
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVALUATING THE ROLE OF GREAT PRE-TRAINED DIF-
FUSION MODELS IN FEW-SHOT PHASE: WARM-UP AND
ACCELERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the customized requirements, few-shot diffusion models have attracted
much attention. Despite the empirical success, only a few works analyze few-shot
models, and they do not involve the fast few-shot optimization process. However,
fast optimization is important and necessary in quickly responding to users. In this
work, for the first time, we evaluate the role of each operation in the optimization
process and prove the convergence guarantee for few-shot diffusion models. A
standard operation for the few-shot model is only fine-tuning some key parameters
to avoid overfitting the limited target dataset. We first show that this operation
is insufficient from empirical and theoretical perspectives. More specifically,
we conduct real-world few-shot fine-tuning experiments with underfitting and
overfitting bad pre-trained models and show that the few-shot results are heavily
influenced by these bad models. Theoretically, we also prove that the few-shot
phase can not learn the ground-truth parameters and suffers a small gradient
when using a bad pre-trained model. Based on these observations and theoretical
guarantees, we highlight the importance of a great pre-trained model by showing it
can warm up few-shot models and lead to a strongly convex landscape for few-shot
diffusion models. As a result, the few-shot model fast converges to the ground-truth
parameters. In contrast, we show that with a bad initialization, the pretraining
phase requires large optimization steps to converge. Combined with the above
results, we explain why few-shot diffusion models only require a few optimization
steps compared with the pretraining phase.

1 INTRODUCTION

Recently, diffusion models, which are trained on large-scale datasets with sufficient training time,
have shown impressive performance in different areas such as 2D and 3D generation (Rombach et al.,
2022; Blattmann et al., 2023; Liu et al., 2024). However, when facing customized requirements, we
only have limited data and need to achieve a quick and high-quality response to users. To achieve
great performance under such a situation, few-shot diffusion models have received attention (Ruiz
et al., 2023; Xiang et al., 2023; Kumari et al., 2023; Moon et al., 2022; Liu et al., 2023). Few-shot
diffusion models only use a limited target dataset (5− 10 images) and a few optimization steps (fewer
than 1k steps) to fine-tune a pre-trained model (such as Stable Diffusion (SD) XL, which requires
500k optimization steps) and generate samples with the target feature.

Though few-shot diffusion models achieve great performance in applications, only a few works aim
to explain the success of few-shot diffusion models (Yang et al., 2024a; Chua et al., 2021; Cheng
et al., 2025). Furthermore, they focus on the estimation error and explain why a limited target dataset
is enough for few-shot models. However, the fast optimization process of few-shot diffusion models
is also important and necessary for quick response to users, and the theoretical guarantee for it is
lacking. Hence, the following natural question remains open:

Why do few-shot diffusion models only require a few optimization steps to achieve great performance?

In this work, for the first time, we study the optimization process of few-shot diffusion models,
highlight the role of great pre-trained models, and answer the above question by showing that the
few-shot phase fast converges to the ground-truth parameters under a suitable condition.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: DreamBooth few-shot fine-tuning results based on great and bad overfitting pre-trained
Models. The overfitting bad pre-trained Model is obtained by training SD3 Medium with 5 dog
image for 1k steps. The generated images based on overfitting bad pre-trained models suffer from the
memory phenomenon of the overfitting feature.

Before providing the convergence guarantee, we first analyze the necessary conditions for a great
few-shot diffusion model. A standard operation for few-shot diffusion models is to freeze most
parameters and only fine-tune some key parameters (Liu et al., 2023; Xiang et al., 2023). However,
we show that this operation is not enough from the empirical and theoretical perspectives. More
specifically, we conduct real-world experiments and show that with bad pre-trained models, the
few-shot phase can not generate high-quality images, where overfitting bad pre-trained models suffer
from the memory phenomenon (Figure 1) and underfitting bad pre-trained models have a fine-tuning
loss gap (Figure 2). Based on our experiment observation, we prove that if the pre-trained model is
bad, few-shot diffusion models can not learn the ground-truth parameters. Furthermore, the gradient
of few-shot diffusion models becomes small when the point is still far away from the minimizer.
In other words, under this setting, few-shot diffusion models require large optimization steps to
converge. As a byproduct of the gradient analysis, we also show that the pretraining phase with a bad
initialization suffers from a small gradient, which slows down the optimization process.

The above results can not explain why few-shot diffusion models can only use a few optimization
steps to achieve great performance. Based on the analysis of bad pre-trained models, we show the
importance of great pre-trained models. An intuition is that great pre-trained models provide a
warm-up for the few-shot phase and simplify the landscape. Inspired by this intuition, we prove that
the few-shot phase with a great pre-trained diffusion model converges to the ground truth parameters
using the gradient descent algorithm and provide a convergence guarantee for the optimization
process.

Combined with the analysis for the pretraining phase, these results explain why few-shot models can
use much smaller optimization steps to achieve great performance. In conclusion, for the first time,
we analyze the optimization process of few-shot diffusion models and achieve the following results:

• By providing real-world experiments and counter-examples, we prove that a great pre-trained
model plays an important role in the few-shot phase. Otherwise, few-shot diffusion models
can not learn the ground-truth parameters and require large optimization steps to converge.

• We show that with a great pre-trained model, the landscape of few-shot diffusion models
becomes strongly convex. As a result, few-shot models quickly converge to the ground-truth
parameters, and we prove the convergence guarantee for this optimization process.

• As a byproduct of gradient analysis, we prove that the pretraining phase with a bad initial-
ization suffers a small gradient and requires large optimization steps.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Optimization Guarantee for Diffusion Models. Since the score matching objective function is
non-convex, only a few works analyze the optimization process of diffusion models. Furthermore,
these works either focus on some specific data distribution or use the kernel method to simplify the
analysis. For the specific data distributions, a series of works focus on designing algorithms to learn
Gaussian Mixture Models (Bruno et al., 2023; Cui and Zdeborová, 2023; Shah et al., 2023; Chen
et al., 2024) based on the score matching technique. Han et al. (2024a) focus on a data distribution
consisting of two fixed orthogonal vectors. For the general data, Li et al. (2023) and Han et al. (2024b)
simplify the problem to a convex optimization by using a wide 2-layer NN and kernel methods. Then,
they use the gradient descent (flow) method to obtain a convergence guarantee. We note that the
above works focus on the pretraining phase. On the contrary, we focus on the few-shot phase, discuss
the necessary conditions, and provide the first convergence guarantee for few-shot diffusion models.

Guarantee for Few-shot Diffusion Models. Recently, some works have focused on the estimation
error of few-shot diffusion models (Yang et al., 2024a; Chua et al., 2021; Cheng et al., 2025). The
core idea is to model the shared part between the source (meta learning phase) data and the target
data. Based on this intuition, Yang et al. (2024a) show that few-shot diffusion models escape the
curse of dimensionality and make the first step to explain the empirical success of few-shot diffusion
models. Recently, Chua et al. (2021) and Cheng et al. (2025) study the conditional diffusion models
and also prove the estimation error of the few-shot phase with the meta-learning prior information.
Only Yang et al. (2024a) study the optimization process and provide a closed-form minimizer for the
linear subspace distribution with a Gaussian latent. However, the real-world distribution is always
multi-modal, and diffusion models usually use optimization algorithms instead of obtaining the
closed-form minimizer. Hence, in this work, we focus on the multi-modal latent distribution and use
the gradient descent (GD) algorithm to optimize the objective function.

3 PRELIMINARIES

We first introduce the basic knowledge and notation of diffusion models. Let q0 ∈ RD be the data
distribution. The variance preserving (VP) forward process is defined by:

dxt = −xtdt+
√
2dBt, x0 ∼ q0 ∈ RD ,

where {Bt}t∈[0,T] is a D-dimensional Brownian motion. Let qt be the density function of xt and
{yt}t∈[0,T] = {xT−t}t∈[0,T]. To generate samples, diffusion models reverse the forward process and
run the corresponding reverse process:

dyt = [yt + 2∇ log qT−t(yt)] dt+
√
2dBt .

The reverse process requires the score function ∇ log qt(·), which contains the data information
and can not be exactly calculated. A conceptual way to approximate ∇ log qt(·) is to minimize the
following score matching (SM) objective function (Song et al., 2020; Karras et al., 2022):

min
s∈NN

LSM =

∫ T

δ

Ext∼qt ∥∇ log qt (xt)− s(xt, t)∥22 dt , (1)

where NN is a given function class and δ > 0 is the early stopping parameter to avoid a blow-up
score. However, LSM can not be directly calculated since ∇ log qt(·) is unknown for general data. To
avoid this problem, Vincent (2011) propose the denoising score matching (DSM) loss based on the
conditional score function ∇ log qt (xt|x0) with an analytical form:

min
s∈NN

LDSM =

∫ T

δ

Ex0

[
Ext|x0

∥∇ log qt (xt|x0)− s (xt, t)∥22
]
dt ,

which is equivalent to LSM up to a constant independent of the optimized parameters. Once a forward
process is chosen, qt(xt|x0) is determined as qt(xt|x0) = N (mtx0, σ

2
t ID), and ∇ log qt (xt|x0) has

an analytical form −(xt −mtx0)/σ
2
t , where mt = e−t, σ2

t = 1−m2
t for VP forward process.

With a score, diffusion models discretize and run the reverse process to generate samples. Since
the sampling process is widely studied (Chen et al., 2022; Yang et al., 2024b) and the optimization
analysis is lacking due to the highly nonlinear score, this work focuses on the optimization process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 TWO PHASES OF FEW-SHOT DIFFUSION MODELS

After discussing diffusion models, we introduce few-shot diffusion models widely used in applications
(Kumari et al., 2023; Moon et al., 2022; Liu et al., 2023), which consist of two phases: the pretraining
phase and the few-shot phase. In the pretraining phase, we train a diffusion model with a large source
dataset and sufficient optimization steps. In the few-shot phase, we freeze most parameters and
fine-tune some key parameters corresponding to target features with a limited target dataset.

As a beginning, we introduce assumptions on data. Following Yang et al. (2024a), we assume source
distribution qs and target distribution qta both admit linear subspaces and share a latent distribution.
Assumption 3.1. Source data xs and target data xta have form xs = Asz and xta = Ataz where
As, Ata ∈ RD×d have orthonormal columns and z ∼ qz ∈ Rd.

The low-dimensional structure has been discovered in image and text datasets (Pope et al., 2021;
Tenenbaum et al., 2000), and the linear subspace assumption has been widely adopted in many
previous theoretical works (Chen et al., 2023; Yuan et al., 2023; Guo et al., 2024). For the shared
latent assumption, it is used by current analysis for few-shot diffusion models (Yang et al., 2024a) and
is standard in the context of few-shot learning (Du et al., 2020; Meunier et al., 2023). With the linear
subspace assumption, the score function can be decomposed into (1) a latent score ∇ log qLDt (·) and
(2) linear encoder and decoder As (Ata for target distribution) (Chen et al., 2023)

∇ log qst (x) = As∇ log qLDt (A⊤
s x)− (ID −AsA

⊤
s)x/σ

2
t ,

where qLDt (z′) =
∫
qt (z

′|Z) qz(z)dZ and qt(·|z) = N (mtz, σ
2
t Id). This decomposition means

that the optimization process needs to optimize two parts: the linear encoder and decoder As

(parameterized by Vs; Ata parameterized by Vta) and latent score ∇ log qLDt (·) (parameterized by µ).
Then, the objective function for the pretraining phase is

mins∈SNN
Lpre
DSM =

∫ T

δ
Ex0∼qs

[
Ext|x0

∥∇ log qst (xt|x0)− s (xt, t)∥22
]
dt ,

where SNN is the function class used in the pretraining phase and has the following form

SNN =
{
sV,µ(x, t) = V fµ(V

⊤x, t)/σ2
t − x/σ2

t : V ∈ RD×d with orthonormal columns,

fµ : Rd × [δ, T] → Rd a network
}
.

With a pre-trained score function, the diffusion model fine-tunes it with a given target dataset in the
few-shot phase. Let (V̂s, µ̂) be the minimizer of the above pretraining objective function. Since the
source and target data share a latent distribution, we freeze the approximated latent score function fµ̂
and only fine-tune the linear encoder and decoder Vta in the fine-tuning phase:

min
s∈QNN (µ̂)

Lfew
DSM =

∫ T

δ

Ex0∼qta

[
Ext|x0

∥∥∇ log qtat (xt|x0)− s (xt, t)
∥∥2
2

]
dt , (2)

where QNN(µ) = {sV,µ(x, t) = 1
σ2
t
V fµ

(
V ⊤x, t

)
− 1

σ2
t
x : V ∈ RD×d with orthonormal columns.}.

Notations. We denote by ID the D-dimensional identity matrix and I the matrix with all elements
equal to 1. For a vector x ∈ RD, we denote by ∥x∥2 the Euclidean norm and x(i) the i-th element.
For a matrix A ∈ RD×d, we denote by ∥A∥F the Frobenius norm and A(i, j) the (i, j)-th element.
For the optimization, we define z(0) by the initialization and z(k) the k-th iteration of GD algorithm.

To characterize the landscape of the objective function, we give the following definition.
Definition 3.2. ϕ : RD → R is λ-strongly convex and Lm-smooth if λID ⪯ ∇2ϕ(x) ⪯ LmID.

4 THE INFLUENCE OF BAD PRE-TRAINED MODELS IN FEW-SHOT PHASE

As a start, we conduct experiments to show the influence of bad pre-trained models in the few-shot
phase. The bad pre-trained models can be roughly divided into overfitting and underfitting, where the
former suffers from low diversity and the latter does not learn the basic information.

Overfitting Bad Pretraining: Memory Phenomenon. Since Stable Diffusion (SD) models can gen-
erate high-quality and diverse samples, we view them as great pretrained models. To obtain overfitting

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The underfitting experiments on CelebA64 dataset. Based on the underfitting bad pre-
trained models, the few-shot phase can not generate clean face images and suffers from the loss gap.

bad models, we overfit them with one prompt (a photo of a dog) and 5 dog images. As the overfitting
step increases, the diversity decreases. We use two bad pretrained models, the first one overfits 1k
steps (Bad pretrain1k, Bad1k), and the latter, a worse one, overfits 4k steps (Bad pretrain4k, Bad4k).

Great Bad1k Bad4k

SD1.4 Clip-T 0.3258 0.3240 0.3227
Pickscore 21.70 21.70 21.67

SD3-M Clip-T 0.3241 0.3085 0.2357
Pickscore 22.11 20.52 18.52

Table 1: Results for overfitting bad pretraining.

In the few-shot phase, following Dream-
booth (Ruiz et al., 2023), we fine-tune the
pre-trained model with Dreambooth training
dataset. For the evaluation, we use Dream-
booth test prompts and generate 3k images
to calculate Clip-T and Pickscore. To match
Section 3.1, we only fine-tune the first and
last 3 blocks of NN (Details in Appendix C).

As shown in Figure 1, if the pre-trained mod-
els overfit a dog feature, the few-shot phase suffers from the memory phenomenon and can not
generate images with the target feature, for example, a cat feature. Table 1 also shows that as
the pretrained models become worse, the metric is worse. Another interesting observation is the
difference between the SD1.4 and SD3-M. As shown in Table 1, SD3-M suffers a heavy influence of
bad pretrained models compared to SD1.4. One core difference is that SD 3 adopts the deterministic
sample process, and SD1.4 adopts the stochastic sample process. This indicates the learning error
in the fine-tuning phase (introduced by the bad pretrained models) quickly accumulates through the
sampling process when adopting the deterministic sampler.

