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ABSTRACT

Due to the customized requirements, few-shot diffusion models have attracted
much attention. Despite the empirical success, only a few works analyze few-shot
models, and they do not involve the fast few-shot optimization process. However,
fast optimization is important and necessary in quickly responding to users. In this
work, for the first time, we evaluate the role of each operation in the optimization
process and prove the convergence guarantee for few-shot diffusion models. A
standard operation for the few-shot model is only fine-tuning some key parameters
to avoid overfitting the limited target dataset. We first show that this operation
is insufficient from empirical and theoretical perspectives. More specifically,
we conduct real-world few-shot fine-tuning experiments with underfitting and
overfitting bad pre-trained models and show that the few-shot results are heavily
influenced by these bad models. Theoretically, we also prove that the few-shot
phase can not learn the ground-truth parameters and suffers a small gradient
when using a bad pre-trained model. Based on these observations and theoretical
guarantees, we highlight the importance of a great pre-trained model by showing it
can warm up few-shot models and lead to a strongly convex landscape for few-shot
diffusion models. As a result, the few-shot model fast converges to the ground-truth
parameters. In contrast, we show that with a bad initialization, the pretraining
phase requires large optimization steps to converge. Combined with the above
results, we explain why few-shot diffusion models only require a few optimization
steps compared with the pretraining phase.

1 INTRODUCTION

Recently, diffusion models, which are trained on large-scale datasets with sufficient training time,
have shown impressive performance in different areas such as 2D and 3D generation (Rombach et al.|
2022 [Blattmann et al.| 2023} |Liu et al.,|2024). However, when facing customized requirements, we
only have limited data and need to achieve a quick and high-quality response to users. To achieve
great performance under such a situation, few-shot diffusion models have received attention (Ruiz
et al} 2023 Xiang et al.,|2023; Kumari et al.,2023; Moon et al.| 2022} [Liu et al., [2023). Few-shot
diffusion models only use a limited target dataset (5 — 10 images) and a few optimization steps (fewer
than 1k steps) to fine-tune a pre-trained model (such as Stable Diffusion (SD) XL, which requires
500k optimization steps) and generate samples with the target feature.

Though few-shot diffusion models achieve great performance in applications, only a few works aim
to explain the success of few-shot diffusion models (Yang et al.,|2024a; Chua et al.,|2021; Cheng
et al.,|2025)). Furthermore, they focus on the estimation error and explain why a limited target dataset
is enough for few-shot models. However, the fast optimization process of few-shot diffusion models
is also important and necessary for quick response to users, and the theoretical guarantee for it is
lacking. Hence, the following natural question remains open:

Why do few-shot diffusion models only require a few optimization steps to achieve great performance?

In this work, for the first time, we study the optimization process of few-shot diffusion models,
highlight the role of great pre-trained models, and answer the above question by showing that the
few-shot phase fast converges to the ground-truth parameters under a suitable condition.
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Fine-tuning Results based on Overfitting Bad Pre-trained
Models (SD3 Medium with 1k overfitting steps)

A cat on top of a A cat in a chef Acatwithacity  Acatwearing a A cat in a police
wooden floor outfit in the background yellow shirt outfit

Figure 1: DreamBooth few-shot fine-tuning results based on great and bad overfitting pre-trained
Models. The overfitting bad pre-trained Model is obtained by training SD3 Medium with 5 dog
image for 1k steps. The generated images based on overfitting bad pre-trained models suffer from the
memory phenomenon of the overfitting feature.

Before providing the convergence guarantee, we first analyze the necessary conditions for a great
few-shot diffusion model. A standard operation for few-shot diffusion models is to freeze most
parameters and only fine-tune some key parameters (Liu et al., 2023} Xiang et al.,[2023). However,
we show that this operation is not enough from the empirical and theoretical perspectives. More
specifically, we conduct real-world experiments and show that with bad pre-trained models, the
few-shot phase can not generate high-quality images, where overfitting bad pre-trained models suffer
from the memory phenomenon (Figure[I)) and underfitting bad pre-trained models have a fine-tuning
loss gap (Figure 2). Based on our experiment observation, we prove that if the pre-trained model is
bad, few-shot diffusion models can not learn the ground-truth parameters. Furthermore, the gradient
of few-shot diffusion models becomes small when the point is still far away from the minimizer.
In other words, under this setting, few-shot diffusion models require large optimization steps to
converge. As a byproduct of the gradient analysis, we also show that the pretraining phase with a bad
initialization suffers from a small gradient, which slows down the optimization process.

The above results can not explain why few-shot diffusion models can only use a few optimization
steps to achieve great performance. Based on the analysis of bad pre-trained models, we show the
importance of great pre-trained models. An intuition is that great pre-trained models provide a
warm-up for the few-shot phase and simplify the landscape. Inspired by this intuition, we prove that
the few-shot phase with a great pre-trained diffusion model converges to the ground truth parameters
using the gradient descent algorithm and provide a convergence guarantee for the optimization
process.

Combined with the analysis for the pretraining phase, these results explain why few-shot models can
use much smaller optimization steps to achieve great performance. In conclusion, for the first time,
we analyze the optimization process of few-shot diffusion models and achieve the following results:

* By providing real-world experiments and counter-examples, we prove that a great pre-trained
model plays an important role in the few-shot phase. Otherwise, few-shot diffusion models
can not learn the ground-truth parameters and require large optimization steps to converge.

* We show that with a great pre-trained model, the landscape of few-shot diffusion models
becomes strongly convex. As a result, few-shot models quickly converge to the ground-truth
parameters, and we prove the convergence guarantee for this optimization process.

* As a byproduct of gradient analysis, we prove that the pretraining phase with a bad initial-
ization suffers a small gradient and requires large optimization steps.
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2 RELATED WORK

Optimization Guarantee for Diffusion Models. Since the score matching objective function is
non-convex, only a few works analyze the optimization process of diffusion models. Furthermore,
these works either focus on some specific data distribution or use the kernel method to simplify the
analysis. For the specific data distributions, a series of works focus on designing algorithms to learn
Gaussian Mixture Models (Bruno et al., 2023}, |Cui and Zdeborova, [2023; |Shah et al., {2023} |Chen
et al.,|2024) based on the score matching technique. [Han et al.[|(2024a)) focus on a data distribution
consisting of two fixed orthogonal vectors. For the general data,|Li et al.|(2023)) andHan et al.|(2024b)
simplify the problem to a convex optimization by using a wide 2-layer NN and kernel methods. Then,
they use the gradient descent (flow) method to obtain a convergence guarantee. We note that the
above works focus on the pretraining phase. On the contrary, we focus on the few-shot phase, discuss
the necessary conditions, and provide the first convergence guarantee for few-shot diffusion models.

Guarantee for Few-shot Diffusion Models. Recently, some works have focused on the estimation
error of few-shot diffusion models (Yang et al., 2024a; |Chua et al., 2021 |Cheng et al., [2025)). The
core idea is to model the shared part between the source (meta learning phase) data and the target
data. Based on this intuition, [Yang et al|(2024a)) show that few-shot diffusion models escape the
curse of dimensionality and make the first step to explain the empirical success of few-shot diffusion
models. Recently, (Chua et al.| (2021) and |Cheng et al.| (2025)) study the conditional diffusion models
and also prove the estimation error of the few-shot phase with the meta-learning prior information.
Only Yang et al.|(2024a)) study the optimization process and provide a closed-form minimizer for the
linear subspace distribution with a Gaussian latent. However, the real-world distribution is always
multi-modal, and diffusion models usually use optimization algorithms instead of obtaining the
closed-form minimizer. Hence, in this work, we focus on the multi-modal latent distribution and use
the gradient descent (GD) algorithm to optimize the objective function.

3 PRELIMINARIES

We first introduce the basic knowledge and notation of diffusion models. Let gy € R” be the data
distribution. The variance preserving (VP) forward process is defined by:

dx; = —xdt + \@dBt,xo ~ qo € RP,

where {Bt}te[o,T] is a D-dimensional Brownian motion. Let ¢; be the density function of x; and

{t }reo,m) = {7t }1ejo,)- To generate samples, diffusion models reverse the forward process and
run the corresponding reverse process:

dy; = [y + 2V log gr—¢(y)] dt +v/2dB; .

The reverse process requires the score function V log ¢;(+), which contains the data information
and can not be exactly calculated. A conceptual way to approximate V log ¢;(-) is to minimize the
following score matching (SM) objective function (Song et al.l 2020; Karras et al., [2022):

T
win Lot = [ By, |V loga (a1) — slar, )3 dr, 0
seNN 5

where NN is a given function class and § > 0 is the early stopping parameter to avoid a blow-up
score. However, Lgy can not be directly calculated since V log ¢ (+) is unknown for general data. To
avoid this problem, |Vincent| (201 1)) propose the denoising score matching (DSM) loss based on the
conditional score function V log ¢; (z|zo) with an analytical form:

ES

T
mﬁIIIl\I Lpsm = / Ezo [Emt\xo [V log gt (w¢|wo) — s (%zi)”g} dt,
s

which is equivalent to Lgy up to a constant independent of the optimized parameters. Once a forward
process is chosen, ¢;(z¢|7o) is determined as g;(2¢|z0) = N (myz0,021p), and V log g; (7¢]x¢) has
an analytical form —(z; — mxg)/o?, where m; = e, 0?2 = 1 — m for VP forward process.

With a score, diffusion models discretize and run the reverse process to generate samples. Since
the sampling process is widely studied (Chen et al., [2022; [Yang et al.,[2024b) and the optimization
analysis is lacking due to the highly nonlinear score, this work focuses on the optimization process.
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3.1 Two PHASES OF FEW-SHOT DIFFUSION MODELS

After discussing diffusion models, we introduce few-shot diffusion models widely used in applications
(Kumari et al.;[2023;Moon et al.| 2022} [Liu et al.;, 2023), which consist of two phases: the pretraining
phase and the few-shot phase. In the pretraining phase, we train a diffusion model with a large source
dataset and sufficient optimization steps. In the few-shot phase, we freeze most parameters and
fine-tune some key parameters corresponding to target features with a limited target dataset.

As a beginning, we introduce assumptions on data. Following Yang et al.|(2024a), we assume source
distribution ¢, and target distribution q., both admit linear subspaces and share a latent distribution.

Assumption 3.1. Source data x, and target data z;, have form z; = A,z and x4, = A;qz Where
A,, Ay € RPX? have orthonormal columns and z ~ g, € R,

The low-dimensional structure has been discovered in image and text datasets (Pope et al., 2021}
Tenenbaum et al., 2000), and the linear subspace assumption has been widely adopted in many
previous theoretical works (Chen et al., [2023} |Yuan et al., 2023} |Guo et al., [2024)). For the shared
latent assumption, it is used by current analysis for few-shot diffusion models (Yang et al.,|2024a) and
is standard in the context of few-shot learning (Du et al., | 2020; Meunier et al.,|2023). With the linear
subspace assumption, the score function can be decomposed into (1) a latent score V log ¢;°(+) and
(2) linear encoder and decoder A, (A4, for target distribution) (Chen et al.,[2023)

Vlogq; (z) = A;VlegqrP (Al z) — (Ip — AsA] )z /o}

where ¢ () = [q: (2'|Z) q.(2)dZ and ¢;(-|z) = N(myz,071,). This decomposition means
that the optimization process needs to optimize two parts: the linear encoder and decoder A,
(parameterized by V;; Ay, parameterized by V;,) and latent score V log q}D(-) (parameterized by p).
Then, the objective function for the pretraining phase is

. r T 2
minseso 0 = I} Broma, [Betso V10807 (w1lo) — s (o0, 0)12] .

where Sy is the function class used in the pretraining phase and has the following form
S = {svu(z,t) = VE,(VTx,t)/o} —x/o} . V € RP*4 with orthonormal columns,
f, : R? x [0,T] — R%a network }.
With a pre-trained score function, the diffusion model fine-tunes it with a given target dataset in the

few-shot phase. Let (‘Z, [i) be the minimizer of the above pretraining objective function. Since the
source and target data share a latent distribution, we freeze the approximated latent score function f;
and only fine-tune the linear encoder and decoder V;, in the fine-tuning phase:

T
: ew a 2
min )ElfDSM = /6 Ezo~gra [Ewtlwo ||V10g g (xelzo) — s (‘rtvt)||2:| dt, @

seQnnN(f

where Onn () = {svu(x,t) = %Vfu (VTa,t) - %z : V € RP*4 with orthonormal columns. }.

