

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW LEARNING DYNAMICS DRIVE ADVERSARIAL ROBUST GENERALIZATION?

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite significant progress in adversarially robust learning, the underlying mechanisms that govern robust generalization remain poorly understood. We propose a novel PAC-Bayesian framework that explicitly links adversarial robustness to the posterior covariance of model parameters and the curvature of the adversarial loss landscape. By characterizing discrete-time SGD dynamics near a local optimum under quadratic loss, we derive closed-form posterior covariances for both the stationary regime and the early phase of non-stationary transition. Our analyses reveal how key factors, such as learning rate, gradient noise, and Hessian structure, jointly shape robust generalization during training. Through empirical visualizations of these theoretical quantities, we fundamentally explain the phenomenon of robust overfitting and shed light on why flatness-promoting techniques like adversarial weight perturbation help to improve robustness.

1 INTRODUCTION

Adversarial robustness—the ability of deep neural networks (DNNs) to maintain performance under worst-case perturbations—remains a fundamental challenge in machine learning. Since the discovery of adversarial examples (Szegedy et al., 2013), numerous methods have been proposed aiming to improve the resilience of DNNs (Goodfellow et al., 2014; Papernot et al., 2016; Wong & Kolter, 2018; Cohen et al., 2019). Among them, PGD-based adversarial training (AT) (Madry et al., 2017) is most popular, which has become the de facto approach for building robust models. Nevertheless, the mechanisms underlying robust generalization are far from fully understood. A striking manifestation of this gap is the phenomenon of robust overfitting (Rice et al., 2020), where robust accuracy on the training set steadily improves while test-time robustness increases shortly but continuously deteriorates after learning rate decay. This paradox underscores a key open question: *what factors determine whether robustness learned during training generalizes reliably to unseen data?*

Several complementary lines of research have sought to address this question. PAC-Bayesian analyses have been adapted to derive non-vacuous generalization bounds in adversarial settings (Xiao et al., 2023; Alquier et al., 2024). However, these bounds often abstract away from the actual optimization trajectory and adopt simple isotropic Gaussian posteriors for tractability, overlooking structural properties of the learned model that are crucial for explaining generalization. Other works (Foret et al., 2020; Dziugaite et al., 2021; Wang et al., 2023) connect the KL divergence term in PAC-Bayesian bounds to curvature-related quantities of the loss landscape, suggesting that richer prior–posterior choices can yield more informative guarantees. In particular, adversarial weight perturbation (AWP) (Wu et al., 2020) studied the role of curvature and flatness in the adversarial loss landscape and designed a variant of adversarial training by iteratively perturbing the model weights, which demonstrates strong empirical support that flatter minima help robust generalization.

Despite these efforts, the existing literature remains fragmented. PAC-Bayes bounds offer general guarantees but lack fidelity to the learning dynamics, whereas curvature-based approaches provide qualitative insight without rigorous predictive guarantees. Motivated by the recent theoretical works on standard generalization by analyzing the continuous- and discrete-time dynamics of stochastic gradient descent (SGD) (Mandt et al., 2017; Liu et al., 2021; Ziyin et al., 2021; Wu & Su, 2023; Ziyin et al., 2024), we introduce a unified but principled framework that links optimization dynamics with both Hessian curvature and posterior geometry through PAC-Bayesian analysis to study robust

054 generalization and to account for puzzling empirical observations such as robust overfitting, while
 055 also rationalizing the effectiveness behind flatness-promoting methods such as AWP.
 056

057 **Contributions.** We develop a PAC-Bayesian framework that explicitly couples Hessian curvature
 058 and posterior geometry through the finite-time dynamics of SGD in adversarial settings. Our analy-
 059 sis begins with a compact PAC-Bayesian inequality that preserves the posterior covariance structure
 060 (Section 3). Modeling SGD with momentum in a quadratic basin, we derive closed-form solutions
 061 for the posterior covariance in two representative regimes—(i) a stationary regime under a fixed
 062 learning rate and (ii) an early non-stationary transition triggered by a learning-rate drop (Section 4).
 063 Substituting these covariances into the bound yields tractable inequalities that quantitatively predict
 064 the evolution of robust generalization capabilities. To connect theory with practice, we conduct con-
 065 trolled studies under standard adversarial training and adversarial weight perturbation, tracking the
 066 Hessian spectrum, gradient-noise covariance, and the bound’s dominant terms across different train-
 067 ing phases (Section 5). The empirical observations consistently align with our theory, underscoring
 068 the central role of coupled curvature–posterior geometry in adversarially robust generalization.
 069

070 2 RELATED WORK

071 **Adversarial Training.** Adversarial training (Madry et al., 2017), which optimizes the model pa-
 072 rameters using SGD while leveraging projected gradient descent (PGD) to simultaneously search
 073 for worst-case input perturbations, is a canonical approach for robustness. Despite wide adoptions,
 074 it often exhibits *robust overfitting*, with test-time robust accuracy degrading while training robustness
 075 keeps improving (Rice et al., 2020). To mitigate this, objective-level regularization such as TRADES
 076 introduces a robustness–accuracy trade-off via a KL term (Zhang et al., 2019), and semi-supervised
 077 variants leverage unlabeled data to expand adversarial support (Carmon et al., 2019; Gowal et al.,
 078 2021). Complementarily, landscape-shaping methods—including adversarial weight perturbation
 079 (AWP) and sharpness-aware minimization (SAM)—promote flatter minima by perturbing parame-
 080 ters or minimizing neighborhood worst-case loss (Wu et al., 2020; Foret et al., 2020), highlighting
 081 the central role of curvature in shaping robust generalization in adversarial settings.
 082

083 **Robust Generalization.** A parallel line of research studies adversarially robust generalization from
 084 a theoretical standpoint. PAC-Bayesian analyses for adversarial robustness (Viallard et al., 2021;
 085 Mustafa et al., 2023; Xiao et al., 2023) derive explicit generalization bounds but model the posterior
 086 as a static, trajectory-independent distribution, thereby overlooking how SGD dynamics shape pos-
 087 terior geometry and curvature-dependent behavior. Stability-based approaches (Xing et al., 2021;
 088 Xiao et al., 2022; Cullina et al., 2018; Tian & Mao, 2025) provide guarantees through uniform sta-
 089 bility, but they abstract away the structure of the adversarial loss landscape—ignoring the curvature
 090 and the anisotropic noise induced by SGD—and their bounds do not vary meaningfully with the
 091 perturbation strength ϵ , thus unable to capture how increasing ϵ fundamentally alters robust general-
 092 ization. Recent studies of robust overfitting (Fu & Wang, 2023; Mustafa et al., 2024; Liu et al., 2024)
 093 offer valuable insights but still rely on fixed hypothesis classes or static posteriors that do not account
 094 for the temporal evolution of training dynamics. Collectively, these theoretical frameworks capture
 095 important aspects of robust generalization but lack a dynamic perspective that connects curvature,
 096 gradient noise, and posterior geometry throughout the course of adversarial training.
 097

098 **SGD Dynamics.** The generalization ability of deep networks is strongly shaped by the dynamics of
 099 stochastic gradient descent (SGD). With a finite learning rate, SGD can be modeled as a stochastic
 100 process where deterministic gradient flow is perturbed by minibatch noise (Mandt et al., 2017; Liu
 101 et al., 2021). This noise is anisotropic: its covariance reflects the local loss curvature and data struc-
 102 ture, producing characteristic fluctuations in parameter trajectories. The stationary distribution acts
 103 as an implicit posterior whose variance is shaped by the learning rate, batch size, and Hessian spec-
 104 trum (Ziyin et al., 2021; 2024). These noise–curvature interactions govern how SGD explores flat
 105 versus sharp regions, thereby influencing stability and generalization. In adversarial settings, where
 106 loss landscapes are typically sharper and more anisotropic, such interactions are amplified, motivat-
 107 ing a dynamic view of robust generalization beyond static capacity-based bounds. In this work, we
 108 connect the robust generalization performance of adversarially trained models with the SGD learn-
 109 ing dynamics through a PAC-Bayesian analytical framework, aiming to explain phenomena such as
 110 robust overfitting more fundamentally.

108 **3 BOUNDING ROBUST GENERALIZATION VIA PAC-BAYESIAN FRAMEWORK**
109110 **3.1 PRELIMINARIES**
111

112 **Notation.** We use lowercase boldface letters such as \mathbf{x} to denote vectors and uppercase boldface
113 letters such as \mathbf{X} for matrices. For any vector $\mathbf{x} \in \mathbb{R}^d$, denote by $\|\mathbf{x}\|_p$ with $p \geq 1$ the L_p -norm of
114 \mathbf{x} . For any matrix $\mathbf{X} \in \mathbb{R}^{m \times m}$, $\text{Tr}(\mathbf{X})$ denotes its trace, $\|\mathbf{X}\|_{\text{op}}$ its operator norm, and $\det(\mathbf{X})$ its
115 determinant. For any \mathcal{S} , $|\mathcal{S}|$ denotes its cardinality. We write $\mathbf{X} \succ 0$ to indicate that \mathbf{X} is a positive
116 definite matrix, and $\mathbf{X} \succeq 0$ for semi-positive definite. Let \mathbf{I} be the identity matrix and $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ be
117 the Gaussian distribution with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$. Given sequences $\{a_n\}$ and $\{b_n\}$, we write
118 $a_n = O(b_n)$ if there exist constants $n_0 \in \mathbb{Z}_+$ and $C > 0$ such that $a_n \leq C \cdot b_n$ for all $n \geq n_0$.

119 In particular, we work with the following notion of adversarial risk, which closely relates to adver-
120 sariably robust generalization and often serves as the theoretical basis for robustness evaluation in
121 previous literature on adversarial ML (Madry et al., 2017; Zhang et al., 2019; Foret et al., 2020).

122 **Definition 3.1** (Adversarial risk). *Let $\mathcal{X} \subseteq \mathbb{R}^d$ be the input space, \mathcal{Y} be the output label space, $f_{\mathbf{w}} : \mathcal{X} \rightarrow \mathcal{Y}$ be a model with $\mathbf{w} \in \mathbb{R}^m$ being its parameters, and \mathcal{D} be a data distribution over $\mathcal{X} \times \mathcal{Y}$. For any distance metric $\Delta : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{\geq 0}$ and $\epsilon \geq 0$, define $\mathcal{B}_{\epsilon}(\mathbf{0}) = \{\boldsymbol{\delta} \in \mathcal{X} : \Delta(\boldsymbol{\delta}, \mathbf{0}) \leq \epsilon\}$ as the ball centered at $\mathbf{0}$ with radius ϵ measured in Δ . Then, the adversarial risk of $f_{\mathbf{w}}$ is defined as:*

$$126 \quad \mathcal{R}_{\text{adv}}(\mathbf{w}) := \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y)], \quad \text{where } \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) = \max_{\boldsymbol{\delta} \in \mathcal{B}_{\epsilon}(\mathbf{0})} \ell(\mathbf{w}, \mathbf{x} + \boldsymbol{\delta}, y). \quad (1)$$

128 Here, $\ell(\mathbf{w}, \mathbf{x}, y)$ denotes the standard loss function (e.g., cross-entropy loss) that measures the dis-
129 crepancy between the model prediction $\hat{y} = f_{\mathbf{w}}(\mathbf{x})$ and the ground-truth class label y .

