi-hop, and same-answer sets to investigate the phenomenon of super-
ficial unlearning. The paraphrased set Ci

p, multi-hop set Ci
m, and same-answer set Ci

s is matched with
each question-answer pair (qi, ai) ∈ C. The paraphrased set includes the same context questions
with varying textual forms to the matched target question; thus, we should unlearn Ci

p if a matched
question-answer pair (qi, ai) is included in the forget set Cf . The multi-hop set includes multi-hop
question-answer pairs interconnected with the target question. Therefore, we should also unlearn
Ci
m if a mapped question-answer pair (qi, ai) is included in the forget set Cf . The same-answer set

includes question-answer pairs where the questions are from different contexts but share the same
answer as ai; thus, we should maintain the knowledge of the same-answer set, although a matched
question-answer pair (qi, ai) is included in the forget set Cf .

3.2 DATA COLLECTION AND CONSTRUCTION

We construct the dataset, FaithUnBench (Faithful Unlearning Evaluation Benchmark for Real-world
Knowledge Question Answering), which includes various question-answer pairs (qi, ai) ∈ C and
mapped other question-answer pairs for the (qi, ai) to investigate superficial unlearning. Our bench-
mark contains four types of datasets: (1) Base QA, (2) Paraphrased QA, (3) Multi-hop QA, and
(4) Same-answer QA. The Base QA includes QA pairs to construct the forget set Cf , retain set Cr,
test set Ct. The other QA datasets are used to investigate superficial unlearning; thus, those datasets
are matched with the Base QA dataset to evaluate whether the interconnected knowledge is well
unlearned and other irrelevant knowledge is maintained after unlearning the QA pairs of Cf . Our
dataset construction process follows (Zhong et al., 2023), which generates questions using retrieved
knowledge triples. An example of the constructed datasets is shown in Table 1, and more detailed
examples are also included in Table 6.

Data Source. We construct FaithUnBench using Wikidata (Vrandečić & Krötzsch, 2014), a knowl-
edge base including knowledge triples (s, r, o) matched with millions of entities. We first select 200
of the most famous people as the entity set E from The Most Famous People Rank 1, and manually se-
lect 19 common relations as the relation set R. The selected relations are shown in Appendix A.2.1.

The Base QA and Paraphrased QA datasets. We retrieve all the triples (s, r, o) from Wikidata,
where s ∈ E and r ∈ R. Based on these triples, we use GPT-4o mini2 to generate natural language
form questions using a prompt template shown in Figure 4. We use an object (i.e., o) of each triple as
the answer for each generated question. The constructed Base QA dataset C is split into three types
of datasets: forget set Cf , retain set Cr, and test set Ct.
We also generate the Paraphrased QA dataset Cp to evaluate the generalization performance of an
unlearning algorithm. Each question-answer pair (q, a) ∈ C is matched with three paraphrased

1https://today.yougov.com
2https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Table 1: An example from the FaithUnBench dataset. Each instance is generated from a core factual
triple (s, r, o). Each cluster consists of multiple paraphrased, multi-hop, and same-answer QA pairs.

Type Notation Example
Main triple (s, r, o) (Tom Cruise, country of citizenship, United States of America)

Base QA Ci What is the country of citizenship of Tom Cruise? → United States of America

Paraphrased QA Ci
p Which country is Tom Cruise a citizen of? → United States of America

Multi-hop QA Ci
m What is the capital city of the country where Tom Cruise holds citizenship? → Washington D.C.

(Tom Cruise, country of citizenship, United States of America)
(United States of America, capital, Washington D.C.)

Same-answer QA Ci
s What country is Andy Warhol a citizen of? → United States of America

(Andy Warhol, country of citizenship, United States of America)

questions. The Paraphrased QA dataset is generated during the Base QA dataset construction process
by making GPT-4o mini generate four different questions for each triple. We use the first question
as a sample of the Base QA dataset and the others for the Paraphrased QA dataset. We have strictly
checked whether there are the same texts in the generated four texts.

The Multi-hop QA dataset. We construct the Multi-hop QA dataset Cm to investigate superficial
unlearning. Each question-answer pair (q, a) ∈ C is matched with multi-hop questions. After con-
structing the triples of the Base QA dataset, we additionally retrieve a set of chain-of-triples from
Wikidata, where s ∈ E and r ∈ R. For each chain-of-triples, ((s1, r1, o1), (s2, r2, o2)), we also gen-
erate natural language questions using GPT-4o mini with the prompt template shown in Figure 5.
We strictly validate that o1 and o2 are not included in the questions.

The Same-answer QA dataset. We further build the Same-answer QA dataset Cs. Each question-
answer pair (q, a) ∈ C is also matched with the same-answer but different-context questions. After
constructing the triples of the Base QA dataset, we also retrieve other triples (s′, r′, o) that share the
same object (i.e., o) with each triple from the Base QA dataset, where s′ /∈ E . We also generate natu-
ral language form questions using GPT-4o mini with the same prompt template used in constructing
the Base QA dataset.