Underfitting Bad Pretraining: Few-shot Loss Gap. Following Yang et al. (2024a), we conduct
experiments on CelebA64 to show the influence of underfitting pre-trained models. We first train two
basic models with different hairstyles. The facial features generated by the basic model trained with
50 epochs (Model-50) are distorted, while Model-200 (with converged loss) can generate clear faces.
Hence, we call Model-50 an underfitting model and Model-200 a great pre-trained model.

Then, we fine-tune the appropriate encoder and decoder (See details in Appendix C) of the two basic
models with 10 bald hairstyle target images. As shown in Fig. 2 (a), the Model-50 usually generates
images with distorted facial features after fine-tuning, which is due to the poor learning of basic
concepts (such as every face has a nose, eyes, etc.) in the pretraining phase. On the contrary, the
Model-200, after fine-tuning, can generate novel images with the target bald feature. Fig. 2 (b) shows
the few-shot fine-tuning loss gap between the great and underfitting bad pre-trained models. This loss
gap indicates that if the basic feature and concepts are not learned in the pretrianing phase, it is hard
to make up during the few-shot fine-tuning phase and leads to a bad local minima.

In the following part, we provide the theoretical explanation for the few-shot loss gap and the gradient
analysis for the few-shot phase with a bad pre-trained model, which indicates that a bad pre-trained
model can not warm up and is hard to provide a good initialization for the few-shot phase.

5 BAD PRETRAINING PREVENTS FEW-SHOT PHASE LEARNING PARAMETERS

An intuitive idea is that the few-shot phase will quickly converge to the global minimizer since it
only optimizes fewer parameters than the pretraining phase. However, we show that if the pre-trained

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: The Landscape for LSM and LDSM. Since the landscape of Lfew can be viewed as a slice
of Lfew−all at µ̂, we present the landscape of Lfew−all.

model is bad (the criteria of great pretrained models is provided in Section 6.1), the few-shot phase
can not learn Ata, suffers a constant error (few-shot loss gap), and has a small gradient.

Before providing our results, we first make some assumptions on the latent distribution qz . As
discussed in Sec.2, Yang et al. (2024a) only adopt a Gaussian latent, which can not reflect the
multi-modal property of the real-world dataset. On the contrary, we assume the latent distribution is a
mixture of Gaussians, which is multi-modal and has a nonlinear score function.

Assumption 5.1. The external dimension D = 2 and latent dimension d = 1. The latent distribution
is qz = 1

2N (−µ∗, 1) + 1
2N (µ∗, 1), and the linear parts are As = [as, as]

⊤ and Ata = [ata, ata]
⊤.

Remark 5.2. The 2-modal Gaussian mixture distribution with symmetrical mean and standard variance
is also used in Shah et al. (2023), and this latent distribution is representative since it has multi-modal
properties and a nonlinear score function. We note that the assumption can be extended to general
D and d, and the toy case with D = 2 and d = 1 is used for the convenience of calculation. The
simulation experiments also support our discussion (Table 2), and we also provide some promising
methods to extend this assumption to general latent distribution and general manifold (Section 6.1).

Let µ∗
t = µ∗ exp(−t). After assuming 2-modal Gaussian Mixture latent, the ground truth latent score

∇ log qLDt (·) has a closed form, which leads to the following score in the full space:

∇ log qt(x) = A tanh(µ∗⊤
t A⊤x)µ∗

t −AA⊤x− (ID −AA⊤)x/σ2
t . (3)

Inspired by the above formulation, we use the following network fµ(z, t) to approximate latent score:

fµ(z, t) = σ2
t tanh(µ

⊤
t z)µt + (1− σ2

t)z ,

and Vta = [vta, vta]
⊤. After determining SNN and QNN, the few-shot diffusion models can first

optimize Lpre
DSM and fine-tune the pre-trained score with Lfew

DSM with the target dataset. We also define
the score matching objective function for the few-shot phase, which is used in the analysis:

mins∈QNN(µ̂) Lfew
SM =

∫ T

δ
EXt∼qtat

∥∇ log qtat (xt)− s (xt, t)∥
2
2 dt .

We note that Lfew
SM and Lfew

DSM are equivalent up to a constant independent of all optimized parameters
(Vincent, 2011), which indicates the optimization landscape is the same for these objective functions
(Fig. 3). Since the score ∇ log qt(·) under Assumption 3.1 and 5.1 has an analytical form (Eq. 3), we
focus on the score matching (SM) objective function. We note that when considering the convergence
guarantee of the pretraining phase, Li et al. (2023) also adopt the score matching objective Lpre

SM.

5.1 RESULTS FOR FEW-SHOT MODELS WITH A BAD PRETRAINING

Since linear matrix A is independent of t, we fix a t ∈ [δ, T] and use the objective function Lfew
SM,t in

this work (the influence of t is discussed in Remark 6.5). For convenience, we call the pre-trained
model great when the latent parameter µ̂ = µ∗. Otherwise, we call the pre-trained model bad 1. We
note that the underfitting and overfitting pre-trained models satisfy this definition, where the former
do not learn basic concepts and the latter overfit to some specific features.

1Since the source dataset are limited, ∥µ̂− µ∗∥ is smaller than a small constant ϵpre instead of equal to 0 for
a great pre-trained model. In Section 6.1, we discuss the influence of limited data and imperfect learning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Let V̂ta be the solution of ∂Lfew
SM,t/∂Vta = 0. In this part, we show that with a bad pre-trained model,

∥V̂taV̂
⊤
ta −AtaA

⊤
ta∥F is not equal to 0, which indicates the few-shot phase can not learn ground-truth

subspace parameters and suffers a few-shot loss gap.
Lemma 5.3. Assume Assumption 3.1 and 5.1 . If µ̂ ̸= µ∗, with VtaV

⊤
ta = AtaA

⊤
ta, ∂Lfew

SM,t/∂Vta ̸= 0.

This lemma indicates that ∥V̂taV̂
⊤
ta −AtaA

⊤
ta∥F ̸= 0 if µ̂ ̸= µ∗, which explain the few-shot loss gap

in Fig.2. Then, we discuss the influence of |µ̂− µ∗| by using a simplified example µ̂ = 0 and µ∗ ̸= 0.

Theorem 5.4. Assume Assumption 3.1 and 5.1 hold. Let µ∗
1 and µ∗

2 be the two parameters to generate
different latent distributions. Given a bad pre-trained model with µ̂ = 0, if |µ∗

1 − µ̂| > |µ∗
2 − µ̂|, then

∥V̂ta,1V̂
⊤
ta,1 −AtaA

⊤
ta∥F > ∥V̂ta,2V̂

⊤
ta,2 −AtaA

⊤
ta∥F ,

where V̂ta,i is the solution corresponds to µ∗
i , i ∈ {1, 2}.

This result shows that with a worse pre-trained model, the solution of the few-shot phase becomes
worse. Hence, a great pre-trained model is necessary for the few-shot phase. Before providing
positive results, we further prove that with a bad pre-trained model, another fully fine-tuning method
for few-shot models also has a bad performance and suffers from a small gradient.

Fully Fine-tuning Method and Gradient Analysis. Though many empirical works only fine-
tune key parameters (Liu et al., 2023; Kumari et al., 2023; Moon et al., 2022), a few work (Ruiz
et al., 2023) still optimize all parameters mins∈SNN

Lfew−all
SM in the few-shot phase with initialization

(V̂s, µ̂), where Lfew−all
SM is the same with Eq. 1. In the following theorem, we show that with a bad

pre-trained model, ∂Lfew−all
SM,t /∂µt is small when the point is far away from the global minimizer.

Theorem 5.5. Assume Assumption 3.1 and 5.1 holds. For a fixed t, if µt ∈ (−ϵ, ϵ), we have that

∂Lfew−all
SM,t /∂µt ≤ 4ϵA⊤

taVta

√
(1 + µ⋆2

t)V ⊤
taVta

√
C1 +O(ϵ

3
2) ,

where C1 is a small constant determined by Vta, Ata and µ∗ (Details in Eq. 10).

The above result indicates that if µ̂t ∈ (−ϵ, ϵ), the gradient is small. Then, if µ∗ is a positive constant
larger than ϵ, the few-shot phase requires large optimization steps to get rid of the bad pretraining
phase. We also use a toy example to show the scale of the gradient, which is much smaller than ϵ.
Example 5.6. Considering As = [0.1, 0.1]⊤, Ata = [0.12, 0.12]⊤, and µ∗ = 4. With a fixed t = 2

and Vta = [0.1, 0.1] (close to the Ata), ∂Lfew−all
SM,t /∂µt ≤ 1× 10−5 when µt ∈ (−0.12, 0.12).

Remark 5.7 (Limited Target Data). Theorem 5.5 consider the gradient of the fully fine-tuning method
in the exception. When considering a limited target dataset, as shown in Zhang et al. (2023) and Yang
et al. (2024a), fully fine-tuning methods collapse to the empirical score instead of learning the target
distribution and suffer from the memory phenomenon (only generate the target training dataset).
Remark 5.8 (Pretraining phase). Since the fully fine-tuning objective function is the same as the
pretraining one (only different in the dataset), this result can also explain why the pretraining phase
requires large optimization steps. More specifically, since the pretraining phase does not have the
prior information of µ∗, it is possible to initialize µ around 0, which leads to a small gradient.

6 GREAT PRETRAINING: WARM-UP AND ACCELERATION OPTIMIZATION

A significant advantage of the few-shot phase is that it can use the information of a well-trained
score as the prior (such as latent information µ and data structure), which provides a warm-up for the
few-shot phase. Based on this intuition, we show that few-shot models enjoy a simplified landscape
and quickly converge to ground-truth parameters with a great pre-trained model.

To achieve this goal, we prove that the landscape of few-shot phase is strongly convex with great
pretraining. As a start, we first show the form of ∂2Lfew

SM,t/∂V
2
ta, which consists two parts: the first

squared term N and the second cross term M (we ignore (xt, t) and Ext∼qtat
for clarity):

2

(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)
+ 2

(
∂2sµ̂,Vta

∂V 2
ta

)⊤

(sµ̂,Vta
− sµ∗,Ata

) := 2(N +M) .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We know that the squared term N is a semi-positive definite (SPD) matrix. However, due to the
influence of the cross term, we determine a more precise lower bound for each element of N , as
shown in the following lemma (In the following two lemmas, we ignore the ta index of vta and Vta).
Lemma 6.1. [Squared Term] Assume Assumption 3.1 and 5.1 holds and the latent parameter µ̂ is
learning perfectly µ̂ = µ∗. N ⪰ αI2 with α > 0 for ∀t ∈ [δ, T] (see α in Eq.13).
For the cross term, we provide an upper bound for each element to guarantee the negative influence is
smaller than the positive influence of N .
Lemma 6.2. [Cross Term] Following setting of Lem. 6.1. (a) The |ata − vta| ≤ δ1,t situation. For
∀M(i, j), |M(i, j)| ≤ γ(δ1,t), where γ(δ1,t) → 0 as δ1,t → 0 (see γ(δ1,t) in Eq.15).

(b) The vta ≥ ata + δ1,t situation. Let δ2,t ≜ vta − ata ≥ δ1,t and M1 = M −M ′, where M ′ is
SPD. Then, there exists an interval vta ∈ [ata + δ1,t, ata + δ2,t] satisfies:

E[M1(1, 2)] = E[M1(2, 1)] < 0,E[M1(1, 1)] = E[M1(2, 2)] > 0

E[M1(1, 1) +M1(1, 2)] ≥ u1(vta, t) + u2(vta, t) ,

where (u1(vta, t) + u2(vta, t))|vta=ata+δ1,t > 0, u1(·, t) increasing and u2(·, t) decreasing for
vta ∈ [ata + δ1,t, ata + δ2,t] (see M ′, u1(·, t) and u2(·, t) in Eq. 16, 17 and 18).

Since the Hessian matrix H = 2(M+N), if α ≥ γ, we know that Lfew
SM,t is 2(α−γ)-strongly convex

for |vta − ata| ≤ δ1,t. As shown in Lem. 6.2 (a), γ is related to the initialization area, and we can
determine a suitable initialization parameter δ1,t to guarantee α ≥ γ. For the setting vta ≥ ata + δ2,t,
we only require u1(vta, t) + u2(vta, t) ≥ 0. The following condition shows our requirement for
initialization, and the example shows that the initialization requirement is easy to satisfy.
Condition 1. δ1,t satisfies α ≥ γ(δ1,t), and δ2,t satisfies u1(ata + δ2,t) + u2(ata + δ2,t) > 0.

Example 6.3. Considering As = [0.1, 0.1]⊤, Ata = [0.12, 0.12]⊤, and µ∗ = 4. With a t = 2, to
satisfy Condition 1, we require v

(0)
ta ∈ {[0.1, 0.5] ∪ [−0.5,−0.1]}, where 0.5 is far away from ata.

With similar idea, we upper bound the Hessian matrix and prove Lfew
SM,t is 2(α+ γ + ζ)-smooth with

ζ ≥ 0 (see ζ in Eq. 19). Then, we have the following convergence guarantee for the few-shot process.

Theorem 6.4. Assume Assumption 3.1, 5.1, µ̂ = µ∗ and δ1,t, δ2,t satisfy Condition 1. Considering
score matching function Lfew

SM,t. When v
(0)
ta ∈ {[ata − δ1,t, ata + δ2,t] ∪ [−ata − δ2,t,−ata + δ1,t]},

using gradient descent with learning rate η = 1/(2α+ ζ), with κ = (α+ γ + ζ)/(α− γ), we have∥∥∥V (k)
ta V

(k)⊤
ta −AtaA

⊤
ta

∥∥∥
F
≤

(
κ−1
κ+1

)k

(2ata + δ2,t)|v(0)ta − ata| .

This result is the first convergence guarantee for the few-shot diffusion models and explains why
few-shot models only require a few optimization steps to fast converge to the ground-truth parameter.

We also conduct simulation experiments to show the difference between the pretraining and
few-shot phase and verify the landscape of Lfew

SM. More specifically, we calculate the Hes-
sian with µ∗

t and different vta and report the eigenvalues. Let λ1 and λ2 be the two
smallest eigenvalues for Lpre

SM and λ′
1 and λ′

2 be the two for Lfew
SM. As shown in Table 2,

the eigenvalue for the pretraining phase is negative, which indicates Lpre
SM is non-convex.

vta λ1 λ2 λ′
1 λ′

2

0.07 -2.8e-2 -2.7e-2 2.5e-4 1.5e-3
0.2 -7.1e-3 -6.9e-3 0.033 0.034
0.3 -2.6e-2 -2.1e-2 0.0738 0.076
0.5 -2.5e-2 -1.5e-2 0.206 0.211

Table 2: D = 8, d = 5, 5-modal GMM latent.