130 Small adversarial risk indicates that the model $f_{\mathbf{w}}$ is resilient to worst-case perturbations in $\mathcal{B}_{\epsilon}(\mathbf{0})$,
131 while a larger value of $\mathcal{R}_{\text{adv}}(\mathbf{w})$ means higher vulnerability to adversarial perturbations. Note that
132 when $\epsilon = 0$, adversarial risk $\mathcal{R}_{\text{adv}}(\mathbf{w})$ is equivalent to the standard notion of risk. Aligned with prior
133 work (Madry et al., 2017; Rice et al., 2020), we consider Δ as some ℓ_p -norm bounded distance.

135 The following lemma, proven in Appendix A.1, establishes a generic robust generalization bound
136 relating adversarial risk to its empirical counterpart through a PAC-Bayesian framework. PAC-Bayes
137 bounds have been pivotal in understanding the standard generalization of ML models (McAllester,
138 1999; Neyshabur et al., 2017; Dziugaite & Roy, 2017; Xiao et al., 2023; Alquier et al., 2024).

139 **Lemma 3.2** (PAC-Bayesian Robust Generalization Bound). *Let \mathcal{D} be a probability distribution over
140 $\mathcal{X} \times \mathcal{Y}$ and \mathcal{S} be a set of examples i.i.d. sampled from \mathcal{D} . Suppose \mathcal{P} is a data-independent prior
141 distribution defined over the model parameter space \mathcal{W} . For any $\beta > 0$, any $\alpha \in (0, 1)$ and any
142 posterior distribution \mathcal{Q} supported on \mathcal{W} , with probability at least $1 - \alpha$, we have*

$$143 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) \right] + \frac{1}{\beta} \text{KL}(\mathcal{Q} \parallel \mathcal{P}) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha, \quad (2)$$

146 where $\text{KL}(\mathcal{Q} \parallel \mathcal{P})$ denotes the Kullback–Leibler (KL) divergence between the posterior \mathcal{Q} and the
147 prior \mathcal{P} , and C is a constant derived by Hoeffding’s inequality that bounds the loss range.

148 In the following discussions, we write $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S}) = \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) / |\mathcal{S}|$ as the empirical
149 adversarial loss of $f_{\mathbf{w}}$ with \mathcal{S} , and we use d, m to denote the dimensions of the input space \mathcal{X} and the
150 parameter space \mathcal{W} , respectively for ease of presentation. Note that the robust generalization bound
151 derived in Equation 2 characterizes a general relationship between $\mathcal{R}_{\text{adv}}(\mathbf{w})$ and $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$, which
152 holds for any data-independent prior \mathcal{P} and any posterior distribution \mathcal{Q} . Assuming the prior \mathcal{P} to
153 be independent of \mathcal{S} ensures the applicability of Fubini’s theorem, which has been widely adopted
154 in the literature for establishing PAC-Bayes bounds (Mbacke et al., 2023; Alquier et al., 2024). **For**
155 **adversarial training algorithms, the prior \mathcal{P} can be understood as the weight initialization, while the**
156 **posterior \mathcal{Q} can be viewed as the distribution of model parameters at a certain training epoch.**

157 **3.2 RELATING ROBUST GENERALIZATION TO HESSIAN AND POSTERIOR STRUCTURE**
158

160 So far, we’ve established a generic upper bound on robust generalization. To further digest Lemma
161 3.2, we need to set the prior \mathcal{P} and the posterior \mathcal{Q} properly such that the right-hand side of Equation
2 can be simplified into an analytical form while being sufficiently tight to yield useful insights.

162 Specifically, we first introduce the following assumption regarding the prior and the posterior.
 163

164 **Assumption 3.3** (Gaussian Prior & Posterior). *We assume both \mathcal{P} and \mathcal{Q} follow Gaussian distributions: $\mathcal{P} = \mathcal{N}(\mathbf{0}, \sigma_{\mathcal{P}}^2 \mathbf{I})$ and $\mathcal{Q} = \mathcal{N}(\boldsymbol{\mu}_{\mathcal{Q}}, \boldsymbol{\Sigma}_{\mathcal{Q}})$, where $\sigma_{\mathcal{P}} \in \mathbb{R}_+$, $\boldsymbol{\mu}_{\mathcal{Q}} \in \mathbb{R}^m$ and $\boldsymbol{\Sigma}_{\mathcal{Q}} \succ 0$.*
 165

166 For the ease of presentation, we assume the posterior is a single Gaussian distribution for the following derivations. However, we note that our theoretical results and proof techniques can be easily
 167 generalized to scenarios where \mathcal{Q} is modeled as a mixture of Gaussians (Corollary 3.8).
 168

169 The following lemma, proven in Appendix A.2, illustrates how the KL divergence term in Equation
 170 2 can be simplified into an analytically tractable expression using Assumption 3.3.
 171

172 **Lemma 3.4.** *Let the prior $\mathcal{P} = \mathcal{N}(\mathbf{0}, \sigma_{\mathcal{P}}^2 \mathbf{I})$ and the posterior $\mathcal{Q} = \mathcal{N}(\boldsymbol{\mu}_{\mathcal{Q}}, \boldsymbol{\Sigma}_{\mathcal{Q}})$. Then, we have*

$$173 \text{KL}(\mathcal{Q} \parallel \mathcal{P}) = \frac{\text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}})}{2\sigma_{\mathcal{P}}^2} + \frac{\|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2}{2\sigma_{\mathcal{P}}^2} - \frac{m}{2} + \frac{m}{2} \ln \sigma_{\mathcal{P}}^2 - \frac{1}{2} \ln \det \boldsymbol{\Sigma}_{\mathcal{Q}}. \quad (3)$$

176 Compared to the commonly-adopted assumption that both \mathcal{P} and \mathcal{Q} are spherical Gaussians (Grun-
 177 wald et al., 2021; Jin et al., 2022; Mbacke et al., 2023), assuming an isotropic Gaussian prior while
 178 allowing a general Gaussian posterior enables an analytically tractable yet less restrictive expression
 179 of the KL divergence term. Since the robust generalization bound derived in Lemma 3.2 holds for
 180 any data-independent prior and posterior, setting $\mathcal{P} = \mathcal{N}(\mathbf{0}, \sigma_{\mathcal{P}}^2 \mathbf{I})$, $\mathcal{Q} = \mathcal{N}(\boldsymbol{\mu}_{\mathcal{Q}}, \boldsymbol{\Sigma}_{\mathcal{Q}})$ does not com-
 181 promise the validity of the bound. Such choices retain the simplicity of a closed-form KL divergence
 182 while capturing anisotropic parameter variability through the full covariance matrix $\boldsymbol{\Sigma}_{\mathcal{Q}}$.
 183

184 In addition, to deal with the first empirical adversarial loss term on the right-hand side of Equation
 185 2, we introduce the following quadratic loss assumption regarding the posterior \mathcal{Q} , which enables
 186 us to further connect the expected empirical adversarial loss to the Hessian and posterior structure.
 187

188 **Assumption 3.5** (Quadratic Loss). *We assume there exist a local optimum $\mathbf{w}^* \in \mathbb{R}^m$ such that for
 189 any $\mathbf{w} \sim \mathcal{Q}$, $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$ can be characterized by the following quadratic loss defined at \mathbf{w}^* :*

$$190 \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S}) = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^*)^\top \mathbf{H}^* (\mathbf{w} - \mathbf{w}^*), \quad (4)$$

191 where \mathbf{H}^* is the Hessian matrix with the empirical adversarial loss $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$ at the local optimum
 192 \mathbf{w}^* . For simplicity, we assume the Hessian matrix at \mathbf{w}^* is positive definite¹, namely $\mathbf{H}^* \succ 0$.
 193

194 The quadratic loss assumption has been adopted in prior works for formalizing the learning dynamics
 195 of ML models (Bartlett et al., 2021; Liu et al., 2021; Ziyin et al., 2021; Suri et al., 2024; Ziyin
 196 et al., 2024). Imposing such an assumption not only simplifies the derivations but also can largely
 197 capture the dynamics of deep learning models used in practice. For instance, the stationary dynamics
 198 of SGD can be viewed as having a quadratic potential near a local minimum (Liu et al., 2021).
 199

200 **Lemma 3.6.** *Under Assumptions 3.3 and 3.5, we can simplify the expected adversarial loss as:*

$$201 \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2}(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^\top \mathbf{H}^* (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}}). \quad (5)$$

202 Lemma 3.6, proven in Appendix A.3, suggests that close to a local minimum \mathbf{w}^* , the expected em-
 203 pirical adversarial loss under \mathcal{Q} is primarily governed by the distance between $\boldsymbol{\mu}_{\mathcal{Q}}$ and \mathbf{w}^* induced
 204 by \mathbf{H}^* , plus the trace of the multiplication of the Hessian and the posterior covariance $\text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}})$.
 205

206 By expressing the KL divergence and the expected empirical adversarial loss terms using Equation
 207 3 and Equation 5 in the robust generalization bound in Lemma 3.2, we obtain the following result.
 208

209 **Theorem 3.7** (Robust Generalization with Gaussians & Quadratic Loss). *Under the same set of
 210 conditions as assumed in Lemmas 3.2, 3.4 and 3.6, with probability at least $1 - \alpha$, we have*

$$211 \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \frac{1}{2} \text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}}) + \frac{1}{2}(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^\top \mathbf{H}^* (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*) + \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) \\ 212 + \frac{1}{2\beta} \left(\frac{\text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}})}{\sigma_{\mathcal{P}}^2} + \frac{\|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2}{\sigma_{\mathcal{P}}^2} - m + m \ln \sigma_{\mathcal{P}}^2 - \ln \det \boldsymbol{\Sigma}_{\mathcal{Q}} \right) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha. \quad (6)$$

213
 214 ¹Technically, we can only ensure \mathbf{H}^* is a positive semidefinite matrix; however, one can easily enforce it
 215 to be positive definite by adding a small L_2 weight-norm regularization term to the empirical adversarial loss,
 which is a typical implementation adopted in practice for training ML models.

216 Although the perturbation strength ϵ does not explicitly appear on the right hand side of Equation
 217 6, it will implicitly affect the bound through the Hessian matrix \mathbf{H}^* and posterior parameters $(\boldsymbol{\mu}_{\mathcal{Q}},$
 218 $\boldsymbol{\Sigma}_{\mathcal{Q}})$, as long as we are analyzing algorithms trained to minimize the empirical adversarial loss. The
 219 hyperparameter β balances empirical adversarial loss, KL divergence, and complexity penalty. In
 220 practice, β is often chosen by cross-validation or proportional to $\sqrt{|\mathcal{S}|}$ so that all β -involved terms
 221 are of comparable order. Among all the terms in Equation 6, $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S})$, C , α , m , and $\sigma_{\mathcal{P}}^2$ can
 222 be viewed as constants once the learning setup is decided. The remaining components—such as the
 223 matrix trace terms $\text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}})$ and $\text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}})$, the weight norm $\|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2$, and the log-determinant term
 224 $\ln \det \boldsymbol{\Sigma}_{\mathcal{Q}}$ —depend on the posterior distribution \mathcal{Q} , which will be largely affected by optimization
 225 and learning dynamics. As we will illustrate in Section 4, these quantities will be the primary factors
 226 explaining the underlying mechanisms of adversarially robust generalization.

