
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DATAMIL: SELECTING DATA FOR ROBOT IMITATION
LEARNING WITH DATAMODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, the robotics community has amassed ever larger and more diverse
datasets to train generalist policies. However, while these policies achieve strong
mean performance across a variety of tasks, they often underperform on individ-
ual, specialized tasks and require further tuning on newly acquired task-specific
data. Combining task-specific data with carefully curated subsets of large prior
datasets via co-training can produce better specialized policies, but selecting data
naively may actually harm downstream performance. To address this, we intro-
duce DataMIL, a data selection framework built on the datamodels paradigm that
reasons about data selection in an end-to-end manner, using the policy itself to
identify which data points will most improve performance. Unlike standard prac-
tices that filter data using human notions of quality (e.g., based on semantic or vi-
sual similarity), DataMIL directly optimizes data selection for task success, allow-
ing us to select data that improves the policy while dropping data that degrade it.
To avoid performing expensive rollouts in the environment during selection, we in-
troduce a surrogate loss function on task-specific data, allowing us to use DataMIL
in the real world without degrading performance. We validate our approach on
60+ simulation and real-world manipulation tasks, notably showing successful
data selection from the largest open collections of robot datasets (OXE); demon-
strating consistent gains in success rates over prior works. Our results underscore
the importance of end-to-end, performance-aware data selection for unlocking the
potential of large prior datasets in robotics. More information at our website.

1 INTRODUCTION

Recently we have witnessed a revolution in robot learning: inspired by the successes of large-scale
language and vision models, the robotics community has begun training large foundation poli-
cies (Brohan et al., 2023; Black et al., 2024; Bjorck et al., 2025) by amassing large diverse robotic
datasets comprising of a variety of tasks, scenes, and robots (O’Neill et al., 2024; Walke et al., 2023;
Fang et al., 2024). The resulting generalist policies achieve a strong mean performance across tasks
and environments, but often underperform on individual tasks (Kim et al., 2024; 2025), highlighting
a gap between generalization and task-specific competence. To bridge this gap, researchers have
explored a post-training paradigm (Black et al., 2024), where pre-trained foundation models are
fine-tuned (Black et al., 2024; Kim et al., 2025) for specific tasks, though this process demands a
considerable number of newly acquired task-specific demonstrations. As datasets grow increasingly
large and diverse, a natural question arises: how can we identify and select data from within existing
datasets to boost task performance?

Selecting data to train a high-performing model is a complex endeavor. Naively, it would require
testing each subset of the data by retraining and evaluating the performance of the trained model.
This is expensive for any sizable dataset, becoming infeasible in robotics, where evaluation involves
policy rollouts in the real world—a time-consuming and often dangerous procedure. Prior data
selection methods in robotics remove the dependency on policy rollouts by selecting data based on
heuristics, i.e., assuming that the most useful data is the most similar in language description Zha
et al. (2024), visually (Memmel et al., 2024), in motion (Lin et al., 2024), or in state-action pairs (Du
et al., 2023) to a small number of task-specific demonstrations. While intuitive (and effective in
some cases), these heuristics often make several assumptions and fail to consider the real impact of
a datapoint on policy performance (see Figure 1 (left)).

1

https://imitation-datamodel.github.io/datamil.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In other fields such as natural language processing (NLP) and computer vision (CV), researchers
have developed an efficient framework for data selection based on model performance: datamod-
els Ilyas et al. (2022). Training a datamodel is a meta-process in which the original learning algo-
rithm and model are viewed as a “black box” that consumes data, and the goal is to train an estimator
of the black box’s behavior as a function of the input data. By avoiding selecting based on heuristics,
datamodels stay close to the true optimization objective (trained model performance) while critically
reducing the amount of training and evaluation steps necessary with the original learning algorithm
to an acceptable level for NLP and CV. However, these evaluations are still infeasible for policy
learning due to the need for real-world rollouts, impeding their application to robotics.

In this work, we introduce DataMIL (Datamodels for Imitation Learning), a method that extends
the success of datamodels to robotics by addressing the unique challenges of data-driven data selec-
tion. DataMIL trains a data-quality estimator using a tractable surrogate objective. We demonstrate
empirically that this objective retains sufficient correlations to the true objective (trained policy per-
formance), allowing us to train datamodels that predict data influence without requiring expensive
real-world rollouts. Moreover, thanks to a process that remains closer to the true objective and avoids
assumptions about the characteristics of the useful data, DataMIL selects and curates datasets for
hard cases (e.g., different embodiments, multi-task settings) where prior heuristic-based methods
are unsuitable. Across 50 tasks in MetaWorld (Yu et al., 2020), we show a 10% performance boost
compared to the state-of-the-art baselines. We then show how datamodels can be estimated effi-
ciently for larger policies such as Octo (Octo Model Team et al., 2024) using improved datamodel
estimators based on metagradients (Engstrom et al., 2025) and show task-specific dataset curation
in ten tasks from the LIBERO benchmark (Liu et al., 2023). Finally, we effectively select data from
OXE (O’Neill et al., 2024), one of the largest open collections of robot datasets, demonstrating
DataMIL’s efficacy in selecting datasets for new tasks and embodiments on real hardware.

2 RELATED WORK

Data curation for robot learning. Recent advances in robotics have leveraged ever-larger demon-
stration collections—both in simulation (Mandlekar et al., 2021; 2023; Sharma et al., 2018), and on
real hardware (Walke et al., 2023; Khazatsky et al., 2024; Mandlekar et al., 2018)—to train gener-
alist policies capable of tackling diverse tasks (Brohan et al., 2023; Kim et al., 2024; Black et al.,
2024; Bjorck et al., 2025). However, the sheer scale and heterogeneity of these datasets (varying
robots, scenes, and objectives) has motivated a body of work on data curation. For generalist train-
ing, methods like Re-Mix (Hejna et al., 2024) use DoReMi (Xie et al., 2023) style optimization to
learn optimal mixtures of data domains for improving model training, while others identify “high-
quality” trajectories via mutual information criteria (Hejna et al., 2025) or by scoring samples with
policy rollouts (Chen et al., 2025). Beyond generalist policy training, many studies have focused
on task-specific dataset selection: given a handful of target demonstrations, one can sub-sample
large datasets based on visual similarity (Memmel et al., 2024), motion cues (Xu et al., 2022), or
state–action closeness (Du et al., 2023). While these approaches capture human notions of quality,
they remain agnostic to each sample’s actual impact on downstream policy performance. Concurrent
to our work, CUPID (Agia et al., 2025) focuses on single task curation by using a policy-gradient
influence measure estimated via online rollouts. In contrast, DataMIL demonstrates selection from
large heterogeneous datasets, scoring datapoints entirely in an offline manner. This allows us to
estimate each datapoint’s contribution to final task success and curate training sets in an end-to-end,
performance-aware fashion.

Datamodels and data attribution. Our work draws from a line of work in machine learning on data
attribution (Koh & Liang, 2017; Ilyas et al., 2024; Hammoudeh & Lowd, 2024; Park et al., 2023;
Chang et al., 2024; Ilyas & Engstrom, 2025) and, in particular, the datamodels framework (Ilyas
et al., 2022; Park et al., 2023). At a high level, this framework seeks to predict the behavior of ma-
chine learning models as a function of the data they are trained on. These ideas have been explored
in the fields of CV and NLP for improving language model pre-training (Engstrom et al., 2024) and
instruction tuning (Xia et al., 2024; Liu et al., 2024; Engstrom et al., 2025); for increasing worst-
group robustness (Jain et al., 2024); and for removing outliers in supervised learning settings (Lin
et al., 2022). Our work builds on this body of research, while—as we discuss in Sec. 4.2—also
tackling the unique challenges posed by the robot learning setting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

…
Data Corpus

…

Selected
Data

Target
Data

π
Target
Data Train final policy with

selected and target data

π Loss

Regression Estimator

Metagradient-based Estimator

…

… …

D1

DN

Target
Data

M1

MN

(D1, M1)
(DN, MN)

…
D1⋯DN

M

… …

Dt

Dt+1

<latexit sha1_base64="pYM132qgRhMHaU/a61ywLFbdrWg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6l9Xafa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/puWPMQ==</latexit>

✓

<latexit sha1_base64="6hh1UdVl0o1L21xAmlK6Ti26VRw=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFqJuSSFE3Qn0sXFawD2hCmEwn7dDJg5kboYRs/BU3LhRx62e482+ctFlo64ELh3Pu5d57vJgzCab5rZWWlldW18rrlY3Nre0dfXevI6NEENomEY9Ez8OSchbSNjDgtBcLigOP0643vsn97iMVkkXhA0xi6gR4GDKfEQxKcvUDG0YU8KUdYBgRzNOrrHbrwomrV826OYWxSKyCVFGBlqt/2YOIJAENgXAsZd8yY3BSLIARTrOKnUgaYzLGQ9pXNMQBlU46fSAzjpUyMPxIqArBmKq/J1IcSDkJPNWZ3ynnvVz8z+sn4F84KQvjBGhIZov8hBsQGXkaxoAJSoBPFMFEMHWrQUZYYAIqs4oKwZp/eZF0TuvWWb1x36g2r4s4yugQHaEastA5aqI71EJtRFCGntEretOetBftXfuYtZa0YmYf/YH2+QMnrZYg</latexit>

✓ = A(Dt)

<latexit sha1_base64="ZfdQBKHHGrCpSBfAHZ3vQLjXKT8=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkWom5JIUZdFN26ECvYBTSiT6aQdOpmEmRshhPorblwo4tYPceffOGmz0NYDA4dz7uWeOX7MmQLb/jZKa+sbm1vl7crO7t7+gXl41FVRIgntkIhHsu9jRTkTtAMMOO3HkuLQ57TnT29yv/dIpWKReIA0pl6Ix4IFjGDQ0tCsuiGGCcE8u5vVXZhQwGdDs2Y37DmsVeIUpIYKtIfmlzuKSBJSAYRjpQaOHYOXYQmMcDqruImiMSZTPKYDTQUOqfKyefiZdaqVkRVEUj8B1lz9vZHhUKk09PVkHlUte7n4nzdIILjyMibiBKggi0NBwi2IrLwJa8QkJcBTTTCRTGe1yARLTED3VdElOMtfXiXd84Zz0WjeN2ut66KOMjpGJ6iOHHSJWugWtVEHEZSiZ/SK3own48V4Nz4WoyWj2KmiPzA+fwCC+5Sw</latexit>M(✓)