3.3 DATASET SUMMARY

Dataset Format. Each instance of the dataset is denoted as a tuple: d = ⟨Ci, Ci
p, Ci

m, Ci
s⟩. The

FaithUnBench dataset starts from a core factual triple (s, r, o), which forms the knowledge of the
Base QA dataset Ci. There are also the Paraphrased QA dataset Ci

p, based on the same triple, the
Multi-hop QA dataset Ci

m, which extends from the original triple (s, r, o), and the Same-answer
QA dataset Ci

s, which shares the same answers as the Base QA dataset’s questions but has different
contexts. Each of these datasets (Ci, Ci

p, Ci
m, and Ci

s) is composed of question-answer pairs (q, a),
and they also include false answer options to enable evaluation through MCQA. The details for the
MCQA setting are described in Section 3.4. An example of an instance is shown in Table 1, and
more detailed examples are described in Table 6.

Table 2: Dataset statistics.

Type Usage # instances Avg # in each cluster
Base QA train & test 664 1

Paraphrased QA test 1,992 3
Multi-hop QA test 1,714 2.68
Same-answer QA test 4,671 7.03

Dataset Statistics. After collecting sam-
ples of the Base QA dataset, we filter
only triples including matched Multi-hop
QA or Same-answer QA samples. There-
fore, each QA instance in the Base QA
dataset serves as a cluster for evaluat-
ing the faithfulness of unlearning methods.
Consequently, we collect 664 QA pairs for the Base QA dataset. Each Base QA instance includes
three paraphrased questions; thus, our dataset contains a total of 1,992 paraphrased QA instances.
FaithUnBench also include 1,714 instances for multi-hop QA datasets. Furthermore, our dataset in-
cludes 4,671 instances for the Same-answer QA dataset. The summary of the constructed FaithUn-
Bench datasets is shown in Table 2.

3.4 EVALUATION FRAMEWORK.

To evaluate the faithfulness of unlearning methods, we first split the forget set Cf , the retaining set
Cr, and the test set Ct from the entire Base QA dataset C. Then, we train a language model using the
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forget set and the retaining set to unlearn the forget set while maintaining knowledge of the retaining
set. Then, we evaluate an unlearned model to the test set to illuminate the knowledge retention for
unseen data. Furthermore, we evaluate the unlearned model with the other datasets (i.e., Cp, Cm, and
Cs) mapped to the forget and test sets to analyze the aspect of superficial unlearning.

Our unlearning framework consists of two types of input formats: (1) general QA format, and (2)
multiple-choice QA (MCQA) format. We use the general QA format for unlearning and the MCQA
format for evaluation. The general QA format inputs a question without an additional template and
the MCQA format uses a template including an instruction and answer options. Suppose we aim
to unlearn the knowledge of the question “Who is the mother of Barack Obama?”, then we train a
language model not to output the correct answer (i.e., Stanley Ann Dunham) using only the question
as an input. However, many users use a language model under various templates with instructions,
and an unlearned model should be evaluated in a more strict environment considering the general-
ization. Furthermore, evaluation considering all the possible answers to a question is one of the most
challenging aspects of evaluating QA tasks. Therefore, we utilize the MCQA form to evaluate an
unlearned model. This setting makes it easier for LLMs to derive knowledge since they are given
answer options; thus, it makes unlearning algorithms harder to work. For this reason, we use the
MCQA setting to evaluate unlearned models in more challenging and practical settings.

3.5 EVALUATION METRICS.

We propose various metrics to evaluate the basic unlearning performance and the superficial unlearn-
ing performance. We use exact match to calculate the score of all metrics. (1) Unlearning Accuracy
(UA): We compute accuracy for the forget set Cf to evaluate the basic unlearning performance. (2)
Extended Unlearning Accuracy (UA‡): We compute accuracy for the Paraphrased QA set Cp to
evaluate the generalized unlearning performance. (3) Test Accuracy (TA): We compute accuracy
for the test set Ct to evaluate whether unseen instances in the unlearning process are well maintained.
(4) Same-answer Test Accuracy (SA): We compute Accuracy for the Same-answer QA set Cs to
evaluate the preservation of irrelevant knowledge. An unlearning algorithm may only superficially
degrade the probability of the answer regardless of context. (5) Multi-hop Test Accuracy (MA):
We compute accuracy for Cm matched with each instance of Cf and Ct to evaluate whether the inter-
connected knowledge of instances is effectively unlearned. To derive the aggregated MA score, we
first compute the individual accuracies, MAf for Cm mapped to Cf and MAt for Cm mapped to Ct;
then, we compute the aggregated score, MA, by averaging the scores, (100−MAf ) and MAt. Al-
though the number of samples in Ct is generally higher than in Cf , we average the scores with equal
weight, as we consider unlearning samples in Cf important due to significant privacy concerns. (6)
Total Score (Score): We aggregate all the evaluation scores by averaging (100−UA‡), TA, SA, and
MA, to present the overall performance.

4 METHOD: KLUE

In this section, we describe the process of quantifying and localizing a particular knowledge for
a language model. Specifically, we first compute an attribution score of each neuron for inferring
an answer to a given question. Then, we regularize the attribution scores to exclude superficial
knowledge. Finally, we identify top-n neurons using the regularized attribution score and update
only the gradients of those neurons, masking the gradients of others in the unlearning process.