Notations. We denote by I the D-dimensional identity matrix and I the matrix with all elements
equal to 1. For a vector € RP, we denote by ||z||2 the Euclidean norm and z(3) the i-th element.
For a matrix A € RP>*4, we denote by || A| r the Frobenius norm and A(i, j) the (i, j)-th element.
For the optimization, we define z(?) by the initialization and z(*) the k-th iteration of GD algorithm.

To characterize the landscape of the objective function, we give the following definition.
Definition 3.2. ¢ : R”? — R is A-strongly convex and L,,-smooth if \Ip = V2¢(z) < L,,Ip.

4 THE INFLUENCE OF BAD PRE-TRAINED MODELS IN FEW-SHOT PHASE

As a start, we conduct experiments to show the influence of bad pre-trained models in the few-shot
phase. The bad pre-trained models can be roughly divided into overfitting and underfitting, where the
former suffers from low diversity and the latter does not learn the basic information.

Overfitting Bad Pretraining: Memory Phenomenon. Since Stable Diffusion (SD) models can gen-
erate high-quality and diverse samples, we view them as great pretrained models. To obtain overfitting
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(a) Fine-tuning Results on CelebA64 dataset. (b) Fine-tuning Loss Gap

Figure 2: The underfitting experiments on CelebA64 dataset. Based on the underfitting bad pre-
trained models, the few-shot phase can not generate clean face images and suffers from the loss gap.

bad models, we overfit them with one prompt (a photo of a dog) and 5 dog images. As the overfitting
step increases, the diversity decreases. We use two bad pretrained models, the first one overfits 1k
steps (Bad pretrainlk, Badlk), and the latter, a worse one, overfits 4k steps (Bad pretraindk, Bad4k).
In the few-shot phase, following Dream-
booth (Ruiz et al., 2023)), we fine-tune the Great Badlk Bad4k

pre-trained model with Dreambooth training -
. ~ SD14 Clip-T 03258 0.3240 0.3227
dataset. For the evaluation, we use Dream Pickscore 2170 21.70 2167

booth test prompts and generate 3k images .

to calculate Clip-T and Pickscore. To match SD3-M P.CLIP_T 02;214 11 02(3)05825 01'535527
Section [3.1] we only fine-tune the first and 1ckscore . : :
last 3 blocks of NN (Details in Appendix [C).

As shown in Figure[I] if the pre-trained mod-

els overfit a dog feature, the few-shot phase suffers from the memory phenomenon and can not
generate images with the target feature, for example, a cat feature. Table [I] also shows that as
the pretrained models become worse, the metric is worse. Another interesting observation is the
difference between the SD1.4 and SD3-M. As shown in Table[T} SD3-M suffers a heavy influence of
bad pretrained models compared to SD1.4. One core difference is that SD 3 adopts the deterministic
sample process, and SD1.4 adopts the stochastic sample process. This indicates the learning error
in the fine-tuning phase (introduced by the bad pretrained models) quickly accumulates through the
sampling process when adopting the deterministic sampler.

Table 1: Results for overfitting bad pretraining.

Underfitting Bad Pretraining: Few-shot Loss Gap. Following|Yang et al.| (2024a)), we conduct
experiments on CelebA64 to show the influence of underfitting pre-trained models. We first train two
basic models with different hairstyles. The facial features generated by the basic model trained with
50 epochs (Model-50) are distorted, while Model-200 (with converged loss) can generate clear faces.
Hence, we call Model-50 an underfitting model and Model-200 a great pre-trained model.

Then, we fine-tune the appropriate encoder and decoder (See details in Appendix [C) of the two basic
models with 10 bald hairstyle target images. As shown in Fig. [2] (a), the Model-50 usually generates
images with distorted facial features after fine-tuning, which is due to the poor learning of basic
concepts (such as every face has a nose, eyes, etc.) in the pretraining phase. On the contrary, the
Model-200, after fine-tuning, can generate novel images with the target bald feature. Fig. 2] (b) shows
the few-shot fine-tuning loss gap between the great and underfitting bad pre-trained models. This loss
gap indicates that if the basic feature and concepts are not learned in the pretrianing phase, it is hard
to make up during the few-shot fine-tuning phase and leads to a bad local minima.

In the following part, we provide the theoretical explanation for the few-shot loss gap and the gradient
analysis for the few-shot phase with a bad pre-trained model, which indicates that a bad pre-trained
model can not warm up and is hard to provide a good initialization for the few-shot phase.

5 BAD PRETRAINING PREVENTS FEW-SHOT PHASE LEARNING PARAMETERS

An intuitive idea is that the few-shot phase will quickly converge to the global minimizer since it
only optimizes fewer parameters than the pretraining phase. However, we show that if the pre-trained
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Figure 3: The Landscape for Lg); and Lpsy. Since the landscape of L% can be viewed as a slice
of £fw=2ll at /i, we present the landscape of £few—21l,

model is bad (the criteria of great pretrained models is provided in Section|[6.1)), the few-shot phase
can not learn A,,, suffers a constant error (few-shot loss gap), and has a small gradient.

Before providing our results, we first make some assumptions on the latent distribution ¢,. As
discussed in Sec[2] [Yang et al] (2024a) only adopt a Gaussian latent, which can not reflect the
multi-modal property of the real-world dataset. On the contrary, we assume the latent distribution is a
mixture of Gaussians, which is multi-modal and has a nonlinear score function.

Assumption 5.1. The external dimension D = 2 and latent dimension d = 1. The latent distribution
isq, = %J\/'(—,u*, 1)+ %N(,u*, 1), and the linear parts are A, = [a,, a,]" and Ay, = [atq, Gra] |

Remark 5.2. The 2-modal Gaussian mixture distribution with symmetrical mean and standard variance
is also used in|Shah et al.| (2023), and this latent distribution is representative since it has multi-modal
properties and a nonlinear score function. We note that the assumption can be extended to general
D and d, and the toy case with D = 2 and d = 1 is used for the convenience of calculation. The
simulation experiments also support our discussion (Table 2)), and we also provide some promising
methods to extend this assumption to general latent distribution and general manifold (Section[6.1).

Let puj = p* exp(—t). After assuming 2-modal Gaussian Mixture latent, the ground truth latent score
V log ¢P (+) has a closed form, which leads to the following score in the full space:

Vlog g (x) = Atanh(p} T ATx)uf — AA Tz — (Ip — AAT )z /0?2 . 3)

Inspired by the above formulation, we use the following network f,,(z, t) to approximate latent score:
(=) = o7 tanh(] =)y + (1 - 02)z,

and Vi, = [via, vm]T. After determining Syn and Onn, the few-shot diffusion models can first
optimize L, and fine-tune the pre-trained score with £i5%, with the target dataset. We also define
the score matching objective function for the few-shot phase, which is used in the analysis:

. T 2
MiNse 9y (4) Lo = fé Ex,~qte |V 1og qi® (w:) — s (w4, t)||5 de .

We note that Egel\‘ﬁl’ and £%§M are equivalent up to a constant independent of all optimized parameters
(Vincent, 201 1)), which indicates the optimization landscape is the same for these objective functions
(Fig.[3). Since the score V log ¢;(+) under Assumption [3.1]and[5.1] has an analytical form (Eq. 3), we
focus on the score matching (SM) objective function. We note that when considering the convergence
guarantee of the pretraining phase, [Li et al|(2023) also adopt the score matching objective L.

5.1 RESULTS FOR FEW-SHOT MODELS WITH A BAD PRETRAINING

Since linear matrix A is independent of ¢, we fix a ¢ € [§, T'| and use the objective function E‘éeﬁt in
this work (the influence of ¢ is discussed in Remark[6.5)). For convenience, we call the pre-trained
model great when the latent parameter g = p*. Otherwise, we call the pre-trained model badﬂ We
note that the underfitting and overfitting pre-trained models satisfy this definition, where the former
do not learn basic concepts and the latter overfit to some specific features.

'Since the source dataset are limited, ||z — x*|| is smaller than a small constant €. instead of equal to 0 for
a great pre-trained model. In Section@ we discuss the influence of limited data and imperfect learning.
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Let ‘Za be the solution of 8£§el\‘§[’7t /OViqa = 0. In this part, we show that with a bad pre-trained model,

Via Vil — Aye AL || is not equal to 0, which indicates the few-shot phase can not learn ground-truth
subspace parameters and suffers a few-shot loss gap.

Lemma 5.3. Assume Assumptionand. If i # p*, with Vth:'; = AtaA;, 8£§eﬁ,t/8‘/}a #0.

This lemma indicates that ||V;oV,] — Ao AL || # 0if i # p*, which explain the few-shot loss gap
in Fig Then, we discuss the influence of |fi — p*| by using a simplified example i = 0 and p* # 0.

Theorem 5.4. Assume Assumption[3.1|and[5.1|hold. Let j1} and 5 be the two parameters to generate
different latent distributions. Given a bad pre-trained model with i = 0, if |u} — fi| > |us — [i], then

H‘/}ta,l‘/}t;l - AtaA;”F > ||‘7ta.,2‘7t;2 - AtaA;”Fv

where Vi, ; is the solution corresponds to pf,i € {1,2}.

This result shows that with a worse pre-trained model, the solution of the few-shot phase becomes
worse. Hence, a great pre-trained model is necessary for the few-shot phase. Before providing
positive results, we further prove that with a bad pre-trained model, another fully fine-tuning method
for few-shot models also has a bad performance and suffers from a small gradient.

Fully Fine-tuning Method and Gradient Analysis. Though many empirical works only fine-
tune key parameters (Liu et al., 2023} [Kumari et al., 2023 Moon et al.| [2022), a few work (Ruiz
et al., 2023) still optimize all parameters minge s,y Efsel\v/{_a“ in the few-shot phase with initialization

(‘75, fi), where Egel\v/s[/—all is the same with Eq. |1} In the following theorem, we show that with a bad

pre-trained model, acgegg;a“ /O is small when the point is far away from the global minimizer.

Theorem 5.5. Assume Assumptionand holds. For a fixed t, if u; € (—e¢, €), we have that

OLEN ™ /o < 4eALViar/ (1 + 11?) Vil Via/C1 + O(e?)
where C is a small constant determined by Vi, , Aiq and p* (Details in Eq. .

The above result indicates that if fi; € (—¢, €), the gradient is small. Then, if * is a positive constant
larger than e, the few-shot phase requires large optimization steps to get rid of the bad pretraining
phase. We also use a toy example to show the scale of the gradient, which is much smaller than e.

Example 5.6. Considering A, = [0.1,0.1]7, A;, = [0.12,0.12] 7, and u* = 4. With a fixed t = 2
and Vi, = [0.1,0.1] (close to the Ao ), OLEN ;™" /Oy < 1 x 107° when iy € (—0.12,0.12).

Remark 5.7 (Limited Target Data). Theorem [5.5]|consider the gradient of the fully fine-tuning method
in the exception. When considering a limited target dataset, as shown in|Zhang et al.[(2023) and [Yang
et al.| (2024a)), fully fine-tuning methods collapse to the empirical score instead of learning the target
distribution and suffer from the memory phenomenon (only generate the target training dataset).
Remark 5.8 (Pretraining phase). Since the fully fine-tuning objective function is the same as the
pretraining one (only different in the dataset), this result can also explain why the pretraining phase
requires large optimization steps. More specifically, since the pretraining phase does not have the
prior information of p*, it is possible to initialize x around 0, which leads to a small gradient.