<latexit sha1_base64="wG6FBXVVMbtLkrgCB8LjE4YaESM=">AAACH3icbVDLSgMxFM34tr6qLt0Ei1A3ZUaKuvS1cCMoWBU6pdxJbzWYyQzJHbEM8ydu/BU3LhQRd/6NaS3i60DgcM69ycmJUiUt+f67NzI6Nj4xOTVdmpmdm18oLy6d2SQzAhsiUYm5iMCikhobJEnhRWoQ4kjheXS93/fPb9BYmehT6qXYiuFSy64UQE5qlzdDwlsa3JNHKsMiDzVECngYA10JUPlRUf3iu0X1oE3r60W7XPFr/gD8LwmGpMKGOG6X38JOIrIYNQkF1jYDP6VWDoakUFiUwsxiCuIaLrHpqIYYbSsf5Cr4mlM6vJsYdzTxgfp9I4fY2l4cucl+Uvvb64v/ec2MututXOo0I9Ti86FupjglvF8W70iDglTPERBGuqxcXIEBQa7Skish+P3lv+RsoxZs1uon9crO3rCOKbbCVlmVBWyL7bBDdswaTLA79sCe2LN37z16L97r5+iIN9xZZj/gvX8AaGujxQ==</latexit>rM(A(Dt))

Target Loss

Es
tim

at
ing

 D
at

am
od

els

DataMIL
selection

DaMIL
selected data

Heuristic
selection

Target Data

Datamodels

0.1 -0.5 0.4 0.2 0.0 0.8 0.4 0.6-0.1

Target Loss

Target Loss

Figure 1: Data selection with datamodels. (left) Similarity-based methods select close samples
(yellow), but these aren’t always beneficial for learning. DataMIL evaluates data based on its impact
on policy performance, selecting the samples that lead to policy improvement. (center) We estimate
datamodels that score each sample by its influence on policy performance and select the highest-
scoring samples for training. (right) DataMIL explores two datamodel estimation methods, adapted
to robotics: regression and metagradient-based estimation (see Sec. 4.1).

3 PRELIMINARIES: DATA SELECTION FOR POLICIES AND DATAMODELS

In this section, we first provide some general background on the problem of data selection for robot
learning, and then describe the datamodels framework on which our method is based.

Policy learning. The focus of our work is on the imitation learning problem. Here, our goal is
to learn a policy π that maps states s to distributions over actions a using a collection of training
trajectories (or demonstrations) D = (τ1, τ2 · · · τn) of state-action pairs. We will define a policy
learning algorithm A as a function that takes as input a dataset of demonstrations D and outputs
an optimized policy π. We measure the performance of the policy π using a metricM : π → R,
which is a function mapping policies to a scalar value. The most common choice of metric is success
rate—the fraction of times that sampling actions from the policy results in the policy completing a
given task—but our notation is general and can also capture other choices of metricM.

Data selection in robotics. In data selection for robotics, we are given (a) a prior dataset D of
demonstrations; (b) a fixed learning algorithm A (e.g., stochastic gradient descent on an imitation
learning objective); and (c) a target metricM that we will use to measure policy performance. Our
goal is to select a subset of the data D′ ⊂ D such that applying the algorithm A to the subset D′

yields a policy π that maximizes the targetM. Formally, we aim to find

argmax
D′⊂D

M(A(D′)). (1)

Solving this optimization problem is challenging since algorithm A itself is expensive to compute
(it involves training a policy on D′). Thus, exhaustive search over all subsets of D is infeasible.

Datamodels. In this work, we leverage data attribution (Koh & Liang, 2017; Ilyas et al., 2024;
Park et al., 2023; Bae et al., 2024) (and specifically, the datamodels framework (Ilyas et al., 2022)) to
tackle the data selection problem in Eq. 1. The key idea behind datamodels is to directly approximate
the target metricM(A(D′)) as a function of the dataD′, allowing us to answer questions like “what
would the performance of the policy be if we trained on this subset of the data?” without actually
training the policy. More precisely, a datamodel is a model f̂ : 2D → R that takes as input a subset
of the data D′ ⊂ D and outputs an estimate ofM(A(D′)).

Informal Definition 1 (Datamodeling problem) Given a prior dataset D and a learning algo-
rithm A, the datamodeling problem is the problem of predicting the behavior of a model trained
on a subdataset D′ ⊂ D without actually training a model.

If we had such an approximation in hand (assuming for now that we can compute one), we would
approach the data selection problem in Eq. 1 by solving the following optimization problem:

argmax
D′⊂D

f̂(D′). (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This problem is much more tractable than the original problem in Eq. 1 because the datamodel f̂
is typically much cheaper to compute than the learning algorithm and target metricM(A(·)). For
example, in supervised learning, recent works have shown that even linear datamodels—functions
f̂ that decompose additively in terms of their inputs D—can be accurate predictors of model perfor-
mance (Ilyas et al., 2022; Lin et al., 2022; Park et al., 2023; Bae et al., 2024; Chang et al., 2024).
Intuitively, this means that we can assign a scalar value to each data point in D that indicates how
much it contributes to the performance of the learning algorithm A.

Since leveraging an accurate datamodel f̂ for data selection is straightforward, the main challenge
in our work is constructing such a datamodel. That is, we need to find a way to build a function
f̂ that can predict, with nontrivial accuracy, the performance of the learning algorithm A on any
given subset of the data D′ without actually training a policy on that subset. In the next section, we
describe our methods for constructing such a datamodel in the policy learning setting.

4 DATAMIL: DATAMODELS FOR ROBOT IMITATION LEARNING

An overview of our training and selection methodology is shown in Figure 1. Below, we provide the
details of each component, beginning with the estimation of datamodels.

4.1 ESTIMATING DATAMODELS

In our work, we consider two ways of estimating datamodels: the regression method (Ilyas et al.,
2022) and the metagradient method (Engstrom et al., 2025). Both estimators approximate the out-
come of model training linearly, in the sense that, for any training subset D′ ⊂ D, the datamodel
prediction f̂(D′) takes the form,

f̂(D′) =
∑

zi∈D′

τ(zi).

Intuitively, τ(zi) captures the importance of the training example zi to the target metricM(A(D′))
(more precisely, τ(zi) is the additive effect of zi on the target metric). Linear datamodels are con-
venient in the context of data selection, since they allow us to solve Eq. 1 by simply selecting the
training examples with the highest scores τ(zi). Both estimators below take this form, differing only
in how they compute τ(zi).

Regression estimator. The regression estimator is a straightforward but expensive way to estimate
datamodels—it involves precomputing the scores τ(zi) for each training example zi in the broader
training set D. Concretely, we first sample m random subsets of the prior dataset Dj ⊂ D; for
each of these datasets, we train a policy A(Dj), and evaluate the target metricM. (In our setting,
evaluating M means rolling out the policy several times and computing the success rate.) We
compute the scores τ(zi) for all n training examples by solving the following minimization problem:

{τ(z1), . . . , τ(zn)} := arg min
τ∈Rn

m∑
j=1

 ∑
j:zi∈Dj

τi −M(A(Dj))

2

. (3)

Above, observe that the sum
∑

j:zj∈Di
τj is precisely the datamodel prediction ofM(A(Di)) when

setting τ(zj) = τj . Thus, Eq. 3 corresponds exactly to linearly regressing the target metric onto the
presence of each training point zi. More details are provided in App. B.2

Metagradient-based estimator. The regression-based estimator requires training a large number of
models, which quickly becomes computationally prohibitive for complex models such as the ones
used for modern visuomotor policies. A method to alleviate this challenge is to use a metagradient-
based estimator. To that end, we parameterize the dataset by a vector w ∈ [0, 1]n, where wi specifies
the weight of the i-th training sample (i is included in the dataset if wi = 1 and excluded if wi =
0). Treating these weights as meta-parameters, we write a first-order Taylor approximation to our
objectiveM(A(w)) from Eq. 1 as,

M(A(w)) ≈M(A(w0)) +∇wM(A(w0))
⊤(w −w0), (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where w0 is the all-ones vector, corresponding to training on the entire dataset. The gradient I =
∇wM(A(w0)), known as the influence function (Hampel, 1974; Koh & Liang, 2017), captures
how changes in data weights affect model performance.

Naïvely computing I requires differentiating through the training process A(w)—i.e., unrolling
policy optimization with respect to the meta-parameters w. This computation, known as the meta-
gradient, has traditionally been notoriously difficult, and consequently most prior works in data
attribution have focused on approximating I (Koh & Liang, 2017; Park et al., 2023; Bae et al.,
2024). Recent advances, however, demonstrate that metagradients can be computed exactly and
efficiently by leveraging the iterative structure of standard optimization algorithms such as stochas-
tic gradient descent (SGD) (Engstrom et al., 2025; Calian et al., 2025). Specifically, Engstrom
et al. (2025) exploit step-wise auto-differentiation combined with efficient data structures to keep
the memory costs practical. The resulting influence scores Ii quantify how positively or negatively
the i-th training sample affects performance, and can be directly used as datamodel coefficients. A
detailed description and pseudocode of the metagradient-based estimator is provided in App. B.3.

4.2 ADAPTING DATAMODELS FOR ROBOTICS

While datamodels have been applied to language modeling (Park et al., 2023; Bae et al., 2024) and
computer vision (Koh & Liang, 2017; Ilyas et al., 2022) tasks, there are some unique challenges that
we face when applying them to robotics. Below, we describe how DataMIL extends the datamodel
framework to handle robotic datasets efficiently.

Estimating datamodels without rollouts. In principle, the ideal target metric M is the policy’s
true success rate under environment rollouts. However, real-world rollouts are expensive, and using
them directly renders the objective non-differentiable, preventing the use of metagradient-based
estimators that exploit differentiability of the evaluation metric. To overcome these limitations, we
introduce a proxy metric M̂ that (1) requires no additional rollouts and (2) is fully differentiable.
Concretely, given a small held-out demonstration set Dtarget for the target task, we define:

M̂(π,Dtarget) =
1

|Dtarget|
∑

(s,a)∈Dtarget

−LBC(π(s), a) (5)

Where LBC(π(s), a) defines the policy loss on a training example (s, a) (see App. D for the ex-
act objective for different policy classes). Hence, the true target metric M can be substituted by
the proxy metric M̂ in our original optimization (Eq.1), resulting in a more tractable and end-end
differentiable objective for applying datamodels to robotic settings.

0

20

40

60

80

100

Su
cc

es
s r

at
e

Target-Only
All-Data
DM-rollouts

DataMIL-rg
DataMIL-meta

Figure 2: Comparing true
rollout success (M) vs. proxy
metric (M̂)

A natural question is whether M̂ is a sufficiently good approxi-
mation of the true target to enable data selection. We study this
question using the pick-place-wall task from MetaWorld (Yu
et al., 2020), where we consider three different datamodel estima-
tion techniques:

i) DM-rollouts: using regression-based estimator to estimate a
datamodel for the “true” targetM (success rate via rollouts);

ii) DataMIL-rg: using regression-based estimator to estimate a
datamodel for proxy target M̂ (loss on a heldout set);

iii) DataMIL-meta: using metagradient-based estimator to estimate
a datamodel for proxy target M̂.