4.1 QUANTIFYING KNOWLEDGE RELEVANCE OF NEURONS

4.1.1 KNOWLEDGE QUANTIFICATION.

We utilize an attribution method (Shrikumar et al., 2016) to extract the importance of neurons for
specific world knowledge from language models. It is usually used to derive the importance of the
input features (i.e., pixel, token) for performing a specific task, but Yang et al. (2023; 2024) expands
the attribution formula to the importance of intermediate neurons in language models. Formally,
suppose we have Pθ(y|x) =

∏T
t=1 Pθ(yt|x, y1, ..., yt−1) that represents a language model. The

contribution of a i-th neuron for a particular layer representation h to the prediction of an answer a
using a question q for Pθ is defined as follows:

6
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A
(q,a)
i (h) = max

l
A

(q,a)
i (hl); A

(q,a)
i (hl) = hl

i ×
∂Pθ(a|q)

∂hl
i

, (3)

where hl means l-th token representation for h, and ∂Pθ(a|q)/∂hl
i is the gradient of Pθ(a|q) with

respect to hl
i. In this study, we use transformer variants for experiments; thus, activation scores and

gradients of a specific layer are computed for each input token representation. Therefore, if an input
text includes L tokens, we have L attribution scores for each neuron; thus, we aggregate attributions
of tokens by using max aggregation to acquire a single neuron knowledge attribution A

(q,a)
i (h).

4.1.2 SUPERFICIAL KNOWLEDGE REGULARIZATION.

Equation 3 computes the knowledge relevance of each neuron for a specific (q, a) pair. However,
this equation may include undesirable information that only serves to increase the likelihood of the
answer a regardless of the given context. To eliminate undesirable information from the computed
attribution, we construct synthetic mismatched QA pairs (q′, a) ∈ C′, where answers are the same as
the target answer a. Then, we compute the attribution score for each mismatched pair and aggregate
them by averaging them. Since a question and an answer included in mismatched pairs are contex-
tually irrelevant, the computed attribution corresponds to the degree that unconditionally increases
the likelihood of the answer regardless of the context (superficial knowledge). Therefore, we can
compute the final knowledge attribution, I, containing only contextual knowledge by excluding the
information of the mismatched attribution from the basic knowledge attribution as follows:

I(q,a)
i (h) = A

(q,a)
i (h)− α× 1

N
×

∑
(q′,a)∈C′

Ã
(q′,a)
i (h) (4)

where C′
is a set including mismatched question and answer pairs. N is the number of mismatched

samples, and α is a hyper-parameter to determine the magnitude of knowledge exclusion. Ã means
a negative value of A is converted to the zero value. Since the negative values of the attribution score
are negative contributions to a specific knowledge, it is reasonable to eliminate that undesirable
information. We use Cf and Cr as a pool to sample mismatched questions.

4.2 KNOWLEDGE-LOCALIZED UNLEARNING

This section describes the process of knowledge-localized unlearning. We first select only unforgot-
ten samples from the forget set Cf and compute loss for the selected samples to mitigate overfitting
and superficial unlearning. Then, KLUE determines knowledge neurons to unlearn and finally up-
dates only the gradients of the selected knowledge neurons to achieve faithful unlearning.

Unforgotten Samples Selection. If we repeatedly unlearn sufficiently unlearned samples, the train-
ing procedure leads to overfitting and harms the generalization ability of a language model. There-
fore, we select only the samples that have not been forgotten in the unlearning process to preserve
the generalization performance of the language model. Specifically, we select and unlearn only ques-
tions that satisfy the knowledge memorization criteria (Definition 1) for unlearning by each epoch’s
unlearning process.

Knowledge Neuron Localization. After selecting unforgotten samples, we localize and update only
the knowledge neurons corresponding to those selected samples in the language model. Specifically,
we first compute gradients of parameters for the selected unforgotten samples. Then, we quantify the
knowledge relevance of each neuron by using the equations 3 and 4, and sort neurons of the whole
target layers by the knowledge relevance scores; then, we select the top-n knowledge neurons. We
finally mask gradients of the parameters for knowledge-irrelevant neurons to exclude them from
the unlearning process. Suppose that a weight matrix W ∈ Rd×k is a linear matrix multiplication
parameter of a language model, and the gradient computed for the parameter is ∇WL = ∂L/∂W .
Then, the gradient of i-th neuron (i.e., column) of the weight matrix after masking is denoted as
∇W:,i

L̃ = γ ⊙ ∇W:,i
L, where γ ∈ {0d,1d} and ⊙ means the Hadamard product. We also can

mask bias terms similar to the weight matrix. Notice that this method is model-agnostic since all
neural network models consist of linear transformation layers.

7
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Table 3: Unlearning experimental results. We report the results of six metrics after unlearning the
forget set (5%) from language models in our settings. Bolded results indicate the best performance.