6 GREAT PRETRAINING: WARM-UP AND ACCELERATION OPTIMIZATION

A significant advantage of the few-shot phase is that it can use the information of a well-trained
score as the prior (such as latent information p and data structure), which provides a warm-up for the
few-shot phase. Based on this intuition, we show that few-shot models enjoy a simplified landscape
and quickly converge to ground-truth parameters with a great pre-trained model.

To achieve this goal, we prove that the landscape of few-shot phase is strongly convex with great

pretraining. As a start, we first show the form of 92L& , /0V;2, which consists two parts: the first

squared term N and the second cross term M (we ignore (z¢,t) and E;, ~qte for clarity):

8s~,vm T 633‘% 828A’\/m T
2( a‘{/t ) ( 81{/;5 +2 ﬁ (Sﬂ7Wa_S#*,Ata)::2(N+M)'




Under review as a conference paper at ICLR 2026

We know that the squared term NV is a semi-positive definite (SPD) matrix. However, due to the
influence of the cross term, we determine a more precise lower bound for each element of N, as
shown in the following lemma (In the following two lemmas, we ignore the ta index of v;, and V},,).

Lemma 6.1. [Squared Term] Assume Assumption[3.1land[5.1| holds and the latent parameter [ is
learning perfectly i = p*. N = ol with o > 0 for Vt € [0, T) (see o in EqJI3).

For the cross term, we provide an upper bound for each element to guarantee the negative influence is
smaller than the positive influence of N.

Lemma 6.2. [Cross Term] Following setting of Lem. |6.1} (a) The |ai, — via| < 01+ Situation. For
VM (i,7), IM(i,7)| < 7v(01,¢), where y(61,¢) — 0 as 517t — 0 (see y(01,¢) in Eq..

(b) The v, > ayq + 61,4 Situation. Let 034 = vy — ayq > 61, and My = M — M’, where M’ is
SPD. Then, there exists an interval viq € [a1q + 01,¢, Qtq + 024 satisfies:

E[M;(1,2)] =E[M1(2,1)] < 0,E[M1(1,1)] = E[M1(2,2)] > 0

E[M;(1,1) + M1(1,2)] > u1(via, t) + uz(via, t),
where (u1(Via,t) + u2(Via,t))|via=aratsr, > 0, ul( t) increasing and uy(-,t) decreasing for

Vta € [ata + 01,4, Gra + 02,4) (see M’ uy (-, t) and us(-,t) in Eq.[16] .and.)

Since the Hessian matrix H = 2(M + N), if o > +y, we know that LY , is 2(c — 7)-strongly convex
for vy — arq| < 014. As shown in Lem -(a) ~ is related to the initialization area, and we can
determine a suitable 1n1t1ahzat10n parameter 01 ; to guarantee o > +y. For the setting viq > atq + 62 ¢,

we only require u1 (Vtq,t) + u2(viq,t) > 0. The following condition shows our requirement for
initialization, and the example shows that the initialization requirement is easy to satisfy.

Condition 1. 6; ¢ satisfies o > v(81,1), and 62 4 satisfies u1(arq + 02,1) + u2(arq + 02,4) > 0.
Example 6.3. Considering A, = [0.1,0.1]7, A;, = [0.12,0.12]", and p* = 4. Withat = 2, to
satisfy Condltlon we require v( ) e {[0.1,0.5] U [—0.5, —0.1]}, where 0.5 is far away from ..

With similar idea, we upper bound the Hessian matrix and prove Efew M.t 18 2(a + 7 + ¢)-smooth with
¢ > 0 (see ¢ in Eq. [I9). Then, we have the following convergence guarantee for the few-shot process.
Theorem 6.4. Assume Assumption[3.1} - fiv = p* and 01 ¢, 02 4 satisfy Condition[I] Considering

score matching function Egeﬁyt When v € {[ata — 01,1, Qra + 02,4] U [—atq — d2,t, —ata + 01.¢]}
using gradient descent with learning rate n=1/2a+ ), withs = (a+v+)/(a — ), we have

BYVIT A, AL

’ o)

This result is the first convergence guarantee for the few-shot diffusion models and explains why
few-shot models only require a few optimization steps to fast converge to the ground-truth parameter.

po1)" (0)
LS (51) Ca+ )l —acl.

We also conduct simulation experiments to show the difference between the pretraining and
few-shot phase and verify the landscape of Efew More specifically, we calculate the Hes-
sian with pf and different v;, and report the eigenvalues. Let A\; and Ao be the two
smallest eigenvalues for £§; and A} and X, be the two for Liw. As shown in Table
the eigenvalue for the pretraining phase is negative, which mdlcates Lg); is non-convex.
On the contrary, the eigenvalues for the few-shot

phase are posmve. Hence, the few-shot objective v, A1 Ao A b

function Efew is strongly convex, which leads to a

fast convergence rate and supports our Thm. 007 -2.8¢-2 -27e2 2Je-4 15e-3
We provide similar simulation results under differ- 02 -7.1e3 -69e-3 0033  0.034
ent D, d (Appendix|C)), which indicates our theoreti- 82 _g'ge_g -%.;e-g %02703 68 83??
cal results are representative and can be extended to : LD e : :

general high-dimensional multi-modal GMM latent

(Section[6.1). Table 2: D = 8,d = 5, 5-modal GMM latent.
Remark 6.5 (Influence of ¢.). Sec. [5]and[6]show that a great enough prior information /i is important.
When ¢ — +o0, the information of [ gradually disappears ji; — 0, which indicates the optimization
process will become more difficult. Our convergence guarantee also reflects this intuition. When
t — 400, a (Eq. [I3) and v (Eq. [T5) become 0. As a result, the strongly convex parameter of the
objective function becomes smaller, and the few-shot phase requires more optimization steps.
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Remark 6.6 (Relationship with LoRA). We note that LoRA fine-tunes two low-rank matrices, and
we also do this operation. Though our paradigm is slightly different from LoRA (LoRA fine-tunes
two additional matrices), the optimization analysis for fine-tuning the linear matrices still makes a
first step to explain the fast convergence process for a few-shot fine-tuning phase in the application.

6.1 DISCUSSION

In this part, we first discuss the estimation error introduced by the limited training datasets. Then,
we provide the criteria of a great pretrained model from the theoretical and empirical perspectives.
Finally, we intuitively show how to extend the analysis to a more general setting.

Limited Source and Target Data. For the pretraining phase, we assume the latent parameter is
perfectly learned /i = p* in Sec. [] In this part, we discuss the setting ||z — p1*|| < €pre (given a
pretraining dataset with ny datapoints, €, has the order of n;2/ d (Chen et al., [2023)). We know
that when ||z — p*|| increase, || Vi, V,! — A0 Al || F increase from 0 (Lem and Thm. . Hence,

when ||t — p*|| < epre is small enough, ViaV,] — A AL || < poly (epre). For the few-shot phase,
Yang et al.| (2024a) show that there is an additional 1/,/n;, estimation error with ny, target data.

Hence, there is an additional Poly(ns 2/ d) + nt_al/ % in Thm. With a limited source and target data.

Criteria of Great Pre-trained Model. The performance of a pre-trained model is determined by the
scale of pretrained data, the model size, and the optimization step. In Appendix [B.I] we discuss the
balance between these terms from the theoretical perspective. From the empirical perspective, a great
pre-trained model is usually an over-parametrized NN (where large-scale models usually satisfy) and
is trained with a large-scale and diverse dataset. The optimization process should choose a suitable
step that enjoys a converged loss and has the ability to generalize. We can use the standard quality
metric, such as FID, IS, Clip Score, Pickscore, etc., to avoid underfitting. For overfitting, one can
sample multiple images with the same prompts and observe their diversity.

Go Beyond: General Data. This part intuitively discusses how to extend to general data. For
high-dimensional multi-modal GMM latent, by calculating the Hessian w.r.t. V' with the closed-form
score of K-modal GMM, we know that it still consists of the squared and cross terms, where the
squared term is SPD, and the cross term tends to 0 as sy tends to s*. Hence, intuitively, the square
term can still overcome the cross term at a range around the ground truth score, which leads to a
local convergence guarantee. As shown in Table 2| when the latent distribution is a general GMM
distribution, the landscape of the few-shot phase is still strongly convex, which supports our intuition.
To further support our discussion, we also provide a calculation and a rough bound in Appendix |[B.2}
For the analysis of more general data distribution, we also discuss some methods and intuition to
extend to more general bounded support latent (Appendix and multi low-dimensional linear
subspace (Appendix [B.4). We refer to Appendix [B]for more details.

7 CONCLUSION

This work aims to explain why few-shot diffusion models can achieve great performance with a few
optimization steps. As a start, we first evaluate each operation of few-shot diffusion models and show
that a bad pre-trained model heavily influences the few-shot phase through the real-world experiments.
From the theoretical perspective, we prove that with a bad pre-trained model, the few-shot phase can
not learn the ground truth parameters and suffers a small gradient, which highlights the importance
of great pre-trained models. After that, we show that a great pretrained model provides a warm-up
for the few-shot phase and makes the landscape of few-shot diffusion models strongly convex. As a
result, we prove that the few-shot model can fast converge to the ground-truth parameters by using a
standard optimization algorithm (such as gradient descent). Combined with the gradient analysis for
the pretraining phase, for the first time, we explain why few-shot models only need a few optimization
steps compared with the pretraining phase to achieve great performance.

Future Work and Limitation. In this work, we choose a 2-modal Gaussian mixture distribution as
the latent distribution. Though this latent distribution is multi-modal and its score is nonlinear, there
still exists a gap with the real-world data. In Appendix [B] we discuss some promising extensions
of few-shot analysis, including general GMM latent, general bounded support, and multiple low-
dimensional manifolds. We left them as interesting future works.



Under review as a conference paper at ICLR 2026

Ethics statement. Our work aims to deepen the understanding of few-shot models and explain
why few-shot diffusion models enjoy a fast convergence rate from a theoretical perspective. Since
the few-shot diffusion only requires a limited amount of data and a few optimization steps, it can be
used to generate deepfake images. To avoid this problem, we can add watermarking in the generated
content|Lu et al.|(2024)). Other societal impact is similar to general generative models (Mirsky and
Lee, 2021).

Reproducibility statement. The detail and description of the real-world experiments are provided
in Appendix [C] including training and test datasets, neural network structure, the hyperparameters,
and the training steps.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As this work mainly focus on theoretical guarantee for few-shot diffusion models, large language
models were only used for grammar polishing. All ideas, real-world and simulation experiments,
theoretical guarantee (estimation and optimization), discussion and writing decisions were conducted
entirely by the authors without LLMs.

B MORE DISCUSSION ON GREAT PRE-TRAINED MODELS AND GENERAL
LATENT

In this part, we first discuss the criteria of great pre-trained models and the influence of the pre-trained
data, model size, and optimization steps.

B.1 DISCUSSION ON THE GREAT PRE-TRAINED MODELS

As the performance (generalization or memorization) of pre-trained models is determined by the
scale of data, the model size, and optimization steps, we discuss the different combinations of these
components from a theoretical perspective, which is helpful in determining the criteria of great
pre-trained models. After that, we discuss how to extend to a general GMM with latent and bounded
support. Finally, we intuitively discuss how to extend the few-shot diffusion models analysis to
general multi low-dimensional manifolds.

The pretrained data. As discussed in Section the limited pretrained data introduced the

estimation error Poly(ns 2/ d) for the pretraining phase. From the theoretical perspective, we require
that the imperfect learning error for the pretraining phase is not the dominant term, instead of perfect

learning. More specifically, we require Poly(ns 2/ d)

and the limited target data error n;ll 2

to be smaller than the optimization error in Thm.