We use each of these datamodels to select the top 10% of samples
(as ranked by their estimated coefficient τ(zi)) from a multi-task
prior dataset consisting of a mix of expert and suboptimal demon-
strations (see Sec. 5 for details). We then measure the true success rate of a policy trained on the
selected samples, and visualize the results in Fig. 2. Our results show that (a) selecting data for the
proxy metric M̂ incurs only a marginal drop in final success; (b) applying the metagradient-based
estimator incurs another small drop in success but are significantly faster to train. Moreover, policies

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

trained on selected data vastly outperform baselines trained on the entire dataset or Dtarget alone,
achieving 7× higher success than the all-data policy, while target-only policy fails almost entirely.

These results demonstrate that (a) while validation loss is often a noisy predictor of performance in
robotics, it still provides a useful signal for data selection, and our proxy objective can effectively
replace expensive rollouts, and (b) data curation is critical: naively using all data or only target
examples yields suboptimal policies, whereas curated datasets substantially boost task success.

Clustering training examples. Datamodels measure the influence of each training example on
overall policy performance. In robotics, a training example may range from a single state–action
pair, to sequences of state–action pairs (for sequential policies). Estimating influence at the individ-
ual training example level is often noisy: because each training example is seen only a few times
during training, its individual effect on policy performance is often marginal and difficult to measure
precisely. To reduce this variance, prior works clusters samples by class or task and then evaluates
cluster-level influence instead of individual examples (Jain et al., 2023; Ley et al., 2024).

This is particularly suitable for robotics since data naturally clusters into state–action sequences,
so we can group samples at different temporal scales—e.g. sub-trajectories (Memmel et al., 2024),
tasks (Zha et al., 2024), or entire domains (Hejna et al., 2024). Fine-grained clusters offer precise
selection but suffer from high noise, while coarse clusters yield more stable influence estimates at
the cost of detail. We found that the optimal clustering strategy is a function of the dataset size given
a fixed compute budget: the larger the dataset, the fewer times each sample is seen during training,
leading to noisier individual influence estimates. On mid-sized datasets like LIBERO, sub-trajectory
clustering provides a balance between granularity and noise (see App C.3), whereas on large-scale
datasets such as OXE, aggregating trajectory-level influence yields more reliable influence estimates.

Reducing distribution shift. Distribution shift is a particularly pronounced challenge in robotics:
slight changes in lighting, camera pose, or robot dynamics can dramatically alter the data distri-
bution. This issue becomes more severe when selecting data from large, heterogeneous datasets
comprising of a variety of different embodiments, scenes, and tasks. Since datamodels rely on train-
ing policies over the prior data to estimate their impact on target task performance, excessive shift
between the training and target distributions can lead to poor datamodel estimates. To mitigate this,
we include a small fraction of target task data during datamodel estimation to better align the policy’s
learning with the target domain. Specifically, we split Dtarget in half, include one half alongside
the prior data for datamodel estimation, and reserve the other half purely for evaluating the proxy
objective. We apply this technique only in real-world settings (i.e., OXE) since in simulation (i.e.,
MetaWorld, LIBERO) the target data typically comes from a similar distribution as the prior data.

4.3 DATA SELECTION AND POLICY TRAINING

By applying our proposed modifications in Section 4.2 to the datamodel estimators described in
Section 4.1, we obtain a per-cluster attribution score on policy performance. While these attribution
scores can be used in a variety of different ways, in this work we use them to curate a training
subset: we select the top x% of prior examples with the highest positive influence to form Dsel. We
then train the downstream policy π via behavior cloning on Dsel and Dtarget using a co-training
recipe (Lin et al., 2024; Maddukuri et al., 2025; Khazatsky et al., 2024; Nasiriany et al., 2022): at
each training step, we sample fromDtarget with probability α and fromDsel with probability 1−α.

In summary, DataMIL leverages datamodels (Ilyas et al., 2022) to estimate how individual training
examples effect a policy’s performance on a given task. We propose key modifications that make
this estimation tractable and robust in robotics settings—reducing noise, avoiding expensive rollouts,
and minimizing distribution shift. Given a prior datasetD and target datasetDtarget, we (1) Cluster
the prior dataD into trajectories or sub-trajectories, (2) Estimate influence scores using our proposed
proxy metric, with the regression or metagradient datamodel estimators, (3) Select the top ranked
clusters creating Dsel, and (4) Train a final policy co-trained on the target and selected data.

5 EXPERIMENTS

Datasets. We test DataMIL on two widely used multi-task simulation benchmarks: (1) Meta-
World (Yu et al., 2020), contains a suite of 50 distinct robot manipulation tasks, and (2) LIBERO

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

benchmark (Liu et al., 2023), consists of 100 tasks with diverse objects, layouts and scenes. In
the real world we test using the Open-X Embodiment (OXE) datasets (O’Neill et al., 2024) – an
aggregation of diverse robotic datasets collected across various robots and labs around the world.

Training and Evaluation Details. We use the language-conditioned Octo (Octo Model Team et al.,
2024) model in LIBERO and OXE settings, initializing the model with a pretrained checkpoint
provided by the authors to speed up training. For MetaWorld, we use the environment state as
policy input, and hence use a simpler MLP based policy with a Gaussian action head, and study
both goal-conditioned and no-conditioning settings. Results for the latter can be found in App. C.1.

Baselines. We compare DataMIL to the following prior works: BehaviorRetreival (BR) (Du et al.,
2023) trains a VAE on state-action pairs and uses similarity with the target data in the latent space
to retrieve single state-action pairs; FlowRetrieval (Flow) (Lin et al., 2024) uses a similar approach
but trains the VAE on the flow features of the images computed using GMFlow (Xu et al., 2022);
STRAP (Memmel et al., 2024) uses features from a DinoV2 (Oquab et al., 2023) model and uses
dynamic time-warping to retrieve similar sub-trajectories. We also introduce a simple action re-
trieval (AR) heuristic that retrieves based on action sequence similarity. Finally, we train policies
only on the target data (Target-Only), and co-trained with all data (All-Data) to measure the overall
importance of data selection.

5.1 RESULTS

How does data selected using DataMIL impact policy performance?

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Target-Only
All-Data
SR
AR

BR
STRAP
Flow
DataMIL

20

40

60

80

100

S
uc

ce
ss

 ra
te

(a) Avg. success over 50
MetaWorld Tasks

20

25

30

35

40

S
uc

ce
ss

 ra
te

(b) Avg. success over
LIBERO-10

Figure 3: Performance
of policy trained on se-
lected datasets in sim.
environments.

Metaworld. MetaWorld’s 50 manipulation tasks offer a rigorous testbed
for data selection. We construct our prior multi-task dataset D by com-
bining (1) expert demonstrations generated by scripted policies and (2)
lower-quality exploration trajectories sampled from the replay buffer of
a multi-task SAC agent trained across all tasks (see App. F.1 for details).
For each task, we use 5 expert demos as Dtarget, and use the regression-
based datamodel estimator to select the top 10% of samples (Sec. 4).

This setup is challenging as the selection method must both identify rele-
vant tasks and filter noisy, suboptimal actions from the autonomous data.
In Fig. 3a, we report policy performance averaged over all 50 tasks.
Similarity-based baselines perform poorly: state-only (SR) fails to re-
ject poor actions, action-only (AR) selects irrelevant tasks with similar
action distributions, and state-action retrieval (BR) gives equal weight
to both modalities, which may not be the appropriate recipe for all
tasks (App. A.1 provides a qualitative analysis). In contrast, by directly
estimating each sample’s influence on policy performance, DataMIL ef-
fectively identifies useful demonstrations and discards harmful samples.

Can we scale DataMIL to larger and more complex policy classes?

LIBERO. We test DataMIL on 10 long-horizon tasks from the
LIBERO-10 setting, using LIBERO-90 (comprising 4500 human-
teleoperated demonstrations) as the prior dataset and selecting 10% of
the data (App. C.2 compares other selection %). The complex tasks and
the high-dimensional RGB observations in LIBERO demand a powerful
policy; we use Octo (Octo Model Team et al., 2024), a transformer-based
diffusion policy. Training Octo is costly, making the regression estima-
tor (which requires retraining across many subsets) impractical, and so
we employ the metagradient datamodel estimator (Sec. 4.1).

Fig. 3b compares success rates of policies trained on the data selected by DataMIL with the base-
lines in each of the 10 target tasks. The relatively clean structure of LIBERO—single-view, single
embodiment—makes it favorable for baselines that select via visual similarity (eg. STRAP, BR and
Flow). However, we observe that their effectiveness varies significantly across tasks, likely due to
the task-dependent suitability of each heuristic (task-wise success rates are provided in the appendix
Tab. 1). In contrast, DataMIL consistently performs well across all tasks, achieving the highest
average performance overall.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Franka-Ball Franka-Pouch Tiago-Sink Droid-MultitaskAverage

Figure 4: Results on OXE. We evaluate policies trained on subsets of the Open X-Embodiment
dataset selected by different strategies. DataMIL consistently achieves the highest success, high-
lighting the need for end-end policy-aware data selection techniques. (Droid-Multitask shows av-
erage success; per-task results in App. C.6.)

Can we select data from large heterogeneous datasets in the real world?

Open X-Embodiment Dataset (OXE). In the real world, we show data selection from the
OXE (O’Neill et al., 2024) datasets and evaluate on four tasks on two robot embodiments shown
in Figure 4 (top). This setting is particularly challenging: OXE is a heterogeneous aggregation of
data from different labs, robots, camera setups, lighting conditions, and object arrangements. Fur-
ther, none of our test tasks appear in OXE—we avoid matching the scene, camera pose, or objects.
Instead, we aim to understand whether seemingly unrelated prior data can still yield positive transfer
when curated appropriately. Our base setup uses 24 OXE datasets that were part of Octo’s original
training. For the Franka-Ball and Franka-Pouch tasks, we subset this to 13 and 23 datasets, re-
spectively (denoted as OXE-13 and OXE-23). Full details on the number of target demonstrations,
dataset partitions, and evaluation methodology are provided in App. F.3.