227 Assumptions 3.3 and 3.5 assume the posterior is a single Gaussian centered around a local optimum.
 228 In practice, however, the posterior learned by adversarial training may be distributed across multiple
 229 regions in the model parameter space. To accommodate this, we relax the assumptions and extend
 230 our analysis to a more general family of Gaussian mixture posterior distributions. The corresponding
 231 robust generalization bound is derived in Corollary 3.8, with the full proof deferred to Appendix A.4.

232 **Corollary 3.8 (Robust Generalization with Gaussian Mixtures & Locally Quadratic Loss).** *Let $\mathcal{P} =$
 233 $\mathcal{N}(0, \sigma_{\mathcal{P}}^2 \mathbf{I})$ be the prior, and let the posterior be a mixture of Gaussians with the form:*

$$235 \quad \mathcal{Q} = \sum_{\ell=1}^L \pi_{\ell} \mathcal{Q}_{\ell}, \quad \text{where } \mathcal{Q}_{\ell} = \mathcal{N}(\boldsymbol{\mu}_{\ell}, \boldsymbol{\Sigma}_{\ell}), \sum_{\ell=1}^L \pi_{\ell} = 1, \text{ and } \pi_{\ell} \geq 0. \quad (7)$$

238 For each posterior component \mathcal{Q}_{ℓ} , assume the adversarial loss is locally quadratic at a respective
 239 local optimal point \mathbf{w}_{ℓ}^* . For any $\beta > 0$ and $\alpha \in (0, 1)$, with probability at least $1 - \alpha$, we have

$$241 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \sum_{\ell=1}^L \pi_{\ell} \left[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}_{\ell}^*, \mathcal{S}) + \frac{1}{2} (\boldsymbol{\mu}_{\ell} - \mathbf{w}_{\ell}^*)^{\top} \mathbf{H}_{\ell}^* (\boldsymbol{\mu}_{\ell} - \mathbf{w}_{\ell}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}_{\ell}^* \boldsymbol{\Sigma}_{\ell}) \right] \\ 242 \quad + \sum_{\ell=1}^L \frac{\pi_{\ell}}{2\beta} \left(\frac{\text{Tr}(\boldsymbol{\Sigma}_{\ell})}{\sigma_{\mathcal{P}}^2} + \frac{\|\boldsymbol{\mu}_{\ell}\|_2^2}{\sigma_{\mathcal{P}}^2} - m + m \ln \sigma_{\mathcal{P}}^2 - \ln \det \boldsymbol{\Sigma}_{\ell} \right) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha. \quad (8)$$

4 HOW LEARNING DYNAMICS SHAPE ROBUST GENERALIZATION?

250 In the previous section, we've established an upper bound on robust generalization in Theorem 3.7,
 251 relating the population adversarial risk to the curvature of the empirical adversarial loss \mathbf{H}^* and the
 252 covariance matrix of the posterior distribution $\boldsymbol{\Sigma}_{\mathcal{Q}}$, through a PAC-Bayesian framework. However,
 253 it is still difficult to comprehend what the posterior \mathcal{Q} really means in the context of robust learning.
 254 Therefore, we propose to investigate the behavior of the posterior mean $\boldsymbol{\mu}_{\mathcal{Q}}$ and covariance $\boldsymbol{\Sigma}_{\mathcal{Q}}$ for
 255 models learned during adversarial training with *stochastic gradient descent* (SGD) optimizers.

256 More specifically, we analyze the learning dynamics of SGD with Polyak momentum. The iterative
 257 updates of model parameters during SGD can be cast into a dynamical system: for $t = 1, 2, \dots$,

$$259 \quad \mathbf{g}_t = \mathbf{H}^*(\mathbf{w}_{t-1} - \mathbf{w}^*) + \boldsymbol{\xi}_{t-1}, \quad \mathbf{h}_t = \mu \mathbf{h}_{t-1} + \mathbf{g}_t, \quad \mathbf{w}_t = \mathbf{w}_{t-1} - \eta \mathbf{h}_t, \quad (9)$$

260 where $\eta > 0$ is the learning rate and $\mu \in [0, 1)$ denotes the momentum hyperparameter. In Equation
 261 9, $\mathbf{H}^*(\mathbf{w}_{t-1} - \mathbf{w}^*)$ can be understood as the expected gradient incurred by SGD with respect to the
 262 empirical adversarial loss $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$ assumed in Equation 4, while the extra $\boldsymbol{\xi}_{t-1}$ term denotes the
 263 mini-batch gradient noise with $\mathbb{E}[\boldsymbol{\xi}_{t-1}] = \mathbf{0}$. Throughout this section, we interpret the posterior \mathcal{Q}
 264 as the data-dependent distribution of the SGD iterates \mathbf{w}_t conditioned on the training set \mathcal{S} , either at
 265 stationarity or at a finite iteration t . We use $\mathbf{C}_{t-1} = \mathbb{E}[\boldsymbol{\xi}_{t-1} \boldsymbol{\xi}_{t-1}^{\top}]$ to denote its covariance.

266 Built upon the update rule defined by Equation 9, the following lemma, proven in Appendix B.1,
 267 characterizes how the posterior covariance $\boldsymbol{\Sigma}_{\mathcal{Q}}$ is updated during the optimization process of SGD.

268 **Lemma 4.1 (State-Space Representation & Covariance Propagation).** *Consider the dynamical sys-
 269 tem induced by SGD defined in Equation 9 with learning rate $\eta > 0$ and momentum $\mu \in [0, 1)$.*

270 Denote by the joint state vector $\mathbf{u}_t = \begin{bmatrix} \mathbf{w}_t - \mathbf{w}^* \\ \mathbf{h}_t \end{bmatrix} \in \mathbb{R}^{2m}$, then we have
 271
 272

$$273 \quad \mathbf{u}_t = \mathbf{A}\mathbf{u}_{t-1} + \mathbf{G}\xi_{t-1}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{I} - \eta\mathbf{H} & -\eta\mu\mathbf{I} \\ \mathbf{H} & \mu\mathbf{I} \end{bmatrix}, \mathbf{G} = \begin{bmatrix} -\eta\mathbf{I} \\ \mathbf{I} \end{bmatrix}. \quad (10)$$

275 Suppose at the initial state, the (posterior) distribution of the model parameters has covariance Σ_t
 276 (i.e., at time step t), then after running $k \geq 1$ steps of SGD with momentum, we have
 277

$$278 \quad \Sigma_{t+k} = \mathbf{\Pi}\mathbf{A}^k \Sigma_t (\mathbf{A}^k)^\top \mathbf{\Pi}^\top + \sum_{j=0}^{k-1} (\mathbf{\Pi}\mathbf{A}^j \mathbf{G}) \mathbf{C}_{t+k-1-j} (\mathbf{\Pi}\mathbf{A}^j \mathbf{G})^\top, \quad (11)$$

281 where $\mathbf{\Pi} = [\mathbf{I} \ \mathbf{0}]$ denotes the projection operator mapping to the first state.
 282

283 Equipped with the dynamical view of SGD dynamics derived in Lemma 4.1, we now introduce two
 284 variations of the PAC-Bayesian robust generalization bound under: (i) the stationary regime (Section
 285 4.1), where the posterior reaches a steady state, and (ii) the early transition phase from stationary to
 286 non-stationary state (Section 4.2), which is often triggered by a learning rate change. Both scenarios
 287 are highly relevant to explaining the robust overfitting phenomenon detailed in Rice et al. (2020).
 288

289 4.1 STATIONARY REGIME

290 Recall that the remaining task is to analyze the posterior mean and covariance (μ_Q, Σ_Q) such that
 291 we can understand all the technical terms in the PAC-Bayesian robust generalization bound in The-
 292 orem 3.7. The following two lemmas, proven in Appendix B.2, characterize how the mean and
 293 covariance are derived from SGD dynamics under the stationary regime.
 294

295 **Lemma 4.2** (Stationary Mean). *Under Assumptions 3.3 and 3.5, suppose the posterior \mathcal{Q} reaches a
 296 steady state with stationary mean $\mu = \lim_{t \rightarrow \infty} \mathbb{E}(\mathbf{w}_t)$, then we have $\mu = \mathbf{w}^*$.*

297 **Lemma 4.3** (Stationary Covariance). *Under the same conditions as in Lemma 4.2, suppose both the
 298 stationary covariance $\Sigma = \lim_{t \rightarrow \infty} \text{Cov}(\mathbf{w}_t)$ and the noise covariance $\mathbf{C} = \lim_{t \rightarrow \infty} \mathbf{C}_t$ exist and
 299 are finite. Then, the following equation holds:*

$$300 \quad \Sigma = \mathbf{\Pi} \Sigma_{\text{joint}}, \text{ where } \Sigma_{\text{joint}} \text{ satisfies } \Sigma_{\text{joint}} = \mathbf{A} \Sigma_{\text{joint}} \mathbf{A}^\top + \mathbf{G} \mathbf{C} \mathbf{G}^\top, \quad (12)$$

302 where $\mathbf{\Pi}$, \mathbf{A} , and \mathbf{G} are defined in Lemma 4.1. In addition, if the noise covariance \mathbf{C} commutes
 303 with the Hessian \mathbf{H}^* , then the stationary covariance Σ has a closed-form solution:

$$304 \quad \Sigma = \left[\mathbf{H}^* \left(2\mathbf{I} - \frac{\eta}{1+\mu} \mathbf{H}^* \right) \right]^{-1} \frac{\eta}{1-\mu} \mathbf{C}. \quad (13)$$

307 **Remark 4.4.** Assuming \mathbf{C} commutes with \mathbf{H}^* under the stationary regime aligns with empirical
 308 observations that gradient noise covariance tends to align with the Hessian eigenspectrum during
 309 representation formation in neural networks (Ziyin et al., 2025). Denote by $\{\lambda_1, \lambda_2, \dots, \lambda_m\}$ and
 310 $\{\gamma_1, \gamma_2, \dots, \gamma_m\}$ the two sets of eigenvalues of \mathbf{H}^* and \mathbf{C} , respectively. As shown in the proof of
 311 Lemma 4.3, the set of eigenvalues of the stationary covariance Σ is given by:
 312

$$313 \quad \forall i \in \{1, 2, \dots, m\}, \quad \sigma_i^2 = \frac{\eta}{1-\mu} \cdot \frac{\gamma_i}{\lambda_i \cdot \left(2 - \frac{\eta}{1+\mu} \lambda_i \right)}, \quad (14)$$

316 where σ_i^2 stands for the i -th eigenvalue of Σ . Note that the stability condition of Equation 14 requires
 317 that $0 < \lambda_i < \frac{2(1+\mu)}{\eta}$ for any i . Otherwise, the stationary covariance Σ does not exist. **Since both**
 318 **the Hessian \mathbf{H}^* and the noise covariance \mathbf{C} implicitly depend on the perturbation strength ϵ , altering**
 319 **the value of ϵ will correspondingly influence the structure of stationary covariance Σ .**

320 We can prove the following theorem by applying the stationary mean and covariance formulations
 321 in the above lemmas to the PAC-Bayesian robust generalization bound in Theorem 3.7.
 322

323 **Theorem 4.5** (Robust Generalization under Stationary Regime). *Assume the same conditions as
 324 used in Theorem 3.7 and Lemma 4.1. Suppose the posterior \mathcal{Q} reaches a stationary state, and \mathbf{C}*

324 commutes with \mathbf{H}^* . Then, for any $\beta > 0$ and $\alpha \in (0, 1)$, with probability at least $1 - \alpha$, we have

$$\begin{aligned} 326 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\mathcal{R}_{\text{adv}}(\mathbf{w})] &\leq \frac{1}{2} \sum_{i=1}^m \lambda_i \sigma_i^2 + \frac{1}{2\beta} \left(\frac{\sum_{i=1}^m \sigma_i^2}{\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{w}^*\|_2^2}{\sigma_{\mathcal{P}}^2} - \sum_{i=1}^m \ln \sigma_i^2 \right) \\ 327 \\ 328 \quad &+ \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2\beta} (-m + m \ln \sigma_{\mathcal{P}}^2) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha, \end{aligned} \quad (15)$$

331 where λ_i, γ_i and σ_i are the i -th eigenvalues of \mathbf{H}^* , \mathbf{C} and Σ , respectively defined in Remark 4.4.