Model Method UA (↓) UA‡ (↓) TA (↑) SA (↑) MA (↑) Score (↑)

Gemma-2
(2B)

Default 84.85 81.82 85.99 79.63 48.67 -

GA 33.33 36.36 48.71 36.57 47.98 49.23
GAret 33.33 34.34 76.94 66.28 53.95 65.70

DPOrej 33.33 41.41 67.46 62.04 49.19 59.32
DPOmis 33.33 37.37 64.44 51.85 53.06 57.99

KLUE 33.33 36.36 83.41 74.54 57.48 69.76

Gemma-2
(9B)

Default 93.94 91.92 89.87 86.57 48.07 -

GA 30.30 29.29 40.52 30.56 50.46 48.06
GAret 33.33 45.45 83.84 68.52 50.72 64.40

DPOrej 33.33 41.41 75.32 59.72 47.02 60.16
DPOmis 33.33 36.36 63.15 43.06 55.45 56.32

KLUE 33.33 40.40 89.83 81.48 60.48 72.85

5 EXPERIMENTAL RESULTS

5.1 FAITHUNBENCH SETUPS

We adopt instruction-tuned Gemma-2 (Gemma et al., 2024) models (2B & 9B) to evaluate un-
learning methods since they are among the latest open-source language models showing excellent
performance. We split the Base QA dataset C to the forget set Cf , the retain set Cr, and the test set
Ct. Specifically, we sample 5% of C as the forget set and 10% of C as the retain set since there are
fewer samples to unlearn than a retain set generally in the real-world scenario. More experiments
on varying numbers of samples for the forget set are shown in Section 5.5. We select 70% of C as
the test set, guaranteeing it is completely separate from Cf and Cr. For the MCQA evaluation (Sec-
tion 3.4), we manually select the instruction and randomly sample two false answer options from
possible answers for each relation r. To prevent the situation that the false options include a pos-
sible correct answer, we use GPT-4o 3 to cluster the entire answer options of each relation and we
manually double-check the answer clusters are well constructed. After constructing answer clusters,
we sample two false options from the answer set, which excludes answers in the same cluster as the
correct answer. An example of the MCQA format is shown in Appendix B.1.

When unlearning is applied to a language model, there is often a trade-off between unlearning
knowledge (i.e., UA, UA‡, and MAf ) and retaining the model’s overall knowledge (i.e., TA, SA,
and MAt). Therefore, choosing the optimal model in the unlearning process is challenging since
unlearning and retention are both important. For a fair comparison, we early stop the training proce-
dure when UA≤ 0.33 is satisfied (random sampling from three options) to select the optimal model.
More detailed experimental settings can be found in Appendix B.

5.2 BASELINES

We evaluate widely-used unlearning algorithms to unveil the superficial unlearning. (1) Gradient
Ascent (GA): Unlike the gradient descent used during the pre-training phase, GA (Jang et al., 2023;
Yao et al., 2023) maximize the negative log-likelihood loss on the forget set. This method helps
shift the model away from its original predictions, aiding in the unlearning process. (2) Gradient
Ascent with a Retaining Loss (GAret): GA tends to unlearn other unrelated knowledge since it
just maximizes the negative log-likelihood loss on the forget set. Therefore, we add an auxiliary
retention loss to maximize the log-likelihood of the retaining set, securing the retention of other
irrelevant knowledge. (3) Direct Preference Optimization (DPO): We adopt preference optimiza-
tion to unlearn a language model to generate another answer. DPO (Rafailov et al., 2024; Jin et al.,
2024) utilizes positive and negative instances to train the model. Therefore, we select the correct
answer as the negative instance and also define two types of DPO methods to determine positive
ones: (1) DPOmis (DPO using a mismatched answer) and (2) DPOneg (DPO using a rejection an-
swer). DPOmis utilizes a randomly sampled answer as the positive instance. On the other hand,

3https://openai.com/index/hello-gpt-4o/

8

https://openai.com/index/hello-gpt-4o/


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Unlearning experiments for varying forget sample sizes. We report the unlearning results
for the varying number of forget set (i.g., 1% and 10%). The results for 5% are also found in Table 3.

# Forget Data Method UA (↓) UA‡ (↓) TA (↑) SA (↑) MA (↑) Score (↑)

1%

Default 83.33 72.22 85.34 71.43 54.18 -

GA 33.33 44.44 77.80 57.14 49.43 59.98
GAret 33.33 34.33 85.78 59.52 58.38 67.33

DPOrej 33.33 44.44 72.84 54.76 51.79 58.73
KLUE 33.33 36.11 85.34 63.09 59.77 68.02

10%

Default 81.82 83.84 85.34 76.82 50.05 -

GA 33.33 38.38 28.02 31.13 50.41 42.79
GAret 33.33 40.40 62.50 65.12 54.21 60.35

DPOrej 30.30 34.85 45.26 42.38 51.29 51.02
KLUE 33.33 40.91 81.03 69.98 59.18 67.32

DPOrej utilizes a rejection text “I can’t answer the question.” as the positive instance. Two DPO
methods both aim to increase the probability of the positive instance compared to the negative one
for the forget set, and they switch the positive and negative instances for training the retaining set.
(4) Knowledge-Localized Unlearning (KLUE): We select only 5% of neurons from Feed-forward
networks for the knowledge neuron localization, and update them using general gradient ascent with
retention loss. We also use α = 10 and N = 5 for the Superficial Knowledge Regularization term.
The experiments analyzing varying hyper-parameters are shown in Section 5.6 and Appendix B.2.3.