Due to the scale of OXE, we replace the All-Data baseline with a Random baseline that randomly
samples the same number of datapoints as DataMIL and other methods. In Figure 4, we observe that
DataMIL effectively selects relevant data even from highly heterogeneous sources. In the simpler
Franka-Ball task, visual similarity-based baselines perform competitively. However, as the dataset
grows more diverse—as in Franka-Pouch—these heuristics begin to break down, while DataMIL
continues to identify data that improves policy performance. In the Tiago-Sink task, we explore
a harder setting, selecting data for the Tiago (Pages et al., 2016) robot, an embodiment that never
appears in the prior data. Despite this, DataMIL is able to select cross-embodiment demonstrations
that improve task success. We discuss this further in Section 5.2. Finally, we move beyond single-
task selection in the Droid-Multitask setting, where the target comprises three tasks: bread in bowl,
napkin in drawer, and open drawer. This setting tests whether a single curated dataset can support
multiple downstream objectives simultaneously. DataMIL consistently outperforms baselines, se-
lecting data that improve its performance on all tasks, yielding a stronger average overall.

These results highlight that DataMIL scales to real-world robotics, handles heterogeneous datasets,
and supports both single-task and multitask learning—even in settings with unseen embodiments.

5.2 WHAT DATA IS SELECTED BY DATAMIL?

Here we discuss and qualitatively analyse the data selected by DataMIL from the OXE dataset. More
visualizations are shown in App. A.2.

Type of embodiments selected. DataMIL is able to select useful data for a completely new embod-
iment in the Tiago-Sink experiment. In Figure 5a we show the highest frequency datasets selected
by DataMIL and observe that even though they are visually quite different (Fig. 8c), sampled from
datasets such as RT-1 (Brohan et al., 2022), BC-Z (Jang et al., 2022) and Bridge (Ebert et al., 2021;
Walke et al., 2023), they still represent the essence of the target task – robots operating on a table top
from an ego-perspective. For baselines, we observe that even when the target embodiment is present

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

BC-Z

Bridge

RT1Furniture Bench

Toto

Austin Mutex

Austin Sirius

Kuka
CMU IAM Lab

Stanford Hydra

(a) Data selected by DataMIL

RT1

Bridge

(b) Data selected by AR

Kuka

Bridge

Austin Sirius

Jaco Play

Berkeley FanucCMU Stretch

(c) Data selected by BR

Figure 5: Distribution of datasets selected by different methods for Tiago-Sink task

in the prior dataset (e.g., Franka), the selected data often comes from unrelated domains. For in-
stance, in Franka-Pouch (Fig. 7), Flow selects data from BC-Z (Google Robot), and BR retrieves
from Bridge (WidowX). This could be due the baselines placing more weight on the scene/distractors
when computing similarities. In contrast, the top five most frequently selected datasets by DataMIL
are all sourced from Franka (Fig. 7a).

Distribution of selected data. In Figures 5 and 7, we show the distribution of datasets selected by
DataMIL and representative baselines for the Tiago-Sink and Franka-Pouch tasks, respectively.
We find that data selected by DataMIL usually balances several different datasets, whereas most
baselines select a majority of their data from a single source. For example, AR retrieves most of
its data from RT-1 in the Tiago-Sink task (Fig. 5b), while Flow disproportionately selects samples
from BC-Z for Franka-Pouch (Fig. 7b). In contrast, DataMIL consistently selects data across a
broader range of datasets in both of these cases (Fig. 5a and 7a). We hypothesize that since there is
no data that exactly matches the target task, the selected data must not only be relevant but general,
so as to enable positive transfer in capabilities and not make the policy overfit to a single type of
domain.

Top and bottom samples. Analyzing the the highest and lowest ranked datapoints by DataMIL in
Figure 8 we find that they typically look similar (e.g., same embodiment or dataset). This makes
sense: similar states can have very different action distributions, and while some of these actions
might help reduce the policy loss on the target data, the others might lead to a large deviation,
making them harmful for final policy learning. This aligns with data attribution works in computer
vision, where harmful data looks very similar to helpful data but with a different label (Ilyas et al.,
2022; Feldman & Zhang, 2020). Understanding how and why these fine-grained differences affect
data selection, and ultimately, the policy performance, is an interesting direction for future work.

6 CONCLUSION

We present DataMIL, a data-driven method for data selection for imitation learning. DataMIL builds
upon the framework of datamodels, which has been applied successfully to data selection in NLP and
CV, and extends it to real-world robotic applications. Extensive experiments in simulation and real-
world settings empirically support that DataMIL retrieves data to train higher-performing policies
than multiple existing state-of-the-art baselines, particularly in complex scenarios. At the same
time, several limitations remain. First, despite employing an efficient metagradient-based estimator,
estimating datamodels still incurs computational costs several times higher than training a policy on
all data (see App. G), making scalability an important challenge. Accelerating datamodel training,
for instance through smaller proxy models, is a promising direction. Second, DataMIL (and data
selection techniques for robot learning more broadly) relies on a range of hyperparameters (e.g.,
target dataset size, clustering sizes) for which we currently lack strong intuitions. We expect future
iterations and broader adoption to make these choices more principled and user-friendly. Finally,
while we demonstrated selection from large prior datasets, our target settings were primarily single-
task. Although the Droid-Multitask setting partially addresses this, extending evaluation to truly
large-scale, multi-task robotics settings remains an open and impactful avenue. Addressing these
limitations will be crucial for scaling DataMIL to practical robotic applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. Section 5 describes all
experimental settings in detail. In addition, Appendix B provides step-by-step descriptions and
pseudocode for estimating datamodels with both regression- and metagradient-based approaches,
Appendix F outlines the full experimental setup for our simulation and real-world environments,
along with the composition of the prior datasets, and Appendix H lists key hyperparameters we
use in DataMIL for each setting. Together, these materials are intended to facilitate transparent
replication of our findings.

REFERENCES

Christopher Agia, Rohan Sinha, Jingyun Yang, Rika Antonova, Marco Pavone, Haruki Nishimura,
Masha Itkina, and Jeannette Bohg. Cupid: Curating data your robot loves with influence func-
tions. arXiv preprint arXiv:2506.19121, 2025.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentiation. CoRR, 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Dan A Calian, Gregory Farquhar, Iurii Kemaev, Luisa M Zintgraf, Matteo Hessel, Jeremy Shar,
Junhyuk Oh, András György, Tom Schaul, Jeffrey Dean, et al. Datarater: Meta-learned dataset
curation. arXiv preprint arXiv:2505.17895, 2025.

Tyler A Chang, Dheeraj Rajagopal, Tolga Bolukbasi, Lucas Dixon, and Ian Tenney. Scalable in-
fluence and fact tracing for large language model pretraining. In The Thirteenth International
Conference on Learning Representations, 2024.

Annie S Chen, Alec M Lessing, Yuejiang Liu, and Chelsea Finn. Curating demonstrations using
online experience. arXiv preprint arXiv:2503.03707, 2025.

Shivin Dass, Wensi Ai, Yuqian Jiang, Samik Singh, Jiaheng Hu, Ruohan Zhang, Peter Stone, Ben
Abbatematteo, and Roberto Martín-Martín. Telemoma: A modular and versatile teleoperation
system for mobile manipulation. arXiv preprint arXiv:2403.07869, 2024.

Maximilian Du, Suraj Nair, Dorsa Sadigh, and Chelsea Finn. Behavior retrieval: Few-shot imitation
learning by querying unlabeled datasets. arXiv preprint arXiv:2304.08742, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
with datamodels. In International Conference on Machine Learning, pp. 12491–12526. PMLR,
2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
Madry. Optimizing ml training with metagradient descent. arXiv preprint arXiv:2503.13751,
2025.

Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Chenxi Wang, Junbo Wang, Haoyi Zhu,
and Cewu Lu. Rh20t: A comprehensive robotic dataset for learning diverse skills in one-shot. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 653–660. IEEE,
2024.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research.
https://github.com/rlworkgroup/garage, 2019.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
Machine Learning, 113(5):2351–2403, 2024.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383–393, 1974.

Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch, and Dorsa Sadigh. Re-mix: Optimizing
data mixtures for large scale imitation learning. arXiv preprint arXiv:2408.14037, 2024.

Joey Hejna, Suvir Mirchandani, Ashwin Balakrishna, Annie Xie, Ayzaan Wahid, Jonathan Tompson,
Pannag Sanketi, Dhruv Shah, Coline Devin, and Dorsa Sadigh. Robot data curation with mutual
information estimators. arXiv preprint arXiv:2502.08623, 2025.

Andrew Ilyas and Logan Engstrom. Magic: Near-optimal data attribution for deep learning, 2025.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In Proceedings of the 39th International Con-
ference on Machine Learning, 2022.

Andrew Ilyas, Kristian Georgiev, Logan Engstrom, and Sung Min Park. Data attribution at scale.
Tutorial at ICML 2024, 2024. URL https://ml-data-tutorial.org.

Saachi Jain, Hadi Salman, Alaa Khaddaj, Eric Wong, Sung Min Park, and Aleksander Madry. A
data-based perspective on transfer learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3613–3622, 2023.

Saachi Jain, Kimia Hamidieh, Kristian Georgiev, Andrew Ilyas, Marzyeh Ghassemi, and Aleksander
Madry. Improving subgroup robustness via data selection. Advances in Neural Information Pro-
cessing Systems, 37:94490–94511, 2024.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

11

https://github.com/rlworkgroup/garage
https://ml-data-tutorial.org

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Ley, Suraj Srinivas, Shichang Zhang, Gili Rusak, and Himabindu Lakkaraju. Generalized group
data attribution. arXiv preprint arXiv:2410.09940, 2024.

Jinkun Lin, Anqi Zhang, Mathias Lécuyer, Jinyang Li, Aurojit Panda, and Siddhartha Sen. Mea-
suring the effect of training data on deep learning predictions via randomized experiments. In
International Conference on Machine Learning, pp. 13468–13504. PMLR, 2022.

Li-Heng Lin, Yuchen Cui, Amber Xie, Tianyu Hua, and Dorsa Sadigh. Flowretrieval: Flow-guided
data retrieval for few-shot imitation learning. arXiv preprint arXiv:2408.16944, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Zifan Liu, Amin Karbasi, and Theodoros Rekatsinas. Tsds: Data selection for task-specific model
finetuning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

Abhiram Maddukuri, Zhenyu Jiang, Lawrence Yunliang Chen, Soroush Nasiriany, Yuqi Xie,
Yu Fang, Wenqi Huang, Zu Wang, Zhenjia Xu, Nikita Chernyadev, et al. Sim-and-real co-training:
A simple recipe for vision-based robotic manipulation. arXiv preprint arXiv:2503.24361, 2025.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao,
John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In Conference on Robot Learning, pp. 879–893. PMLR, 2018.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. arXiv preprint arXiv:2310.17596, 2023.

Marius Memmel, Jacob Berg, Bingqing Chen, Abhishek Gupta, and Jonathan Francis. Strap: Robot
sub-trajectory retrieval for augmented policy learning. arXiv preprint arXiv:2412.15182, 2024.

Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior
data for skill-based imitation learning. arXiv preprint arXiv:2210.11435, 2022.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Jordi Pages, Luca Marchionni, and Francesco Ferro. Tiago: the modular robot that adapts to different
research needs. In International workshop on robot modularity, IROS, volume 290, 2016.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
TRAK: Attributing model behavior at scale. In Arxiv preprint arXiv:2303.14186, 2023.

Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple interactions made
easy (mime): Large scale demonstrations data for imitation. In Conference on robot learning, pp.
906–915. PMLR, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset
for robot learning at scale. In Conference on Robot Learning, pp. 1723–1736. PMLR, 2023.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: se-
lecting influential data for targeted instruction tuning. In Proceedings of the 41st International
Conference on Machine Learning, pp. 54104–54132, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36:69798–
69818, 2023.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. Gmflow: Learning
optical flow via global matching. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 8121–8130, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Lihan Zha, Yuchen Cui, Li-Heng Lin, Minae Kwon, Montserrat Gonzalez Arenas, Andy Zeng, Fei
Xia, and Dorsa Sadigh. Distilling and retrieving generalizable knowledge for robot manipulation
via language corrections. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 15172–15179. IEEE, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A QUALITATIVE RESULTS: WHAT DATA IS SELECTED BY DATAMIL?

(a) Composition of data selected via DataMIL

pic
k-p

lac
e-w

all

ass
em

bly
soc

cer

cof
fee

-pu
ll

ha
nd

le-
pu

ll

wind
ow

-clo
se

bin
-pi

cki
ng

dis
ass

em
ble

pla
te-

slid
e

pu
sh-

wall

bu
tto

n-p
res

s

cof
fee

-pu
sh

do
or-

op
en

pic
k-o

ut-
of-

ho
le

pic
k-p

lac
e

pu
sh-

ba
ck
pu

sh

ha
nd

le-
pu

ll-s
ide

lev
er-

pu
ll

pla
te-

slid
e-b

ack

pla
te-

slid
e-s

ide

wind
ow

-op
en

bu
tto

n-p
res

s-t
op

do
wn-w

all

bu
tto

n-p
res

s-w
all

cof
fee

-bu
tto

n

do
or-

loc
k

dra
wer-

clo
se

stic
k-p

ull

stic
k-p

ush
sw

ee
p

ba
ske

tba
ll

do
or-

clo
se

do
or-

un
loc

k

fau
cet

-op
en

pla
te-

slid
e-b

ack
-sid

e

pe
g-i

nse
rt-s

ide

pe
g-u

np
lug

-sid
e

she
lf-p

lac
e

bu
tto

n-p
res

s-t
op

do
wn

dia
l-tu

rn

fau
cet

-clo
se

ha
mmer

ha
nd

-in
ser

t

ha
nd

le-
pre

ss

bo
x-c

los
e

dra
wer-

op
en

ha
nd

le-
pre

ss-
sid

e
rea

ch

sw
ee

p-i
nto

rea
ch-

wall
0.0

0.2

0.4

0.6

0.8

1.0

%
 d

at
a

se
le

ct
ed

 fr
om

 ta
sk

/s
ou

rc
e

(b) Composition of data selected via SR

pu
sh-

wall

pic
k-p

lac
e-w

all

she
lf-p

lac
e
pu

sh

pic
k-p

lac
e

sw
ee

p-i
nto

pu
sh-

ba
ck

pe
g-i

nse
rt-s

ide
rea

ch

rea
ch-

wall

pla
te-

slid
e

soc
cer

pla
te-

slid
e-b

ack
-sid

e

pla
te-

slid
e-b

ack

pla
te-

slid
e-s

ide

cof
fee

-pu
sh

ass
em

bly

ba
ske

tba
ll

bin
-pi

cki
ng

bo
x-c

los
e

bu
tto

n-p
res

s-t
op

do
wn

bu
tto

n-p
res

s-t
op

do
wn-w

all

bu
tto

n-p
res

s

bu
tto

n-p
res

s-w
all

cof
fee

-bu
tto

n

cof
fee

-pu
ll

dia
l-tu

rn

dis
ass

em
ble

do
or-

clo
se

do
or-

loc
k

do
or-

op
en

do
or-

un
loc

k

dra
wer-

clo
se

dra
wer-

op
en

fau
cet

-clo
se

fau
cet

-op
en

ha
mmer

ha
nd

-in
ser

t

ha
nd

le-
pre

ss-
sid

e

ha
nd

le-
pre

ss

ha
nd

le-
pu

ll-s
ide

ha
nd

le-
pu

ll

lev
er-

pu
ll

pe
g-u

np
lug

-sid
e

pic
k-o

ut-
of-

ho
le

stic
k-p

ull

stic
k-p

ush
sw

ee
p

wind
ow

-clo
se

wind
ow

-op
en

0.0

0.2

0.4

0.6

0.8

1.0
Expert Demos
Expert Demos (Target Task)
Suboptimal Demos

(c) Composition of data selected via AR

bu
tto

n-p
res

s-t
op

do
wn

ha
mmer

ass
em

bly

pic
k-p

lac
e-w

all

pic
k-p

lac
e

dia
l-tu

rn

ha
nd

-in
ser

t

pu
sh-

ba
ck

dis
ass

em
ble

she
lf-p

lac
e

ba
ske

tba
ll

stic
k-p

ush

wind
ow

-clo
se

wind
ow

-op
en

bin
-pi

cki
ng

bu
tto

n-p
res

s-w
all

lev
er-

pu
ll

bo
x-c

los
e

soc
cer

dra
wer-

clo
se

fau
cet

-op
en
rea

ch

stic
k-p

ull

ha
nd

le-
pre

ss-
sid

e

pla
te-

slid
e-b

ack
-sid

e

fau
cet

-clo
se
pu

sh

rea
ch-

wall

pe
g-i

nse
rt-s

ide

pic
k-o

ut-
of-

ho
le

pe
g-u

np
lug

-sid
e

pu
sh-

wall

ha
nd

le-
pu

ll-s
ide

pla
te-

slid
e-s

ide

cof
fee

-pu
sh

do
or-

op
en

bu
tto

n-p
res

s-t
op

do
wn-w

all

do
or-

loc
k

pla
te-

slid
e-b

ack

do
or-

clo
se

sw
ee

p-i
nto

do
or-

un
loc

k

dra
wer-

op
en

ha
nd

le-
pu

ll

bu
tto

n-p
res

s

cof
fee

-bu
tto

n

cof
fee

-pu
ll

ha
nd

le-
pre

ss

pla
te-

slid
e
sw

ee
p

0.0

0.2

0.4

0.6

0.8

1.0

%
 d

at
a

se
le

ct
ed

 fr
om

 ta
sk

/s
ou

rc
e

(d) Composition of data selected via BR

pla
te-

slid
e-b

ack
-sid

e

pla
te-

slid
e-s

ide

pic
k-p

lac
e

pic
k-p

lac
e-w

all

pu
sh-

wall

stic
k-p

ushpu
sh

she
lf-p

lac
e

stic
k-p

ull

pe
g-i

nse
rt-s

ide
soc

cer

pu
sh-

ba
ck

sw
ee

p-i
nto

lev
er-

pu
ll

cof
fee

-pu
ll

cof
fee

-pu
sh

dis
ass

em
ble

bo
x-c

los
e

pla
te-

slid
e

pla
te-

slid
e-b

ack

rea
ch-

wall
rea

ch

ba
ske

tba
ll

do
or-

op
en

pe
g-u

np
lug

-sid
e

ass
em

bly

bin
-pi

cki
ng

bu
tto

n-p
res

s-t
op

do
wn

bu
tto

n-p
res

s-t
op

do
wn-w

all

bu
tto

n-p
res

s

bu
tto

n-p
res

s-w
all

cof
fee

-bu
tto

n

dia
l-tu

rn

do
or-

clo
se

do
or-

loc
k

do
or-

un
loc

k

dra
wer-

clo
se

dra
wer-

op
en

fau
cet

-clo
se

fau
cet

-op
en

ha
mmer

ha
nd

-in
ser

t

ha
nd

le-
pre

ss-
sid

e

ha
nd

le-
pre

ss

ha
nd

le-
pu

ll-s
ide

ha
nd

le-
pu

ll

pic
k-o

ut-
of-

ho
le
sw

ee
p

wind
ow

-clo
se

wind
ow

-op
en

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: MetaWorld Qualitative Results. Percentage of data selected from each task and ex-
pert/suboptimal source for DataMIL, SR, AR and BR

A.1 METAWORLD

As described in Appendix F.1, our prior dataset for MetaWorld combines both expert and sub-
optimal demonstrations. In our experiments, we retrieve the top 10% of this data ranked by DataMIL
to train the policy. Here, we qualitatively examine the dataset selected by DataMIL for the pick-
place-wall task.

Figure 6 shows the percentage of data selected from each task and data source (expert or subopti-
mal). We observe that SR, while able to retrieve samples from relevant tasks, fails to differentiate
between expert and sub-optimal demonstrations—resulting in the inclusion of a large fraction of
low-quality data. In contrast, AR filters out sub-optimal samples more effectively by matching ac-
tions, but it lacks task awareness due to its disregard for state information, often pulling data from
irrelevant tasks. BR, which embeds both state and action features jointly, exhibits a blend of SR
and AR behaviors—capturing elements of both but also inheriting their limitations. In compari-
son, DataMIL consistently selects data from the correct task (green bar) while also avoiding noisy,
sub-optimal examples.

A.2 OXE

Figure 8 visualizes the highest and lowest ranked datapoints identified by DataMIL for real-world
tasks. As discussed in the main text, these examples often appear visually similar, aligning with
findings in computer vision (Ilyas et al., 2022; Feldman & Zhang, 2020) where data points that look
alike but carry different labels can mislead the model. In robotics, this may occur when visually
similar observations correspond to different actions, thereby confusing the policy. How and why
these fine-grained differences affect data selection, and ultimately, the policy performance, is an
interesting direction for future work.

B ESTIMATING DATAMODELS

In this section, we describe the datamodeling framework in more detail. In particular, we first pro-
vide the formal version of Informal Definition 1, then describe the estimators that we use to construct
datamodels in this work, namely the regression estimator and the metagradient-based estimator.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Austin Sirius

Furniture
Bench

Austin Mutex

Stanford HydraAustin Sailor
BC-Z

RT1

Bridge

CMU IAM
Lab

Toto

Taco Play
Viola
Jaco Play

(a) Data selected by DataMIL

BC-ZRT1

Toto

Furniture
Bench

Bridge
Taco Play

(b) Data selected by Flow

Bridge

Austin Mutex

Austin Sirius

Taco Play

Berkeley
Fanuc

CMU Stretch

Stanford Hydra

(c) Data selected by BR

Figure 7: Distribution of datasets selected by different methods for Franka-Pouch task

(a) Franka-Ball

BottomTop Top Bottom

Target Obs.