332 **Remark 4.6.** Assuming the posterior \mathcal{Q} reaches a stationary state during the optimization of ad-
333 versarial loss using SGD, Theorem 4.5 suggests that the PAC-Bayesian robust generalization bound
334 depends on analytical terms related to the Hessian and noise covariance eigenvalues (λ_i, γ_i) , along
335 with learning parameters such as learning rate η and momentum μ . As we will illustrate in Section 5,
336 the dominant terms in Equation 15 will be the multiplicative term $\sum_i \lambda_i \sigma_i^2$ and the log-determinant
337 term $-\sum_i \ln \sigma_i^2$, since the (top) eigenvalues of the Hessian matrix \mathbf{H}^* can be order-wise larger than
338 those of \mathbf{C} , and the value of the posterior covariance eigenvalues σ_i defined by Equation 14 are
339 usually very small, especially after the learning rate step decay during adversarial training.

341 4.2 INITIAL PHASE OF NON-STATIONARY TRANSITION

342 While the stationary posterior distribution derived in Section 4.1 explains a lot about the SGD dy-
343 namics and leads to grounded interpretations, one might also be interested in how the key theoretical
344 quantities evolve if the stationary assumption breaks. This is particularly important for explaining
345 the robust overfitting phenomenon (Rice et al., 2020)—it remains an open question why the test robust
346 error drops immediately after the first learning rate decay step but steadily increases afterward.

347 The following theorem, whose formal version and proof are in Appendix B.3, shows how the pos-
348 terior covariance $\Sigma_{\mathcal{Q}}$ behaves in the early non-stationary transient phase. We consider a scenario
349 where the SGD-induced dynamical system (Equation 9) reaches a stationary state with learning rate
350 η_1 until time step t , whereas at step $t + 1$, the learning rate is reduced to η_2 for future SGD steps.

351 **Theorem 4.7** (Robust Generalization after Learning Rate Decay: Informal). *Assume the same con-
352 ditions as used in Theorem 3.7 and Lemma 4.1. Suppose \mathcal{Q} reaches a stationary state for SGD with
353 (η_1, μ) at time step t and \mathbf{C} commutes with \mathbf{H}^* . After reducing the learning rate from η_1 to η_2 and
354 running k steps of SGD, the i -th eigenvalue of the posterior covariance can be approximated as:*

$$357 \quad \sigma_i^2(t+k) \approx \frac{\eta_1 \gamma_i}{\lambda_i(1-\mu)} e^{-\rho_i k} + \frac{\eta_2^2 \gamma_i}{\lambda_i(1-\mu)} (1 - e^{-\rho_i k}), \quad (16)$$

358 where λ_i, γ_i are the i -th Hessian and noise covariance eigenvalues at time t , respectively and $\rho_i > 0$
359 is the decaying factor depending on (η_2, μ, λ_i) . For clarity, we refer to the first term in equation 16
360 as the propagation term, since it transports the covariance from the previous equilibrium, and to
361 the second term as the injected term, since it reflects the newly injected gradient noise after the
362 learning-rate change. In addition, with probability at least $1 - \alpha$, we have

$$\begin{aligned} 365 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\mathcal{R}_{\text{adv}}(\mathbf{w})] &\leq \frac{1}{2} \sum_{i=1}^m \lambda_i \sigma_i^2(t+k) + \frac{1}{2\beta} \left(\frac{\sum_{i=1}^m \sigma_i^2(t+k)}{\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{w}^*\|_2^2}{\sigma_{\mathcal{P}}^2} - \sum_{i=1}^m \ln \sigma_i^2(t+k) \right) \\ 366 \\ 367 \quad &+ \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2\beta} (-m + m \ln \sigma_{\mathcal{P}}^2) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha. \end{aligned} \quad (17)$$

368 **Remark 4.8.** The decaying factor ρ_i is formally defined in Equation 32 (Appendix B.3). Theo-
369 rem 4.7 characterizes how the covariance of the posterior \mathcal{Q} changes in the early transition phase
370 to a non-stationary state due to learning rate drop, under the condition that \mathbf{C} and \mathbf{H}^* share the
371 same eigenspace. Similar to our analysis in Remark 4.6, one can expect that $\sum_i \lambda_i \sigma_i^2(t+k)$ and
372 $-\sum_i \ln \sigma_i^2(t+k)$ remain the dominating factors. Note that η_1 controls the initial equilibrium, η_2
373 the final equilibrium, λ_i the curvature sensitivity, γ_i the noise level, and k the interpolation horizon.
374 In the early or transient phase (small k), propagation terms dominate, especially when momentum
375 μ or step size η_2 are not small. In contrast, in the late phase (large k), the injected term becomes
376 dominant, and $\sigma_i^2(t+k)$ converges to the new stationary covariance determined by (η_2, μ, λ_i) .

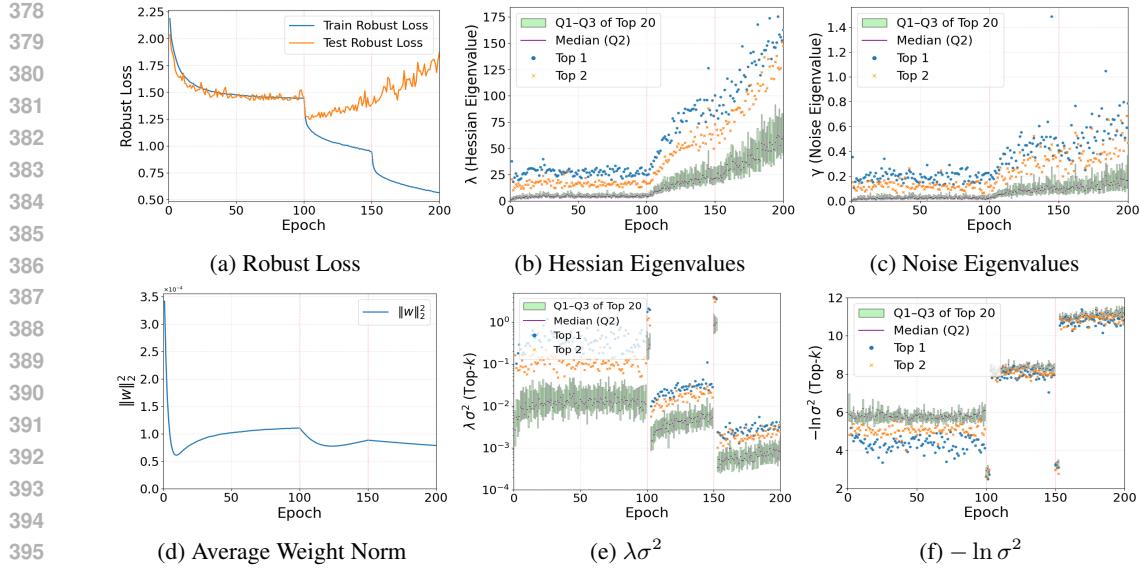


Figure 1: Curves of Hessian and posterior parameters derived from our generalization bounds under standard AT on CIFAR-10. Vertical dashed lines mark learning rate decays at epochs 100 and 150. **From epoch 150 to 200, the train robust accuracy increases from 61.81% to 75.96%, while the test robust accuracy decreases from 50.27% to 46.71%, indicating aggravated robust overfitting.**

Remark 4.9. Our closed-form derivations of the stationary and non-stationary covariance behavior (Theorems 4.5 and 4.7) build on the assumption that \mathbf{C} commutes with \mathbf{H}^* . Such a commutative assumption has also been adopted in several previous works for simplifying the analysis of the SGD dynamics (Liu et al., 2021; Ziyin et al., 2021; Suri et al., 2024). One can prove that if \mathbf{H}^* and \mathbf{C} are commutative, they share the same set of eigenbases (see Appendix B.4 for rigorous proof). When the models are optimized through stochastic gradient descent, prior theoretical literature has found evidence that the eigenspace between the loss Hessian and the gradient noise covariance is largely aligned with each other (Ziyin et al., 2021; 2024; Arous et al., 2024; Ziyin et al., 2025). Nevertheless, there are no theoretical guarantees that these two matrices will always be aligned. If the commutative assumption is violated, our robust generalization bounds may become less accurate.

5 EXPERIMENTS

In this section, we aim to answer three central questions through empirical evaluations: (i) how Hessian and posterior structure evolve under standard adversarial training (Section 5.1), (ii) how robustness-enhancing methods, such as adversarial weight perturbation (AWP), differ in their behavior (Section 5.2), and (iii) whether the commutativity and alignment assumptions hold (Section 5.3). We approximate the leading Hessian eigenvalues $\{\lambda_i\}$ and the gradient noise eigenvalues $\{\gamma_i\}$ using the procedure described in Appendix E. To be more specific, we compute the top- k Hessian and top- k noise covariance eigenvalues as follows:

$$\forall i \in \{1, 2, \dots, k\}, \quad \lambda_i = \frac{\mathbf{v}_i^\top \mathbf{H} \mathbf{v}_i}{\mathbf{v}_i^\top \mathbf{v}_i}, \quad \gamma_i = [\text{Cov}(\mathbf{V}^\top \mathbf{g}_b)]_{ii}, \quad (18)$$

where \mathbf{v}_i is the i -th eigenvector of Hessian \mathbf{H} at the evaluated epoch, \mathbf{g}_b stands for the per-batch gradient, and $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ is the eigenspace spanned by the top k Hessian eigenvectors. Detailed settings and additional experiments are provided in Appendices D and F, respectively.