The balance between pretrained data, model size, and optimization step. The above discussion
builds on the size of pre-trained data and NN matches (as shown in Theorem 2 of |(Chen et al.| (2023)),
the size of NN is determined by ns) and ignores the optimization steps. However, there exists a
mismatch between the pretrained data, model size, and optimization step in the application. Based on
Li et al.| (2024)), we discuss the influence of the following mismatch cases for the pre-trained models:

Case 1: large train data and small NN size.

In this setting, the NN tends to learn the Gaussian structure of pretrained data (the empirical mean
and covariance) instead of learning the multi-modal information of data. This setting belongs to the
underfitting bad pre-trained models since it can not greatly learn the knowledge of the source data.

Case 2: Overparameterized NN with different optimization steps.

When an NN is overparameterized, with a large enough optimization step, the NN will memorize the
training data, leading to an overfitted, bad pre-trained model.

With a small optimization step, Zhang et al.| (2023) show that the NN still learn the Gaussian
structure of training data instead of total source data knowledge, which belongs to the underfitting
bad pretrained model.

B.2 THE ANALYSIS FOR THE GENERAL GMM LATENT.

Though the 2-mode GMM latent reflects the multi-modal property of real-world data, it still has
some gap to the real-world complex data. In this part, we discuss how to extend our GMM latent to a
general GMM latent. At the beginning, we calculate the Hessian and cross term. According to|Shah
et al.| (2023)), if the latent is a &{-mode GMM, the score still has a closed form:

1
Vlog gi(x) = AEszlwi,t(ATa;; Y — AATx — —(Ip — AAT)X
, o’

12
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where e;,o(w; 1) = exp(—le — il [2/2), i@ p) = getZEs

considering the K-mode GMM latent, we construct the NN with the above form and s y,, means
use /i and V}, to replace p* and A, (For simplicity, we write s, y,, with trainable Vi, as s¢ and
ignore the subscript ta). Noticing that

PL_ (050 (959" 00 0
ovz  “\oav ) \av vz 0 T oA

| S —

Square term

and p; 1 = p; exp(—t). When

Cross term

where the square term is a semi-positive definite matrix, and the cross term tends to 0 as sy tends to
Su*, Asq - SO, OUr intuition is that

The square term can overcome the cross term in the vicinity of the ground truth target when the
distribution is a multivariate Gaussian mixture distribution.

More specifically,
ds o
O = SV s
P
O¢it (yWK K Oep.t
v (Zie — X1 v G 1
A k’lek}ﬁ) LoV Sty T (S 1) @V T+ VX
(Zilient) of

Q

2
We can know that A\ ((%) ) > (||P]|2 — ||Q||2)? = ¢, where O([|P||2) > O([|Q||2) as s¢

2

2
tends to the ground truth target. This result means Ay iy (% = ¢* around the ground truth target,

and the objective function is strongly convex (since the cross term can be ignored or only has a slight
influence, which can be covered by 2.

B.3 EXTENSION TO GENERAL BOUNDED LATENT.

For the general latent distribution, if only focusing on the convergence guarantee, one possible way is
to use the kernel-based method with a general wide 2-layer NN (the number of neurons m = O(n;))
(L1 et al.l 2023)):

$1.4(X) := AReLU(WX + Ue(t))/m,

where A € RP*™ is trainable, W € R™*P and U € R™*% are randomly initialized and frozen
during training, and e(¢) is the embedding of time. By setting m = d (indicates d is large enough,
which is also used by [Han et al| (20244)), the trainable A becomes the linear part, and the fixed
ReLU(W X + Ue(t)) represents the nonlinear fixed latent in our work. Then, using the gradient flow
algorithm, the score converges to the target distribution regardless of whether the pre-trained model
is great (since the W, U are randomly initialized). Though this method can provide a convergence
guarantee, it does not reflect the role of pretrained models and does not match the empirical operation.
Hence, we adopt a simple setting to clearly explain the optimization process of the few-shot phase.

B.4 EXTENSION TO MULTI LOW-DIMENSIONAL SETTING

After obtaining the first convergence guarantee for the few-shot models under a single linear subspace
with a GMM latent, we discuss how to extend the analysis to a union of low-dimensional subspaces.

Though real-world data admits the low-dimensional structure, it is a union of low-dimensional
manifolds instead of one manifold (Brown et al.,|2023). Hence, a setting closer to the real-world data
is to assume the target data is a union of linear subspaces. In the pretraining phase, Wang et al.| (2024)
makes the first step in this direction by modeling the data as a union of linear subspaces, and each
subspace admits a Gaussian latent. We can first follow this direction and extend it to the few-shot

13
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phase. More specifically, for the few-shot modeling, we can assume the source and target data share
some manifold and also have their own manifolds. Intuitively, since the pretraining phase has learn
the shard manifold knowledge, based on our analysis, a great pre-trained model can also reduce the
estimation error, warm-up, and accelerate the few-shot optimization process.

Go beyond: Few-shot analysis for a union of linear manifolds with general GMM latent. As
‘Wang et al.|(2024) assumes each manifold admits the Gaussian latent instead of the general GMM
latent, it still has a gap to the real-world data. Another interesting future work is to combine
the general GMM latent analysis (Appendix [B.2) and multi-linear subspace assumption few-shot
modeling to analyze the role of pre-trained models in the few-shot phase. We leave the analysis on
the multi-subspace assumption and its GMM extension as interesting future works.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL SIMULATION EXPERIMENTS

In this part, we provide more simulation results with different D and d and show the two smallest
eigenvalues of the Hessian matrix. As shown in the following two tables, the landscape of the
pretraining phase is still non-convex. On the contrary, the landscape of the few-shot phase (with a
great pretrained model) is almost strongly convex (except a very small negative eigenvalue —7.5e —5).

The non-convex landscape of the pretraining phase indicates that it is possible to converge to the local
minima instead of the global minima. We also verify this intuition through the simulation experiment.
More specifically, we use the initialization area (v, 115) (v, = 0.07 and ground truth a;, = 0.12)
and update models with GD algorithm. Then, the pretraining phase converges to the local minima
0.112, which is not equal to as,. On the contrary, the few-shot diffusion models with a fixed ]
converge to 0.11999, almost the same as a,.

Value of v, A Ao A A,
0.07 -0.0013 0.0015 0.0007 0.0016
0.2 -0.01 0.008 0.008 0.0083
0.3 -0.027 0.012 0.0126 0.0133
0.5 -0.057 0.013 0.0134 0.0151

Table 3: Eigenvalues for different vy, (D = 16,d = 1)

Value of vy, M Ao A A
0.07 -0.0002 -0.0002 -7.5e-5 1.24e-7
0.2 -0.0014 -0.0008 1.18e-5 1.29e-5
0.3 -0.0061 -0.0047 2.67e-5 2.86e-5
0.5 -0.0276  -0.0264 7.42e-5 7.89¢-5

Table 4: Eigenvalues for different vy, (D = 4,d = 2)

C.2 THE DETAIL OF THE UNDERFITTING REAL-WORLD EXPERIMENTS

In this part, we describe the setting of our real-world experiments on the CelebA 64 datasets. Our
setting mainly follows|Yang et al.|(2024a), and we provide the setting for the sake of completeness.

CelabA 64 Datasets.

* Source dataset: 6400 images of faces with different hairstyles (without the bald feature).

» Target dataset: 10 images with the bald feature in CelebA64.
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NN structure. In this experiment, we adopt a U-net network with 11 downblocks, 2 middleblocks,
and 15 upblocks. In the pretraining phase, we train all parameters of the U-net. Since the NN layer in
U-net is highly nonlinear, following|Yang et al.|(2024a)), we fine-tune the downblock and upblocks in
the few-shot fine-tuning phase. More specifically, we fine-tune the first 4 downblock layers (as the
encoder) and 4 upblock layers (as the decoder) in the fine-tuning phase.

The above experiments were conducted on a GeForce RTX 4090. For the pre-trained phase, we train
the models for 50 epochs (bad pretrained model, Model-50) with batch size 20, which takes 1 hour.
The great pretrained model (Model-200) takes 5 hours in the pretraining phase. For the fine-tuning
phase, we fine-tune the pre-trained models with limited target datasets for 400 epochs with a batch
size of 2. It takes 3 minutes to fine-tune the pre-trained models.

C.3 THE DETAIL OF THE OVERFITTING REAL-WORLD EXPERIMENTS

In the part, we provide the detail of the experiments on the Stable Diffusion models, including dataset
and training pipeline.

Dataset and Evaluation Metric.
Training Dataset. The Dreambooth training dataset contains 30 subjects, and each subject contains
4-6 images to use to fine-tune the models (a total of 156 images).

Validation Dataset. The dreambooth dataset provides 25 test prompts for each subject (total 30 25 =
750 prompts). Following the description of Dreambooth, we generate 4 images for each prompt and
use these 3k images to evaluate.

Clip-T Score. Following Dreambooth, we calculate the cosine similarity between the prompt and
image CLIP embeddings to measure the text-image alignment.

Pickscore. We also adopt the standard pickscore metric for text2image generation.

Training Dreambooth pipeline.

Overfitting Bad Models. Since the SD 1.4 and SD 3 Medium can generate high-quality and diverse
samples, we view them as great pretrained models. To obtain a bad pretrained model, we overfit the
SD 1.4 and SD 3 Medium with one prompt (a photo of a dog) and the corresponding 5 images. As
the overfitting step increases, the diversity of pretrained models decreases (preferring to generate dog
images in our setting). We use two bad pretrained models, the first one overfits the one prompt 1k
steps, and the latter, a worse one, overfits 4k steps (lower diversity). The overfitting learning rate is
5 x 1079, the resolution is 512 for SD 1.4 and 1024 for SD3-Medium and the accumulation steps is
4.

Fine-tuning phase with freezing most parameters. Then, we modify the train Dreambooth pipeline
of the diffuser to train with the training dataset. To match the setting of our theoretical results, we
only fine-tune the first and last 3 blocks of NN (Unet of SD 1.4 and DiT of SD 3). The fine-tuning
optimization step is 1%k. The learning rate and resolution is the same with the overfitting phase.

D THE DETAILED CALCULATION OF GRADIENT AND HESSIAN

Since our analysis depends heavily on the gradient and Hessian for the few-shot score matching
objective function, we provide the detailed form of these terms in this section.