5.3 WORLD KNOWLEDGE UNLEARNING RESULTS

We evaluate the world knowledge unlearning performance of our method and other baselines for
Gemma-2 2B & 9B in the MCQA setting. Table 3 shows the accuracy of various methods on the eval-
uation metrics to analyze the superficial unlearning (Section 3.4 and 3.5). The experiments show the
default Gemma-2 models can answer most questions properly, validating FaithUnBench is well con-
structed. The results show that the previous methods have the capability to unlearn target knowledge
(i.e., UA); however, they do not ensure the trustworthy dememorization of implicit and intercon-
nected knowledge. These results unveil that the existing methods suffer from superficial unlearning.
Existing methods just focus on not generating certain knowledge given questions, regardless of the
context. However, our method mitigates superficial unlearning and achieves faithful unlearning com-
pared to other baselines, without significantly damaging the other knowledge to maintain (i.e., TA,
SA, and MA). These results demonstrate that our method precisely identifies knowledge neurons,
and updating only those neurons for unforgotten samples contributes to trustworthy unlearning.

5.4 KLUE IS ROBUST AGAINST THE UNLEARNING TRADE-OFF
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Figure 2: The relationship between UA and
other metrics. The X-axis represents the UA
score in descending order.

We demonstrate the effect of the unlearning process
on other knowledge by plotting all scores derived in
the entire unlearning process against UA. As the UA
score can represent the progress of unlearning on the
target knowledge (high to low), we can observe each
method’s behavior on other knowledge in Figure 2.
All methods’ behavior on the paraphrased questions
(UA‡) shows a strong correlation with the UA score,
suggesting that these methods pose robustness in
dealing with different lexical forms (but hold seman-
tically the same meaning) of the questions. However,
the previous unlearning methods struggle to maintain
other knowledge (TA and SA) and to forget intercon-
nected knowledge (MA). In contrast, KLUE demon-
strates robust unlearning performance by effectively
forgetting interconnected knowledge and preserving
other knowledge.
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5.5 EFFECT OF FORGET SAMPLE SIZE

We conduct experiments on Gemma-2 2B for the varying sizes (i.e., 1%, 5%, and 10%) of the forget
set to analyze the effect of unlearning samples. The experimental results are shown in Table 3 (5%)
and Table 4 (1% and 10%). Our experiments reveal that existing methods undergo more problems
in unlearning when the number of forget samples increases. Increasing the number of samples to
be forgotten is more challenging since it requires modifying a greater amount of knowledge from
the language model. However, our proposed method consistently outperforms other baselines; thus,
the performance gap between our method and the baselines widens as the number of forget samples
increases.

5.6 THE RATIO OF NEURON LOCALIZATION
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Figure 3: The ratio of neuron localization.

We adopt varying ratios of neuron selection p ∈
{0.01, 0.05, 0.1} to investigate the effect of the
knowledge neuron ratio on Gemma-2 2B. Also, we
conduct experiments for the random neuron selec-
tion (i.e., p ∈ {0.01, 0.05}). As a result, we re-
veal that a neuron ratio of 0.05 or 0.1 contributes to
achieving faithful unlearning, showing that random
neuron selection more significantly triggers superfi-
cial unlearning.

5.7 ABLATION STUDIES

Table 5: Ablation studies

Module UA‡ (↓) TA (↑) SA (↑) MA (↑) Score (↑)

Default 81.82 85.99 79.63 48.67 -
KLUE 36.36 83.41 74.54 57.48 69.76

(-) Regularization 40.40 79.74 67.59 51.24 64.54
(-) Localization 46.46 81.68 68.52 53.51 64.31
(-) Sample Selection 37.37 75.86 62.96 56.05 64.37

We perform ablation experiments
on each KLUE method using
Gemma-2 2B to better understand
their relative importance, as shown
in Table 5. Regularization means
the strategy of using the auxiliary
regularization term for quantifying
the knowledge relevance of each
neuron, mitigating superficial un-
learning. Localization corresponds to the entire knowledge neuron localization strategy. Sample
Selection is the strategy that selects unforgotten samples by evaluating the memorization of each
sample. For the ablation study, we remove each of them and measure the accuracy. As a result,
we reveal that three methods significantly affect the faithfulness of unlearning. Regularization and
Localization are useful to enhance MA, mitigating superficial unlearning related to interconnected
knowledge. These results demonstrate that selecting proper knowledge neurons to be updated is
useful for handling interconnected knowledge. In addition, we illuminate that Sample Selection sig-
nificantly increases TA and SA, mitigating overfitting and shortcut unlearning issues.

6 CONCLUSION

In this study, we define superficial unlearning and construct a new benchmark, FaithUnBench, to
analyze and achieve faithful unlearning. From the benchmark, we empirically demonstrate the vul-
nerability of existing unlearning methods, exposed to superficial unlearning. Furthermore, we pro-
pose a novel knowledge-localized unlearning method, KLUE, to mitigate superficial unlearning and
reveal that our method outperforms other unlearning methods, dramatically mitigating superficial
unlearning. Our paper first illuminates the phenomenon of superficial unlearning and raises a new
research question for a deeper analysis of the unlearning field.
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A FAITHUNBENCH DETAILS

A.1 DATASET FORMAT

Our FaithUnBench benchmark includes four types of datasets, C, Cp, Cm, and Cs. An example in
FaithUnBench benchmark is shown in Table 6. Each instance of the dataset is denoted as a tuple:
d = ⟨Ci, Ci

p, Ci
m, Ci

s⟩. The FaithUnBench dataset starts from a core factual triple (s, r, o), which
forms the knowledge of the Base QA dataset Ci. We also have a question generated from each
triple, and the object in each triple becomes the answer to the question. For example, given the triple
(Tom Cruise, country of citizenship, United States of America), the question “What is the country
of citizenship of Tom Cruise?” and the answer “United States of America” are matched. There is
also the Paraphrased QA dataset Ci

p, based on the same triple, the Multi-hop QA dataset Ci
m, which

extend from the original core factual triple (s, r, o), and the Same-answer QA dataset Ci
s, which

shares the same answers as the Base QA dataset’s questions but come from different contexts. Each
of these datasets Ci, Ci

p, Ci
m, Ci

s is composed of question-answer pairs (q, a), and they include false
answer options to enable evaluation through MCQA.