5.1 STANDARD ADVERSARIAL TRAINING

We begin by examining the Hessian and posterior covariance structure induced by standard adversarial training (AT) (Madry et al., 2017). Figure 1 summarizes the evolution of robust loss, spectral quantities, and the key PAC-Bayesian terms throughout training. Figures 1b and 1c demonstrate the evolution dynamics of the top-20 Hessian eigenvalues $\{\lambda_i\}$ and the top-20 noise covariance

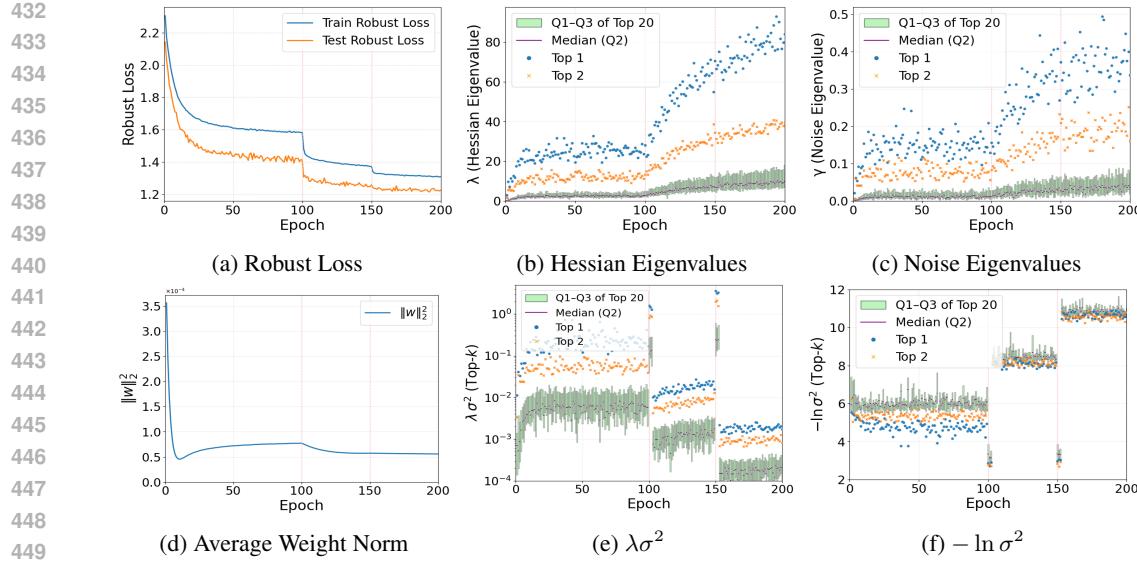


Figure 2: Learning curves of Hessian and posterior parameters under AWP on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 48.01% to 50.00%, while the test robust accuracy increases from 54.03% to 55.49%, confirming AWP’s strong robust generalization ability.

eigenvalues $\{\gamma_i\}$, respectively. We report their top-2, median, first and third quantile statistics for each training epoch. We observe that Hessian eigenvalues $\{\lambda_i\}$ increase sharply after each learning rate decay at epochs 100 and 150, leading to an increasingly heavy-tailed spectrum, whereas the noise covariance $\{\gamma_i\}$ also increases after learning rate drops, but their growth is much smaller. In addition, Figures 1e and 1f report the behavior of the two dominating factors derived in Section 4: $\{\lambda_i \sigma_i^2\}$ and $\{-\ln \sigma_i^2\}$. While $\lambda \sigma^2$ decreases after each learning rate decay, the increase in $-\ln \sigma^2$ is much larger in magnitude. Consequently, the overall robust generalization bound increases, coinciding with the onset of robust overfitting, depicted in Figure 1a. We also plot the learning curve for the average weight norm $\frac{1}{m} \|\mathbf{w}\|_2^2$ in Figure 1d, showing their stability throughout training.

It is worth noting that immediately after the learning rate drops (epochs 100–102 and 150–152), the training dynamics enter a non-stationary transient regime while the iterates remain within the same basin. In this phase, the bound is governed by Theorem 4.7 rather than the stationary form of Theorem 4.5. Consistent with this prediction, we observe that the bound exhibits a temporary downward trend before rising again. This “drop-then-rise” behavior perfectly mirrors the empirical pattern in robust test loss, which decreases briefly after each decay before increasing, thereby reinforcing our theoretical interpretation of robust overfitting.

To study the generalizability of our findings, we choose ϵ from $\{0, 2, 4, 12, 16\}/255$ with batch size 128, as well as varying the batch size from $\{64, 256\}$ with $\epsilon = 8/255$. Figures 5 to 10 summarize the results: increasing ϵ mainly affects the curvature spectrum, whereas changing the batch size primarily modulates the noise eigenvalues. Moreover, we conduct additional experiments on CIFAR-100 (Figure 11) and SVHN (Figure 12), as well as with a different architecture, WideResNet-34-10 (Figure 13). In all cases, we consistently observe robust overfitting together with the same qualitative trends: λ and γ both increase after learning rate drop, posterior covariances σ^2 shrink, and the dominating components $\lambda \sigma^2$ and $-\ln \sigma^2$ evolve in a manner that explains the emergence of overfitting.

5.2 ADVERSARIAL WEIGHT PERTURBATION

We study the dynamics of the key quantities under AWP on CIFAR-10. Figure 2 shows that AWP is highly effective: robust overfitting does not occur, and the test robust loss remains stable throughout training. Compared to standard AT, both the Hessian eigenvalues $\{\lambda_i\}$ and the noise eigenvalues aligned with Hessian directions $\{\gamma_i\}$ are substantially smaller in magnitude. In addition, they are more evenly spread across directions, with the top values showing larger separation, but all remaining concentrated at low levels. This indicates that curvature and gradient-noise variances are both suppressed, leading to posterior variances $\{\sigma_i^2\}$ that are larger than in AT. Consequently, the two dominating terms $\lambda \sigma^2$ and $-\ln \sigma^2$ are significantly reduced, yielding a smaller overall bound. We

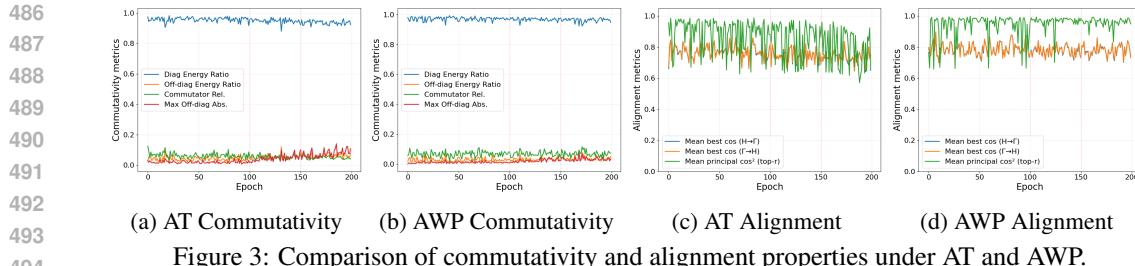


Figure 3: Comparison of commutativity and alignment properties under AT and AWP.

observe similar trends for semi-supervised adversarial training algorithms (Figure 14), resulting in consistently smaller bounds.

To facilitate a clearer comparison, we report the numerical differences between AT and AWP in terms of the derived bounds (Tables 1 and 2). Due to space limits, we provide the result tables in Appendix F. Both the aggregated quantity $\sum_i \lambda_i \sigma_i^2$ and $-\sum_i \ln \sigma_i^2$ and the growth from Top-10 to Top-20 are consistently smaller under AWP than under AT. This indicates that AWP’s bounds are substantially tighter, perfectly aligning with the empirical finding that AWP significantly outperforms AT, thereby validating our theoretical claims. Moreover, by comparing Table 1 (stationary regime) and Table 2 (initial phase of non-stationary transition), we notice that at the onset of learning rate decay, the bounds decrease for both AT and AWP. This explains why training and test robust losses drop at the beginning of decay. However, once the training re-enters the stationary regime, the bound under AT increases markedly, whereas the bound under AWP remains relatively stable. **According to Theorems 4.5 and 4.7, these spectral terms inherently track the evolution of the model’s robust generalization capability under adversarial training, explaining both the initial robustness improvement after learning-rate decay and the later robust overfitting phenomenon (Figure 1a).**

5.3 COMMUTATIVITY AND ALIGNMENT ASSUMPTIONS

We examine the commutativity and alignment assumptions underlying our theoretical analyses. Figure 3 reports our results under standard AT and AWP. Figures 3a and 3b report the metrics evaluating the degree of commutativity, including the ratio of diagonal to off-diagonal energy, the relative norm of the commutator, and the maximum absolute off-diagonal entry. These quantities remain small throughout training, indicating that Hessian and noise covariance are highly commutative. In addition, Figures 3c and 3d measure alignment using cosine similarities between the top eigenvectors. Under AT, we observe consistently strong alignment with some fluctuations, while AWP yields even higher and more stable alignment across epochs. These results confirm that both commutativity and alignment assumptions largely hold empirically, and further highlight that AWP not only suppresses curvature and noise magnitudes but also improves the structural alignment between them.

If the commutativity assumption breaks, then the two matrices cannot be simultaneously diagonalized, and the spectral quantities $\{\lambda_i, \gamma_i\}$ would no longer represent matched curvature–noise pairs. As a consequence, the posterior covariance could exhibit uncontrolled cross-terms, making the PAC-Bayesian bound less interpretable and potentially much looser. Similarly, if alignment were absent, the principal directions of stochastic gradient noise would not coincide with those of curvature. This mismatch would spread noise across directions with different curvatures, leading to inefficient exploration, less reliable stationary approximations, and weaker predictive power of our framework.

6 CONCLUSION

We developed a PAC-Bayesian framework that explicitly links the posterior distribution of model parameters to the robust generalization capabilities of adversarially trained models. Using the framework, we connect optimization dynamics and robust generalization by deriving closed-form posterior covariances for two representative training regimes and integrating them into a compact bound. Across diverse empirical configurations, we validate the usefulness of our theoretical results, highlighting the posterior geometry as a unifying principle for understanding and improving adversarially robust generalization. Promising future directions include extending our theoretical analysis to more general settings, such as adaptive learning rate optimizers or non-quadratic loss landscapes, and studying whether our insights can be leveraged to design better robust learning methods.

540 REPRODUCIBILITY STATEMENT
541

542 We have made every effort to ensure the reproducibility of our results. All of our theoretical results
543 are stated with precise assumptions in the main paper, and their proofs are detailed in Appendices A-
544 B. Experimental settings, including datasets, model architectures, training procedures, and spectral
545 estimation details, are provided in Section D. Our code and implementations are available at [this](#)
546 [anonymized url](#), which contains scripts to reproduce all the figures and tables reported in the paper.
547

548 REFERENCES
549

550 Pierre Alquier et al. User-friendly introduction to pac-bayes bounds. *Foundations and Trends® in*
551 *Machine Learning*, 17(2):174–303, 2024.

552 Gerard Ben Arous, Reza Gheissari, Jiaoyang Huang, and Aukosh Jagannath. High-dimensional SGD
553 aligns with emerging outlier eigenspaces. In *The Twelfth International Conference on Learning*
554 *Representations*, 2024. URL <https://openreview.net/forum?id=MHjigVnI04>.

555 Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: a statistical viewpoint.
556 *Acta numerica*, 30:87–201, 2021.

558 Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
559 data improves adversarial robustness. *Advances in neural information processing systems*, 32,
560 2019.

561 Olivier Catoni. A pac-bayesian approach to adaptive classification. *preprint*, 840(2):6, 2003.

563 Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
564 smoothing. In *international conference on machine learning*, pp. 1310–1320. PMLR, 2019.

566 Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of adversaries.
567 *Advances in Neural Information Processing Systems*, 31, 2018.

568 Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack: Packing more into backprop.
569 *arXiv preprint arXiv:1912.10985*, 2019.

571 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
572 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
573 *arXiv:1703.11008*, 2017.