D.1 TERMS RELATED TO L&Y,

few
Recall that Eageng is consisted by the cross and squared term
o2 [lew 328*\/ 88AV T 3$AV
E SM = 2 E Z 7 Via N _ " _|_ E My Via HyVia ]
Vi, [ grg (v = o) Vi Vi

2 pfew
9" Loy

To obtain the exception form of E Ve
ta

we calculate the exception form of each term.
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aﬁfew .
Calculate ms/tM”’ . For this term, we know that

aﬁfcw s+
oot =2 (%) (sp o)~ e o)

where

1
su+,A(xe,t) = Atanh (,ut*TATxt) wy — AATz, — o (ID — AAT) Ty .
t

For the first term, we have the following equation:

984,Via

o, tanh (i Vg 2e)fiel2 +

O tanh(fi] Vigwe)fue 7 1 WiaVig Tt
Vet 21— —
8‘/;(1 (o aVEa

. R . T A 1
= (V. el + (1t Vol eV + (1) (eeVi] + Vi)
t

. . 1 N T 1
<Wﬂﬂ%%Mﬁ<ﬁQWhOb+lemmﬁQMMMH<HQ>MQ
t t

2 pfew
Calculate 866321“ . We know that the Hessian matrix of the few-shot score matching objective
ta

function can be decomposed into the cross term and the squared term.

oLl
oV

0s; Vi 0s; Vi 82SA \%
=9 s Via N T s Via 2 My Via N T R _ . .
( av;m ) ( av;m > + ( avﬁl ) (SP«,Vta SIJ« ,Am)

Squared Term N Cross Term M

For the cross term, we know that

2
0”81, Via

oV

. AT A ze(1 0 T (1 0
(1 — tanh® (/) V. x1)) i fue t(()) 24(1) 1 t(()) z(1)
: i 072G T
(1 = tanb® (i ViTwo)) i e | 57 ) t G
) o 1) 0
(1 = vl Vi) i | 23]
. :
) o To za
(1 — tanh® (3] Vio @) i fue 0 ii&g

Let s;v,, (4,t) — Su= a,, (z¢,t) = y. Then, we have that

0%54,Viu \ T
(™) (Vi = 5u.400)
ta

= (1 — tanh® (1] Vigwe))ity ) ylo + (1 — tanh® (4 Vg x0)) ) sy

R . N 1
 2tanh (3] V) (1 = ot o] VLol el VL +2 (2 = 1) al .
t
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For the squared term, we know that

0su.v, T /0s; A . T . AT
( ak{}va> ( a’{}va> = tanh® (1 Vig @) fielz + (1 — tanh® (i) Vig 0))* ) fuVeaw Vg
ta ta

1 2
+ < — 1) (Vma:;r:EtVtI + xtTVtthIastIg + sztTVtIxt + JctTVtathtI)

Ut

+ 2(1 - tanh2( V;fa xt)) tanh(ﬂ;r‘/t:zrxt)ﬂtﬂ:ﬂtv;ax;r

1 .
+2 <2 - 1> tanh(p " Vi z)fu(zViy + Vg weda)

0%

. 1 AT A
201 = vt ] Vi) ( 25 = 1) AT eVl Vi
t

1
0=t (T Vi) 2 = 1) ol ViV + Vi Vel
t

8V2

Calculate the expectation of Hessian E2 L . As discussed in Section 6.1} we take expectation
over the target distribution ¢,,. Hence, we calculate the expectation of Hessmn

Before providing the result of the Hessian matrix, we first do some helpful calculation. Recall that
under the linear subspace assumption (Assumption [3.1)), the diffusion process happens in the latent

distribution z ~ 2N (p*,1) + 2N (—p*, 1), which indicates z; = exp(—t)zo + /1 — exp(—2t)&,
with & ~ N (0, ) Then, by changing the probability density variable, we have

1 1
exp(—t)zp = 5./\/‘(exp(—1f),u*7 exp(—2t)) + 5./\/'(— exp(—t)u*, exp(—2t))
V1 —exp(—2t)& ~ (1 —exp(—2t))
1
2 = exp(—t)zo + V1 —exp(=20)& ~ SN (p, 1) + N( i 1)

Then, we know that z; ~ N (u}, 1), wherep; = exp(—t)u*, which indicates

1 1
Ty = Agazp ~ §N(MfAma AtaA;l;) + §N(—,Ut*14ta7 AtaA;) ,

and

1
Vtzxt ~ §N(N;VtIAta7‘/tIAtaAT Vta) + N( M:th—Ata; AtaA aVia) -

We should first calculate E[z;z, ], E[z] ], E[z/ y] and E[z;y "], where y = s5.v,, — S.%.4,.» a5
they will be frequently utilized in subsequent steps.

Elz/ 2] = E[Sx:(i)’] = SDa+(i)] + E*[w:(0)]
= t’f’(AtaA;l;) + E[l’t]TE[It]
= t’l"(A Ata) + E[l’t]TE[lEt]
— (1+ @) AT A @

Elzs, | = El(zy — " Ava) (2 — 1 Ara) '] + 0 ALE[2] ] + Bl Af, — 1 A Ay,
= (1 + H*Q)AtaAT

ta

Observe that x; is a symmetric distribution. Then, for any even function f, we can write

1 1
Eq,[f(z:)] = §E$t~/\/(u;,4m,,4m,4;)[f(xt)] + gEazt~N(7u;Aw,AmAtTa)[f(xtﬂ

= ]EthN(#;Ata,AtaAja)[f(fft)] .

17
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Applying this property of the even function, we can obtain the following result by using the fact that
z, yand z,y " are even functions x; (recall that s v,, (74, 1) — Sy, a,, (e, 1) = ).

Elz, y]
R 1
= e, [ (Via tanh (i1 Vig 2e)fir = ViaVig o = — (I = ViaVia)r)) = Ba [0 50 4..]
t

1 1
=B o N(uf Ava,Ara AT) [z Vi tanh(fi] V) x:)fie + (? — D) VidVigae — ;:Jwt)] (5)
t t

- Ewt [x:SH*yAta]

X 1
= By N (s AvasAca AT ) [T Via tanh(f1] Vi x4)fir] + (-1 + 1)V A AL Vi)
t

1
B ?(tr(AtaAta) + JU’2AT Ata) - It [‘r;rs#*yAm}
t

. 1 .
= ErfNN(#t Ata,Ara ALL) [xt Via tanh(ut V o Tt ) fe] + (? D1+ py 2)VTAtaA;V;a)
t

1 R
o2 (tT(AtaAta) + l‘?A aAta) — Eg, [xtTSu’ﬂAm}
t

X X 1
= B\ N (s Av Ara AT [0 Via tanh (] Vig @) fu] + (-1 + 11 )Vig A AL Via)
t

1
Ata,AraAly) [xt Atatanh( TATxt)/’Lt} (? )((1+M*2)ATAtaATAta) (6)

t

- E, @~ N (py
Through similar calculations, we can also get E,, [,y ]:

N 1
E, [xtyT] E[z;(Via tanh(,ut V aTe)fbt — xIVtthI T2 Ty ( Vtavta)
t

N . 1
— Ao tanh(i) Alzy) iy — z) A A, — p =z (I — A Ay,))]

t
= Eo, N (i Ape A ATy (20 (Via tanh (i) Vi @) iy — 20(Aga tanh(uf " Ajym) oy ]

1
+ (U 17) (o5 = DA A (ViaVi — A AlL).- ™

t

With the calculation for E[z, 4] and E, [x;y "], we can obtain the exception form of the cross and
squared term. For the cross term, we have that

=E [(1 — tanh® (4 Vg w0))ftf fuw! ylo + (1 — tanh® (i Vig o))t ey "

N 1
— 2tanh(p 'V, 2)(1 — tanh® (3] V,J )it frefrez] ya V) + 2 (2 > a:;rylg}
T

)ivd
= E [/ ] ylo] — E [tanh® (3] Vi @) el y] + B [ ey "
—-E [tanh2(ATVTxt)ut firzey
— 2E [tanh (i Vig @) iy fiefine] yoiVig ] + 2 [tanh® (@) Vg xe) i fefuea] yaiVig )

+2 (1 1) Bz, yIs] .

Ut

18
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For the squared term, we have that

68/1‘ Via BSH Via
Wia Wia

= Eftanb?®(jiy Vigwo) ) fieTo] + E[(1 — tanh® (2, Vg 24))2ii fuViaw{ Vi)

1 N N
b2 (A1) (0 D AGATYYE + (4 VI AL Vi)
t

+E[2 <1 — tanh®(f, Vi x+)) tanh(fi] Vig we)jieiiy fisVia/ ]
+ ZIE[(—2 — )tanh(,ut V xt),ut(xtV th—xtlg)]
Oi

. 1
FEQ a0 Vo) (T L) 2V Vit + ] ViVl + ViaViL ).
t

D.2 TERMS RELATED TO L3y !

few —all
For the fully fine-tuning method, we show that MS#; is small in Theorem In this part, we

provide the calculation of this term. We note that when considering fully fine-tuning method, y; also
has a gradient.

8£few7all
SM

o = 2 (s (0,) = s ) (Vi (o] Vo) Ve (L—tand® (] V) Vid o).
t

E THE PROOF FOR BAD PRETRAINING

Lemma E.1. Assume Assumptionand. If o # p*, with Vi V,I = A A fsel\v/lv o/ OWVia #
0.

Proof. For the sake of brevity, we use z, i instead of 24, ji; when there is no ambiguity in this part.
We also ignore (z¢,t) in sj,v,, (@¢,t) and s,+ 4,, (x4, t) for clarity.

‘We know that
OLG «

E
WVia

0su v, '
(3,{4”) (84,Via (2, 8) = $p24,0) (2, 1)

For each term, we have the following form:
0s; Vi T
(S ) =tV Tt + (1 = i VLol Vi
1
+ (0 — 1) (Viex " + V) 2Iy)
t

1
£ f(za ‘/t(mp*t) =+ <0_2 - 1) (‘/taz—r + ‘/tZQ?IQ) y

t

and

1
S — S A, = Viapte tanh(ue VL) — Asapet tanh(uf ALz) + ( - 1) (ViaVil — A AL )2

Ut

1
é g(l‘,VthuM:) + (O’ ) (V;gav AtaA )

t
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Then, we simplify the gradient term into the following form

a‘CfSCI\V/‘II t 88A V, T
E s My Via N _ .
8‘/“1 ( 8‘/25(1 ) (SU’)‘/ta SM )Ata)
1 *
B (/e Viaws) + (2 1) (T + VT Vi )|
t
1 1
SB[ Vi) + (33 1) Viae ™+ Vit (25 = 1) (Vali] = L)
t t
1 2
== Er l(gQ - 1> (V%a:c—r + VTIIQ)(WG.%(L AtaA—El)w] + Em [h(l’, Waa Atm Ht, ,LL:)}‘| )
7
where
h(.’L’ V;fam Ata7 Ht, M:)
1
— 1 (33— 1) (VT = AwAL)e + (23 —1) (Viaa™ + ViIaEa)g + g
t t
1
— (5= 1) Conh VTt + (1 = b V) Vi T ViaVi] — A AT
t
1
(= 1) (Vi + i) Vit i) = Ao i A1)
+ (tanh(p Vg ) pel
+ (1 — tanh® (1 Vi) 2)) 7 Vi ") (Viape tanh (e Vi @) — Agapuf tanh(py Al x)) . ®)
We first calculate E,[Viox T (ViaV,! — Ao A7) and B, [(ViaV,l — Asa A2z T Vi), which is
LG |.

useful in bounding the first term of £ BV,

E, [VtazT(Vtthz - AtaA;)x] = Vi E [mT(Vtthz - AtaAT) ]
= ViaEo[tr(z" (ViaVis — AtaAlL))]
= VeaEa[tr((VeaVia — AtaAr)z2 )]

= Viatr(Ex[(ViaVig — AtaAf)z2 )]

= (L4 )t (ViaVia = AraAly) AraAga) Via
where the last equality follows the fact that E[zz "] = (1 + uj2) A A/, (EqM). Similarly, we can
obtain the following bound:

E: [(ViaVia — AtaAia)zz Via] = (ViaVia — AtaAia)Ex [z Via
— (14 1) (Via Vil = AwAL) A AL Vi

9 few

Thus, the first term of the gradient E [ Esi‘“ t} has the following form:

1 2
E, [( ~1) (Ve 4 VIR (V] - AwAl)o

) E,| me +V;Eax12)(‘/t(l‘/ta AtaAtTa)x]

1) Vit T (ViaVil — A AL)] + E[(Via Vil — A AT )22 Vial)

wm‘ = Sm‘ = u-qm‘

2
1) 1 + ,U/ )((V;fa AtaA—;)AtaAT %a + tT((V;ga AtaA—l;)AtaA;>12>V2a

(7~
(
(=

>

(V;ta‘/ta ) AtaAta)V;fa . (9)
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Let *]Ex[h(I, ‘/t(la At(l7 i, /’L;)] é h’(‘/tav At(l? Lt .u:)’ we know that

0s; Vi T

is equivalent to

w(‘/;fa‘/;;raAtaA;)‘/;&a - h(‘/taa Ataa,uftnu’:) .