On the contrary, the eigenvalues for the few-shot
phase are positive. Hence, the few-shot objective
function Lfew

SM is strongly convex, which leads to a
fast convergence rate and supports our Thm. 6.4.
We provide similar simulation results under differ-
ent D, d (Appendix C), which indicates our theoreti-
cal results are representative and can be extended to
general high-dimensional multi-modal GMM latent
(Section 6.1).
Remark 6.5 (Influence of t.). Sec. 5 and 6 show that a great enough prior information µ̂ is important.
When t → +∞, the information of µ̂ gradually disappears µ̂t → 0, which indicates the optimization
process will become more difficult. Our convergence guarantee also reflects this intuition. When
t → +∞, α (Eq. 13) and γ (Eq. 15) become 0. As a result, the strongly convex parameter of the
objective function becomes smaller, and the few-shot phase requires more optimization steps.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Remark 6.6 (Relationship with LoRA). We note that LoRA fine-tunes two low-rank matrices, and
we also do this operation. Though our paradigm is slightly different from LoRA (LoRA fine-tunes
two additional matrices), the optimization analysis for fine-tuning the linear matrices still makes a
first step to explain the fast convergence process for a few-shot fine-tuning phase in the application.

6.1 DISCUSSION

In this part, we first discuss the estimation error introduced by the limited training datasets. Then,
we provide the criteria of a great pretrained model from the theoretical and empirical perspectives.
Finally, we intuitively show how to extend the analysis to a more general setting.

Limited Source and Target Data. For the pretraining phase, we assume the latent parameter is
perfectly learned µ̂ = µ∗ in Sec. 6. In this part, we discuss the setting ∥µ̂ − µ∗∥ ≤ ϵpre (given a
pretraining dataset with ns datapoints, ϵpre has the order of n−2/d

s (Chen et al., 2023)). We know
that when ∥µ̂− µ∗∥ increase, ∥V̂taV̂

⊤
ta −AtaA

⊤
ta∥F increase from 0 (Lem 5.3 and Thm. 5.4). Hence,

when ∥µ̂−µ∗∥ ≤ ϵpre is small enough, ∥V̂taV̂
⊤
ta −AtaA

⊤
ta∥F ≤ poly(ϵpre). For the few-shot phase,

Yang et al. (2024a) show that there is an additional 1/
√
nta estimation error with nta target data.

Hence, there is an additional Poly(n−2/d
s) + n

−1/2
ta in Thm. 6.4 with a limited source and target data.

Criteria of Great Pre-trained Model. The performance of a pre-trained model is determined by the
scale of pretrained data, the model size, and the optimization step. In Appendix B.1, we discuss the
balance between these terms from the theoretical perspective. From the empirical perspective, a great
pre-trained model is usually an over-parametrized NN (where large-scale models usually satisfy) and
is trained with a large-scale and diverse dataset. The optimization process should choose a suitable
step that enjoys a converged loss and has the ability to generalize. We can use the standard quality
metric, such as FID, IS, Clip Score, Pickscore, etc., to avoid underfitting. For overfitting, one can
sample multiple images with the same prompts and observe their diversity.

Go Beyond: General Data. This part intuitively discusses how to extend to general data. For
high-dimensional multi-modal GMM latent, by calculating the Hessian w.r.t. V with the closed-form
score of K-modal GMM, we know that it still consists of the squared and cross terms, where the
squared term is SPD, and the cross term tends to 0 as sθ tends to s∗. Hence, intuitively, the square
term can still overcome the cross term at a range around the ground truth score, which leads to a
local convergence guarantee. As shown in Table 2, when the latent distribution is a general GMM
distribution, the landscape of the few-shot phase is still strongly convex, which supports our intuition.
To further support our discussion, we also provide a calculation and a rough bound in Appendix B.2.
For the analysis of more general data distribution, we also discuss some methods and intuition to
extend to more general bounded support latent (Appendix B.3) and multi low-dimensional linear
subspace (Appendix B.4). We refer to Appendix B for more details.

7 CONCLUSION

This work aims to explain why few-shot diffusion models can achieve great performance with a few
optimization steps. As a start, we first evaluate each operation of few-shot diffusion models and show
that a bad pre-trained model heavily influences the few-shot phase through the real-world experiments.
From the theoretical perspective, we prove that with a bad pre-trained model, the few-shot phase can
not learn the ground truth parameters and suffers a small gradient, which highlights the importance
of great pre-trained models. After that, we show that a great pretrained model provides a warm-up
for the few-shot phase and makes the landscape of few-shot diffusion models strongly convex. As a
result, we prove that the few-shot model can fast converge to the ground-truth parameters by using a
standard optimization algorithm (such as gradient descent). Combined with the gradient analysis for
the pretraining phase, for the first time, we explain why few-shot models only need a few optimization
steps compared with the pretraining phase to achieve great performance.

Future Work and Limitation. In this work, we choose a 2-modal Gaussian mixture distribution as
the latent distribution. Though this latent distribution is multi-modal and its score is nonlinear, there
still exists a gap with the real-world data. In Appendix B, we discuss some promising extensions
of few-shot analysis, including general GMM latent, general bounded support, and multiple low-
dimensional manifolds. We left them as interesting future works.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics statement. Our work aims to deepen the understanding of few-shot models and explain
why few-shot diffusion models enjoy a fast convergence rate from a theoretical perspective. Since
the few-shot diffusion only requires a limited amount of data and a few optimization steps, it can be
used to generate deepfake images. To avoid this problem, we can add watermarking in the generated
content Lu et al. (2024). Other societal impact is similar to general generative models (Mirsky and
Lee, 2021).

Reproducibility statement. The detail and description of the real-world experiments are provided
in Appendix C, including training and test datasets, neural network structure, the hyperparameters,
and the training steps.

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam
Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion
models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-Ganem.
Verifying the union of manifolds hypothesis for image data. In ICLR, 2023.

Stefano Bruno, Ying Zhang, Dong-Young Lim, Ömer Deniz Akyildiz, and Sotirios Sabanis. On diffusion-based
generative models and their error bounds: The log-concave case with full convergence estimates. arXiv
preprint arXiv:2311.13584, 2023.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and distribution
recovery of diffusion models on low-dimensional data. arXiv preprint arXiv:2302.07194, 2023.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy as learning
the score: theory for diffusion models with minimal data assumptions. arXiv preprint arXiv:2209.11215,
2022.

Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general gaussian mixtures with efficient score matching.
arXiv preprint arXiv:2404.18893, 2024.

Ziheng Cheng, Tianyu Xie, Shiyue Zhang, and Cheng Zhang. Provable sample-efficient transfer learning
conditional diffusion models via representation learning. arXiv preprint arXiv:2502.04491, 2025.

Kurtland Chua, Qi Lei, and Jason D Lee. How fine-tuning allows for effective meta-learning. Advances in
Neural Information Processing Systems, 34:8871–8884, 2021.

Hugo Cui and Lenka Zdeborová. High-dimensional asymptotics of denoising autoencoders. arXiv preprint
arXiv:2305.11041, 2023.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning the representa-
tion, provably. arXiv preprint arXiv:2002.09434, 2020.

Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for diffusion
models: An optimization perspective. arXiv preprint arXiv:2404.14743, 2024.

Andi Han, Wei Huang, Yuan Cao, and Difan Zou. On the feature learning in diffusion models. arXiv preprint
arXiv:2412.01021, 2024a.

Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in diffusion models:
Optimization and generalization. arXiv preprint arXiv:2401.15604, 2024b.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1931–1941, 2023.

Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion models.
arXiv preprint arXiv:2311.01797, 2023.

Xiang Li, Yixiang Dai, and Qing Qu. Understanding generalizability of diffusion models requires rethinking the
hidden gaussian structure. Advances in neural information processing systems, 37:57499–57538, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong
Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3d objects with consistent multi-view
generation and 3d diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10072–10083, 2024.

Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou, and Yang Cao.
Cones: Concept neurons in diffusion models for customized generation. arXiv preprint arXiv:2303.05125,
2023.

Shilin Lu, Zihan Zhou, Jiayou Lu, Yuanzhi Zhu, and Adams Wai-Kin Kong. Robust watermarking using
generative priors against image editing: From benchmarking to advances. arXiv preprint arXiv:2410.18775,
2024.

Dimitri Meunier, Zhu Li, Arthur Gretton, and Samory Kpotufe. Nonlinear meta-learning can guarantee faster
rates. arXiv preprint arXiv:2307.10870, 2023.

Yisroel Mirsky and Wenke Lee. The creation and detection of deepfakes: A survey. ACM Computing Surveys
(CSUR), 54(1):1–41, 2021.

Taehong Moon, Moonseok Choi, Gayoung Lee, Jung-Woo Ha, and Juho Lee. Fine-tuning diffusion models with
limited data. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension of
images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth:
Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 22500–22510, 2023.

Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm objective. arXiv
preprint arXiv:2307.01178, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456,
2020.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for nonlinear
dimensionality reduction. science, 290(5500):2319–2323, 2000.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models learn low-dimensional
distributions via subspace clustering. arXiv preprint arXiv:2409.02426, 2024.

Chendong Xiang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. A closer look at parameter-efficient tuning in
diffusion models. arXiv preprint arXiv:2303.18181, 2023.

Ruofeng Yang, Bo Jiang, Cheng Chen, Ruinan Jin, Baoxiang Wang, and Shuai Li. Few-shot diffusion models
escape the curse of dimensionality. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a.

Ruofeng Yang, Zhijie Wang, Bo Jiang, and Shuai Li. Leveraging drift to improve sample complexity of variance
exploding diffusion models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024b.

Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed conditional
diffusion: Provable distribution estimation and reward improvement. arXiv preprint arXiv:2307.07055, 2023.

Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, and Qing Qu. The emergence of
reproducibility and generalizability in diffusion models. arXiv preprint arXiv:2310.05264, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As this work mainly focus on theoretical guarantee for few-shot diffusion models, large language
models were only used for grammar polishing. All ideas, real-world and simulation experiments,
theoretical guarantee (estimation and optimization), discussion and writing decisions were conducted
entirely by the authors without LLMs.

B MORE DISCUSSION ON GREAT PRE-TRAINED MODELS AND GENERAL
LATENT

In this part, we first discuss the criteria of great pre-trained models and the influence of the pre-trained
data, model size, and optimization steps.

B.1 DISCUSSION ON THE GREAT PRE-TRAINED MODELS

As the performance (generalization or memorization) of pre-trained models is determined by the
scale of data, the model size, and optimization steps, we discuss the different combinations of these
components from a theoretical perspective, which is helpful in determining the criteria of great
pre-trained models. After that, we discuss how to extend to a general GMM with latent and bounded
support. Finally, we intuitively discuss how to extend the few-shot diffusion models analysis to
general multi low-dimensional manifolds.

The pretrained data. As discussed in Section 6.1, the limited pretrained data introduced the
estimation error Poly(n−2/d

s) for the pretraining phase. From the theoretical perspective, we require
that the imperfect learning error for the pretraining phase is not the dominant term, instead of perfect
learning. More specifically, we require Poly(n−2/d

s) to be smaller than the optimization error in Thm.
6.4 and the limited target data error n−1/2

ta .

The balance between pretrained data, model size, and optimization step. The above discussion
builds on the size of pre-trained data and NN matches (as shown in Theorem 2 of Chen et al. (2023),
the size of NN is determined by ns) and ignores the optimization steps. However, there exists a
mismatch between the pretrained data, model size, and optimization step in the application. Based on
Li et al. (2024), we discuss the influence of the following mismatch cases for the pre-trained models:

Case 1: large train data and small NN size.

In this setting, the NN tends to learn the Gaussian structure of pretrained data (the empirical mean
and covariance) instead of learning the multi-modal information of data. This setting belongs to the
underfitting bad pre-trained models since it can not greatly learn the knowledge of the source data.

Case 2: Overparameterized NN with different optimization steps.

When an NN is overparameterized, with a large enough optimization step, the NN will memorize the
training data, leading to an overfitted, bad pre-trained model.

With a small optimization step, Zhang et al. (2023) show that the NN still learn the Gaussian
structure of training data instead of total source data knowledge, which belongs to the underfitting
bad pretrained model.

B.2 THE ANALYSIS FOR THE GENERAL GMM LATENT.

Though the 2-mode GMM latent reflects the multi-modal property of real-world data, it still has
some gap to the real-world complex data. In this part, we discuss how to extend our GMM latent to a
general GMM latent. At the beginning, we calculate the Hessian and cross term. According to Shah
et al. (2023), if the latent is a K-mode GMM, the score still has a closed form:

∇ log qt(x) = AΣK
i=1ωi,t(A

⊤x;µ∗)µ∗
i,t −AA⊤x− 1

σ2
t

(ID −AA⊤)X

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

where ei,t(x;µ) = exp(−||x− µi,t||2/2), wi,t(x;µ) =
ei,t(x;µ)

ΣK
i=1ei,t(x;µ)

and µi,t = µi exp(−t). When
considering the K-mode GMM latent, we construct the NN with the above form and sµ̂,Vta

means
use µ̂ and Vta to replace µ∗ and Ata (For simplicity, we write sµ̂,Vta

with trainable Vta as sθ and
ignore the subscript ta). Noticing that

∂2L

∂V 2
= 2

(
∂sθ
∂V

)(
∂sθ
∂V

)⊤

︸ ︷︷ ︸
Square term

−2
∂2sθ
∂V 2

(sθ − sµ∗,Ata)︸ ︷︷ ︸
Cross term

,

where the square term is a semi-positive definite matrix, and the cross term tends to 0 as sθ tends to
sµ∗,Ata

. So, our intuition is that

The square term can overcome the cross term in the vicinity of the ground truth target when the
distribution is a multivariate Gaussian mixture distribution.

More specifically,

∂sθ
∂V

= ΣK
i=1ωi,t(V

⊤x; µ̂)µ̂i,tI︸ ︷︷ ︸
P

+ΣK
i=1

∂ei,t
∂V (ΣK

k=1ek,t)− ΣK
k=1

∂ek,t

∂V ei,t

(ΣK
i=1ek,t)

2
V ⊤ +

(
1

σ2
t

− 1

)
(xV ⊤ + V ⊤XI)︸ ︷︷ ︸

Q

We can know that λmin

((
∂sθ
∂V

)2) ≥ (||P ||2 − ||Q||2)2 = c2 , where O(||P ||2) > O(||Q||2) as sθ

tends to the ground truth target. This result means λmin

(
∂2L
∂V 2

)
≈ c2 around the ground truth target,

and the objective function is strongly convex (since the cross term can be ignored or only has a slight
influence, which can be covered by c2.

B.3 EXTENSION TO GENERAL BOUNDED LATENT.

For the general latent distribution, if only focusing on the convergence guarantee, one possible way is
to use the kernel-based method with a general wide 2-layer NN (the number of neurons m = Θ(ns))
(Li et al., 2023):

st,A(X) := AReLU(WX + Ue(t))/m ,

where A ∈ RD×m is trainable, W ∈ Rm×D and U ∈ Rm×de are randomly initialized and frozen
during training, and e(t) is the embedding of time. By setting m = d (indicates d is large enough,
which is also used by Han et al. (2024a)), the trainable A becomes the linear part, and the fixed
ReLU(WX +Ue(t)) represents the nonlinear fixed latent in our work. Then, using the gradient flow
algorithm, the score converges to the target distribution regardless of whether the pre-trained model
is great (since the W,U are randomly initialized). Though this method can provide a convergence
guarantee, it does not reflect the role of pretrained models and does not match the empirical operation.
Hence, we adopt a simple setting to clearly explain the optimization process of the few-shot phase.

B.4 EXTENSION TO MULTI LOW-DIMENSIONAL SETTING

After obtaining the first convergence guarantee for the few-shot models under a single linear subspace
with a GMM latent, we discuss how to extend the analysis to a union of low-dimensional subspaces.