574 Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy. On
575 the role of data in pac-bayes bounds. In *International Conference on Artificial Intelligence and*
576 *Statistics*, pp. 604–612. PMLR, 2021.

578 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
579 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

580 Shaopeng Fu and Di Wang. Theoretical analysis of robust overfitting for wide dnns: An ntk ap-
581 proach. *arXiv preprint arXiv:2310.06112*, 2023.

583 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
584 examples. *arXiv preprint arXiv:1412.6572*, 2014.

585 Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
586 Timothy A Mann. Improving robustness using generated data. *Advances in neural information*
587 *processing systems*, 34:4218–4233, 2021.

588 Peter Grunwald, Thomas Steinke, and Lydia Zakynthinou. Pac-bayes, mac-bayes and conditional
589 mutual information: Fast rate bounds that handle general vc classes. In *Conference on Learning*
590 *Theory*, pp. 2217–2247. PMLR, 2021.

592 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
593 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
594 770–778, 2016.

594 Stanislaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
 595 Storkey. On the relation between the sharpest directions of dnn loss and the sgd step length. *arXiv*
 596 *preprint arXiv:1807.05031*, 2018.

597 Gaojie Jin, Xinpeng Yi, Wei Huang, Sven Schewe, and Xiaowei Huang. Enhancing adversarial
 598 training with second-order statistics of weights. In *Proceedings of the IEEE/CVF conference on*
 599 *computer vision and pattern recognition*, pp. 15273–15283, 2022.

600 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 601 *Master’s thesis, Department of Computer Science, University of Toronto*, 2009.

602 Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the impact
 603 of hard adversarial instances on overfitting in adversarial training. *Journal of Machine Learning*
 604 *Research*, 25(356):1–46, 2024.

605 Kangqiao Liu, Liu Ziyin, and Masahito Ueda. Noise and fluctuation of finite learning rate stochastic
 606 gradient descent. In *International Conference on Machine Learning*, pp. 7045–7056. PMLR,
 607 2021.

608 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 609 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
 610 2017.

611 Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as approximate
 612 bayesian inference. *Journal of Machine Learning Research*, 18(134):1–35, 2017.

613 Sokhna Diarra Mbacke, Florence Clerc, and Pascal Germain. Pac-bayesian generalization bounds
 614 for adversarial generative models. In *International Conference on Machine Learning*, pp. 24271–
 615 24290. PMLR, 2023.

616 David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual confer-
 617 ence on Computational learning theory*, pp. 164–170, 1999.

618 Waleed Mustafa, Philipp Liznerski, Dennis Wagner, Puyu Wang, and M. Kloft. Non-vacuous
 619 pac-bayes bounds for models under adversarial corruptions. 2023. URL <https://api.semanticscholar.org/CorpusID:259327445>.

620 Waleed Mustafa, Philipp Liznerski, Antoine Ledent, Dennis Wagner, Puyu Wang, and Marius Kloft.
 621 Non-vacuous generalization bounds for adversarial risk in stochastic neural networks. In *Interna-
 622 tional conference on artificial intelligence and statistics*, pp. 4528–4536. PMLR, 2024.

623 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 624 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep
 625 learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.

626 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
 627 spectrally-normalized margin bounds for neural networks. *arXiv preprint arXiv:1707.09564*,
 628 2017.

629 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a
 630 defense to adversarial perturbations against deep neural networks. In *2016 IEEE symposium on
 631 security and privacy (SP)*, pp. 582–597. IEEE, 2016.

632 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
 633 *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

634 Anshuman Suri, Xiao Zhang, and David Evans. Do parameters reveal more than loss for membership
 635 inference? *arXiv preprint arXiv:2406.11544*, 2024.

636 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 637 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

638 Runzhi Tian and Yongyi Mao. Algorithmic stability based generalization bounds for adversarial
 639 training. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 640 <https://openreview.net/forum?id=2GwMaz19ND>.

648 Paul Viallard, Eric Guillaume VIDOT, Amaury Habrard, and Emilie Morvant. A pac-bayes analysis
 649 of adversarial robustness. *Advances in Neural Information Processing Systems*, 34:14421–14433,
 650 2021.

651 Zifan Wang, Nan Ding, Tomer Levinboim, Xi Chen, and Radu Soricut. Improving robust general-
 652 ization by direct pac-bayesian bound minimization. In *Proceedings of the IEEE/CVF Conference*
 653 *on Computer Vision and Pattern Recognition*, pp. 16458–16468, 2023.

654 Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
 655 adversarial polytope. In *International conference on machine learning*, pp. 5286–5295. PMLR,
 656 2018.

657 Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
 658 alization. *Advances in neural information processing systems*, 33:2958–2969, 2020.

659 Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
 660 descent. In *International Conference on Machine Learning*, pp. 37656–37684. PMLR, 2023.

661 Jiancong Xiao, Yanbo Fan, Ruoyu Sun, Jue Wang, and Zhi-Quan Luo. Stability analysis and gen-
 662 eralization bounds of adversarial training. *Advances in Neural Information Processing Systems*,
 663 35:15446–15459, 2022.

664 Jiancong Xiao, Ruoyu Sun, and Zhi-Quan Luo. Pac-bayesian spectrally-normalized bounds for
 665 adversarially robust generalization. *Advances in Neural Information Processing Systems*, 36:
 666 36305–36323, 2023.

667 Yue Xing, Qifan Song, and Guang Cheng. On the algorithmic stability of adversarial training.
 668 *Advances in neural information processing systems*, 34:26523–26535, 2021.

669 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 670 through the lens of the hessian. In *2020 IEEE international conference on big data (Big data)*,
 671 pp. 581–590. IEEE, 2020.

672 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 673 *arXiv:1605.07146*, 2016.

674 Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
 675 Theoretically principled trade-off between robustness and accuracy. In *International conference*
 676 *on machine learning*, pp. 7472–7482. PMLR, 2019.

677 Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise in sgd.
 678 *arXiv preprint arXiv:2102.05375*, 2021.

679 Liu Ziyin, Mingze Wang, Hongchao Li, and Lei Wu. Parameter symmetry and noise equilibrium
 680 of stochastic gradient descent. *Advances in Neural Information Processing Systems*, 37:93874–
 681 93906, 2024.

682 Liu Ziyin, Isaac L. Chuang, Tomer Galanti, and Tomaso A Poggio. Formation of representations in
 683 neural networks. In *The Thirteenth International Conference on Learning Representations*, 2025.
 684 URL <https://openreview.net/forum?id=Njx1NjH1x4>.

685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A PROOFS OF MAIN THEORETICAL RESULTS IN SECTION 3**
 703

704 **A.1 PROOF OF LEMMA 3.2**
 705

706 To prove Lemma 3.2, we first state a general PAC-Bayes inequality, also known as Catoni's
 707 bound (Catoni, 2003).

708 **Lemma A.1** (PAC-Bayes Bound (Catoni's bound)). *Let $\alpha \in (0, 1)$, $\beta > 0$, and \mathcal{D} be any distribution
 709 over $\mathcal{X} \times \mathcal{Y}$. Let \mathcal{W} be a parameter space and \mathcal{P} be a data-independent prior on \mathcal{W} . Consider
 710 any measurable loss $\ell : \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \rightarrow [0, C]$ bounded by $C > 0$. Given an i.i.d. sample set
 711 $\mathcal{S} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{|\mathcal{S}|}$ drawn from \mathcal{D} , for any posterior \mathcal{Q} on \mathcal{W} , with probability at least $1 - \alpha$ over
 712 the draw of \mathcal{S} ,*

$$714 \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\ell(\mathbf{w}; \mathbf{x}, y)] \leq \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell(\mathbf{w}; \mathbf{x}, y) \right] + \frac{\beta C^2}{8|\mathcal{S}|} + \frac{\text{KL}(\mathcal{Q} \parallel \mathcal{P}) + \ln \frac{1}{\alpha}}{\beta}.$$

717 **Proof of Lemma 3.2.** We instantiate Lemma A.1 with the adversarial loss
 718

$$719 \tilde{\ell}(\mathbf{w}; \mathbf{x}, y) := \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) = \max_{\boldsymbol{\delta} \in B_\varepsilon(0)} \ell(\mathbf{w}; \mathbf{x} + \boldsymbol{\delta}, y),$$

721 where the base loss ℓ is bounded by C and the perturbation set $B_\varepsilon(0)$ is fixed. Since $\ell \in [0, C]$, the
 722 maximization preserves boundedness, so $\tilde{\ell} \in [0, C]$. Measurability follows directly from that of ℓ
 723 and the continuity of $(\mathbf{x}, \boldsymbol{\delta}) \mapsto \ell(\mathbf{w}; \mathbf{x} + \boldsymbol{\delta}, y)$.

724 Applying Lemma A.1 to $\tilde{\ell}$ yields
 725

$$726 \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}} [\ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y)] \leq \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) \right] + \frac{\beta C^2}{8|\mathcal{S}|} + \frac{\text{KL}(\mathcal{Q} \parallel \mathcal{P}) + \ln \frac{1}{\alpha}}{\beta}.$$

729 The left-hand side is exactly $\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\mathcal{R}_{\text{adv}}(\mathbf{w})]$, and the empirical term is
 730 $\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) \right]$. Rearranging the remaining terms gives inequality equation 2, which completes the proof. \square
 732

733 **A.2 PROOF OF LEMMA 3.4**
 734

735 **Proof of Lemma 3.4.** By definition,
 736

$$737 \text{KL}(\mathcal{Q} \parallel \mathcal{P}) = \int q(\mathbf{w}) \ln \frac{q(\mathbf{w})}{p(\mathbf{w})} d\mathbf{w} = \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\ln q(\mathbf{w}) - \ln p(\mathbf{w})].$$

740 The density functions of \mathcal{P} and \mathcal{Q} are
 741

$$742 p(\mathbf{w}) = \frac{1}{(2\pi)^{m/2} \sigma_{\mathcal{P}}^m} \exp \left(-\frac{1}{2\sigma_{\mathcal{P}}^2} \mathbf{w}^\top \mathbf{w} \right),$$

$$745 q(\mathbf{w}) = \frac{1}{(2\pi)^{m/2} \det(\boldsymbol{\Sigma}_{\mathcal{Q}})^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})^\top \boldsymbol{\Sigma}_{\mathcal{Q}}^{-1} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}) \right).$$

747 Taking logs, we obtain
 748

$$749 \ln p(\mathbf{w}) = -\frac{m}{2} \ln(2\pi) - m \ln \sigma_{\mathcal{P}} - \frac{1}{2\sigma_{\mathcal{P}}^2} \mathbf{w}^\top \mathbf{w},$$

$$751 \ln q(\mathbf{w}) = -\frac{m}{2} \ln(2\pi) - \frac{1}{2} \ln \det(\boldsymbol{\Sigma}_{\mathcal{Q}}) - \frac{1}{2} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})^\top \boldsymbol{\Sigma}_{\mathcal{Q}}^{-1} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}).$$

752 Hence,
 753

$$754 \text{KL}(\mathcal{Q} \parallel \mathcal{P}) = \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[-\frac{1}{2} \ln \det(\boldsymbol{\Sigma}_{\mathcal{Q}}) - \frac{1}{2} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})^\top \boldsymbol{\Sigma}_{\mathcal{Q}}^{-1} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}) + m \ln \sigma_{\mathcal{P}} + \frac{1}{2\sigma_{\mathcal{P}}^2} \mathbf{w}^\top \mathbf{w} \right].$$

756 Since $\mathbf{w} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathcal{Q}}, \boldsymbol{\Sigma}_{\mathcal{Q}})$, the following standard identities hold.