Top Bottom

Target Obs.

Target Obs.

Top Bottom

Target Obs.

(b) Franka-Pouch

BottomTop Top Bottom

Target Obs.

Top Bottom

Target Obs.

Target Obs.

Top Bottom

Target Obs.

(c) Tiago-Sink
BottomTop Top Bottom

Target Obs.

Top Bottom

Target Obs.

Target Obs.

Top Bottom

Target Obs.

(d) Droid-Multitask

Top Bottom

Target Obs.

Figure 8: Top and bottom ranked samples by DataMIL for each of the real-world tasks

B.1 FORMALIZING DATAMODELING

The goal of datamodeling is to construct a function f̂ that can predict the performance of a learning
algorithm A on any given subset of the data D′ ⊂ D without actually training a policy on that
subset. Let D be a prior dataset of imitation-learning data of size N = |D|, and let us represent
any subset of D as a binary vector w ∈ {0, 1}N where wi = 1 if the i-th training sample is in
the subset and wi = 0 otherwise. Let a learning algorithm A be a function that takes as input a
dataset (represented as a binary vector w) and outputs a policy A(w). The datamodeling problem
is to construct a function f̂ that can predict the performance of A(w) when trained on any given
subset of the data without actually training a policy on that subset. More formally, we aim to find a
function f̂ minimizing the following loss:

Ew∼Bernoulli(1
2)

N

[(
M(A(w))− f̂(w)

)2
]
, (6)

whereM is the target metric and w ∼ Bernoulli(12)
N is a random binary vector of length N .

Recall from the main text that we are particularly interested in datamodels f̂ that are additive in the
training dataset—in terms of our formalization, we are interested in functions f̂ of the form

f̂(w) = w⊤β. (7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 Regression Estimator

Input: Dataset D of size N , policy learner A(·),
target metricM(·)
Hyperparameters: binary masks m, prob. p

▷ Generate training pairs for the surrogate
T ← []
for i← 1 to m do

Sample wi ∼ Bernoulli(p)N

Train policy on subset: πi ← A(wi)
Evaluate performance: yi ←M(πi)
Append pair: T ← T + [(wi, yi)]

▷ Fit linear datamodel using Eq. 8

β̂ ← arg min
β∈RN

1

m

m∑
i=1

(
yi −w⊤

i β
)2

return β̂

Algorithm 2 Metagradient-based Estimator

Input: initial included data c = 1n, policy learner
A(·), target metricM(·)
Hyperparameters: step size p, number of steps T

▷ Gradient Storage
G← []
▷ Metagradient descent loop
for t← 1 to T do

w← 0n

▷ Compute metagradients

g← ∂M(A′
c(w))

∂w
Sample m ∼ Bernoulli(p)N

Store g: G← G+ [g ⊙m]
▷ Update Counts
c← c− sign(g)⊙m

return G

for some vector β ∈ RN . An estimation method for datamodels is thus just a method for finding a
good estimate of the vector β. We refer the reader to Ilyas et al. (2022) for a more detailed discussion
of datamodeling.

B.2 REGRESSION ESTIMATOR

The regression estimator is a simple yet effective method for estimating the vector β that treats
datamodeling as a supervised learning problem. In particular, the regression estimator first samples
a set of m binary vectors w1, . . . ,wm ∼ Bernoulli(p)N where p is the probability of inclusion; for
each of these binary vectors, it trains a policy A(wi) on the subset of the data indexed by wi, and
evaluates its performance using the target metricM. It then fits a linear model to the performance
of these policies on the sampled binary vectors, i.e., it solves

min
β∈RN

1

m

m∑
i=1

(
M(A(wi))−w⊤

i β
)2

, (8)

and uses the resulting vector β̂ as the parameters of the datamodel f̂(w) = w⊤β̂. The cost of build-
ing this estimator is high, since it requires training a policy for each of the m binary vectors, but Ilyas
et al. (2022) shows that the estimator can be very accurate, and indeed identifies highly influential
subsets of the prior dataset. Pseudocode for the regression estimator is provided in Algorithm 1.

B.3 METAGRADIENT-BASED ESTIMATOR

The metagradient-based estimator is a more sophisticated method for estimating the vector β that
avoids the high cost of training a policy for each binary vector. Instead, the metagradient-based
estimator operates by leveraging a classical statistical tool called the influence function (Hampel,
1974). Intuitively, the metagradient-based estimator proceeds as follows. First, instead of thinking
of training datasets as binary vectors w ∈ {0, 1}N , we think of them as real-valued vectors w ∈
[0, 1]N , where each coordinate wi corresponds to the importance weight placed on the i-th training
sample in the dataset. Concretely, if wi = 0, then the i-th training sample is not used in the training
set, and if wi = 1, then the i-th training sample is used in the training set with full weight; if
0 < wi < 1, then the i-th training sample is used in the training set but its loss is scaled by zi.
Observe that this parameterization is equivalent to the binary parameterization for wi ∈ {0, 1}, but
gives us a continuous way to represent the training set.

Once we have this continuous parameterization, we can write the first-order approximation to
M(A(w)) as,

M(A(w)) ≈M(A(w0)) +∇M(A(w0))
⊤(w −w0), (9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where w0 is the vector of all ones. The gradient ∇M(A(w0)) is known as the influence function,
and gives us a linear approximation to the loss in Equation 6. That is, if we could compute the
influence function exactly, we could use it as a datamodel directly, i.e.,

f̂(w) =M(A(w0)) +∇M(A(w0))
⊤(w −w0). (10)

Traditionally, the influence function is notoriously hard to compute, and so prior work on data at-
tribution has focused on approximating it (Koh & Liang, 2017; Park et al., 2023; Bae et al., 2024).
However, recent work has shown how to compute it exactly and efficiently (Engstrom et al., 2025)
and how to use this exact influence function as a datamodel estimator (Ilyas & Engstrom, 2025).

Observe that in order for the metagradient-based estimator to be valid, the functionM(A(w)) must
be differentiable with respect to w. For this to be satisfied, it is sufficient for (a) the target metric
M to be differentiable with respect to the policy A(w), and (b) the policy A(w) to be trained via
an iterative algorithm composed of elementary differentiable operations (which is almost all of the
popular off-the-shelf learning algorithms).

Gradient descent on training data. To operationalize the metagradient-based estimator, we use the
Metagradient Descent (MGD) algorithm (Engstrom et al., 2025), to compute influence scores and
iteratively refine the dataset. The algorithm views data selection as an optimization problem over
the selected data counts c ∈ {0, 1}N , where ci = 1 indicates inclusion of the i-th sample.

Given a count vector c, let Ac denote the policy obtained by training on the dataset defined by c,
and letM(Ac) denote its evaluation on the target metric. MGD introduces a differentiable surrogate
A′

c(w), where w ∈ RN perturbs the per-sample weights during training only at a certain iteration
k, while keeping the rest of the training as is. By construction, setting w = 0 recovers the original
training procedure, i.e., A′

c(0) = Ac.

We can then compute the influence/metagradient as,

g = ∇wM(A′
c(w))

∣∣∣
w=0

, (11)

which measures how an infinitesimal upweighting of each training example at the kth iteration would
affect the downstream performance. The sign of Ii thus reveals whether increasing or decreasing
the weight of sample i would improveM.

To update the dataset, MGD applies stochastic coordinate updates: a random mask m ∼
Bernoulli(p)N selects a subset of coordinates to update, and the counts are modified as

c← c− sign(g)⊙m, (12)

where ⊙ denotes elementwise multiplication. This step is analogous to performing gradient descent
over training samples with p as the learning rate. Repeating this process iteratively over T steps
refines c, yielding a dataset concentrated on the most influential examples. In our experiments, we
found that averaging the gradients g computed over the T iterations lead to more reliable influ-
ence scores. A pseudocode of the algorithm is provided in Algorithm 2 and we refer the reader to
Engstrom et al. (2025) for more details.

C COMPARISONS AND ADDITIONAL RESULTS

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

Target-Only
All-Data
SR

AR
BR
DataMIL

20

40

60

80

100

S
uc

ce
ss

 ra
te

Figure 9: Avg. suc-
cess on MetaWorld with-
out goal conditioning.

Here we provide some additional results and show a comparison of some
key hyperparameters such as percentage of data selected, cluster size and
more.

C.1 METAWORLD NO-GOAL CONDITIONING EXPERIMENTS

In Figure 3 of the main paper, we presented results on MetaWorld with
goal conditioning, where policies receive explicit goal information pro-
vided by the simulator. Goal-conditioning is often essential in settings
like LIBERO and OXE, where the target task has limited demonstrations
and generalization from other tasks is required. However, in MetaWorld,
the prior dataset already includes expert demonstrations for the target

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) ablating the selected data % (b) ablating the cluster size (c) ablating the co-training ratio

Figure 10: Ablation experiments of DataMIL over different key data selection and training hyper-
parameters. Each experiment is averaged over 5 seeds on each of the tasks in LIBERO-5. In (a) and
(c) each data point represents an averaged success rate over all 5 tasks.

tasks. Therefore, an effective data selection method should be capable of retrieving relevant exam-
ples—even in the absence of goal information.

To test this, we repeat the MetaWorld experiments described in Appendix F.1, but mask out goal
states during both data selection and policy training. Results averaged over all 50 tasks are shown
in Figure 9. Even without goal-conditioning, DataMIL continues to outperform the best baseline by
10% in average success rate. However, overall performance across all methods declines compared
to the goal-conditioned setting (Figure 3a), highlighting that, without goal information, selected data
from other tasks can introduce harmful interference during training.

C.2 COMPARISON: PERCENTAGE OF DATA SELECTED

A key hyperparameter in data selection is the proportion of prior data to select. Unfortunately,
there is no principled way to determine this value other than training and evaluating policies across
different selection ratios. To enable systematic ablations, we construct a smaller benchmark within
the LIBERO suite, denoted LIBERO-5, consisting of five tasks: Book-Caddy, Bowl-Cabinet, Cream-
Butter, Mug-Microwave, and Soup-Cheese.

Figure 10a reports the average performance of DataMIL and two baselines, BR (Du et al., 2023)
and Flow (Lin et al., 2024), on LIBERO-5 while varying the percentage of prior data selected. At
low selection ratios (5% and 10%), DataMIL substantially outperforms the baselines, highlighting its
ability to prioritize higher-quality samples compared to heuristic-based methods. At higher selection
ratios (≥ 20%), the performance gap narrows and all methods achieve comparable results, as the
majority of useful data is eventually included, diminishing the impact of the selection strategy.