Though real-world data admits the low-dimensional structure, it is a union of low-dimensional
manifolds instead of one manifold (Brown et al., 2023). Hence, a setting closer to the real-world data
is to assume the target data is a union of linear subspaces. In the pretraining phase, Wang et al. (2024)
makes the first step in this direction by modeling the data as a union of linear subspaces, and each
subspace admits a Gaussian latent. We can first follow this direction and extend it to the few-shot

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

phase. More specifically, for the few-shot modeling, we can assume the source and target data share
some manifold and also have their own manifolds. Intuitively, since the pretraining phase has learn
the shard manifold knowledge, based on our analysis, a great pre-trained model can also reduce the
estimation error, warm-up, and accelerate the few-shot optimization process.

Go beyond: Few-shot analysis for a union of linear manifolds with general GMM latent. As
Wang et al. (2024) assumes each manifold admits the Gaussian latent instead of the general GMM
latent, it still has a gap to the real-world data. Another interesting future work is to combine
the general GMM latent analysis (Appendix B.2) and multi-linear subspace assumption few-shot
modeling to analyze the role of pre-trained models in the few-shot phase. We leave the analysis on
the multi-subspace assumption and its GMM extension as interesting future works.

C ADDITIONAL EXPERIMENTS

C.1 ADDITIONAL SIMULATION EXPERIMENTS

In this part, we provide more simulation results with different D and d and show the two smallest
eigenvalues of the Hessian matrix. As shown in the following two tables, the landscape of the
pretraining phase is still non-convex. On the contrary, the landscape of the few-shot phase (with a
great pretrained model) is almost strongly convex (except a very small negative eigenvalue −7.5e−5).

The non-convex landscape of the pretraining phase indicates that it is possible to converge to the local
minima instead of the global minima. We also verify this intuition through the simulation experiment.
More specifically, we use the initialization area (vta, µ

∗
t) (vta = 0.07 and ground truth ata = 0.12)

and update models with GD algorithm. Then, the pretraining phase converges to the local minima
0.112, which is not equal to ata. On the contrary, the few-shot diffusion models with a fixed µ∗

t
converge to 0.11999, almost the same as ata.

Value of vta λ1 λ2 λ′
1 λ′

2

0.07 -0.0013 0.0015 0.0007 0.0016
0.2 -0.01 0.008 0.008 0.0083
0.3 -0.027 0.012 0.0126 0.0133
0.5 -0.057 0.013 0.0134 0.0151

Table 3: Eigenvalues for different vta (D = 16, d = 1)

Value of vta λ1 λ2 λ′
1 λ′

2

0.07 -0.0002 -0.0002 -7.5e-5 1.24e-7
0.2 -0.0014 -0.0008 1.18e-5 1.29e-5
0.3 -0.0061 -0.0047 2.67e-5 2.86e-5
0.5 -0.0276 -0.0264 7.42e-5 7.89e-5

Table 4: Eigenvalues for different vta (D = 4, d = 2)

C.2 THE DETAIL OF THE UNDERFITTING REAL-WORLD EXPERIMENTS

In this part, we describe the setting of our real-world experiments on the CelebA 64 datasets. Our
setting mainly follows Yang et al. (2024a), and we provide the setting for the sake of completeness.

CelabA64 Datasets.

• Source dataset: 6400 images of faces with different hairstyles (without the bald feature).

• Target dataset: 10 images with the bald feature in CelebA64.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

NN structure. In this experiment, we adopt a U-net network with 11 downblocks, 2 middleblocks,
and 15 upblocks. In the pretraining phase, we train all parameters of the U-net. Since the NN layer in
U-net is highly nonlinear, following Yang et al. (2024a), we fine-tune the downblock and upblocks in
the few-shot fine-tuning phase. More specifically, we fine-tune the first 4 downblock layers (as the
encoder) and 4 upblock layers (as the decoder) in the fine-tuning phase.

The above experiments were conducted on a GeForce RTX 4090. For the pre-trained phase, we train
the models for 50 epochs (bad pretrained model, Model-50) with batch size 20, which takes 1 hour.
The great pretrained model (Model-200) takes 5 hours in the pretraining phase. For the fine-tuning
phase, we fine-tune the pre-trained models with limited target datasets for 400 epochs with a batch
size of 2. It takes 3 minutes to fine-tune the pre-trained models.

C.3 THE DETAIL OF THE OVERFITTING REAL-WORLD EXPERIMENTS

In the part, we provide the detail of the experiments on the Stable Diffusion models, including dataset
and training pipeline.

Dataset and Evaluation Metric.
Training Dataset. The Dreambooth training dataset contains 30 subjects, and each subject contains
4-6 images to use to fine-tune the models (a total of 156 images).

Validation Dataset. The dreambooth dataset provides 25 test prompts for each subject (total 30∗25 =
750 prompts). Following the description of Dreambooth, we generate 4 images for each prompt and
use these 3k images to evaluate.

Clip-T Score. Following Dreambooth, we calculate the cosine similarity between the prompt and
image CLIP embeddings to measure the text-image alignment.

Pickscore. We also adopt the standard pickscore metric for text2image generation.

Training Dreambooth pipeline.
Overfitting Bad Models. Since the SD 1.4 and SD 3 Medium can generate high-quality and diverse
samples, we view them as great pretrained models. To obtain a bad pretrained model, we overfit the
SD 1.4 and SD 3 Medium with one prompt (a photo of a dog) and the corresponding 5 images. As
the overfitting step increases, the diversity of pretrained models decreases (preferring to generate dog
images in our setting). We use two bad pretrained models, the first one overfits the one prompt 1k
steps, and the latter, a worse one, overfits 4k steps (lower diversity). The overfitting learning rate is
5× 10−6, the resolution is 512 for SD 1.4 and 1024 for SD3-Medium and the accumulation steps is
4.

Fine-tuning phase with freezing most parameters. Then, we modify the train Dreambooth pipeline
of the diffuser to train with the training dataset. To match the setting of our theoretical results, we
only fine-tune the first and last 3 blocks of NN (Unet of SD 1.4 and DiT of SD 3). The fine-tuning
optimization step is 1k. The learning rate and resolution is the same with the overfitting phase.

D THE DETAILED CALCULATION OF GRADIENT AND HESSIAN

Since our analysis depends heavily on the gradient and Hessian for the few-shot score matching
objective function, we provide the detailed form of these terms in this section.

D.1 TERMS RELATED TO Lfew
SM,t

Recall that E∂2Lfew
SM

∂V 2
ta

is consisted by the cross and squared term

E
∂2Lfew

SM

∂V 2
ta

= 2

[
E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta
− sµ∗,Ata

)

]
+ E

[(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]]
.

To obtain the exception form of E∂2Lfew
SM

∂V 2
ta

, we calculate the exception form of each term.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Calculate ∂Lfew
SM,t

∂Vta
. For this term, we know that

∂Lfew
SM,t

∂Vta
= 2

(
∂sµ̂,Vta

∂Vta

)⊤

(sµ̂,Vta(xt, t)− sµ∗,Ata(xt, t)) ,

where

sµ∗,A(xt, t) = A tanh
(
µ⋆⊤
t A⊤xt

)
µ∗
t −AA⊤xt −

1

σ2
t

(
ID −AA⊤)xt .

For the first term, we have the following equation:

∂sµ̂,Vta

∂Vta
= tanh(µ̂⊤

t V
⊤
taxt)µ̂tI2 +

∂ tanh(µ̂⊤
t V

⊤
taxt)µ̂t

∂Vta
V ⊤
ta +

(
1

σ2
t

− 1

)
∂VtaV

⊤
taxt

∂Vta

= tanh(µ̂⊤
t V

⊤
taxt)µ̂tI2 + (1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂txtV

⊤
ta +

(
1

σ2
t

− 1

)
(xtV

⊤
ta + V ⊤

taxtI2)

=

(
tanh(µ̂⊤

t V
⊤
taxt)µ̂t +

(
1

σ2
t

− 1

)
V ⊤
taxt

)
I2 +

(
(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t +

(
1

σ2
t

− 1

))
xtV

⊤
ta .

Calculate ∂2Lfew
SM

∂V 2
ta

. We know that the Hessian matrix of the few-shot score matching objective
function can be decomposed into the cross term and the squared term.

∂2Lfew
SM

∂V 2
ta

= 2 (
∂sµ̂,Vta

∂Vta
)⊤

(
∂sµ̂,Vta

∂Vta

)
︸ ︷︷ ︸

SquaredTermN

+2 (
∂2sµ̂,Vta

∂V 2
ta

)⊤ (sµ̂,Vta − sµ∗,Ata)︸ ︷︷ ︸
CrossTermM

.

For the cross term, we know that

∂2sµ̂,Vta

∂V 2
ta

=


(
1− tanh2(µ̂⊤

t V
⊤
taxt)

)
µ̂⊤
t µ̂t

[
xt(1) 0
0 xt(1)

]
(
1− tanh2(µ̂⊤

t V
⊤
taxt)

)
µ̂⊤
t µ̂t

[
xt(2) 0
0 xt(2)

]
+ 2

(
1

σ2
t

− 1

)
[

xt(1) 0
0 xt(1)

]
[

xt(2) 0
0 xt(2)

]


+


(
1− tanh2(µ̂⊤

t V
⊤
taxt)

)
µ̂⊤
t µ̂t

[
xt(1) 0
xt(2) 0

]
(
1− tanh2(µ̂⊤

t V
⊤
taxt)

)
µ̂⊤
t µ̂t

[
0 xt(1)
0 xt(2)

]


− 2 tanh(µ̂⊤
t V

⊤
taxt)(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t

[
µ̂txt(1)xtV

⊤
ta

µ̂txt(2)xtV
⊤
ta

]
.

Let sµ̂,Vta(xt, t)− sµ∗,Ata(xt, t) = y. Then, we have that

(
∂2sµ̂,Vta

∂V 2
ta

)⊤ (sµ̂,Vta
− sµ∗,Ata

)

= (1− tanh2(µ̂⊤
t V

⊤
taxt))µ̂

⊤
t µ̂tx

⊤
t yI2 + (1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂txty

⊤

− 2 tanh(µ̂⊤
t V

⊤
taxt)(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂tµ̂tx

⊤
t yxtV

⊤
ta + 2

(
1

σ2
t

− 1

)
x⊤
t yI2 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For the squared term, we know that(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)
= tanh2(µ̂⊤

t V
⊤
taxt)µ̂

⊤
t µ̂tI2 + (1− tanh2(µ̂⊤

t V
⊤
taxt))

2µ̂⊤
t µ̂tVtax

⊤
t xtV

⊤
ta

+

(
1

σ2
t

− 1

)2

(Vtax
⊤
t xtV

⊤
ta + x⊤

t VtaV
⊤
taxtI2 + Vtax

⊤
t V

⊤
taxt + x⊤

t VtaxtV
⊤
ta)

+ 2(1− tanh2(µ̂⊤
t V

⊤
taxt)) tanh(µ̂

⊤
t V

⊤
taxt)µ̂tµ̂

⊤
t µ̂tVtax

⊤
t

+ 2

(
1

σ2
t

− 1

)
tanh(µ⊤V ⊤

taxt)µ̂t(xtV
⊤
ta + V ⊤

taxtI2)

+ 2(1− tanh2(µ̂⊤
t V

⊤
taxt))

(
1

σ2
t

− 1

)
µ̂⊤
t µ̂tV

⊤
taVtaxtx

⊤
t

+ (1− tanh2(µ̂⊤
t V

⊤
taxt))

(
1

σ2
t

− 1

)
µ̂⊤
t µ̂t(xtx

⊤
t VtaV

⊤
ta + VtaV

⊤
taxtx

⊤
t) .

Calculate the expectation of Hessian E∂2Lfew
SM

∂V 2
ta

. As discussed in Section 6.1, we take expectation
over the target distribution qta. Hence, we calculate the expectation of Hessian.

Before providing the result of the Hessian matrix, we first do some helpful calculation. Recall that
under the linear subspace assumption (Assumption 3.1), the diffusion process happens in the latent
distribution z0 ∼ 1

2N (µ⋆, 1) + 1
2N (−µ⋆, 1), which indicates zt = exp(−t)z0 +

√
1− exp(−2t)ξt

with ξt ∼ N (0, 1). Then, by changing the probability density variable, we have

exp(−t)z0 =
1

2
N (exp(−t)µ⋆, exp(−2t)) +

1

2
N (− exp(−t)µ⋆, exp(−2t))√

1− exp(−2t)ξt ∼ N (0, (1− exp(−2t))

zt = exp(−t)z0 +
√
1− exp(−2t)ξt ∼

1

2
N (µ⋆

t , 1) +
1

2
N (−µ⋆

t , 1) .

Then, we know that zt ∼ N(µ⋆
t , 1), whereµ⋆

t = exp(−t)µ⋆, which indicates

xt = Atazt ∼
1

2
N(µ⋆

tAta, AtaA
⊤
ta) +

1

2
N(−µ⋆

tAta, AtaA
⊤
ta) ,

and

V ⊤
taxt ∼

1

2
N(µ⋆

tV
⊤
taAta, V

⊤
taAtaA

⊤
taVta) +

1

2
N(−µ⋆

tV
⊤
taAta, V

⊤
taAtaA

⊤
taVta) .

We should first calculate E[xtx
⊤
t], E[x⊤

t xt], E[x⊤
t y] and E[xty

⊤], where y = sµ̂,Vta − sµ∗,Ata , as
they will be frequently utilized in subsequent steps.

E[x⊤
t xt] = E[Σxt(i)

2] = ΣD[xt(i)] + E2[xt(i)]

= tr(AtaA
⊤
ta) + E[xt]

⊤E[xt]

= tr(A⊤
taAta) + E[xt]

⊤E[xt]

= (1 + µ⋆2
t)A⊤

taAta . (4)

E[xtx
⊤
t] = E[(xt − µ⋆Ata)(xt − µ⋆Ata)

⊤] + µ⋆A⋆
taE[x⊤

t] + µ⋆E[xt]A
⊤
ta − µ⋆2AtaA

⊤
ta

= (1 + µ⋆2)AtaA
⊤
ta

Observe that xt is a symmetric distribution. Then, for any even function f , we can write

Ext
[f(xt)] =

1

2
Ext∼N (µ⋆

tAta,AtaA⊤
ta)

[f(xt)] +
1

2
Ext∼N (−µ⋆

tAta,AtaA⊤
ta)

[f(xt)]

= Ext∼N (µ⋆
tAta,AtaA⊤

ta)
[f(xt)] .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Applying this property of the even function, we can obtain the following result by using the fact that
x⊤
t y and xty

⊤ are even functions xt (recall that sµ̂,Vta
(xt, t)− sµ∗,Ata

(xt, t) = y).