757 First, by the definition of covariance,

$$759 \quad 760 \quad \mathbb{E}_{\mathcal{Q}}[(\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})(\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})^{\top}] = \boldsymbol{\Sigma}_{\mathcal{Q}}.$$

761 Multiplying both sides by $\boldsymbol{\Sigma}_{\mathcal{Q}}^{-1}$ and taking the trace yields

$$763 \quad \mathbb{E}_{\mathcal{Q}}[(\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})^{\top} \boldsymbol{\Sigma}_{\mathcal{Q}}^{-1} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}})] = \text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}}^{-1} \boldsymbol{\Sigma}_{\mathcal{Q}}) = m,$$

764 since $\text{Tr}(\mathbf{I}_m) = m$.

765 Second, expanding $\mathbf{w}^{\top} \mathbf{w}$ around its mean gives

$$767 \quad \mathbf{w}^{\top} \mathbf{w} = (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}} + \boldsymbol{\mu}_{\mathcal{Q}})^{\top} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}} + \boldsymbol{\mu}_{\mathcal{Q}}) = \|\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}\|_2^2 + 2 \boldsymbol{\mu}_{\mathcal{Q}}^{\top} (\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}) + \|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2.$$

769 Taking expectations, the cross term vanishes (since $\mathbb{E}[\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}] = 0$), so

$$770 \quad 771 \quad \mathbb{E}_{\mathcal{Q}}[\mathbf{w}^{\top} \mathbf{w}] = \mathbb{E}_{\mathcal{Q}}[\|\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}\|_2^2] + \|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2.$$

772 By definition of covariance,

$$773 \quad \mathbb{E}_{\mathcal{Q}}[\|\mathbf{w} - \boldsymbol{\mu}_{\mathcal{Q}}\|_2^2] = \text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}}).$$

774 Thus,

$$775 \quad \mathbb{E}_{\mathcal{Q}}[\mathbf{w}^{\top} \mathbf{w}] = \text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}}) + \|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2,$$

776 where $\|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2$ denotes the squared Euclidean norm of the posterior mean vector.

777 Plugging these into the expression above gives

$$779 \quad 780 \quad \text{KL}(\mathcal{Q} \parallel \mathcal{P}) = -\frac{1}{2} \ln \det(\boldsymbol{\Sigma}_{\mathcal{Q}}) - \frac{1}{2} m + m \ln \sigma_{\mathcal{P}} + \frac{1}{2\sigma_{\mathcal{P}}^2} (\text{Tr}(\boldsymbol{\Sigma}_{\mathcal{Q}}) + \|\boldsymbol{\mu}_{\mathcal{Q}}\|_2^2),$$

781 which is equivalent to the stated form in Lemma 3.4. \square

783 A.3 PROOF OF LEMMA 3.6

785 **Proof of Lemma 3.6.** Under Assumption 3.5, the empirical adversarial risk admits a quadratic form
786 around the empirical minimizer \mathbf{w}^* with Hessian $\mathbf{H}^* \succeq \mathbf{0}$:

$$787 \quad 788 \quad \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S}) = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^{\top} \mathbf{H}^* (\mathbf{w} - \mathbf{w}^*), \quad (19)$$

789 where the linear term vanishes because $\nabla_{\mathbf{w}} \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) = \mathbf{0}$.

791 Taking expectation over $\mathbf{w} \sim \mathcal{Q} = \mathcal{N}(\boldsymbol{\mu}_{\mathcal{Q}}, \boldsymbol{\Sigma}_{\mathcal{Q}})$ and using equation 19 gives

$$792 \quad 793 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2} \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[(\mathbf{w} - \mathbf{w}^*)^{\top} \mathbf{H}^* (\mathbf{w} - \mathbf{w}^*)].$$

794 Write the second term using the second-moment identity

$$796 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[(\mathbf{w} - \mathbf{w}^*)(\mathbf{w} - \mathbf{w}^*)^{\top}] = \boldsymbol{\Sigma}_{\mathcal{Q}} + (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^{\top},$$

797 which holds for any Gaussian (and more generally any distribution with mean $\boldsymbol{\mu}_{\mathcal{Q}}$ and covariance
798 $\boldsymbol{\Sigma}_{\mathcal{Q}}$). Hence,

$$800 \quad 801 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[(\mathbf{w} - \mathbf{w}^*)^{\top} \mathbf{H}^* (\mathbf{w} - \mathbf{w}^*)] = \text{Tr}(\mathbf{H}^* \mathbb{E}[(\mathbf{w} - \mathbf{w}^*)(\mathbf{w} - \mathbf{w}^*)^{\top}]) \\ 802 \quad = \text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}}) + \text{Tr}(\mathbf{H}^* (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^{\top}) \\ 803 \quad = \text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}}) + (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^{\top} \mathbf{H}^* (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*),$$

804 where we used identity $\text{Tr}(\mathbf{A} \mathbf{u} \mathbf{u}^{\top}) = \mathbf{u}^{\top} \mathbf{A} \mathbf{u}$.

805 Combining the above displays yields

$$807 \quad 808 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{1}{2} (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*)^{\top} \mathbf{H}^* (\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}^* \boldsymbol{\Sigma}_{\mathcal{Q}}),$$

809 which is exactly equation 5. \square

810 A.4 PROOF OF COROLLARY 3.8
811812 **Proof of Corollary 3.8.** We start with the most general PAC-Bayesian bound in Lemma 3.2, since
813 it holds for any posterior distribution \mathcal{Q} . For any $\beta > 0$ and any $\alpha \in (0, 1)$, with probability at least
814 1 – α over the finite sample set \mathcal{S} , we have

815
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} \left[\frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x}, y) \in \mathcal{S}} \ell_{\text{adv}}(\mathbf{w}, \mathbf{x}, y) \right] + \frac{1}{\beta} \text{KL}(\mathcal{Q} \parallel \mathcal{P}) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha. \quad (20)$$

816
817

818 We now instantiate this bound by choosing the posterior to be a mixture of Gaussian distributions
819 specified in Equation 7 and the prior $\mathcal{P} = \mathcal{N}(0, \sigma_{\mathcal{P}}^2 \mathbf{I})$.820 **Step 1: Decomposition of the empirical adversarial loss.** By the definition of expectations under
821 mixture distributions, for any measurable function $f : \mathcal{W} \rightarrow \mathbb{R}$,

822
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[f(\mathbf{w})] = \sum_{\ell=1}^L \pi_{\ell} \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}_{\ell}}[f(\mathbf{w})]. \quad (21)$$

823
824

825 Applying Equation 21 to $f(\mathbf{w}) = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$ gives

826
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \sum_{\ell=1}^L \pi_{\ell} \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}_{\ell}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})]. \quad (22)$$

827
828

829 For each Gaussian component \mathcal{Q}_{ℓ} , note that we assume $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$ can be locally approximated
830 around the basin-specific critical point \mathbf{w}_{ℓ}^* by a quadratic form with Hessian \mathbf{H}_{ℓ}^* . Thus, applying
831 Lemma 3.6 applies to each component, we obtain

832
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}_{\ell}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}_{\ell}^*, \mathcal{S}) + \frac{1}{2}(\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*)^{\top} \mathbf{H}_{\ell}^* (\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}_{\ell}^* \mathbf{\Sigma}_{\ell}). \quad (23)$$

833
834

835 Substituting Equation 23 into Equation 22 yields the mixture-expanded empirical loss:

836
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \sum_{\ell=1}^L \pi_{\ell} \left[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}_{\ell}^*, \mathcal{S}) + \frac{1}{2}(\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*)^{\top} \mathbf{H}_{\ell}^* (\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}_{\ell}^* \mathbf{\Sigma}_{\ell}) \right]. \quad (24)$$

837
838
839

840 **Step 2: KL divergence upper bound for the mixture posterior.** Since KL divergence is convex
841 in its first argument, the mixture posterior $\mathcal{Q} = \sum_{\ell=1}^L \pi_{\ell} \mathcal{Q}_{\ell}$ satisfies

842
$$\text{KL}(\mathcal{Q} \parallel \mathcal{P}) = \text{KL} \left(\sum_{\ell=1}^L \pi_{\ell} \mathcal{Q}_{\ell} \parallel \mathcal{P} \right) \leq \sum_{\ell=1}^L \pi_{\ell} \text{KL}(\mathcal{Q}_{\ell} \parallel \mathcal{P}), \quad (25)$$

843
844

845 where the inequality follows from the definition KL divergence and the log sum inequality. For each
846 $\mathcal{Q}_{\ell} = \mathcal{N}(\mathbf{\mu}_{\ell}, \mathbf{\Sigma}_{\ell})$, Lemma 3.4 provides the closed-form expression:

847
$$\text{KL}(\mathcal{Q}_{\ell} \parallel \mathcal{P}) = \frac{\text{Tr}(\mathbf{\Sigma}_{\ell})}{2\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{\mu}_{\ell}\|_2^2}{2\sigma_{\mathcal{P}}^2} - \frac{m}{2} + \frac{m}{2} \ln \sigma_{\mathcal{P}}^2 - \frac{1}{2} \ln \det \mathbf{\Sigma}_{\ell}. \quad (26)$$

848
849

850 Multiplying Equation 25 by $1/\beta$ and substituting Equation 26 yields

851
$$\frac{1}{\beta} \text{KL}(\mathcal{Q} \parallel \mathcal{P}) \leq \sum_{\ell=1}^L \frac{\pi_{\ell}}{2\beta} \left(\frac{\text{Tr}(\mathbf{\Sigma}_{\ell})}{\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{\mu}_{\ell}\|_2^2}{\sigma_{\mathcal{P}}^2} - m + m \ln \sigma_{\mathcal{P}}^2 - \ln \det \mathbf{\Sigma}_{\ell} \right). \quad (27)$$

852
853
854

855 Finally, we substitute the empirical-loss expansion (Equation 24) and the KL bound (Equation 27)
856 into Equation 20. Noticing that the remaining terms $\frac{\beta C^2}{8|\mathcal{S}|}$ and $-\frac{1}{\beta} \ln \alpha$ do not depend on ℓ , we obtain
857

858
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}}[\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \sum_{\ell=1}^L \pi_{\ell} \left[\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}_{\ell}^*, \mathcal{S}) + \frac{1}{2}(\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*)^{\top} \mathbf{H}_{\ell}^* (\mathbf{\mu}_{\ell} - \mathbf{w}_{\ell}^*) + \frac{1}{2} \text{Tr}(\mathbf{H}_{\ell}^* \mathbf{\Sigma}_{\ell}) \right]$$

859
860
$$+ \sum_{\ell=1}^L \frac{\pi_{\ell}}{2\beta} \left(\frac{\text{Tr}(\mathbf{\Sigma}_{\ell})}{\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{\mu}_{\ell}\|_2^2}{\sigma_{\mathcal{P}}^2} - m + m \ln \sigma_{\mathcal{P}}^2 - \ln \det \mathbf{\Sigma}_{\ell} \right) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha.$$