We then prove that w(Vi, V!, At AL) = 0if and only if V;,,V,| = A, A/, when Ay, # 0.
If ViVl = A AL :
Vvta‘/tl— - AtaA; = V;&av;gl— - AtaA; =0

= w(Vig Vi, A AL) =0

If w(Via Vi), AiaAl) = 0, we know that
(‘/;ZG.VT - AtaA;l;)AtaA: + tr((V}aVT - AtaA;l;)AtaA;)IQ = O

ta a ta
= tr(ViaVia — AtaAya) AtaAyy) = —=2tr((ViaVig — AraAr) AraAra)
which indicates tr((Vio V., — At A}L)AiaALL) = 0. Then, we know that

ViaVid Ae AL — Ay AL A Al = —tr((AAT — Ay AL A AL, =0
= tr(ViaVig AtaAly) = Vit Ata Ay Via = Al Ara Ay Ata

=V, A =+A A,

= Vie Al A Ay = + A1 A A A,

= VieAg, = T A1 Ay,

= Vig = A4, VtthZ = AtaA;

Then we need h(Viq, Ata, e, 17) = 0. However, if u: # uf, h(Vig, Ata, pit, ) # 0 when

few
0L\ ¢

ViaV,i = A A}, In other words, if p; # pf, ViaV,! = Ata A}, can not make E { Vs ] =0.

Then, we complete the proof. ]

Theorem 5.4. Assume Assumption[3.1jandB.1|hold. Let i} and 15 be the two parameters to generate
different latent distributions. Given a bad pre-trained model with i = 0, if |u} — fi| > |us — [i], then

IVia1Vian = AtaAiallr > Via2Via2 — At Al P
where ‘7,5,171' is the solution corresponds to i}, i € {1,2}.

Proof. With y; = 0 and p} # 0, then we know that

Wi A s i) = s | (25 1) (o + VLol tanh AL ) | Aur
‘We know that
.| (5 = 1) 7 A+ A (i AT > 0
and

1
E. [(02 - 1) (" Ay + Az ") tanh(,ut*A;x)uf] >0,
¢

so w(Via V!, AsaAL)) > 0, which means that there exists a constant positive gap between V;, V!
and Az A,
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We also know that function x tanh « is even, which indicates if u7 > p3,

B, [(Z 1) 7 i+ AT tamb i AL
t

1
> E, {(02 — 1) (2T Ay + Az ") tanh(ué‘A;x)ug} .
t

Therefore, the constant positive gap between V;, V;I and AmA; must increase.
Vi Vims = AL e > (Va2 Vit — AwaAf |l
[ |
Theorem 5.5. Assume Assumptionand holds. For a fixed t, if u; € (—e¢, €), we have that

OLEN T /0pe < 4€AL Via\/ (1 + 112) VI Via/C1 + O(e?) |

where Cy is a small constant determined by Vi, Ao and p* (Details in Eq. @)

Proof. Through simple algebraic calculations, we know the gradient for y; have the following form:

few—all
oL SM

o = 2(avi speara) | (Via tanh(u] Vi @) + 1 Via (1 — tanh(p] Vi) 2))V;g )
t

= 2y" (Via tanh (] Vig @) + p1eVia(1 — tanh(p Vg @) Vg @)
For the term, by using the Cauchy-Schwarz inequality, we know that
E,[2y" (Via tanh(pu] Vig @) + 1 Via (1 — tanh® (] Vg 2))Vig o))
= B (s Ao A AT (29T (Via tanh(u] Vig @) + 1 Via (1 — tanh® (uf Vi 2))Vig )]

< 24/E[yTy]x

VEIVia tanh(u] Vil @) + ucVia (1 — tanb?(u] Vi 2) Voo o) |13

Then we give the upper bounds on E[y " y] and
B[ |[Via tanh(] Vid ) + e Via (1 — tanh? (] V1 ) V5 o) 3]

to achieve the final bound.

For the second part, if i € (—e, €), we have
[1Via tanh (] Vi3 ) + Vi (1 = tanb? (] VL) Vil ) o]
< E[GQth—Vtav;,zmxTWa + €2$TVtaV;fl‘/;‘/aV;tl—x + 2€2$Tvta‘/;fl‘/;‘/a‘/;l—x]
= 452(1 + ﬂ:2)VtZVtthZAtaA;Vta )

where the inequality follows by the fact tanh?®(u, V,[x) € [0,1] and the first order of Taylor
expansion for tanh (s, V,! ) (when p; € (—¢, €) is close to 0, the influence of higher-order terms in
Taylor expansion is limited). The last equality follows Equation (@).

For the first part, we can divide E[y " y] into three parts below:
Ely"y] = E[|[Via tanh (s Vyq #) — Arq tanh(uf Ay, 2)]13)
+ 2E[(tanh(p Viq 7) Vg — tanh(uf A, 2) AL) (ViaVig — Ata Ay )]
2
1
- (02 — 1> tr(ViaVia — AtaAn)?AtaAy) -
i

Next we bound each of these three terms separately.
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Bound for E[||V;, tanh(u;V,. x) — Asq tanh(u; A 2)|13].
E [[[Via tanh( Vil 2) — Ao tanh(uf AL 2)]3]
<E [ezvtl‘/thszTVm + MZQA;AtaA;AtaA;xITAm + QE‘LL:%IAMWZICCTAM}

= ((62%1Wam2AtaA;V;a +,LL:2A;F AtaA;r 14taf4;r 141‘/0114;r Ata + 26#:%1AtaA;AtaA;Ata)

AN
x (14 1%) = €1,

where the inequality follows by Equation (Eb and the first order of Taylor expansion for tanh(y, V,! 2)
(when u; € (—¢,€) is close to 0, the influence of higher-order terms in Taylor expansion is limited).

Bound for 2E[(tanh (1 V,! 2)V,| — tanh(ur AL 2)AL)(Via Vi) — A Al 7).
By simple algebraic calculation, we know that
2(tanh(p Vi #)Vig — tanh(u Aj,2) Aga) (ViaVig — AraAly)
= 2<tanh(utVtIx)%IxV;l—Vm + tanh(uf A} 2) ALz AL Arg
—tanh(uf AL o)Vl 2 Al Vig — tanh(utVtIx)A;xA;Vm> .

Then, we have the following bound

E|(tanh(u: Vi 2)Via — tanh(ui Ajy0) Agy) (ViaVia — Ata Al )]

< (U B2)WVid A AL ViaVid Via + 17 (1 %) AT, Avg AT, Ao AT, Avg

(14 i)Vl A AL A AVia ) £ Cs.

a

2
Bound for (% - 1) tr(ViaVih — A AL)? At AL).

i

2
1
(2 . 1) tr(ViaVil — AwATL) A A7)

0%
1 2 A

N (Uf a 1) Via Via(Vig Ata)” = 240, Ata (Vi Ata)? + (A, A4a)’] = Cs.

Then, we know that
Ely y] < Cy+2C, +C3 2 C.
For VV;4, C = C" 4+ O(e), while
C' = (14 )i (Afg Ara)® + 207 (1 + 17 (Ay Ara)® + Cs
=31+ p*) (AL Aw)® + C3 < +00. (10)

Then, we obtain the following bound for the gradient of fully fine-tuning method:

few—all
E, [Mzh:] < 4eAViar/ (1 + 1)V, Via VO + O(e?)
t

When € < x 1075, Em[ﬂ] < 1 x 107°, which indicates that large

Ot

1
AV, AV (L4 ui?) Vi Vi
optimization steps are required in the optimization process.

few —all
Under the setting of Example if Vi, = [0.1,0.1]7, E, {M%ﬁ: ] < 1 x 107 when e <
0.12. |
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F THE PROOF FOR GOOD PRETRAINING

In this section, by analyzing the Hessian of score matching objective function for the few-shot phase
oRL
IV,
which leads to a convergence guarantee.

, we prove that with a large initialization area, the objective function is strongly convex,

Since we assume the latent parameter p* is perfectly learned by the pretraining phase i = p*, we do
not especially distinguish fi¢, ;1; and p; in the proof of this section. We also ignore the subscript ¢ of
x when there is no ambiguity. Furthermore, since some results rely on the initialization area, we use
the following simple example to show how to satisfy the requirement after providing the theoretical
guarantee.

Example Setting
t=2,u" =4, A, = [[0.1,0.1]] " and A;, = [[0.12,0.12]] " . (11)

Recall that the Hessian has the following form

(9<9A,\/*m T 83*7‘4@ 823*7‘4@ T
2( a%) (a?/;a 2\ ) Gae )

Squared Term N Cross Term M

First we analyze term MM ", where M has the form as al + bxy ", which will be used in the
following lemma.

Lemma F.1. Let M = al + bxy", MM is semi-positive definite. And it’s positive definite if and
onlyifa=0ora+bx'y=0.

Amin (MM ™)

2 lll*yl*

= min (aQ, a’ +abz Ty + 5

b
5\/\\$||2Hy||2 (4a® + dabx Ty + b2||33||2|y||2)>
Proof. First, Vo € R?, we have
T MM Tz =(MTz)" (M z)
= |M ]z >0
Thus, MM " is semi-positive definite.

We can also obtain that
b
lal 4 bxy | = |al|(1 + EmTy)
=a""Ya+bx"y)

Therefore,
(MM | = a*2(a+ba"y)? >0,

the equality holds if and only if a = O or a + bz "y = 0.

We further derive the eigenvalues of MM .

Let \ be an eigenvalue of M " M with corresponding eigenvector v.
(MTM)v = v

We can analyze the action of this matrix on two orthogonal subspaces.

Let S = span{x, y}. Consider a vector v in the orthogonal complement of .S, denoted S+. For any
such vector v # 0, wehave z'v = 0and y ' v = 0.
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Let’s apply M " M to v:
(MTM)v = (a®I +ab(xy" +yaz ") +0||z|*yy " v
= a’Tv + ab(a(y "v) + y(aTv)) + 0°||z[*y(y " v)
= a®v + ab(z(0) + y(0)) + b?[|z[*y(0)
=a?v
This shows that any vector v orthogonal to both x and y is an eigenvector of M " M with the

eigenvalue \ = a?. The dimension of this subspace, dim(S J-), is at least n — 2. Therefore, a2 is an
eigenvalue of M " M with a multiplicity of at least n — 2.

For the other 2 eigenvalues, we set them p1 and po. We know the determinant of a matrix is the
product of its eigenvalues.
det(M T M) = (a®)" 2y p2

We also know that det(M T M) = det(M ") det(M) = (det(M))2. The determinant of the original
matrix M is det(M) = a"~!(a + by " x). Therefore:

det(M ™M) = [a" ' (a+ by )] 2= @ 2(a+ by 7)?2
Equating the two expressions for the determinant:
(J,2n_4u1/$2 _ a2n—2(a + byT.%')2
Solving for the product g1 po (assuming a # 0):

papz = a*(a+by ' x)?

The trace of a matrix is the sum of its eigenvalues.
tr(M M) = (n—2)a® + puy + po
We can also compute the trace directly from the expression for M T M:
tr(M " M) = tr(a®T + ab(zy " +yx ") + 02| z|*yy ")
Using the linearity of the trace and the property tr(AB) = tr(BA):
tr(M " M) = a*tr(I) + ab(tr(zy ") + tr(yz ")) + b2z *te(yy ")
=na® +ab(y 'z +z"y) + *|l]*(y "y)
= na’ + 2ab(y ") + ||z [|y|®
Equating the two expressions for the trace:
(n—2)a® + p1 + pz = na® + 2ab(y ") + b* ||| [ly|®
Solving for the sum i1 + po:
p + pz = 2a” + 2ab(y " @) + 0%l |1y ||

Thus, 11 and po are two solutions of

12— (20 + 2ab(y " @) + B 2llly]?) p + a(a + by T2)? = 0

We finally obtain that
Amin(MMT)
b2 2 2 b
= min (o, a2+ abe Ty + LD 2 ol (a0 + aabe Ty + 2o Pl )

In the following two lemmas, we provide the bound for the squared term and cross term, respectively.
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Lemma F.2. [Squared Term] Assume Assumption[3.1|and[5.1| holds and the latent parameter [i is
learning perfectly fu = p*. N = ol with a > 0 for Vt € [6,T] (see o in EqlI3).