E[x⊤
t y]

= Ext
[x⊤

t (Vta tanh(µ̂
⊤
t V

⊤
taxt)µ̂t − VtaV

⊤
taxt −

1

σ2
t

(I2 − VtaV
⊤
ta)xt)]− Ext

[x⊤
t sµ∗,Ata

]

= Ext∼N(µ⋆
tAta,AtaA⊤

ta)
[x⊤

t Vta tanh(µ̂
⊤
t V

⊤
taxt)µ̂t + (

1

σ2
t

− 1)x⊤
t VtaV

⊤
taxt −

1

σ2
t

x⊤
t xt)] (5)

− Ext
[x⊤

t sµ∗,Ata
]

= Ext∼N(µ⋆
tAta,AtaA⊤

ta)
[x⊤

t Vta tanh(µ̂
⊤
t V

⊤
taxt)µ̂t] + (

1

σ2
t

− 1)((1 + µ⋆
t
2)V ⊤

taAtaA
⊤
taVta)

− 1

σ2
t

(tr(AtaA
⊤
ta) + µ̂2

tA
⊤
taAta)− Ext

[x⊤
t sµ∗,Ata

]

= Ext∼N(µ⋆
tAta,AtaA⊤

ta)
[x⊤

t Vta tanh(µ̂
⊤
t V

⊤
taxt)µ̂t] + (

1

σ2
t

− 1)((1 + µ⋆
t
2)V ⊤

taAtaA
⊤
taVta)

− 1

σ2
t

(tr(A⊤
taAta) + µ̂2

tA
⊤
taAta)− Ext

[x⊤
t sµ∗,Ata

]

= Ext∼N(µ∗
tAta,AtaA⊤

ta)
[x⊤

t Vta tanh(µ̂
⊤
t V

⊤
taxt)µ̂t] + (

1

σ2
t

− 1)((1 + µ⋆
t
2)V ⊤

taAtaA
⊤
taVta)

− Ext∼N(µ∗
tAta,AtaA⊤

ta)
[x⊤

t Ata tanh(µ
∗⊤
t A⊤

taxt)µ
∗
t]− (

1

σ2
t

− 1)((1 + µ⋆
t
2)A⊤

taAtaA
⊤
taAta) . (6)

Through similar calculations, we can also get Ext
[xty

⊤]:

Ext [xty
⊤] = E[xt(Vta tanh(µ̂

⊤
t V

⊤
taxt)µ̂t − x⊤

t VtaV
⊤
ta − 1

σ2
t

x⊤
t (I2 − VtaV

⊤
ta)

−Ata tanh(µ̂
⊤
t A

⊤
taxt)µ̂t − x⊤

t AtaA
⊤
ta −

1

σ2
t

x⊤
t (I2 −AtaA

⊤
ta))]

= Ext∼N(µ⋆
tAta,AtaA⊤

ta)

[
xt(Vta tanh(µ̂

⊤
t V

⊤
taxt)µ̂t − xt(Ata tanh(µ

∗⊤
t A⊤

taxt)µ
∗
t

]
+ (1 + µ⋆

t
2)(

1

σ2
t

− 1)AtaA
⊤
ta(VtaV

⊤
ta −AtaA

⊤
ta) . (7)

With the calculation for E[x⊤
t y] and Ext

[xty
⊤], we can obtain the exception form of the cross and

squared term. For the cross term, we have that

E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta
− sµ∗,Ata

)

]
= E

[
(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂tx

⊤
t yI2 + (1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂txty

⊤

− 2 tanh(µ⊤V ⊤
taxt)(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂tµ̂tx

⊤
t yxtV

⊤
ta + 2

(
1

σ2
t

− 1

)
x⊤
t yI2

]
= E

[
µ̂⊤
t µ̂tx

⊤
t yI2

]
− E

[
tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂tx

⊤
t y

]
+ E

[
µ̂⊤
t µ̂txty

⊤]
− E

[
tanh2(µ̂⊤

t V
⊤
taxt)µ̂

⊤
t µ̂txty

⊤]
− 2E

[
tanh(µ̂⊤

t V
⊤
taxt)µ̂

⊤
t µ̂tµ̂tx

⊤
t yxtV

⊤
ta

]
+ 2E

[
tanh3(µ̂⊤

t V
⊤
taxt)µ̂

⊤
t µ̂tµ̂tx

⊤
t yxtV

⊤
ta

]
+ 2

(
1

σ2
t

− 1

)
E[x⊤

t yI2] .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For the squared term, we have that

E

[(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]
= E[tanh2(µ̂⊤

t V
⊤
taxt)µ̂

⊤
t µ̂tI2] + E[(1− tanh2(µ̂⊤

t V
⊤
taxt))

2µ̂⊤
t µ̂tVtax

⊤
t xtV

⊤
ta]

+ 2

(
1

σ2
t

− 1

)2

((1 + µ̂2
t)AtaA

⊤
taVtaV

⊤
ta + (1 + µ̂2

t)V
⊤
taAtaA

⊤
taVtaI2)

+ E[2(1− tanh2(µ̂⊤
t V

⊤
taxt)) tanh(µ̂

⊤
t V

⊤
taxt)µ̂tµ̂

⊤
t µ̂tVtax

⊤
t]

+ 2E[(
1

σ2
t

− 1) tanh(µ̂⊤
t V

⊤
taxt)µ̂t(xtV

⊤
ta + V ⊤

taxtI2)]

+ E(1− tanh2(µ̂⊤
t V

⊤
taxt))

(
1

σ2
t

− 1

)
µ̂⊤
t µ̂t(2V

⊤
taVtaxtx

⊤
t + xtx

⊤
t VtaV

⊤
ta + VtaV

⊤
taxtx

⊤
t) .

D.2 TERMS RELATED TO Lfew−all
SM

For the fully fine-tuning method, we show that ∂Lfew−all
SM

∂µt
is small in Theorem 5.5. In this part, we

provide the calculation of this term. We note that when considering fully fine-tuning method, µt also
has a gradient.

∂Lfew−all
SM

∂µt
= 2 (sµ,Vta(xt, t)− sµ∗,Ata)

⊤
(Vta tanh(µ

⊤
t V

⊤
taxt)+µtVta(1−tanh2(µ⊤

t V
⊤
taxt))V

⊤
taxt) .

E THE PROOF FOR BAD PRETRAINING

Lemma E.1. Assume Assumption 3.1 and 5.1 . If µ̂ ̸= µ∗, with VtaV
⊤
ta = AtaA

⊤
ta, ∂Lfew

SM,t/∂Vta ̸=
0.

Proof. For the sake of brevity, we use x, µt instead of xta
t , µ̂t when there is no ambiguity in this part.

We also ignore (xt, t) in sµ̂,Vta
(xt, t) and sµ∗,Ata

(xt, t) for clarity.

We know that

E

[
∂Lfew

SM,t

∂Vta

]
= E

[(
∂sµ̂,Vta

∂Vta

)⊤

(sµ̂,Vta
(x, t)− sµ∗,Ata

)(x, t)

]
.

For each term, we have the following form:(
∂sµ̂,Vta

∂Vta

)⊤

= tanh(µtV
⊤
tax)µtI2 + (1− tanh2(µtV

⊤
tax))µ

⊤
t µtVtax

⊤

+

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2)

≜ f(x, Vta, µt) +

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2) ,

and

sµ̂,Vta
− sµ∗,Ata

= Vtaµt tanh(µtV
⊤
tax)−Ataµ

⋆
t tanh(µ

⋆
tA

⊤
tax) +

(
1

σ2
t

− 1

)
(VtaV

⊤
ta −AtaA

⊤
ta)x

≜ g(x, Vta, µt, µ
⋆
t) +

(
1

σ2
t

− 1

)
(VtaV

⊤
ta −AtaA

⊤
ta)x .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Then, we simplify the gradient term into the following form

E

[
∂Lfew

SM,t

∂Vta

]
= E

[(
∂sµ̂,Vta

∂Vta

)⊤

(sµ̂,Vta − sµ∗,Ata)

]

= E
[
(f(x, Vta, µt) +

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2))g(x, Vta, µt, µ

⋆
t)

]
+ E

[
(f(x, Vta, µt) +

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2))

(
1

σ2
t

− 1

)
(VtaV

⊤
ta −AtaA

⊤
ta)x

]
= Ex

[(
1

σ2
t

− 1

)2

(Vtax
⊤ + V ⊤

taxI2)(VtaV
⊤
ta −AtaA

⊤
ta)x] + Ex[h(x, Vta, Ata, µt, µ

⋆
t)]

]
,

where

h(x, Vta, Ata, µt, µ
⋆
t)

= f

(
1

σ2
t

− 1

)
(VtaV

⊤
ta −AtaA

⊤
ta)x+

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2)g + fg

=

(
1

σ2
t

− 1

)
(tanh(µtV

⊤
tax)µtI2 + (1− tanh2(µtV

⊤
tax))µ

2
tVtax

⊤)(VtaV
⊤
ta −AtaA

⊤
ta)x

+

(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2)(Vtaµt tanh(µtV

⊤
tax)−Ataµ

⋆
t tanh(µ

⋆
tA

⊤
tax))

+ (tanh(µtV
⊤
tax)µtI2

+ (1− tanh2(µtV
⊤
tax))µ

2
tVtax

⊤)(Vtaµt tanh(µtV
⊤
tax)−Ataµ

⋆
t tanh(µ

⋆
tA

⊤
tax)) . (8)

We first calculate Ex[Vtax
⊤(VtaV

⊤
ta − AtaA

⊤
ta)x] and Ex[(VtaV

⊤
ta − AtaA

⊤
ta)xx

⊤Vta], which is

useful in bounding the first term of E
[
∂Lfew

SM,t

∂Vta

]
:

Ex[Vtax
⊤(VtaV

⊤
ta −AtaA

⊤
ta)x] = VtaEx[x

⊤(VtaV
⊤
ta −AtaA

⊤
ta)x]

= VtaEx[tr(x
⊤(VtaV

⊤
ta −AtaA

⊤
ta)x)]

= VtaEx[tr((VtaV
⊤
ta −AtaA

⊤
ta)xx

⊤)]

= Vtatr(EX [(VtaV
⊤
ta −AtaA

⊤
ta)xx

⊤)]

= (1 + µ∗2
t)tr((VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta)Vta ,

where the last equality follows the fact that E[xx⊤] = (1 + µ∗2
t)AtaA

⊤
ta (Eq.4). Similarly, we can

obtain the following bound:

Ex

[
(VtaV

⊤
ta −AtaA

⊤
ta)xx

⊤Vta

]
= (VtaV

⊤
ta −AtaA

⊤
ta)EX [xx⊤]Vta

= (1 + µ∗2
t)(VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
taVta .

Thus, the first term of the gradient E
[
∂Lfew

SM,t

∂Vta

]
has the following form:

Ex

[(
1

σ2
t

− 1

)2

(Vtax
⊤ + V ⊤

taxI2)(VtaV
⊤
ta −AtaA

⊤
ta)x

]

=

(
1

σ2
t

− 1

)2

Ex[(Vtax
⊤ + V ⊤

taxI2)(VtaV
⊤
ta −AtaA

⊤
ta)x]

=

(
1

σ2
t

− 1

)2

(Ex[Vtax
⊤(VtaV

⊤
ta −AtaA

⊤
ta)x] + E[(VtaV

⊤
ta −AtaA

⊤
ta)xx

⊤Vta])

=

(
1

σ2
t

− 1

)2

(1 + µ∗2
t)((VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
taVta + tr((VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta)I2)Vta

△
= w(VtaV

⊤
ta , AtaAta)Vta . (9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Let −Ex[h(x, Vta, Ata, µt, µ
⋆
t)]

△
= h(Vta, Ata, µt, µ

⋆
t), we know that

E

[(
∂sµ̂,Vta

∂Vta

)⊤

(sµ̂,Vta
− sµ∗,Ata

)

]
= 0

is equivalent to

w(VtaV
⊤
ta , AtaA

⊤
ta)Vta = h(Vta, Ata, µt, µ

⋆
t) .

We then prove that w(VtaV
⊤
ta , AtaA

⊤
ta) = 0 if and only if VtaV

⊤
ta = AtaA

⊤
ta when Ata ̸= 0.

If VtaV
⊤
ta = AtaA

⊤
ta:

VtaV
⊤
ta = AtaA

⊤
ta ⇒ VtaV

⊤
ta −AtaA

⊤
ta = 0

⇒ w(VtaV
⊤
ta , AtaA

⊤
ta) = 0

If w(VtaV
⊤
ta , AtaA

⊤
ta) = 0, we know that

(VtaV
⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta + tr((VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta)I2 = 0

⇒ tr((VtaV
⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta) = −2tr((VtaV

⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta) ,

which indicates tr((VtaV
⊤
ta −AtaA

⊤
ta)AtaA

⊤
ta) = 0. Then, we know that

VtaV
⊤
taAtaA

⊤
ta −AtaA

⊤
taAtaA

⊤
ta = −tr((AA⊤ −AtaA

⊤
ta)AtaA

⊤
ta)I2 = 0

⇒ tr(VtaV
⊤
taAtaA

⊤
ta) = V ⊤

taAtaA
⊤
taVta = A⊤

taAtaA
⊤
taAta

⇒ V ⊤
taAta = ±A⊤

taAta

⇒ VtaA
⊤
taAtaA

⊤
ta = ±AtaA

⊤
taAtaA

⊤
ta

⇒ VtaA
⊤
ta = ±AtaA

⊤
ta

⇒ Vta = ±Ata, VtaV
⊤
ta = AtaA

⊤
ta

Then we need h(Vta, Ata, µt, µ
⋆
t) = 0. However, if µt ̸= µ⋆

t , h(Vta, Ata, µt, µ
⋆
t) ̸= 0 when

VtaV
⊤
ta = AtaA

⊤
ta. In other words, if µt ̸= µ⋆

t , VtaV
⊤
ta = AtaA

⊤
ta can not make E

[
∂Lfew

SM,t

∂Vta

]
= 0.

Then, we complete the proof. ■

Theorem 5.4. Assume Assumption 3.1 and 5.1 hold. Let µ∗
1 and µ∗

2 be the two parameters to generate
different latent distributions. Given a bad pre-trained model with µ̂ = 0, if |µ∗

1 − µ̂| > |µ∗
2 − µ̂|, then

∥V̂ta,1V̂
⊤
ta,1 −AtaA

⊤
ta∥F > ∥V̂ta,2V̂

⊤
ta,2 −AtaA

⊤
ta∥F ,

where V̂ta,i is the solution corresponds to µ∗
i , i ∈ {1, 2}.

Proof. With µt = 0 and µ⋆
t ̸= 0, then we know that

h(Vta, Ata, µt, µ
⋆
t) = Ex

[(
1

σ2
t

− 1

)
(Vtax

⊤ + V ⊤
taxI2) tanh(µ

⋆
tA

⊤
tax)µ

⋆
t

]
Ata .

We know that

Ex

[(
1

σ2
t

− 1

)
(x⊤Ata +Atax

⊤) tanh(µ⋆
tA

⊤
tax)µ

⋆
t

]
> 0

and

Ex

[(
1

σ2
t

− 1

)
(x⊤Ata +Atax

⊤) tanh(µ⋆
tA

⊤
tax)µ

⋆
t

]
> 0 ,

so w(VtaV
⊤
ta , AtaA

⊤
ta) > 0, which means that there exists a constant positive gap between VtaV

⊤
ta

and AtaA
⊤
ta.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We also know that function x tanhx is even, which indicates if µ⋆
1 > µ⋆

2,

Ex

[(
1

σ2
t

− 1

)
(x⊤Ata +Atax

⊤) tanh(µ⋆
1A

⊤
tax)µ

⋆
1

]
> Ex

[(
1

σ2
t

− 1

)
(x⊤Ata +Atax

⊤) tanh(µ⋆
2A

⊤
tax)µ

⋆
2

]
.

Therefore, the constant positive gap between VtaV
⊤
ta and AtaA

⊤
ta must increase.