C.3 COMPARISON: CLUSTER SIZE

As described in Section 4.2, we group individual state–action pairs into temporal clusters before
estimating their influence on policy performance via datamodels. We evaluate the effect of clus-
ter granularity on LIBERO-5, with results shown in Figure 10b. Specifically, we compare three
strategies: Cluster-15 (sub-trajectories of length 15), Cluster-30 (sub-trajectories of length 30), and
Trajectory (entire trajectories as clusters). We observe that finer-grained clustering yields higher
performance, as it provides more precise control over which segments of data are selected. Accord-
ingly, our main experiments adopt a cluster size of 15.

C.4 COMPARISON: CO-TRAINING RATIO

While the data selected by DataMIL can be leveraged in multiple ways, we adopt a co-training
strategy that combines target data Dtarget and selected data Dsel. At each training step, a batch is
drawn from Dtarget with probability α and from Dsel with probability 1− α. Although this choice
is not intrinsic to DataMIL, it influences downstream performance. Figure 10c shows the average

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Tasks Target-Only All-Data AR BR Flow STRAP DataMIL (ours)

LIBERO Evaluations

Soup-Sauce 13.2 ± 7.6 20.0 ± 15.6 32.8 ± 9.3 38 ± 15.3 50 ± 14.4 33.2 ± 15.10.7 39.2 ± 11.9

Cream-Butter 27.6 ± 6.5 35.2 ± 13.2 39.6 ± 10.7 41.2 ± 14.6 47.2 ± 10.8 20.0 ± 9.7 50.4 ± 8.6

Stove-Moka 27.4 ± 7.3 24.0 ± 9.8 31.2 ± 8.1 30.4 ± 10.0 33.2 ± 6.7 43.6 ± 5.5 40.4 ± 8.5

Bowl-Cabinet 48.8 ± 6.4 65.6 ± 8.3 62.8 ± 3.3 73.6 ± 8.5 69.2 ± 12.2 77.2 ± 10.3 72.4 ± 5.2

Mug-Mug 0.4 ± 0.9 2.0 ± 2.44 4.8 ± 2.3 2.0 ± 2.8 6.4 ± 6.5 5.2 ± 5.2 0.8 ± 1.1

Book-Caddy 51.2 ± 8.3 58.4 ± 10.7 65.2 ± 13.1 76.8 ± 7.6 69.2 ± 13.2 83.2 ± 7.8 82.4 ± 1.7

Mug-Pudding 2.0 ± 2.0 2.4 ± 1.7 5.6 ± 5.9 8.4 ± 2.2 5.8 ± 3.5 10.8 ± 6.9 4.8 ± 3.3

Soup-Cheese 11.2 ± 3.3 22.0 ± 6.5 29.3 ± 10.4 35.2 ± 5.2 26.8 ± 4.8 35.2 ± 3.9 36.0 ± 6.0

Moka-Moka 5.6 ± 4.3 12 ± 8.2 4.8 ± 2.3 15.2 ± 4.1 7.6 ± 5.5 6.8 ± 1.8 12.0 ± 5.5

Mug-Microwave 27.6 ± 13.5 35.6 ± 10.4 29.2 ± 10.6 43.2 ± 9.9 38.8 ± 5.2 34.4 ± 8.3 39.2 ± 12.7

Libero-Average 21.5 27.72 30.52 36.4 35.42 34.96 37.76

OXE Evaluations

Franka-Ball 21.4 35.7 28.6 50.0 28.6 57.1 50.0

Franka-Pouch 17.6 17.6 11.8 41.2 35.3 29.4 70.6

Tiago-Sink 33.3 43.6 35.9 46.2 46.2 38.5 64.1

Droid (Drawer) 0.0 0.0 0.0 20.0 70.0 55.0 75.0

Droid (Bread) 4.2 33.3 20.8 0.0 41.7 16.7 41.7

Droid (Napkin) 25.0 45.0 40.0 45.0 40.0 35.0 65.0

Droid-Multitask 9.4 26.6 20.3 20.3 50.0 34.4 59.4

Real-Average 20.4 30.9 24.1 39.4 40.0 39.8 61.0

Table 1: Numerical results for LIBERO and OXE evaluations

LIBERO-5 results of DataMIL and the All-Data baseline across different co-training ratios α. We
find that α = 0.5 consistently yields the best results. Given the similar setup between our simulation
and real-world experiments, and the high cost of real-world evaluations, we adopt α = 0.5 for
real-robot experiments as well.

C.5 COMPARISON: LONGER TRAINING FOR ALL-DATA BASELINE

Since the All-Data baseline leverages substantially more training data than other methods, we also
investigate whether it benefits from extended training. On LIBERO-5, we compare training du-
rations of 1×, 2×, and 4× the number of steps used for other methods. The resulting average
performances are 43.36, 44.13, and 38.40, respectively. These results indicate no consistent benefit
from longer training; in fact, excessive training can degrade performance due to overfitting. For
fairness, we therefore use the same number of training steps across DataMIL and all baselines.

C.6 NUMERICAL RESULTS AND DISCUSSION

Task-wise numerical success rates for the LIBERO and real-world settings are reported in Table 1.
Our results on LIBERO differ from those reported in the original STRAP paper on a similar setting,
and we attribute these differences to two key factors:

1. Evaluation Protocol. We suspect that the main contributing factor is likely a difference
in the evaluation protocol. In the original STRAP implementation, the authors evaluate
multiple training checkpoints and report results from the best-performing model. This can
lead to higher reported success rates. In contrast, our evaluation protocol follows a stricter
setup: we evaluate the policy only once, at the final checkpoint after training completes,
without any checkpoint selection.

2. Policy Architecture. While we use the original STRAP data retrieval code, we differ in
the policy architecture used for imitation learning. Specifically, we train with Octo (Octo
Model Team et al., 2024), a large transformer-based diffusion policy, whereas STRAP uses
a transformer-based policy from Robomimic (Mandlekar et al., 2021) with a Gaussian mix-
ture head. These two models have different inductive biases, which can lead to variation
in performance across tasks. For example, when trained solely on the five target demon-
strations from the moka-moka task, Octo achieves a 6% success rate, while Robomimic

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

achieves 0%. However, in the mug-mug task, the Robomimic policy reaches 38% success,
while Octo performs close to 0%.

We believe that both protocol differences and model architecture contribute to the gap in reported
numbers, and since our goal is to study data selection, our results reflect a fair and consistent evalu-
ation under a unified training and assessment setup across all baselines.

D PROXY METRIC DETAILS

Recall from Eq. 5 that our general proxy metric is

M̂(π,Dtarget) =
1

|Dtarget|
∑

(s,a)∈Dtarget

−LBC(π(s), a)

where LBC is the behavior-cloning loss appropriate to the policy class. Here we provide how the
equation looks like for specific policy classes that we used in our experiments.

MetaWorld. We parametarize the policy in MetaWorld as,
πθ(a | s) = N

(
a; µθ1(s), diag(σθ2(s)

2)
)

and consider two forms of LBC :

1. Negative Log-Likelihood (NLL):
LNLL(s, a) = − log πθ(a | s)

= 1
2 (a− µθ1(s))

⊤Σ(s)−1 (a− µθ1(s)) + 1
2 log det

(
2πΣ(s)

)
(13)

2. l1 loss:
Lℓ1(s, a) =

∥∥a − µθ1(s)
∥∥
1

(14)

Empirically, the l1 loss works better for the regression estimator, while metagradient-based estima-
tor performs well with the NLL loss.

LIBERO and OXE. In the LIBERO and OXE settings, we use Octo as the learning model which
is a transformer-based policy with a diffusion action head. It’s behavior-cloning loss is the standard
denoising score-matching objective:

Ldiff(s, a) = Et∼Uniform[1,T], ϵ∼N (0,I)

∥∥∥ϵ− ϵθ
(√

ᾱt a+
√
1− ᾱt ϵ, s, t

)∥∥∥2
where αt ∈ (0, 1) is the forward-process noise schedule, ᾱt =

∏t
i=1 αi, and ϵθ(at, s, t) is the

network’s noise prediction.

Substituting LBC = Ldiff into the proxy metric gives,

M̂(π,Dtarget) = − 1

|Dtarget|
∑

(s,a)∈Dtarget

Et,ϵ

∥∥∥ϵ− ϵθ
(√

ᾱt a+
√
1− ᾱt ϵ, s, t

)∥∥∥2 (15)

D.1 UP-WEIGHTING RELEVANT STATES

In robotics, more often than not we have some information about what states and actions are of
higher importance than others, for example states closer to object interactions may be more relevant
than moving around in free space. Our proxy metric provides a seamless way to incorporate prior
knowledge by re-weighting important states in the behavioral cloning loss. Concretely, we introduce
a state-action-dependent weight w(s, a) into the objective:

M̂(π,Dtarget) =
1

|Dtarget|
∑

(s,a)∈Dtarget

−w(s, a)LBC(π(s), a)

By default, we set w(s, a) = 1 and use the unweighted proxy. In the LIBERO experiments, however,
we found that doubling the weight for states immediately preceding a grasp significantly improves
data selection. Thus, for those “pre-grasp” states we use w(s, a) = 2, while all other states retain
w(s, a) = 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E BASELINE IMPLEMENTATION

Implementation details of the baselines are provided below.

• FlowRetrieval (Lin et al., 2024) and BehaviorRetrieval (Du et al., 2023): FlowRe-
trieval (Flow) and Behavior Retrieval (BR) baselines compute similarity on the image flows
and state-action pairs respectively. Since these features typically include high-dimensional
image observations, Flow and BR train VAEs to encode the features into a more manage-
able latent space, which they can use to compute similarities between prior and target data.
We used the implementation provided by the authors of FlowRetrieval (Lin et al., 2024) for
training the VAEs and computing the similarity for both, Flow and BR, in the LIBERO and
OXE settings (https://github.com/lihenglin/bridge_training_code).
For both Flow and BR (and other heuristics such as Action Retrieval (AR) and State Re-
trieval (SR)), once each state in the prior data is assigned a score based on the similarity
measure, we select the top x% of the data most similar to the target where x is the selection
budget.

• STRAP (Memmel et al., 2024): In the LIBERO experiments, we use the authors’ STRAP
implementation (https://github.com/WEIRDLabUW/STRAP) to embed sub-
trajectories with DinoV2 (Oquab et al., 2023) and compute similarity via dynamic time
warping. STRAP expects HDF5-formatted inputs, but our OXE pipeline relies on TFDS.
We therefore adapted the STRAP code to accept TFDS datasets without altering its core
logic.
While STRAP’s original recommendation is to retrieve the top 100 sub-trajectories
in LIBERO, we found that training Octo on these segments underperforms. Instead,
we retrieve the most similar sub-trajectories until they constitute 10% of the prior
data—matching the budget used by DataMIL and our other baselines. In LIBERO, this
modification boosts success from 24.72% (with 100 segments) to 34.96% (our reported
results) averaged over LIBERO-10 tasks. We apply the same retrieval strategy on OXE,
sampling sub-trajectories until we match the selection size of our method and baselines.