A.2 WIKIDATA TRIPLES CONSTRUCTION

A.2.1 SELECTED ENTITIES AND RELATIONS.

We select the 200 human entities from The Most Famous People Rank 4, and also select 19 relations
appropriate to construct knowledge triples from Wikidata. Specifically, we manually select mother,
country, religion, founded by, highest point, country of citizenship, place of birth, position played
on team / speciality, headquarters location, country of origin, native language, field of work, father,
occupation, sport, capital, currency, location, continent as relations, which are widely-used relations
to describe knowledge of human entities or other entities related to humans (e.g., United States of
America).

A.2.2 QUESTION GENERATION PROMPT TEMPLATES

We utilize GPT-4o mini to generate questions from constructed Wikidata triples, similar to (Zhong
et al., 2023). An example of generating single-hop questions (the base QA, paraphrased QA, and
same-answer QA datasets) is shown in Figure 4. Multi-hop questions are generated similarly to
single-hop questions, shown in Figure 5.

System prompt:
You are a helpful assistant for generating questions. Users will give you a Wikidata 
triple, and you will assist in crafting questions whose answer is the tail entity of the 
triples.

[four in-context learning demonstrations]

User prompt:
Given a Wikidata triple (Kim Kardashian, spouse, x1), write a question with x1 as the 
answer. Write four possible questions in natural English form. Your answer:

Figure 4: Templates for generating single-hop questions using triples retrieved from Wikidata.

A.2.3 DETAILED DATASET COMPARISON

In this section, we compare our benchmark with other existing benchmarks. Our benchmark aims to
unlearn real-world entity knowledge, which can be prevalent in various language models, to consider
the most practical situation of knowledge unlearning. Furthermore, our benchmark deals with the
complex and interconnected nature of world knowledge; thus, we introduce three types of unlearning

4https://today.yougov.com
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Table 6: Examples from the FaithUnBench dataset.

Type Notation Example

Example 1

Main triple (s, r, o) (Hillary Clinton, father, Hugh E. Rodham)

Base QA Ci Who is the father of Hillary Clinton? → Hugh E. Rodham
False options: August Coppola, Earl Woods

Paraphrased QA Ci
p Who is Hillary Clinton’s dad? → Hugh E. Rodham

Who was Hillary Clinton’s father? → Hugh E. Rodham
What is the name of Hillary Clinton’s father? → Hugh E. Rodham
False options: August Coppola, Earl Woods

Multi-hop QA Ci
m What is the country of citizenship of Hillary Clinton’s father? → United States of America

False options: Spain, Vatican City
(Hillary Clinton, father, Hugh E. Rodham)
(Hugh E. Rodham, country of citizenship, United States of America)

What is the place of birth of Hillary Clinton’s father? → Scranton
False options: London, Pretoria
(Hillary Clinton, father, Hugh E. Rodham)
(Hugh E. Rodham, place of birth, Scranton)

Same-answer QA Ci
s Who is Anthony-Tony-Dean Rodham’s father? → Hugh E. Rodham

False options: Alfred Lennon, Hussein Onyango Obama
(Anthony-Tony-Dean Rodham, father, Hugh E. Rodham)

Example 2

Main triple (s, r, o) (LeBron James, sport, basketball)

Base QA Ci What sport does LeBron James play? → basketball
False options: Auto racing, American football

Paraphrased QA Ci
p Which sport is associated with LeBron James? → basketball

In which sport is LeBron James a professional athlete? → basketball
What is the sport that LeBron James is known for? → basketball
False options: Auto racing, American football

Multi-hop QA Ci
m What is the country of origin of the sport that LeBron James plays? → United States of America

False options: Japan, Ryukyu Kingdom
(LeBron James, sport, basketball)
(basketball, country of origin, United States of America)

Same-answer QA Ci
s What sport does Kevin Durant play? → basketball

False options: Tennis, Boxing
(Kevin Durant, sport, basketball)

What sport is Wilt Chamberlain known for? → basketball
False options: Tennis, Auto racing
(Wilt Chamberlain, sport, basketball)

What sport is Larry Bird associated with? → basketball
False options: Association football, Aikido
(Larry Bird, sport, basketball)

Example 3

Main triple (s, r, o) (Jackie Chan, place of birth, Victoria Peak)

Base QA Ci Where was Jackie Chan born? → Victoria Peak
False options: Jersey City, Louisiana

Paraphrased QA Ci
p What is the birthplace of Jackie Chan? → Victoria Peak

In which location was Jackie Chan born? → Victoria Peak
What place is known as the birth location of Jackie Chan? → Victoria Peak
False options: Jersey City, Louisiana