∥V̂ta,1V̂
⊤
ta,1 −AtaA

⊤
ta∥F > ∥V̂ta,2V̂

⊤
ta,2 −AtaA

⊤
ta∥F

■

Theorem 5.5. Assume Assumption 3.1 and 5.1 holds. For a fixed t, if µt ∈ (−ϵ, ϵ), we have that

∂Lfew−all
SM,t /∂µt ≤ 4ϵA⊤

taVta

√
(1 + µ⋆2

t)V ⊤
taVta

√
C1 +O(ϵ

3
2) ,

where C1 is a small constant determined by Vta, Ata and µ∗ (Details in Eq. 10).

Proof. Through simple algebraic calculations, we know the gradient for µt have the following form:

∂Lfew−all
SM

∂µt
= 2 (sµ̂,Vta − sµ∗,Ata)

⊤
(Vta tanh(µ

⊤
t V

⊤
tax) + µtVta(1− tanh(µ⊤

t V
⊤
tax))V

⊤
tax)

= 2y⊤(Vta tanh(µ
⊤
t V

⊤
tax) + µtVta(1− tanh(µ⊤

t V
⊤
tax))V

⊤
tax) .

For the term, by using the Cauchy-Schwarz inequality, we know that

Ex[2y
⊤(Vta tanh(µ

⊤
t V

⊤
tax) + µtVta(1− tanh2(µ⊤

t V
⊤
tax))V

⊤
tax)]

= Ex∼N (µ∗
tAta,AtaA⊤

ta)
[2y⊤(Vta tanh(µ

⊤
t V

⊤
tax) + µtVta(1− tanh2(µ⊤

t V
⊤
tax))V

⊤
tax)]

≤ 2
√

E[y⊤y]×√
E[∥Vta tanh(µ⊤

t V
⊤
tax) + µtVta(1− tanh2(µ⊤

t V
⊤
tax))V

⊤
tax)∥]22 .

Then we give the upper bounds on E[y⊤y] and

E
[
∥Vta tanh(µ

⊤
t V

⊤
tax) + µtVta(1− tanh2(µ⊤

t V
⊤
tax))V

⊤
tax)∥22

]
to achieve the final bound.

For the second part, if µt ∈ (−ϵ, ϵ), we have[
∥Vta tanh(µ

⊤
t V

⊤
tax) + µtVta(1− tanh2(µ⊤

t V
⊤
tax))V

⊤
tax)∥2

]
≤ E[ϵ2V ⊤

taVtaV
⊤
taxx

⊤Vta + ϵ2x⊤VtaV
⊤
taVtaV

⊤
tax+ 2ϵ2x⊤VtaV

⊤
taVtaV

⊤
tax]

= 4ϵ2(1 + µ⋆2
t)V ⊤

taVtaV
⊤
taAtaA

⊤
taVta ,

where the inequality follows by the fact tanh2(µ⊤
t V

⊤
tax) ∈ [0, 1] and the first order of Taylor

expansion for tanh(µ⊤
t V

⊤
tax) (when µt ∈ (−ϵ, ϵ) is close to 0, the influence of higher-order terms in

Taylor expansion is limited). The last equality follows Equation (4).

For the first part, we can divide E[y⊤y] into three parts below:

E[y⊤y] = E[∥Vta tanh(µtV
⊤
tax)−Ata tanh(µ

⋆
tA

⊤
tax)∥22]

+ 2E[(tanh(µtV
⊤
tax)V

⊤
ta − tanh(µ⋆

tA
⊤
tax)A

⊤
ta)(VtaV

⊤
ta −AtaA

⊤
ta)x]

+

(
1

σ2
t

− 1

)2

tr((VtaV
⊤
ta −AtaA

⊤
ta)

2AtaA
⊤
ta) .

Next we bound each of these three terms separately.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Bound for E[∥Vta tanh(µtV
⊤
tax)−Ata tanh(µ

⋆
tA

⊤
tax)∥22].

E
[
∥Vta tanh(µtV

⊤
tax)−Ata tanh(µ

⋆
tA

⊤
tax)∥22

]
≤ E

[
ϵ2V ⊤

taVtaV
⊤
taxx

⊤Vta + µ⋆2
t A⊤

taAtaA
⊤
taAtaA

⊤
taxx

⊤Ata + 2ϵµ⋆
tV

⊤
taAtaV

⊤
taxx

⊤Ata

]
=

((
ϵ2V ⊤

taVtaV
⊤
taAtaA

⊤
taVta + µ⋆2

t A⊤
taAtaA

⊤
taAtaA

⊤
taAtaA

⊤
taAta + 2ϵµ⋆

tV
⊤
taAtaA

⊤
taAtaA

⊤
taAta

)
× (1 + µ⋆2

t)
)

△
= C1 ,

where the inequality follows by Equation (4) and the first order of Taylor expansion for tanh(µ⊤
t V

⊤
tax)

(when µt ∈ (−ϵ, ϵ) is close to 0, the influence of higher-order terms in Taylor expansion is limited).

Bound for 2E[(tanh(µtV
⊤
tax)V

⊤
ta − tanh(µ⋆

tA
⊤
tax)A

⊤
ta)(VtaV

⊤
ta −AtaA

⊤
ta)x].

By simple algebraic calculation, we know that

2(tanh(µtV
⊤
tax)V

⊤
ta − tanh(µ⋆

tA
⊤
tax)A

⊤
ta)(VtaV

⊤
ta −AtaA

⊤
ta)x

= 2
(
tanh(µtV

⊤
tax)V

⊤
taxV

⊤
taVta + tanh(µ⋆

tA
⊤
tax)A

⊤
taxA

⊤
taAta

− tanh(µ⋆
tA

⊤
tax)V

⊤
taxA

⊤
taVta − tanh(µtV

⊤
tax)A

⊤
taxA

⊤
taVta

)
.

Then, we have the following bound

E[(tanh(µtV
⊤
tax)V

⊤
ta − tanh(µ⋆

tA
⊤
tax)A

⊤
ta)(VtaV

⊤
ta −AtaA

⊤
ta)x]

≤
(
ϵ(1 + µ⋆2

t)V ⊤
taAtaA

⊤
taVtaV

⊤
taVta + µ⋆

t (1 + µ⋆2
t)A⊤

taAtaA
⊤
taAtaA

⊤
taAta

+ ϵ(1 + µ⋆2
t)V ⊤

taAtaA
⊤
taAtaA

⊤
taVta

)
△
= C2 .

Bound for
(

1
σ2
t
− 1

)2

tr((VtaV
⊤
ta −AtaA

⊤
ta)

2AtaA
⊤
ta).(

1

σ2
t

− 1

)2

tr((VtaV
⊤
ta −AtaA

⊤
ta)

2AtaA
⊤
ta)

=

(
1

σ2
t

− 1

)2

[V ⊤
taVta(V

⊤
taAta)

2 − 2A⊤
taAta(V

⊤
taAta)

2 + (A⊤
taAta)

3]
△
= C3 .

Then, we know that

E[y⊤y] ≤ C1 + 2C2 + C3
△
= C .

For ∀Vta, C = C ′ +O(ϵ), while

C ′ = (1 + µ⋆2
t)µ⋆2

t (A⊤
taAta)

3 + 2µ⋆
t (1 + µ⋆2

t)(A⊤
taAta)

3 + C3

= 3(1 + µ⋆2
t)µ⋆2

t (A⊤
taAta)

3 + C3 < +∞ . (10)

Then, we obtain the following bound for the gradient of fully fine-tuning method:

Ex

[
∂Lfew−all

SM

∂µt

]
≤ 4ϵA⊤

taVta

√
(1 + µ⋆2

t)V ⊤
taVta

√
C ′ +O(ϵ

3
2)

When ϵ ≤ 1

4V ⊤
taAta

√
C
√

(1+µ⋆2
t)V ⊤

taVta

× 10−5, Ex[
∂L
∂µt

] ≤ 1 × 10−5, which indicates that large

optimization steps are required in the optimization process.

Under the setting of Example 11, if Vta = [0.1, 0.1]⊤, Ex

[
∂Lfew−all

SM,t

∂µt

]
≤ 1 × 10−5 when ϵ <

0.12. ■

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F THE PROOF FOR GOOD PRETRAINING

In this section, by analyzing the Hessian of score matching objective function for the few-shot phase
∂2Lfew

SM,t

∂V 2
ta

, we prove that with a large initialization area, the objective function is strongly convex,
which leads to a convergence guarantee.

Since we assume the latent parameter µ∗ is perfectly learned by the pretraining phase µ̂ = µ∗, we do
not especially distinguish µ̂t, µ

∗
t and µt in the proof of this section. We also ignore the subscript t of

x when there is no ambiguity. Furthermore, since some results rely on the initialization area, we use
the following simple example to show how to satisfy the requirement after providing the theoretical
guarantee.

Example Setting

t = 2, µ∗ = 4, As = [[0.1, 0.1]]⊤ and Ata = [[0.12, 0.12]]⊤ . (11)

Recall that the Hessian has the following form

2

(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)
︸ ︷︷ ︸

SquaredTermN

+2

(
∂2sµ̂,Vta

∂V 2
ta

)⊤

(sµ̂,Vta
− sµ∗,Ata

)︸ ︷︷ ︸
CrossTermM

.

First we analyze term MM⊤, where M has the form as aI + bxy⊤, which will be used in the
following lemma.

Lemma F.1. Let M = aI + bxy⊤, MM⊤ is semi-positive definite. And it’s positive definite if and
only if a = 0 or a+ bx⊤y = 0.

λmin(MM⊤)

= min

(
a2, a2 + abx⊤y +

b2∥x∥2∥y∥2

2
− b

2

√
∥x∥2∥y∥2 (4a2 + 4abx⊤y + b2∥x∥2∥y∥2)

)

Proof. First, ∀x ∈ Rd, we have

x⊤MM⊤x = (M⊤x)⊤(M⊤x)

= ∥M⊤x∥2 ≥ 0

Thus, MM⊤ is semi-positive definite.

We can also obtain that

|aI + bxy⊤| = |aI|(1 + b

a
x⊤y)

= an−1(a+ bx⊤y)

Therefore,
|MM⊤| = a2n−2(a+ bx⊤y)2 ≥ 0,

the equality holds if and only if a = 0 or a+ bx⊤y = 0.

We further derive the eigenvalues of MM⊤.

Let λ be an eigenvalue of M⊤M with corresponding eigenvector v.

(M⊤M)v = λv

We can analyze the action of this matrix on two orthogonal subspaces.

Let S = span{x, y}. Consider a vector v in the orthogonal complement of S, denoted S⊥. For any
such vector v ̸= 0, we have x⊤v = 0 and y⊤v = 0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Let’s apply M⊤M to v:

(M⊤M)v = (a2I + ab(xy⊤ + yx⊤) + b2∥x∥2yy⊤)v
= a2Iv + ab(x(y⊤v) + y(x⊤v)) + b2∥x∥2y(y⊤v)
= a2v + ab(x(0) + y(0)) + b2∥x∥2y(0)
= a2v

This shows that any vector v orthogonal to both x and y is an eigenvector of M⊤M with the
eigenvalue λ = a2. The dimension of this subspace, dim(S⊥), is at least n− 2. Therefore, a2 is an
eigenvalue of M⊤M with a multiplicity of at least n− 2.

For the other 2 eigenvalues, we set them µ1 and µ2. We know the determinant of a matrix is the
product of its eigenvalues.

det(M⊤M) = (a2)n−2µ1µ2

We also know that det(M⊤M) = det(M⊤) det(M) = (det(M))2. The determinant of the original
matrix M is det(M) = an−1(a+ by⊤x). Therefore:

det(M⊤M) =
[
an−1(a+ by⊤x)

]2
= a2n−2(a+ by⊤x)2

Equating the two expressions for the determinant:

a2n−4µ1µ2 = a2n−2(a+ by⊤x)2

Solving for the product µ1µ2 (assuming a ̸= 0):

µ1µ2 = a2(a+ by⊤x)2

The trace of a matrix is the sum of its eigenvalues.

tr(M⊤M) = (n− 2)a2 + µ1 + µ2

We can also compute the trace directly from the expression for M⊤M :

tr(M⊤M) = tr(a2I + ab(xy⊤ + yx⊤) + b2∥x∥2yy⊤)

Using the linearity of the trace and the property tr(AB) = tr(BA):

tr(M⊤M) = a2tr(I) + ab(tr(xy⊤) + tr(yx⊤)) + b2∥x∥2tr(yy⊤)

= na2 + ab(y⊤x+ x⊤y) + b2∥x∥2(y⊤y)
= na2 + 2ab(y⊤x) + b2∥x∥2∥y∥2

Equating the two expressions for the trace:

(n− 2)a2 + µ1 + µ2 = na2 + 2ab(y⊤) + b2∥x∥2∥y∥2

Solving for the sum µ1 + µ2:

µ1 + µ2 = 2a2 + 2ab(y⊤x) + b2∥x∥2∥y∥2

Thus, µ1 and µ2 are two solutions of

µ2 −
(
2a2 + 2ab(y⊤x) + b2∥x∥2∥y∥2

)
µ+ a2(a+ by⊤x)2 = 0

We finally obtain that

λmin(MM⊤)

= min

(
a2, a2 + abx⊤y +

b2∥x∥2∥y∥2

2
− b

2

√
∥x∥2∥y∥2 (4a2 + 4abx⊤y + b2∥x∥2∥y∥2)

)
■

In the following two lemmas, we provide the bound for the squared term and cross term, respectively.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lemma F.2. [Squared Term] Assume Assumption 3.1 and 5.1 holds and the latent parameter µ̂ is
learning perfectly µ̂ = µ∗. N ⪰ αI2 with α > 0 for ∀t ∈ [δ, T] (see α in Eq.13).

Proof. Recall that

∂sµ̂,Vta

∂Vta
= tanh(µ̂⊤

t V
⊤
taxt)µ̂tI2 +

∂ tanh(µ̂⊤
t V

⊤
taxt)µ̂t

∂Vta
V ⊤
ta +

(
1

σ2
t

− 1

)
∂VtaV

⊤
taxt

∂Vta

= tanh(µ̂⊤
t V

⊤
taxt)µ̂tI2 + (1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂txtV

⊤
ta +

(
1

σ2
t

− 1

)
(xtV

⊤
ta + V ⊤

taxtI2)

=

(
tanh(µ̂⊤

t V
⊤
taxt)µ̂t +

(
1

σ2
t

− 1

)
V ⊤
taxt

)
I2

+

(
(1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t +

(
1

σ2
t

− 1

))
xtV

⊤
ta .

Let p = tanh(µ̂⊤
t V

⊤
taxt)µ̂t +

(
1
σ2
t
− 1

)
V ⊤
taxt and q = (1− tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t +

1
σ2
t
− 1, the

squared term can be simplified as:

Ex

[(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]
= Ex

[
(pI2 + qxtV

⊤
ta)(pI2 + qxtV

⊤
ta)

⊤] .

Using lemma F.1, we can obtain that

λmin((pI2 + qxtV
⊤
ta)(pI2 + qxtV

⊤
ta)

⊤)

= min

(
p2, p2 + pqx⊤Vta +

q2∥x∥2∥Vta∥2

2
− q

2

√
∥x∥2∥Vta∥2 (4p2 + 4pqx⊤Vta + q2∥x∥2∥Vta∥2)

)
,

where p = tanh(µ̂⊤
t V

⊤
taxt)µ̂t+

(
1
σ2
t
− 1

)
V ⊤
taxt and q = (1−tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t+

1
σ2
t
−1 > 0.