For MetaWorld, we found it more effective to compute similarity over temporal windows rather
than individual state–action pairs. Specifically, for each baseline (BR, SR, AR), we slide a fixed-
length horizon H over both prior and target data, concatenate each segment’s states (and actions)
into a single high-dimensional vector, and then measure similarity between these flattened vectors.
This horizon-based approach captures temporal context, enabling the baselines to reject noisy or
suboptimal samples—ultimately improving retrieval quality and downstream policy performance.
Our initial experiments foundH = 50 to perform best.

F TRAINING AND EVALUATION DETAILS

F.1 METAWORLD

Dataset. The MetaWorld dataset is constructed from two sources: scripted expert policies and
reinforcement learning (RL) exploration. MetaWorld provides scripted policies for each of its 50
tasks, which we use to generate 4,000 episodes totaling 350K environment steps. For the RL data,
we train a multi-task SAC agent on all 50 tasks for 12 million transitions, reaching an average
success rate of 21%. To create a representative prior dataset, we uniformly subsample from the SAC
replay buffer across all tasks, yielding 1 million environment steps—approximately 3× larger than
the scripted data. For each target task, we generate 5 expert demonstrations using the scripted policy
as Dtarget.

Datamodel estimation using DataMIL. We cluster the prior dataset at the trajectory level and use
5 demonstrations from Dtarget to compute the proxy objective. We then compute the datamodels
using the regression-based datamodel estimator. The top 10% of prior trajectories, ranked by the
datamodels, are selected to form Dsel.

Policy Training and Evaluation. We train a behavior cloning policy with an MLP backbone and
a tanh-squashed Gaussian output distribution from garage (garage contributors, 2019) on Dsel. In

21

https://github.com/lihenglin/bridge_training_code
https://github.com/WEIRDLabUW/STRAP

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 2: Datasets utilized across the OXE subsets in our experimental setup

Dataset OXE13 OXE23 OXE24 Dataset OXE13 OXE23 OXE24

RT1 ✓ ✓ ✓ CMU IAM Lab ✓ ✓ ✓
Viola ✓ ✓ ✓ Roboturk ✗ ✓ ✓
Austin Buds ✓ ✓ ✓ BC-Z ✗ ✓ ✓
Austin Mutex ✓ ✓ ✓ CMU Stretch ✗ ✓ ✓
Austin Sailor ✓ ✓ ✓ DLR Edan ✗ ✓ ✓
Austin Sirius ✓ ✓ ✓ Berkeley Autolab UR5 ✗ ✓ ✓
Taco Play ✓ ✓ ✓ Berkeley Fanuc ✗ ✓ ✓
Jaco Play ✓ ✓ ✓ Berkeley Cable ✗ ✓ ✓
Stanford Hydra ✓ ✓ ✓ Bridge ✗ ✓ ✓
NYU Franka ✓ ✓ ✓ NYU Door Opening ✗ ✓ ✓
Furniture Bench ✓ ✓ ✓ Toto ✗ ✓ ✓
UCSD Kitchen ✓ ✓ ✓ Kuka ✗ ✗ ✓

preliminary experiments, we found that co-training with Dtarget yielded negligible improvements,
so we exclude it in this setting. Each policy is trained and evaluated over 3 random seeds.

F.2 LIBERO

Dataset. Our prior dataset consists of 4,500 human teleoperated demonstrations from LIBERO-90,
with 50 demonstrations per task. The 10 tasks from LIBERO-10 serve as our target tasks. For each,
we randomly sample 5 demonstrations to form the target dataset Dtarget.

Datamodel estimation using DataMIL. Prior to running DataMIL, we segment the prior demon-
strations into sub-trajectories of horizon length 15, which we found to provide a good balance be-
tween granularity and noise-robustness. We then estimate influence scores using the metagradient-
based estimator with the weighted proxy metric described in Appendix D.1. The top 10% of sub-
trajectories, based on datamodel influence, are selected to form the selected dataset Dsel.

Policy Training and Evaluation. We fine-tune a language-conditioned Octo policy, starting from
the publicly released Octo-small checkpoint, by co-training on Dtarget and Dsel using a co-training
ratio α = 0.5 for 10k steps. We evaluate each policy on the corresponding target task using 50
rollouts and report results averaged over 5 random seeds.

F.3 OXE

Table 3: Task-wise experimental setup for selecting data and, training and evaluating policies

Embodiment Prior Prior Selection No. of No. of
Dataset Ratio Target Demos Evaluations

Franka-Pick Franka-Panda OXE13 1% 10 14
Franka-Pouch Franka-Panda OXE23 0.75% 30 17
Tiago-Sink Tiago OXE24 0.5% 20 39

Droid-Multitask Franka-Panda OXE24 1% 40 (total) 32 (total)
Drawer - - - 10 10
Bread - - - 15 12
Napkin - - - 15 10

Dataset. We use subsets of the Open X-Embodiment (OXE) dataset (O’Neill et al., 2024) as our
prior data. Specifically, we define three subsets—OXE13, OXE23, and OXE24—with their respec-
tive constituent datasets listed in Table 2. The mapping between tasks and dataset subsets is shown
in Table 3. For each task, we collect a separate target dataset via teleoperation (Dass et al., 2024),
varying the number of demonstrations per task based on difficulty (see Table 3).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Datamodel estimation using DataMIL. Following the DataMIL recipe, we cluster the prior data at
the trajectory level and estimate influence using the metagradient-based estimator with our proposed
proxy objective. To reduce distribution shift during datamodel training, we split Dtarget into two
halves: one half is used to compute the proxy metric, while the other is included in the training
mix. After training, we select the top x% of prior trajectories based on influence scores, where x is
specified per task in Table 3.

Policy Training and Evaluation. We fine-tune a language-conditioned Octo-small checkpoint us-
ing co-training on Dtarget and the selected dataset Dsel, with a co-training ratio α = 0.5 for 50k
steps. Final policy is evaluated on the corresponding target tasks using a fixed number of real-world
rollouts (Table 3). To ensure fair comparisons, we fix the spatial configurations of relevant objects
across all methods. For instance, in the Franka-Pouch task, we use 17 predefined object poses
(position and orientation) for evaluation. In the more challenging Droid-Multitask setting, we re-
port both full and partial successes as part of the final success rate (e.g., a partially closed drawer
or grasping the bread/napkin), with partial completions weighted as 0.5. All real-world evaluations
were conducted using a single seed.

G COMPUTATION COSTS FOR DATA SELECTION

We report the computational costs associated with both estimators, measured across MetaWorld,
LIBERO, and OXE.

Regression estimator. The regression estimator requires training and evaluating a policy on m
random subsets of the dataset (Alg. 1). While increasing m improves estimation quality, the com-
putational cost is dominated by policy training, which scales linearly with m. In our MetaWorld
experiments, we found m = 104 sufficient to obtain high-quality datamodels. This setting required
a total of 8 GPU hours on 8×A100 GPUs (equivalent to roughly 60–70 GPU hours on a single GPU).
Although this may appear expensive for a single task, the same m trained policies can be reused to
compute the proxy objective across all 50 tasks in the MetaWorld suite, effectively amortizing the
datamodel training cost to ∼1–2 hours per task.

Metagradient-based estimator. The metagradient-based estimator is typically 3–5× slower than
standard policy training, due to the additional cost of computing metagradients. Taking multiple
steps (hyperparameter T in Alg. 2) further improves estimation quality but incurring a higher cost.
In MetaWorld, data selection completes within ∼1 hour on a single A5000 GPU. On LIBERO,
parallel training across 4 A5000s requires 16–20 hours—comparable to the training times of VAE-
based BR (Du et al., 2023) and Flow (Lin et al., 2024) baselines. For OXE, which is substantially
larger (300k trajectories), training takes 3–4 days on 4 A100 GPUs. Notably, DataMIL avoids online
rollouts, making training passive and able to run without any human oversight.

H HYPERPARAMETERS FOR ESTIMATING DATAMODELS

Below we provide the hyperparameters used for estimating the datamodels via regression and
metagradient-based methods (refer to Alg. 1 and 2). For experiments related details (e.g. amount of
data selected), please refer to App. F.

Regression estimator. We utilize the regression estimator only in the MetaWorld setting. Specifi-
cally, we construct training pairs by sampling datapoints with probability p = 0.1, training a 400×3
MLP policy with ReLU activations and a tanh-squashed Gaussian action head, and evaluating its loss
on a held-out dataset. This procedure is repeated m = 104 times to generate the training set used to
regress the datamodel parameters.

Metagradient-based estimator. The hyperparameters used for the metagradient-based estimator
for each of the settings is listed in Table 4. When we compute the metagradients, instead of com-
puting it over the entire training process (which would be too expensive), we compute it over only a
segment of training. Hence, the hyperparameter k refers to the number of steps at the end of training,
over which the metagradients are computed.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for the Metagradient-based Estimator (Alg. 2).

Hyperparameter Metaworld LIBERO OXE
step size p 1.0 1.0 0.125
number of steps T 30 30 20
policy architecture gaussian MLP Octo-Small Octo-Small
policy learner A(·)

training steps 1100 2100 5100
metagradient steps k 100 100 100
optimizer adamw adam adam
lr schedular 1cycle cosine cosine

I LLM USAGE

We complied with the ICLR 2026 policies on LLM usage by using LLMs only to polish the writing
and improve clarity — correcting grammar, improving phrasing, and enhancing readability. We did
not use LLMs for generating original content, producing research ideas, or analyzing data. Any
substantive scientific content are the result of our own work, and we take full responsibility for
them.

24

	Introduction
	Related Work
	Preliminaries: Data Selection for Policies and Datamodels
	DataMIL: Datamodels for Robot Imitation Learning
	Estimating Datamodels
	Adapting Datamodels for Robotics
	Data Selection and Policy Training

	Experiments
	Results
	What data is selected by DataMIL?

	Conclusion
	Reproducibility Statement
	Qualitative Results: What data is selected by DataMIL?
	MetaWorld
	OXE

	Estimating Datamodels
	Formalizing Datamodeling
	Regression Estimator
	Metagradient-based Estimator

	Comparisons and Additional Results
	MetaWorld No-Goal Conditioning Experiments
	Comparison: Percentage of Data Selected
	Comparison: Cluster Size
	Comparison: Co-Training Ratio
	Comparison: Longer Training for All-Data Baseline
	Numerical Results and Discussion

	Proxy Metric Details
	Up-weighting Relevant States

	Baseline Implementation
	Training and Evaluation Details
	MetaWorld
	LIBERO
	OXE

	Computation Costs for Data Selection
	Hyperparameters for estimating datamodels
	LLM Usage