Multi-hop QA Ci
m What country is associated with the birthplace of Jackie Chan? → People’s Republic of China

False options: Australia, Mexico
(Jackie Chan, place of birth, Victoria Peak)
(Victoria Peak, country, People’s Republic of China)

Same-answer QA Ci
s Where was George Heath born? → Victoria Peak

False options: Neptune Township, Nuremberg
(George Heath, place of birth, Victoria Peak)

Where was Peter Hall born? → Victoria Peak
False options: Hawaii, Mission Hills
(Peter Hall, place of birth, Victoria Peak)

evaluation aspects (Paraphrased QA, Multi-hop QA, and Same-answer QA) for more deep analysis
of real-world knowledge unlearning. We propose detailed comparisons with existing datasets to
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System prompt:
You are a helpful assistant for generating multi-hop questions. Users will give you a 
chain of Wikidata triples, and you will assist in crafting questions whose answer is the 
tail entity of the sequence of triples. You must never include intermediate entities in 
the questions. Ensure that questions must include only the head entity of a given chain 
of Wikidata triples.

[four in-context learning demonstrations]

User prompt:
Given Wikidata triples (Kim Kardashian, spouse, x1), (x1, genre, x2), write a question 
with x2 as the answer. Never mention x1 and x2. Write a possible question in natural 
English form. Your answer:

Figure 5: Templates for generating multi-hop questions using triples retrieved from Wikidata.

clearly show the novelty of our benchmark. We can summarize the differences in our benchmark
(Shi et al., 2024; Tian et al., 2024; Li et al.; Maini et al., 2024; Jin et al., 2024) in Table A.2.3.

Table 7: Dataset Comparison.

MUSE (Shi et al., 2024) KnowUnDo (Tian et al., 2024) WMDP (Li et al.) TOFU (Maini et al., 2024) RWKU (Jin et al., 2024) FaithUn (Ours)

Knowledge Source BBC News & Harry Potter book Copyrighted books Hazardous knowledge Fictitious author Real-world Entity Real-world Entity

# Unlearning Entities N/A N/A N/A 200 200 200
# Forget Probes 889 987 4,157 4,000 13,131 8,377
Knowledge Exists in LLMs X X O X O O

Paraphrased QA Evaluation X X X X O O
Multi-hop QA Evaluation X X X X X O
Same-answer QA Evaluation X X X X X O

In summary, only RWKU and our benchmark address real-world entities as targets for unlearn-
ing. Additionally, MUSE, KnowUnDo, and TOFU require fine-tuning to inject knowledge before
unlearning, which may reduce their practicality. Furthermore, most existing benchmarks, except
for RWKU and our benchmark, have not considered related knowledge. However, RWKU has not
dealt with ”multi-hop QA evaluation”, which assesses the interconnections between knowledge, and
”same-answer QA evaluation”, which assesses whether unlearning algorithms degrade output prob-
abilities without considering the given contexts. For example, RWKU includes an unlearning target
text, ”Please forget Stephen King, who is a American author, renowned as the ’King of Horror’.”,
and also contains a related knowledge question, ”Who plays the character Jack Torrance in the film
’The Shining’?”. The two questions are quite related, but they are not completely interconnected
like multi-hop questions. In conclusion, the main contribution of our benchmark lies in evaluating
whether unlearning methods perform faithful unlearning while considering knowledge interconnec-
tion within the real-world entity unlearning setting.

B EXPERIMENTAL SETUP

B.1 MCQA PROMPT TEMPLATES

The FaithUnBench framework evaluates unlearned models by using an MCQA format. The MCQA
format consists of three parts: an instruction, a question, and options. After sampling false options for
each question, we randomly shuffle the options to mitigate position bias (Pezeshkpour & Hruschka,
2024; Zheng et al., 2023), consistently maintaining the determined order during all the experiments
for fair experiments. The utilized MCQA template is shown in Figure 6.

B.2 MORE DETAILS FOR THE EXPERIMENTS

We train and evaluate KLUE and other baselines on NVIDIA A100 GPU. For a fair comparison,
we early stop the training procedure when UA≤ 0.33 is satisfied (random sampling from three
answer options) to select the optimal model. Since a language model forgets all the knowledge
when a learning rate is set too high, we have searched for the lowest learning rates, which can reach
UA≤ 0.33 within the range λ ∈ [1e-07, 1e-04]. We adopt batch size β = 4 for all unlearning
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Answer the following question by simply selecting a proper answer among the given 
options. You must generate only the exact word without an explanation.
Question: {question}
Options: {options}
Your Answer:

Figure 6: Templates for the multiple-choice question-answering (MCQA) prompting. We use this
template to evaluate the knowledge of unlearned models accurately in a realistic usage scenario.

Table 8: Unlearning experimental results. We report the results of six metrics after unlearning the
forget set (5%) from language models in our settings.