Moreover, since q > 0, we have

2pV ⊤
taxt + q∥x∥2∥Vta∥2 ≤ ∥x∥∥Vta∥

√
4p2 + 4pqV ⊤

taxt + q2∥x∥2∥Vta∥2, (12)

the equality holds if and only if xt = kVta.

The inequality 12 holds because of the Cauchy-Schwarz Inequality, which can be used through
squaring both sides and rearranging the terms.

Thus,

pqx⊤Vta +
q2∥x∥2∥Vta∥2

2
− q

2

√
∥x∥2∥Vta∥2 (4p2 + 4pqx⊤Vta + q2∥x∥2∥Vta∥2)

=
q

2
(2pV ⊤

taxt + q∥x∥2∥Vta∥2 − ∥x∥∥Vta∥
√
4p2 + 4pqV ⊤

taxt + q2∥x∥2∥Vta∥2) ≤ 0,

and

λmin((pI2 + qxtV
⊤
ta)(pI2 + qxtV

⊤
ta)

⊤)

= p2 + pqx⊤Vta +
q2∥x∥2∥Vta∥2

2
− q

2

√
∥x∥2∥Vta∥2 (4p2 + 4pqx⊤Vta + q2∥x∥2∥Vta∥2).

After analyzing each term, we can choose N1 = αI2 with

α ≜ Ex∼pdata

[
p2 + pqx⊤Vta +

q2∥x∥2∥Vta∥2

2
− q

2

√
∥x∥2∥Vta∥2 (4p2 + 4pqx⊤Vta + q2∥x∥2∥Vta∥2)

]
,

(13)

where p = tanh(µ̂⊤
t V

⊤
taxt)µ̂t+

(
1
σ2
t
− 1

)
V ⊤
taxt and q = (1−tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t+

1
σ2
t
−1 > 0.

Then, we complete our proof.

■

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

For the cross term, we analyze two situations: the initialization area is around the ground-truth
ata: |ata − vta| ≤ δ1,t and initialization area is on the right hand of ata: vta ≥ ata + δ1,t. When
vta ≤ ata, it is possible for the cross term M to be the negative definite matrix. Hence, we control
each element to guarantee the negative influence of the negative definite matrix is small. When
vta ≥ ata, the cross term M is semi-positive definite in a large region.
Lemma F.3. [Cross Term] Following setting of Lem. 6.1. (a) The |ata − vta| ≤ δ1,t situation. For
∀M(i, j), |M(i, j)| ≤ γ(δ1,t), where γ(δ1,t) → 0 as δ1,t → 0 (see γ(δ1,t) in Eq.15).

(b) The vta ≥ ata + δ1,t situation. Let δ2,t ≜ vta − ata ≥ δ1,t and M1 = M −M ′, where M ′ is
SPD. Then, there exists an interval vta ∈ [ata + δ1,t, ata + δ2,t] satisfies:

E[M1(1, 2)] = E[M1(2, 1)] < 0,E[M1(1, 1)] = E[M1(2, 2)] > 0

E[M1(1, 1) +M1(1, 2)] ≥ u1(vta, t) + u2(vta, t) ,

where (u1(vta, t) + u2(vta, t))|vta=ata+δ1,t > 0, u1(·, t) increasing and u2(·, t) decreasing for
vta ∈ [ata + δ1,t, ata + δ2,t] (see M ′, u1(·, t) and u2(·, t) in Eq. 16, 17 and 18).

Proof. We know that the cross term has the following form (in this lemma, we ignore the subscript t
of x.)

E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta
− sµ∗,Ata

)

]
= E[(1− tanh2(µ⊤

t V
⊤
tax))µ

⊤
t µtx

⊤yI2 + (1− tanh2(µ⊤
t V

⊤
tax))µ

⊤
t µtxy

⊤

− 2 tanh(µ⊤
t V

⊤
tax)(1− tanh2(µ⊤

t V
⊤
tax))µ

⊤
t µtµtx

⊤yxV ⊤
ta + 2

(
1

σ2
t

− 1

)
x⊤yI2] . (14)

We want to make

E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta − sµ∗,Ata)

]
+ 2(

1

σ2
t

− 1)2(1 + µ2
t)A

⊤
taAtaV

⊤
taVtaI2

+ µ2
t (

1

σ2
t

− 1) tanh(µ2
tV

⊤
taAta)V

⊤
taAtaI2 + EX [tanh2(µ⊤

t V
⊤
tax)µ

2
t]I2

positive definite, where the last three terms come from the above squared term.

In the proof of this lemma, we redefine x:

x = [x(1), x(2)]⊤ ∼ N (µtAta, AtaA
⊤
ta) ,

which indicates that x(1), x(2) ∼ N(µtata, a
2
ta). We also denote by

x′ △
= x(1) + x(2) = [1, 1] · x ∼ N(2µtata, 4a

2
ta) .

Then, we provide bound for the two situation.

(a) The |ata − vta| ≤ δ1,t situation. For any element in the cross term

e ∈ E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta
− sµ∗,Ata

)

]
,

we know that

|E[e]| ≤ 2|E[µ2
t (1− tanh2(µ⊤

t V
⊤
tax))x(1)y(1)]|

+ 2|E[tanh′′(µ⊤
t V

⊤
tax)µ

3
t (x(1)

2 + x(1)x(2))y(1)]|+ 2|(1

σ2
t

− 1)E[x(1)y(1)]|

≤ 2µ2
t

√
E[((1− tanh2(µ⊤

t V
⊤
tax))x(1))

2]
√
E[y(1)2]

+ 2µ3
t

√
E[(tanh′′(µ⊤

t V
⊤
tax)(x(1)

2 + x(1)x(2)))2]
√
E[y(1)2]

+ 2(
1

σ2
t

− 1)
√
E[x(1)2]

√
E[y(1)2] ,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where the first inequality follows by the triangle inequality, and the second inequality follows
by the Cauchy-Schwarz inequality. Then we give upper bounds on E[(tanh′(µ⊤

t V
⊤
tax))

2x(1)2] ,
E[(tanh′′(µ⊤

t V
⊤
tax)(x(1)

2 + x(1)x(2)))2] and E[y2] to obtain a total bound.

(i) Term E[(tanh′(µ⊤
t V

⊤
tax))

2x(1)2].

With the Cauchy-Schwarz inequality, we know that

E[(tanh′(µ⊤
t V

⊤
tax))

2x(1)2] = E[(1− tanh2(µ⊤
t V

⊤
tax))

2x(1)2]

≤
√

E[tanh′4(µtvta(x(1) + x(2)))]
√

E[x(1)4] .

For the first component, we know that

Ex′∼N(2µtata,4a2
ta)

[tanh′4(µtvtax
′)]

≤
∫ ∞

0

tanh′4(µtvtax
′) exp(− (x′ − 2µtata)

2

8a2ta
)dx

x′=atat= ata

∫ ∞

0

tanh′4(µtvtaatat) exp(−
(t− 2µt)

2

8
)dt

≤ ata

∫ ∞

0

exp(−4µtvtaatat) exp(−
(t− 2µt)

2

8
)dt

= ata exp(4µtvtaata(8µtv
2
ta − 2µt))

∫ ∞

0

exp(− (t+ 16µtv
2
ta − 2µt)

2

8
)dt

≤ ata exp(4µ
2
t vtaata(8v

2
ta − 2)) .

Thus,

E[(1− tanh2(µ⊤
t V

⊤
tax))

2x(1)2] ≤
√
E[tanh′4(µtvta(x(1) + x(2)))]

√
E[x(1)4]

≤
√
ata exp(4µ

2
t vtaata(4v

2
ta − 1))

√
3 + 6µ2

t + µ4
ta

2
ta

=
√

3 + 6µ2
t + µ4

ta
2
ta

√
ata exp(4µ

2
t vtaata(4v

2
ta − 1)) ,

where the second inequality follows the fact that E
[
x(1)4

]
=

(
3 + 6µ2

t + µ4
t

)
a4ta.

We also know that 0 ≤ (1− tanh2(µ⊤
t V

⊤
tax))

2 ≤ 1. As a result, we also can give another bound:

E[(1− tanh2(µ⊤
t V

⊤
tax))

2x(1)2] ≤ E[x(1)2] = (1 + µ2
t)a

2
ta

Hence, we can obtain that

E[(1− tanh2(µ⊤
t V

⊤
tax))

2x(1)2]

≤ min{
√
3 + 6µ2

t + µ4
ta

2
ta

√
ata exp(4µ

2
t vtaata(4v

2
ta − 1)), (1 + µ2

t)a
2
ta} .

(ii) Term E[(tanh′′(µ⊤
t V

⊤
tax)(x(1)

2 + x(1)x(2)))2].

For this term, we have that

E[(tanh′′(µvta(x(1) + x(2)))(x(1)2 + x(1)x(2)))2] ≤ E[x(1)2(x(1) + x(2))2]

= E[4x(1)4] = 4(µ4
t + 6µ2

t + 3)a4ta ,

where the first inequality holds because 0 ≤ tanh′′2(µvta(x(1) + x(2))) ≤ 1, the second and third
equalities hold due to x(1) = x(2) and E[x(1)4] = (µ4

t + 6µ2
t + 3)a4ta respectively.

(iii) Term E[y2]. Recall that since we assume the latent parameter µ∗ is perfectly learned by the
pretraining phase µ̂ = µ∗, we do not especially distinguish µ̂t, µ

∗
t and µt in the proof of this section.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For y, we have that

y = sµ̂,Vta − sµ∗,Ata

= µ(Vta tanh(µ
⊤
t V

⊤
tax)−Ata tanh(µ

⊤
t A

⊤
tax))− (VtaV

⊤
ta −AtaA

⊤
ta)x− 1

σ2
t

(AtaA
⊤
ta − VtaV

⊤
ta)x

Let Ata = Vta +∆,

E[y]

= E[µt(Vta tanh(µ
⊤
t V

⊤
tax)−Ata tanh(µ

⊤
t A

⊤
tax))] + E[(1− 1

σ2
t

)(Vta∆
⊤ +∆V ⊤

ta +∆∆⊤)x]

≤ E[µt(Vta tanh(µ
⊤
t V

⊤
tax)−Ata tanh(µ

⊤
t A

⊤
tax))] + (1− 1

σ2
t

)(Vta∆
⊤ +∆V ⊤

ta +∆∆⊤)µtAta .

We need to give the bound of µt(Vta tanh(µ
⊤
t V

⊤
tax)−Ata tanh(µ

⊤
t A

⊤
tax)). Inspired by the Taylor’s

Theorem, we show (x+∆x) tanh(x+∆x)− x tanhx can be bound by K∆x, where K will be
defined later.

f(x) = x tanh(x)

f ′(x) = tanh(x) + x · sech2(x) = tanh(x) +
4x

(exp(x) + exp(−x))2
.

For the bound of f ′(x), we know that

|f ′(x)| ≤ |tanh(x)|+
∣∣∣∣ 4x

(exp(x) + exp(−x))2

∣∣∣∣
≤ min{1, |x|}+

∣∣∣∣ 4x

exp(2x) + exp(−2x) + 2

∣∣∣∣
≤ min{1, |x|}+min{|x|, 2

e
} ,

where the first inequality holds because of the triangle inequality, the second inequality holds because
| tanh(x)| ≤ 1 and −x ≤ tanh(x) ≤ x. The third equality holds because∣∣∣∣ 4x

exp(2x) + exp(−2x) + 2

∣∣∣∣ ≤ x ,

∣∣∣∣ 4x

exp(2x) + exp(−2x) + 2

∣∣∣∣ ≤ 2

e
.

For y(1) in y, we have that

|y(1)| =∣∣∣∣vta tanh(µt(x(1) + x(2))vta)− (vta + δ) tanh(µt(x(1) + x(2))(vta + δ)) + (1− 1

σ2
t

)(2vtaδ + δ2)x(1)

∣∣∣∣
≤

∣∣∣∣ 1

µt(x(1) + x(2))

∣∣∣∣ ∣∣∣∣(min{1, µt(x(1) + x(2))vta}+min{µt|x(1) + x(2)|vta,
2

e
})δµt(x(1) + x(2))

∣∣∣∣
+

∣∣∣∣(1− 1

σ2
t

)(2vtaδ + δ2)x(1)

∣∣∣∣
δ<1
≤ ((µ(x(1) + x(2))vta +min{µt|x(1) + x(2)|vta,

2

e
})δ +

(
1

σ2
t

− 1

)
(2vta + 1)δx(1)

= δ((min{1, µt(x(1) + x(2))vta}+min{µt|x(1) + x(2)|vta,
2

e
}+

(
1

σ2
t

− 1

)
(2vta + 1)x(1)) .

Recall that x′ = x(1) + x(2) ∼ N (2µtata, 4a
2
ta). For E[y(1)2], we have that

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E[y(1)2] ≤ E[(δ((min{1, |µt(x(1) + x(2))vta|}+min{|µt(x(1) + x(2))vta|,
2

e
})]

+ E[(1− 1

σ2
t

)(2vta + 1)x(1)))2]

= (E[(min{1, |µt(x(1) + x(2))vta|}+min{|µt(x(1) + x(2))vta|,
2

e
})2]

+ (1− 1

σ2
t

)2(2vta + 1)2(1 + µ2
t)v

2
taE[min{1, |µt(x(1) + x(2))vta|}

+min{|µt(x(1) + x(2))vta|,
2

e
}](1− 1

σ2
t

)(2vta + 1)4vta)δ
2

≤
(
4P(|µtvtax

′| ≥ 2

e
) + Eµtvtax′< 2

e
[4µ2

t v
2
tax

′2] + (1− 1

σ2
t

)2(2vta + 1)2(1 + µ2
t)v

2
ta

+ (E[2µtvtax
′] + 2P(|µtvtax

′| ≥ 2

e
))(1− 1

σ2
t

)(2vta + 1)4vta
)
δ2

≤ (4P(|µtvtax
′| ≥ 2

e
) + 16v2taa

2
taµ

2
t (µ

2
t + 1) + (1− 1

σ2
t

)2(2vta + 1)2(1 + µ2
t)v

2
ta

+ (4µ2
t vtaata + 2P(|µtvtax

′| ≥ 2

e
))(1− 1

σ2
t

)(2vta + 1)4vta)δ
2

△
= K2δ2 ,

where the first inequality follows by (i) dividing µtvtax
′ into two parts µtvtax

′ < 2/e and µtvtax
′ ≥

2/e (ii) min{1, |µtvtax
′|} = min{2/e, |µtvtax

′|} = |µtvtax
′| when µtvtax

′ < 2
e and the second

inequality follows by E|µtvtax′|< 2
e
[µ2

t v
2
tax

′2] ≤ Ex[µ
2
t v

2
tax

′2] = µ2
t v

2
taa

2
ta(1 + µ2

t).

For each element in the cross term e ∈ E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta − sµ∗,Ata)
]
, it can be decompose into

three term:

|E[e]| ≤ 2
∣∣E[µ2

t (1− tanh2(µ⊤
t V

⊤
tax))x(1)y(1)]

∣∣+ 2

∣∣∣∣(1

σ2
t

− 1)E[x(1)y(1)]
∣∣∣∣

+ 2
∣∣E[tanh′′(µ⊤

t V
⊤
tax)µ

3
t (x(1)

2 + x(1)x(2))y(1)]
∣∣ .