Proof. Recall that

981, Via
Vi

dtanh(i) V.5 x4 1 ViV,
= tanh (3] V, w)jily + U Vig 72 Via + (2 - 1) T
t

Wia Wia

. . R T 1
= (i Vi el + (1~ a3 Vo Vi + (3 1) (Vi + Vi)
t
1
= (tanh(ﬂ:VtIxt)ﬂt + (02 - 1) V}Imt> I
t
1
(0= b TVl i+ (1) Vi
t

Let p = tanh (i, V,) 2¢)fis + (% - 1) Vil ay and g = (1 — tanh? (3 V] 20) ] fue + 245 — 1, the
squared term can be simplified as:

Ospvia | (O5pvia
OWVia OWiq
Using lemma[F.I] we can obtain that
Amin ((pl2 + q20Via ) (012 + q2¢Via) ")

2|z Via?
2

E,

=E, [(pha + g2tV ) (Lo + gz Vi) ']

—min (17, 22 + paw Vi + = LIl Vial 452 + g Vi + Ll IVialP))

where p = tanh(i] V,] )i+ (% - 1) Vil oy and ¢ = (1—tanh?(3] V,] 2))i) e+ 5 —1 > 0.

2
T
Moreover, since ¢ > 0, we have

2pVig 2 + ql|z]* [ Via||* < II%HIIV%aII\/ﬁl:D2 +4pqVig xr + || %]12(|Vial 12, (12)
the equality holds if and only if x; = kV;,.

The inequality [T2] holds because of the Cauchy-Schwarz Inequality, which can be used through
squaring both sides and rearranging the terms.

Thus,

||| Vea|”
2

q
= 5PV mi + allel?|Vial* - HJ?IIIIV%aH\/‘lp2 +4pgViawe + ¢[|z[P[[Vial?) <0,

q
paz’ Vg + - 5\/Ilﬂcll2ltha||2 (4p® + 4pgr " Via + ¢2||=[1*[[Vial1?)

and
Amin((pLz + quiVil ) (pla + qzViy) ")
¢l Viall®
2
After analyzing each term, we can choose N1 = oy with
¢l Viall?
2

q
=p? +pgr Vig + 5\/||1‘H2||Vta|\2 (4p? + 4pgz " Via + @[] Vial?)-

q
- 5\/||$H2||‘4aH2 (4p? +4pqz " Via + q2x||2|Vta||2)] ;
13)

o = Ewdiam |:p2 + pqu‘/ta +

where p = tanh(ji] V,] )i+ (% - 1) Viayand g = (1—tanh® (3] Vi a0)id fu+ % —1> 0.

Then, we complete our proof.
|
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For the cross term, we analyze two situations: the initialization area is around the ground-truth
Qta’ |ata — Via| < 01, and initialization area is on the right hand of a;,: viq > aiq + 01,,. When
Viq < Qiq, 1t 18 possible for the cross term M to be the negative definite matrix. Hence, we control
each element to guarantee the negative influence of the negative definite matrix is small. When
Viq = Gtq, the cross term M is semi-positive definite in a large region.

Lemma F.3. [Cross Term] Following setting of Lem. 6.1} . (a) The |at, — vta| < (51 + Situation. For
VM (i,7), IM(i,7)] < v(01,¢), where y(61,1) — 0as o1, — 0 (see y(1,4) in Eq

(b) The v, > ayq + 61,4 Situation. Let 02y = vy — ayq > 61, and My = M — M’, where M’ is

SPD. Then, there exists an interval viq € [a1q + 01,4, Qtq + 024 satisfies:
E[M:(1,2)] = E[M1(2,1)] < 0,E[M:(1,1)] = E[M:(2,2)] > 0
E[Ml(]., ].) -+ Ml(]. 2)} > Ul(’l)ta,t) -+ UQ(’Uta,t) y

where (u1(Via,t) + u2(Vta,t))|vu=are+61.. > 0, ul( t) increasing and ugy(-,t) decreasing for
Vtq € atq + 01,t, Qta + 02,4) (see M’ uq (-, t) and us(-,t) in Eq. . .and.)

Proof. We know that the cross term has the following form (in this lemma, we ignore the subscript ¢
of x.)

IR
E {3‘22 (84, Vi — Sm,Am)]
a

= E[(1 — tanh® (g, Vig @)/ pea Tyl + (1 — tanh®(u Vig @) ey "

1
— 2tanh (g, Vi 2)(1 — tanh®(u Vg @) pups Ty, +2 <02 - 1> zlyl].  (14)
t

We want to make

0%sav, 1
| T (e, = sy on)] + 2oy — DL )AL AWV Vil
ta O

1
+pt (= = 1) tanh (4 Vi, 2 Ata)Vig Avalz + Ex [tanh® (p) V) 2)pf) 1o
t

positive definite, where the last three terms come from the above squared term.

In the proof of this lemma, we redefine x:
= [2(1),2(2)]" ~ N(peAra, AraAl)
which indicates that 2(1), 7(2) ~ N(usaq, a?,). We also denote by
o' 2 2(1) +2(2) = [1,1] - 7 ~ N(2eata, 4d2,).

Then, we provide bound for the two situation.

(a) The |a;, — vi4| < 01, situation. For any element in the cross term

0%s;,

4,Via

eckE [61/2 ($7,Via — Su*,4u) |
ta

we know that
[Ele]| < 2/E[u7 (1 — tanh? () V) (1)y(1)]|
+ 2|E[tanh” (11, Vg )i (1) + 2(1)z(2))y(1)]| + QI(U%Q — DE[z(1)y(1)]|

<2uf\/]E (1 — tanh® (i Vig )2 (1))2] v Ely(1)?]
+2ut\/E (tanh” (pf Vig 2)(2(1)% + 2(1)(2)))’]VE[y(1)?]

~ DVE[(1)?VE[(1)?]
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where the first inequality follows by the triangle inequality, and the second inequality follows
by the Cauchy-Schwarz inequality. Then we give upper bounds on E[(tanh’ (1, V,! 2))%z(1)?] ,
E[(tanh” (g V,! 2)(x(1)? + 2(1)z(2)))?] and E[y?] to obtain a total bound.

(i) Term E[(tanh’ (1 V;g2))2(1)%].
With the Cauchy-Schwarz inequality, we know that
E[(tanh’ (i Vig))?2(1)%] = E[(1 — tanh® (i Vg 2))?2(1)?]
< V/Eltanh (ura(o(1) + 2(2))] VEDT]

For the first component, we know that

Exl"’N(Qm atq,4a?,) [tanh/4 (,Udtvta-r/)}

o'} r_9 2
< / tanh"‘(utvmx’)exp(—w)dx
0

8a?,
r_ 0 t—2 2
‘ :atat ata/ tanh/4(/’étvtaatat) GXp(—(TMt))dt
0
[e%s) t—2 2
< am/ exp(—4pViqarat) exp(—%)dt
0

t+ 16p07, — 2)°
8

= Qyq exp(4fteViatia (SpevZ, — 2414)) / exp(f( )dt
0
< g exp (445 Viaia (8v7, — 2)) .

Thus,

E[(1 - tanh® (i) V;q))°2(1)%] < \/]E[tanh'4(utvta(w(1) +2(2)]VE[z(1)1]

< Vi eXpMU?Utaata (4Ut2a - 1)) \/ 3+ 6/@ + M?aga
= \/3+ 647 + pfal, /ara exp(dp viaasa (407, — 1)),

where the second inequality follows the fact that E [x(l)ﬂ = (3 + 617 + uf) at,.

We also know that 0 < (1 — tanh?®(u, V,[ 2))? < 1. As a result, we also can give another bound:

E[(1 — tanh® (1, VL 2))22(1)%] < E[e(1)?) = (1 + x)a,
Hence, we can obtain that
E[(1 — tanh®(p; V,; 2))*z(1)?]

< min{\/3 + 647 + a7y /G exp(Apri viaaa (407, — 1)), (1+ p7)aiy } -

(ii) Term E[(tanh” (u Vg o) (2(1)? + 2(1)2(2)))?].
For this term, we have that
E[(tanh” (pvra (2(1) + 2(2))) (2(1)* + 2(1)2(2)))?] < E[z(1)*(x(1) + 2(2))?]
= E[dz(1)"] = 4(u} + 64} + 3)ay, |
where the first inequality holds because 0 < tanh”?(pvsq (2(1) + #(2))) < 1, the second and third
equalities hold due to z(1) = x(2) and E[z(1)*] = (i} + 62 + 3)a}, respectively.

(iii) Term E[y?]. Recall that since we assume the latent parameter ;* is perfectly learned by the
pretraining phase /i = p*, we do not especially distinguish fi¢, 4y and p in the proof of this section.
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For gy, we have that

Y= 50,Via = Sp*,Ava

1
= t(Via tanh(utTVtIff) — Aia tanh(,u;rA;x)) - (V;favtjz— - AtaAIz)x - ;(AtaAIz - V;faV;sI)m
t

Let Atu = Via + A,

E[y]

1

= E[pe(Via tanh(p, Vi x) — Agq tanh(p, Al,2))] + E[(1 - —
t

)(ViaAT + AV,L + AAT)z]

1
< Elpe(Vig tanh(p] V! z) — Ayg tanh(p AL 2))] + (1 — ?)(VMAT + AV, + AAT Ay
t

We need to give the bound of j1;(V;, tanh(p, V,! 2) — Ay, tanh(u,” A/ x)). Inspired by the Taylor’s
Theorem, we show (x + Ax) tanh(z + Az) — x tanh = can be bound by K Ax, where K will be
defined later.

f(z) = ztanh(z)
4z
(exp(z) + exp(—x))*

f/(z) = tanh(z) + z - sech?(x) = tanh(z) +

For the bound of f/(z), we know that

4z
(exp(x) + exp(—))?
4z
exp(2z) + exp(—2z) + 2 ’

|f'(2)] < [tanh(z)] +

< min{1, |z|} +

2
< min{1, |z|} + min{|z|, g} )

where the first inequality holds because of the triangle inequality, the second inequality holds because
|tanh(x)| < 1 and —z < tanh(z) < z. The third equality holds because

4z ’ < 4z ' < 2
exp(2z) + exp(—2z) +2| ~  '|exp(2z) + exp(—2z) + 2| ~ e’
For y(1) in y, we have that
ly(D)] =
Vg tanh (g (2(1) + 2(2))vte) — (Vi + ) tanh (e (2 (1) + 2(2))(veq +0)) + (1 — Uitz)(%mé + 52)95(1)’

1
= ‘m(l) T 2(2)

(- )@uad + 52>x(1)'

| min gt pee(1) + 2(2)yna) + min{ele(0) + D, 2o+ 2(2)

+

521 ((p(z(1) + 2(2)) vt + min{pe]z(1) + 2(2)|vta, %})5 + ((712 - 1) (2uiq + 1)dz(1)

t
1

= ((min{1, e (x(1) + 2(2))vea } + min{pe|z(1) + 2(2)|vta, %} + (Jt2

- 1) (2u¢q + 1)z(1)) .
Recall that 7' = z(1) + (2) ~ N (2p4a4q, 4a2, ). For E[y(1)?], we have that
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Ely(1)%) < BI(S((min{1, Juu(w(1) + 2(2))vial} + min{lpe(w(1) + 2(2))ouel, 2]

+Mﬂf£?@wﬁﬂﬂﬂnm

= (El(minL [(2(1) + 2(2))vtal} + minflpe(e(1) +2(2))vial, 21)7)
+ (1= ) o+ 120+ e Bfmin L i (o(1) + 2(2) s
e minla(1) + 2))al, 21 = )21 + e,

2 1

< (4P(p00a’| 2 2) + By 2 0]+ (1= )2 200 + 12(1+ i)ed,
t

2

1
+ (E2pevia’]  + 2P(|psvias’| > g))(l - ;)(%m + 1)4vt,) 82
t

2 1
< (P(|lvian’| = 2) + 1605, a5, (17 +1) + (1= —5)* (v + 1) (1 + pf)vg,
t

1
) (210 + 1)4v4 )62

2
+ (4M?Utaata + 2P(|Mtvtaxl| 2 *))(1 )
e o}
2 K252 :
where the first inequality follows by (i) dividing p;v;,2" into two parts pv 2’ < 2/e and pyviaz’ >
2/e (i) min{1, |pvia@’|} = min{2/e, |via@’|} = |peveqa’| when pyviqa’ < 2 and the second
inequality follows by E,, .. /<2 [17v7,2"] < By [pv7,a?] = pivi,az,(1 + p7).