Model Method UA (↓) UA‡ (↓) TA (↑) SA (↑) MAf (↓) MAt (↑) MA (↑) Score (↑)

Gemma-2
(2B)

Default 84.85 81.82 85.99 79.63 78.65 75.99 48.67 -

GA 33.33 36.36 48.71 36.57 42.32 38.29 47.98 49.23
GAret 33.33 34.34 76.94 66.28 59.18 67.08 53.95 65.70

DPOrej 33.33 41.41 67.46 62.04 73.68 72.06 49.19 59.32
DPOmis 33.33 37.37 64.44 51.85 42.70 48.83 53.06 57.99

KLUE 33.33 36.36 83.41 74.54 60.34 75.30 57.48 69.76

Gemma-2
(9B)

Default 93.94 91.92 89.87 86.57 88.39 84.53 48.07 -

GA 30.30 29.29 40.52 30.56 58.80 59.72 50.46 48.06
GAret 33.33 45.45 83.84 68.52 77.53 78.97 50.72 64.40

DPOrej 33.33 41.41 75.32 59.72 54.68 48.72 47.02 60.16
DPOmis 33.33 36.36 63.15 43.06 39.70 50.59 55.45 56.32

KLUE 33.33 40.40 89.83 81.48 61.05 82.02 60.48 72.85

methods. We compute the final loss by weighted-summing the loss of forget samples and retaining
samples. Specifically, we use 1.0 and 0.7 for the loss of forget samples and the retaining samples,
respectively.

B.2.1 THE EXTENDED EXPERIMENTAL RESULTS

We demonstrate the unlearning performance of baselines on FaithUnBench settings, shown in Ta-
ble 8. Specifically, we conduct experiments on Gemma-2 2B & 9B, and select 5% of neurons to
unlearn for KLUE. We report UA, UA‡, TA, SA, MAf , MAt and MA for all baselines.

B.2.2 SEQUENTIAL VS. BATCH UNLEARNING

We conduct experiments on Gemma-2 2B to show the performance variation for varying numbers
of samples unlearned in each batch. We select 5% of neurons to unlearn. We adopt various batch
size β ∈ {1, 4, 8, 16, 32} for the experiments, shown in Figure 7. The experimental results reveal
that KLUE is not effective for sequential unlearning (β = 1) and large batch unlearning (β = 32).
Sequential unlearning localizes the neurons to unlearn for only the single data sample, causing the
language model to forget all the knowledge since the number of neurons to unlearn is too large for
each data sample; thus, the localized area covers not only the specific knowledge but also natural
language understanding knowledge or general QA knowledge. In contrast, a large batch size makes it
hard for a language model to unlearn the knowledge since it can not identify appropriate knowledge
neurons from the attribution computed by large samples.

B.2.3 THE HYPER-PARAMETER (α) EXPERIMENTS

We conduct hyper-parameter experiments on Gemma-2 2B for α ∈ {0.5, 1.0, 10.0, 20.0}, which
is used to determine the magnitude of the superficial knowledge regularization, shown in Figure 8.
The experimental results show that low values of α damage the retention of the original knowledge
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Figure 7: The batch size experiments.

(TA, SA), although they show better performance for unlearning interconnected knowledge of the
forget set (UA‡). On the other hand, higher values of α contribute to preserving the retention of the
original knowledge.
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Figure 8: The hyper-param (α) experiments.

B.2.4 THE NEURON RATIO (p) EXPERIMENTS

We conduct experiments on various neuron ratios to investigate the KLUE method further for
Gemma-2 (2B), as shown in Table 9. We reveal that even the larger ratios show comparable results,
however, simply increasing the neuron ratio does not enhance the performance.

Table 9: The experiments on various neuron ratios.

Neurons ratio (p) UA UA‡ TA SA MA Score
0.01 33.33 42.42 81.03 68.98 56.33 65.98
0.05 33.33 36.36 83.41 74.54 57.48 69.76
0.1 33.33 37.37 83.62 74.54 55.50 69.07
0.2 33.33 42.42 81.09 67.13 57.40 65.8
0.5 33.33 39.39 82.97 72.69 58.81 68.77

B.2.5 THE VARIOUS PROMPT TEMPLATES EXPERIMENTS

We conduct experiments on various prompt templates to investigate the unlearning abilities of the
KLUE method further for Gemma-2 (2B), as shown in Table 9. Specifically, we newly select five
templates: (1) ”Pick the appropriate option for the question from the provided options. You should
answer without further explanation.”, (2) ”Select the correct answer for the given question from
the options. Write only the word without explanation.”, (3) ”Answer the given question by choosing
the appropriate answer from the given options. Do not include any explanations.”, (4) ”Select the
correct answer to the following question among the options. Only the exact word should be written,
with no explanation.”, and (5) ”Select the proper answer to the question from among the given
options. Write only the exact word without any additional explanation.”. From the experiments, we
reveal that the newly adopted prompts perform similarly to the original prompt. Their performance
on the UA score is slightly higher than the original one since we early stopped the unlearning process
based on the UA score evaluation for the original prompt.
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Table 10: The experiments on different prompt templates.

prompt index UA UA‡ TA SA MA Score

original 33.33 36.36 83.41 74.54 57.48 69.76
1 39.39 37.37 82.76 73.61 57.16 69.04
2 39.39 42.42 81.47 73.61 57.51 67.54
3 36.36 38.38 83.41 74.54 58.10 69.42
4 36.36 38.38 83.41 74.54 57.21 69.20
5 39.39 38.38 82.33 76.39 56.55 69.22
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