For the first term, we have that

2
∣∣E[µ2

t (1− tanh2(µ⊤
t V

⊤
tax))x(1)y(1)]

∣∣
≤ Kδ

(
2µ2

t

√√
µ4
t + 6µ2

t + 3a2ta
√
ata exp(4µ2

t vtaata(4v
2
ta − 1))

)
.

For the second term, we have that

2
∣∣E[tanh′′(µ⊤

t V
⊤
tax)µ

3
t (x(1)

2 + x(1)x(2))y(1)]
∣∣ ≤ Kδ

(
2µ3

t

√
4(µ4

t + 6µ2
t + 3)a4ta

)
.

For the third term, we have that

2

∣∣∣∣(1

σ2
t

− 1)E[x(1)y(1)]
∣∣∣∣ ≤ Kδ

(
2(

1

σ2
t

− 1)
√

1 + µ2
tata

)
.

Combined with the bound for these three term, we have that

|E[e]|
≤ 2ataµ

2
tKδ×(

a
1
4
ta

4

√
µ4
t + 6µ2

t + 3 exp(2µ2
t vtaata(4v

2
ta − 1)) + 2

√
µ4
t + 6µ2

t + 3µtata + (
1

σ2
t

− 1)
√

1 + µ2
t

)
= KC4δ , (15)

where δ ∈ |∆| = |Vta −Ata| ≥ 0.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Now we focus on the Hessian matrix. Let H be the 2× 2 Hessian matrix, γ
△
= KC4δ,

α ≜ Ex∼pdata

[
p2 + pqx⊤Vta +

q2∥x∥2∥Vta∥2

2
− q

2

√
∥x∥2∥Vta∥2 (4p2 + 4pqx⊤Vta + q2∥x∥2∥Vta∥2)

]
,

where p = tanh(µ̂⊤
t V

⊤
taxt)µ̂t+

(
1
σ2
t
− 1

)
V ⊤
taxt and q = (1−tanh2(µ̂⊤

t V
⊤
taxt))µ̂

⊤
t µ̂t+

1
σ2
t
−1 > 0.

As we defined before, we can divide H into two parts H1 and H2:

H1 =

[
h1 0
0 h1

]
, h1 ≥ α− γ

H2 =

[
h2 h2

h2 h2

]
, h2 ≥ α′ − γ ,

where α and α′ is determined in Lemma 6.1. Thus, if h1 > 0 and h2 ≥ 0, the Hessian matrix
∂2Lfew

SM,t

∂V 2
ta

is 2(α− γ)-positive definite.

In our example (Example 11), µt = 4 exp(−2), ata = 0.12, σt =
√
1− exp(−4). P(|µtvtax

′| ≥
2
e) ≤ 1× 10−20 ≈ 0.

Then, we know that when δ ≤ 0.02 (vta ∈ [0.1, 0.14]) α− γ ≥ 0, and

h2 ≥ Ex(1)∼N (µtata,a2
ta)

[2(1− tanh2(0.28µtx(1)))
2µ2

t v
2
tax(1)

2]− γ ≥ 0 .

The vta ≥ ata + δ1,t situation. When vta ≥ ata, we will prove that the cross term is semi-
positive definite in a large region. If vta > ata and µt = µ⋆, we can get x⊤y ≥ 0 and (1 −
tanh2(µ⊤V ⊤

tax))x
⊤y ≥ 0:

x⊤y = x⊤(sµ̂,Vta − sµ∗,Ata)

= x⊤Vta tanh(µtV
⊤
tax)µt − x⊤Ata tanh(µ

⋆
tA

⊤
tax)µ

⋆
t +

(
1

σ2
t

− 1

)
x⊤(VtaV

⊤
ta −AtaA

⊤
ta)x

≥ x⊤Ata tanh(µtA
⊤
tax)µt − x⊤Ata tanh(µ

⋆
tA

⊤
tax)µ

⋆
t +

(
1

σ2
t

− 1

)
x⊤(AtaA

⊤
ta −AtaA

⊤
ta)x

= 0 ,

where the inequality holds because x⊤Vta tanh(µtV
⊤
tax)µ is even, monotonically increasing if

V ⊤
tax ≥ 0 and V ⊤

tax ≥ Atax.

Then, we have that

tr(xy⊤) = tr(y⊤x) = tr(x⊤y) ≥ 0

and
Rank(xy⊤) ≤ Rank(x) = 1 .

We also know that 1−tanh2(µtV
⊤
tax) ≥ 0, which indicates (1−tanh2(µtV

⊤
tax))xy

⊤ is semi-positive
definite.

Recall that the cross term has the following form

M = E
[
∂2sµ̂,Vta

∂V 2
ta

(sµ̂,Vta
− sµ∗,Ata

)

]
= E[(1− tanh2(µ⊤

t V
⊤
tax))µ

⊤
t µtx

⊤yI2 + (1− tanh2(µ⊤
t V

⊤
tax))µ

⊤
t µtxy

⊤

− 2 tanh(µ⊤V ⊤
tax)(1− tanh2(µ⊤

t V
⊤
tax))µ

⊤
t µtµtx

⊤yxV ⊤
ta + 2

(
1

σ2
t

− 1

)
x⊤yI2] .

Then, we define the following two matrix: M = M ′ +M1, where

M ′ = (1− tanh2(µ⊤
t V

⊤
tax))µ

⊤
t µtxy

⊤ + 2

(
1

σ2
t

− 1

)
x⊤yI2 , (16)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

and

M1 = (1− tanh2(µ⊤
t V

⊤
tax))µ

2
tx

⊤yI2 − 2 tanh(µ⊤
t V

⊤
tax)µtxV

⊤
ta (1− tanh2(µ⊤

t V
⊤
tax))µ

2
tx

⊤y .

We know that

M1[1, 1] +M1[1, 2] = (1− tanh2(µtV
⊤
tax))µ

2
tx

⊤y(1− 4 tanh(µtV
⊤
tax)µtvtax(1))

E[M1[1, 1] +M1[1, 2]]

≥ E[(1− tanh2(µtV
⊤
tax))x

⊤y(1− 4 tanh(µtV
⊤
tax)µtax(1)]

= E[(1− tanh2(µtV
⊤
tax)x

⊤y]− E[4(1− tanh2(µtV
⊤
tax))x

⊤y tanh(µtV
⊤
tax(1))µtvtax(1))] .

Then, we discuss each component in the following part. For the first term, we know that

E[(1− tanh2(µtV
⊤
tax))x

⊤y] ≥ E[(1− tanh2(µtx(1)))x
⊤y]

△
= u1(vta, t) . (17)

For the second term, we know that

− E[4(1− tanh2(µtV
⊤
tax))x

⊤y tanh(µtV
⊤
tax(1))µtvtax(1))]

≥ −E[4x⊤y tanh(µtV
⊤
tax(1))µtvtax(1))]

△
= u2(vta, t) . (18)

We know that u1(vta, t) increases with vta increasing while u2(vta, t) decreases with vta increasing.
We also know that when vta,t = ata,t + δ1,t, u1(vta, t)+ u2(vta, t) > 0, which indicates there exists
an area vta,t ∈ [ata,t + δ1,t, ata,t + δ2,t] that M1[1, 1] +M1[1, 2] ≥ 0.

Thus,

E[M1[1, 1]] = E[M1[2, 2]] > 0,E[M1[1, 2]] = E[M1[2, 1]] < 0 ,

and

|E[M1]| = (E[M1[1, 1]])
2 − (E[M1[1, 2]])

2

= (E[M1[1, 1]] + E[M1[1, 2]])(E[M1[1, 1]]− E[M1[1, 2]]) > 0 .

Then we know that

Ex[(1− tanh2(µ⊤
t V

⊤
tax))µ

2
tx

⊤yI2 − 2 tanh(µ⊤
t V

⊤
tax)µtxV

⊤
ta (1− tanh2(µ⊤

t V
⊤
tax))µ

2
tx

⊤y]

is semi-positive definite. Then, the proof is finished.

To make a clearer discussion, we use the setting of Example 11 to show the interval of [ata+δ1,t, ata+
δ2,t].

vta ∈ [0.14, 0.25]

u1(0.14) ≈ 0.00023 > 0.0002

u2(0.28) ≤ 4× 10−5 < f(0.14)

vta ∈ [0.25, 0.4]

u1(0.25) ≈ 0.0021 > 0.002

u2(0.4) ≤ 1.4× 10−4 < f(0.25)

vta ∈ [0.4, 0.5]

u1(0.4) ≈ 0.0064 > 0.006

u2(0.5) ≤ 0.00034 < f(0.4)

Hence, we can have E[M1(1, 1) +M1(1, 2)] > 0 when vta ∈ [0.14, 0.5]. ■

Before proving our convergence guarantee, we first previous convergence lemma.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Lemma F.4 (Convergence Lemma). Let ϕ be locally µ-strongly convex and Lm-smooth, if ηt = η =
2

µ+Lm
, κ = Lm

µ , and x∗ ∈ argminx∈X ϕ(x), then

∥∥xt − x∗∥∥
2
≤

(
κ− 1

κ+ 1

)t ∥∥∥x(0) − x∗
∥∥∥
2
.

After that, we provide our convergence guarantee for few-shot diffusion models with a great pretrain-
ing.

Theorem 6.4. Assume Assumption 3.1, 5.1, µ̂ = µ∗ and δ1,t, δ2,t satisfy Condition 1. Considering
score matching function Lfew

SM,t. When v
(0)
ta ∈ {[ata − δ1,t, ata + δ2,t] ∪ [−ata − δ2,t,−ata + δ1,t]},

using gradient descent with learning rate η = 1/(2α+ ζ), with κ = (α+ γ + ζ)/(α− γ), we have∥∥∥V (k)
ta V

(k)⊤
ta −AtaA

⊤
ta

∥∥∥
F
≤

(
κ−1
κ+1

)k

(2ata + δ2,t)|v(0)ta − ata| .

Proof. First we prove that there exists Lm > 0, such that the objective function is Lm-smooth. In
this work, we take the maximum eigenvalue of the hessian matrix to be Lm.

E
[
∂2Lfew

SM

∂V 2
ta

]
= 2E

[
(
∂2sµ̂,Vta

∂V 2
ta

)⊤ (sµ̂,Vta
− sµ∗,Ata

)

]
+ 2E

[(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]

Based on our analysis of the hessian matrix, we can divide the matrix into two parts:
[

λ1 0
0 λ1

]
and

[
λ2 λ2

λ2 λ2

]
.

We first analyze the property of
[

λ1 + λ2 λ2

λ2 λ1 + λ2

]
, and then give the bound of λ1 and λ2.∣∣∣∣λI2 − [

λ1 + λ2 λ2

λ2 λ1 + λ2

]∣∣∣∣ = 0 ⇒ (λ− λ1)(λ− λ1 − λ2) = 0 ,

which indicates λ = λ1 or λ = λ1 + λ2. Thus, if λ1 > 0, we can choose Lm = λ1 + |λ2|

According to our analysis on before, ∀e ∈ E[(∂
2sµ̂,Vta

∂V 2
ta

)⊤ (sµ̂,Vta − sµ∗,Ata)], |e| ≤ v

Next we analyze E
[(

∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]
and have the following form:

E

[(
∂sµ̂,Vta

∂Vta

)⊤ (
∂sµ̂,Vta

∂Vta

)]
= E[tanh2(µ⊤

t V
⊤
tax)µ

⊤
t µtI2] + E[(1− tanh2(µ⊤

t V
⊤
tax))

2µ⊤
t µtVtax

⊤xV ⊤
ta]

+ 2(
1

σ2
t

− 1)2((1 + µ2
t)AtaA

⊤
taVtaV

⊤
ta + (1 + µ2

t)V
⊤
taAtaA

⊤
taVta)

+ E[2(1− tanh2(µ⊤
t V

⊤
tax)) tanh(µ

⊤
t V

⊤
tax)µtµ

⊤
t µtVtax

⊤]

+ 2E[(
1

σ2
t

− 1) tanh(µ⊤
t V

⊤
tax)µt(xV

⊤
ta + V ⊤

taxI2)]

+ E(1− tanh2(µ⊤
t V

⊤
tax))

(
1

σ2
t

− 1

)
µ⊤
t µt(Vtax

⊤xV ⊤
ta + Vtax

⊤V ⊤
tax)

+ E(1− tanh2(µ⊤
t V

⊤
tax))

(
1

σ2
t

− 1

)
µ⊤
t µt(x

⊤VtaxV
⊤
ta + x⊤VtaV

⊤
tax)

=

[
α 0
0 α

]
+

[
ζ ζ
ζ ζ

]
,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

where

ζ = Ex(1)∼N (µtata,a2
ta)

[
2(1− tanh2(2µtvtax(1)))

2µ2
t v

2
tax(1)

2

+ 2(1− tanh2(2µtvtax(1))) tanh(2µtvtax(1))µ
3
t vtax(1)

+ 2

(
1

σ2
t

− 1

)
tanh(2µtvtax(1))µtax(1)

+

(
1

σ2
t

− 1

)
(1− tanh2(2µtvtax(1)))6µ

2
t v

2
tax(1)

2 +

(
1

σ2
t

− 1

)2

4v4tax(1)
4

]
. (19)

For the ζ, we have the following bound:

ζ ≤ E

[
2µ2

t v
2
tax(1)

2 +

(
1

σ2
t

− 1

)2

4v4tax(1)
4 + 4µ4

t v
2
tax(1)

2

]

+ 4E
[(

1

σ2
t

− 1

)
µ4
t v

2
tax(1)

2 + 6

(
1

σ2
t

− 1

)
µ2
t v

2
tax(1)

2

]
= µ2

t v
2
taa

2
ta(1 + µ2

t)[2 + 4µ2
t + 4

(
1

σ2
t

− 1

)
µ2
t + 6

(
1

σ2
t

− 1

)
]

+ 4

(
1

σ2
t

− 1

)2

(µ4
t + 6µ2

t + 3)v4taa
4
ta .

Thus, we can take Lm = 2(α + γ + ζ). Let κ = Lm

α−γ , η = 2
2(α−γ)+2(α+γ+ζ) = 1

2α+ζ and
Ata ∈ argminVta∈Q(µ̂)L

few
SM,t, then∥∥∥V (k)

ta V
(k)⊤
ta −AtaA

⊤
ta

∥∥∥
F
≤

(
κ− 1

κ+ 1

)k

(2ata + δ2,t)|v(0)ta − ata| .

■

34

	Introduction
	Related Work
	Preliminaries
	Two Phases of Few-shot Diffusion Models

	The Influence of Bad Pre-trained Models in Few-shot Phase
	Bad Pretraining Prevents Few-shot Phase Learning Parameters
	Results for Few-shot Models with a Bad Pretraining

	Great Pretraining: Warm-up and Acceleration Optimization
	Discussion

	Conclusion
	The Use of Large Language Models (LLMs)
	More Discussion on Great Pre-trained Models and General Latent
	Discussion on the Great Pre-trained Models
	The Analysis for the General GMM latent.
	Extension to General Bounded Latent.
	Extension to Multi Low-dimensional Setting

	Additional Experiments
	Additional Simulation Experiments
	The Detail of the Underfitting Real-world Experiments
	The Detail of the Overfitting Real-world Experiments

	The Detailed Calculation of Gradient and Hessian
	Terms related to LSM,tfew
	Terms related to LSMfew-all

	The Proof for Bad Pretraining
	The Proof for Good Pretraining