2
07 54,v4q
3
8‘4(1

For each element in the cross terme € E (Sp,Via — S, Am)} , it can be decompose into

three term:
MMds2|En£u~—umh%u3m1x»xunAnH—F2k;§—1ﬂﬂxunxnﬂ

+ 2 [E[tanh” (] Vig o) (2(1)? + 2(1)2(2))y(1)]] -
For the first term, we have that
2|Efp7 (1 — tanh®(p] V) 2))z(1)y(1)]|

< K¢ (2%2\/\ [t + 6u? + 3a2,\/arq exp(4pivigasq (402, — 1))) .

For the second term, we have that

2 [E[tanh” (1] Vigw)pf (2(1)? + 2(1)2(2)y(1)]| < K6 (2uf\/4(u? + 67 + 3)@2‘@) :

For the third term, we have that
1 1
(2 = DB (D] < K525 = 11+ ).
Oy 0%
Combined with the bound for these three term, we have that
|E[e]|
< 2a4q u? Kéx

1 1
(afa 4//121 +6u? + 3exp(2ufvmam(4vfa — 1)) + 24/ puf + 617 + 3pia, + (? —1)y/1+4 uf)
t

— KCy6, (15)
where § € |A| = |Vi — Aga| > 0.

2
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. . . . A
Now we focus on the Hessian matrix. Let H be the 2 x 2 Hessian matrix, v = KCyd,

)1z Vaa?

q
o = SNl IVial? (492 + 4pax T Via + 4222 Vial12)

as wavpdata |:p2 + pqu‘/ta +

where p = tanh(i] V,] )i + (% - 1) VT and g = (1—tanh® (3] Vil 2)) i fiu+ 2 —1> 0.
As we defined before, we can divide H into two parts H; and Ho:

h 0
Hl[ O1 hl],hlza’y

ha h
H2:|:hz hi]ahZZa,_’Ya

2 pfew

where o and o/ is determined in Lemma Thus, if i1 > 0 and hy > 0, the Hessian matrix 9 Esis
is 2(« — «y)-positive definite.

In our example (Example, pr = 4exp(—2), arq = 0.12, 0y = /1 — exp(—4). P(|prveaz’| >

2)<1x1072° =~ 0.
Then, we know that when § < 0.02 (vs, € [0.1,0.14]) « — v > 0, and
B 2 Bty ons(uaann ) [2(1 — tanh?(0.28,2(1))) 220, 0(1)%] = 7 > 0.

positive definite in a large region. If vy, > a4 and py = p*, we can get xTy > 0and (1 —
tanh?(u " V] z))z Ty > 0:
T

The vy, > a¢q + 01+ situation. When vy, > atq, we will prove that the cross term is semi-

N
T Y= (Sp,via — Su-,A.,)

1
= ' Vig tanh(p, Vi) 2) e — 27 Agg tanh(uf Al )k + ((72 - 1) " (ViaVil — A Al
¢

1

> T Ay, tanh(utA;l;ﬁC)/lt — 2T Ay, tanh(qu;x),uf + <02 — 1) xT(AmA; — AmA;)x
i

= 07

where the inequality holds because z ' Vi, tanh(u;V,] x)u is even, monotonically increasing if
Viiz>0and V) z > A,

Then, we have that
tr(a:yT) = tr(yTa:) = tr(a:Ty) >0

and
Rank(zy ") < Rank(z) = 1.

We also know that 1 —tanh?(u, V,! ) > 0, which indicates (1—tanh?(,V;! 2))zy T is semi-positive
definite.

Recall that the cross term has the following form

623* Via
M=K a#‘/t% (Sﬂ7vta - SH*wAm)
= E[(1 — tanh® (i, Vig @)/ pea Tyl + (1 — tanh®(uf Vig @) peey "
1
— 2tanh(p "V, 2)(1 — tanh® () Vi @)y pep T yx Vi), +2 (Uz - 1) zlyly].
t

Then, we define the following two matrix: M = M’ + M, where

1
M' = (1 — tanh®(u, V,j @), peay” +2 ((72 —~ 1) ayly, (16)
t
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and

My = (1 — tanh® (/) Vig@))pie Tyls — 2 tanh(u/ Vi @) pma Vg (1 — tanh®(u Vi @) pia Ty

‘We know that
My[L,1] + M[1,2]) = (1 — tanh® (u V; ] 2))pdz T y(1 — A tanh (V] @) prvgae(1)

E[M;[1,1] + M;[1,2]]
> E[(1 — tanh®(p; Vyg 2))z " y(1 — 4 tanh(p, Vg @) peaz(1)]
[

E
E[(1 — tanh® (1, V] 2)a T y] — E[4(1 — tanh? (V] )Ty tanh(, V] (1) prvrae (1))

Then, we discuss each component in the following part. For the first term, we know that

E[(1 — tanh® (s, V1 2))a T y) > E[(1 — tanh® (e (1))2 ) £ ua (vra, 1) - (17)
For the second term, we know that
— E[4(1 — tanh® (1 Vyq #))2 Ty tanh (1, Vg 2(1)) prvia(1))]
> —E[4z "y tanh (V) o())prvaz(1)] £ wavia,t) . (18)

We know that u; (v, t) increases with vy, increasing while us(vy,,t) decreases with v, increasing.
We also know that when vy, ¢ = a0 + 01,4, U1 (Via, ) + u2(veq,t) > 0, which indicates there exists
an area Viq, ¢ S [am’t + 617,5, Qta,t + (527,5] that Ml [1, 1] + M1 [1, 2] Z 0.

Thus,
E[M[1,1]] = E[M[2,2]] > 0, E[My[1,2]] = E[M,[2,1]] <0,
and
[E[M]| = (E[Mi[1,1]])* - (E[M[1,2]])”
= (E[My[1, 1]] + E[M 1, 2]]) (E[M:[1, 1]] = E[M:[1,2]]) > 0.
Then we know that
E,[(1 — tanh® (4 Vg @))pia " yly — 2 tanh(u Vi 2)paVy, (1 = tanh? () Vg 2))piz " y]
is semi-positive definite. Then, the proof is finished.

To make a clearer discussion, we use the setting of Exampleto show the interval of [a;q + 01+, G1q +
da,t)-

Via € [0.14,0.25)
u1(0.14) = 0.00023 > 0.0002
u2(0.28) <4 x 107° < £(0.14)

Vta € [0.25,0.4]
u1(0.25) ~ 0.0021 > 0.002
uz(0.4) < 1.4 x 107* < £(0.25)
Vta € [0.4,0.5]
u1(0.4) ~ 0.0064 > 0.006
u2(0.5) < 0.00034 < £(0.4)
Hence, we can have E[M; (1, 1) 4+ M7(1,2)] > 0 when v, € [0.14,0.5]. [ ]

Before proving our convergence guarantee, we first previous convergence lemma.
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Lemma F.4 (Convergence Lemma). Ler ¢ be locally u-strongly convex and L,,-smooth, if n, = n =
K= L;L, and x* € argmin, . ¢(x), then

< (521) o - ot
27 \k+1
After that, we provide our convergence guarantee for few-shot diffusion models with a great pretrain-
ing.
Theorem 6.4. Assume Assumption[3.1] fi = p* and 6y 4, 03¢ satisfy Condition [T} Considering
score matching function Egcl\“/{,t. When vig) € {[ata — 01,4, Grq + 02,4] U [—atq — I, —ata + 01.4]},
using gradient descent with learning rate 1 = 1/(2a+ ¢), with k = (a + v + ¢) /(e — ), we have

_2
ptLm’

th _.’17*

2

k
[VAPvT — anal| < (51) @i+ 6200l — al

F

Proof. First we prove that there exists L,, > 0, such that the objective function is L,,-smooth. In
this work, we take the maximum eigenvalue of the hessian matrix to be L, .

Osivia )| P5iVie
Via Wia
Based on our analysis of the hessian matrix, we can divide the matrix into two parts: { )E)l )(\)1 ]

A2 Ao
Ao A |

aQEfew 328 Vi
E [ aVSzM} =2E {(a{;’z)T (S, Vea — Sm,Am)] +2E
ta ta

and {

We first analyze the property of [ M ;_2 A2 A )f Ay ] , and then give the bound of A\; and \s.

AL+ Ao A2 . .
‘)\12—[ )\2 >\1+/\2:H—OZ>()\—)\1)()\—)\1—)\2)—0,
which indicates A = A; or A = Ay + A2. Thus, if A\; > 0, we can choose L,, = A1 + | A2

25
According to our analysis on before, Ve € IFL‘[(B;“?’QV‘“)T (80.V2a — S An )]s €] <0
ta

.
Next we analyze F [(8‘;‘;‘% ) (8‘;@25“ )} and have the following form:

ta

053via \ | (05iha
Vi Vi

— Eftanh® (] Vil a)a] e Lo] + E[(1 — tanh® (] Vil 2))2p] peViaa 2V,

E

1

+2(—5 = DA+ 1) Ara Al ViaVia + (14 1) Vig Ara Al Via)
t

+E[2(1 — tanh® (i Vg ) tanh (i Vig @) e 16 Viaz |
(

+ 28] Ui — 1) tanh(] Vil )(aV,] + Vil ah)]

(L =t Vi) (3 1) Vi 2L + Vi Vi)
B = tanl ] V) (2 = 1) i (e Visa V] + 2 TViaViT)
=[5 a6 ¢
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where
C=Es())~N(urara.a2,) l2(1 — tanh? (2000 7(1))) 7 v 2 (1)?
+ 2(1 — tanh? (2u4v,a2(1))) tanh (2pviez (1)) vz (1)

42 (1 - 1) tanh(2pyveaz (1)) paz (1)

Ut
1 1 2
+ <02 - 1> (1 — tanh®(2p4v4q2:(1)))6p707,2(1)? + <02 - 1> 41;;1&:5(1)4] . (19
t t
For the (, we have the following bound:
1 2
(<E l2ﬂtvta (1)2 + ((72 - 1) 4“?11 (1 ) +4Mtvta (1)2]
t

1 1
w8 | (1) b0+ (5~ 1) a1
t t

1 1
— it (g 4 (1) 6 (1))
t

t
1 2
+ 4 <O’2 - 1) (Mt + Gu’t + S)Utaa’ta .
t

_ — Lm — 2 — _1
Thus, we can take Ly, = 2(v + 7 + (). Letk = =, 1 = e el Td — arc and

Apa € argminy, o L&V, then

k
K—1
[T~ L], < (557 o+ 02000l - al.
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