861
862
863

864 This expression matches exactly the bound asserted in Corollary 3.8, completing the proof. \square

864 **B PROOFS OF MAIN THEORETICAL RESULTS IN SECTION 4**
865

866 **B.1 PROOF OF LEMMA 4.1**
867

868 **Proof of Lemma 4.1.** *State-space form.* From the updates in equation 9,
869

870
$$\begin{aligned} \mathbf{h}_t &= \mu \mathbf{h}_{t-1} + \mathbf{H}^*(\mathbf{w}_{t-1} - \mathbf{w}^*) + \boldsymbol{\xi}_{t-1}, \\ \mathbf{w}_t - \mathbf{w}^* &= (\mathbf{w}_{t-1} - \mathbf{w}^*) - \eta \mathbf{h}_t \\ &= (\mathbf{I} - \eta \mathbf{H}^*)(\mathbf{w}_{t-1} - \mathbf{w}^*) - \eta \mu \mathbf{h}_{t-1} - \eta \boldsymbol{\xi}_{t-1}. \end{aligned}$$
871
872
873

874 Stacking the two lines with the joint state $\mathbf{u}_t := \begin{bmatrix} \mathbf{w}_t - \mathbf{w}^* \\ \mathbf{h}_t \end{bmatrix} \in \mathbb{R}^{2m}$, we obtain the linear time-
875 varying system
876

877
$$\mathbf{u}_t = \mathbf{A} \mathbf{u}_{t-1} + \mathbf{G} \boldsymbol{\xi}_{t-1}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{I} - \eta \mathbf{H}^* & -\eta \mu \mathbf{I} \\ \mathbf{H}^* & \mu \mathbf{I} \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} -\eta \mathbf{I} \\ \mathbf{I} \end{bmatrix},$$
878
879

880 which is exactly equation 10.
881

882 *Unrolling the trajectory.* We claim that for every $k \geq 1$,
883

884
$$\mathbf{u}_{t+k} = \mathbf{A}^k \mathbf{u}_t + \sum_{j=0}^{k-1} \mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t+k-1-j}. \quad (28)$$
885
886

887 For $k = 1$ this is just the one-step recursion. Assume equation 28 holds for some k ; multiply by \mathbf{A}
888 and add $\mathbf{G} \boldsymbol{\xi}_{t+k}$ to get
889

890
$$\mathbf{u}_{t+k+1} = \mathbf{A}^{k+1} \mathbf{u}_t + \sum_{j=0}^{k-1} \mathbf{A}^{j+1} \mathbf{G} \boldsymbol{\xi}_{t+k-1-j} + \mathbf{G} \boldsymbol{\xi}_{t+k} = \mathbf{A}^{k+1} \mathbf{u}_t + \sum_{j=0}^k \mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t+k-j},$$
891
892

893 i.e., equation 28 with $k \leftarrow k + 1$.
894

895 *Joint covariance.* Let $\mathbf{S}_t := \text{Cov}(\mathbf{u}_t) = \mathbb{E}[(\mathbf{u}_t - \mathbb{E}\mathbf{u}_t)(\mathbf{u}_t - \mathbb{E}\mathbf{u}_t)^\top]$. Using equation 28, bilinearity
896 of covariance, and $\text{Cov}(MX, NY) = M \text{Cov}(X, Y) N^\top$ for deterministic M, N , we have
897

898
$$\begin{aligned} \mathbf{S}_{t+k} &= \text{Cov}(\mathbf{A}^k \mathbf{u}_t) + \sum_{j=0}^{k-1} \text{Cov}(\mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t+k-1-j}) + 2 \text{Cov}\left(\mathbf{A}^k \mathbf{u}_t, \sum_{j=0}^{k-1} \mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t+k-1-j}\right) \\ &\quad + \sum_{0 \leq j \neq \ell \leq k-1} \text{Cov}(\mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t+k-1-j}, \mathbf{A}^\ell \mathbf{G} \boldsymbol{\xi}_{t+k-1-\ell}). \end{aligned}$$
899
900

901 Assume the mini-batch noises $\{\boldsymbol{\xi}_t\}_{t \geq 0}$ are zero-mean with finite second moments, $\mathbf{C}_t := \text{Cov}(\boldsymbol{\xi}_t) \in$
902 $\mathbb{R}^{m \times m}$, independent across time, and for each t , $\boldsymbol{\xi}_t$ is independent of the past σ -algebra $\mathcal{F}_t :=$
903 $\sigma(\mathbf{u}_0, \boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_{t-1})$. Then $\text{Cov}(\mathbf{u}_t, \boldsymbol{\xi}_{t+r}) = \mathbf{0}$ for all $r \geq 0$, which nullifies the cross term. For
904 $j \neq \ell$, independence implies $\text{Cov}(\boldsymbol{\xi}_{t+k-1-j}, \boldsymbol{\xi}_{t+k-1-\ell}) = \mathbf{0}$, killing the double sum. Hence
905
906

907
$$\mathbf{S}_{t+k} = \mathbf{A}^k \mathbf{S}_t (\mathbf{A}^k)^\top + \sum_{j=0}^{k-1} \mathbf{A}^j \mathbf{G} \mathbf{C}_{t+k-1-j} \mathbf{G}^\top (\mathbf{A}^j)^\top. \quad (29)$$
908

909 *Parameter covariance via projection.* Let $\mathbf{\Pi} := [\mathbf{I} \ \mathbf{0}] \in \mathbb{R}^{m \times 2m}$ denote the projection onto the
910 parameter component, so that $\mathbf{w}_{t+k} - \mathbf{w}^* = \mathbf{\Pi} \mathbf{u}_{t+k}$. By linearity of covariance under deterministic
911 transforms,
912

913
$$\boldsymbol{\Sigma}_{t+k} = \text{Cov}(\mathbf{w}_{t+k} - \mathbf{w}^*) = \text{Cov}(\mathbf{\Pi} \mathbf{u}_{t+k}) = \mathbf{\Pi} \mathbf{S}_{t+k} \mathbf{\Pi}^\top.$$
914
915

916 Substituting equation 29 and distributing $\mathbf{\Pi}$ across each term gives
917

918
$$\boldsymbol{\Sigma}_{t+k} = \mathbf{\Pi} \mathbf{A}^k \mathbf{S}_t (\mathbf{A}^k)^\top \mathbf{\Pi}^\top + \sum_{j=0}^{k-1} (\mathbf{\Pi} \mathbf{A}^j \mathbf{G}) \mathbf{C}_{t+k-1-j} (\mathbf{\Pi} \mathbf{A}^j \mathbf{G})^\top,$$
919
920

921 which is exactly equation 11. \square
922

918 B.2 PROOFS OF LEMMAS IN SUBSECTION 4.1
919920 **Proof of Lemma 4.2.** According to Equation 4 and the posterior Gaussian distribution, we have
921

922
$$\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\nabla_{\mathbf{w}} \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\mathbf{H}^*(\mathbf{w} - \mathbf{w}^*)] = \mathbf{H}^*(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*). \quad (30)$$

923

924 Note that we assume the posterior \mathcal{Q} is stationary and is obtained via performing SGD algorithms
925 on $\hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})$. This immediately implies that the expected adversarial loss gradient has to be a
926 zero vector, namely $\mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\nabla_{\mathbf{w}} \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}, \mathcal{S})] = \mathbf{0}$; otherwise, running another step of SGD will
927 break the stationary assumption. Based on Equation 30, we have $\mathbf{H}^*(\boldsymbol{\mu}_{\mathcal{Q}} - \mathbf{w}^*) = \mathbf{0}$. Since \mathbf{H}^*
928 is the Hessian of a local optimum, it is therefore a positive definite matrix, which further implies
929 $\boldsymbol{\mu}_{\mathcal{Q}} = \mathbf{w}^*$. \square
930931 **Proof of Lemma 4.3.** *Joint Lyapunov equation and projection.* From Lemma 4.1, the stacked state
932

933
$$\mathbf{u}_t = \begin{bmatrix} \mathbf{w}_t - \mathbf{w}^* \\ \mathbf{h}_t \end{bmatrix} \in \mathbb{R}^{2m}$$
 obeys the linear recursion
934

935
$$\mathbf{u}_t = \mathbf{A} \mathbf{u}_{t-1} + \mathbf{G} \boldsymbol{\xi}_{t-1}, \quad \mathbf{A} = \begin{bmatrix} \mathbf{I} - \eta \mathbf{H}^* & -\eta \mu \mathbf{I} \\ \mathbf{H}^* & \mu \mathbf{I} \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} -\eta \mathbf{I} \\ \mathbf{I} \end{bmatrix},$$

936

937 with zero-mean, temporally independent noise $\{\boldsymbol{\xi}_t\}$ of covariance $\mathbf{C}_t = \text{Cov}(\boldsymbol{\xi}_t)$. Iterating yields
938 $\mathbf{u}_t = \mathbf{A}^t \mathbf{u}_0 + \sum_{j=0}^{t-1} \mathbf{A}^j \mathbf{G} \boldsymbol{\xi}_{t-1-j}$. Taking covariances, using independence across time and inde-
939

940
$$\boldsymbol{\Sigma}_t^{\text{joint}} = \mathbf{A}^t \boldsymbol{\Sigma}_0^{\text{joint}} (\mathbf{A}^t)^\top + \sum_{j=0}^{t-1} \mathbf{A}^j \mathbf{G} \mathbf{C}_{t-1-j} \mathbf{G}^\top (\mathbf{A}^j)^\top.$$

941

942 Assuming the limits $\boldsymbol{\Sigma}_{\text{joint}} = \lim_{t \rightarrow \infty} \boldsymbol{\Sigma}_t^{\text{joint}}$ and $\mathbf{C} = \lim_{t \rightarrow \infty} \mathbf{C}_t$ exist and are finite, and the sys-
943 tem is mean-square stable (e.g., $\rho(\mathbf{A}) < 1$), we obtain the unique solution of the discrete Lyapunov
944 equation
945

946
$$\boldsymbol{\Sigma}_{\text{joint}} = \mathbf{A} \boldsymbol{\Sigma}_{\text{joint}} \mathbf{A}^\top + \mathbf{G} \mathbf{C} \mathbf{G}^\top.$$

947

948 Let $\mathbf{\Pi} = [\mathbf{I} \ \mathbf{0}] \in \mathbb{R}^{m \times 2m}$ be the projection onto the parameter component; then $\boldsymbol{\Sigma} = \text{Cov}(\mathbf{w}_t) =$
949 $\mathbf{\Pi} \boldsymbol{\Sigma}_{\text{joint}} \mathbf{\Pi}^\top$, which proves equation 12.950 *Closed form under commutativity.* Assume \mathbf{H}^* and \mathbf{C} are real symmetric and commute. Then
951 there exists an orthogonal \mathbf{U} such that $\mathbf{H}^* = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top$, $\mathbf{C} = \mathbf{U} \boldsymbol{\Gamma} \mathbf{U}^\top$ with $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_m)$
952 and $\boldsymbol{\Gamma} = \text{diag}(\gamma_1, \dots, \gamma_m)$. Define the block-orthogonal transform $\mathbf{T} := \text{diag}(\mathbf{U}, \mathbf{U})$ and rotated
953 state/noise $\mathbf{z}_t := \mathbf{T}^\top \mathbf{u}_t$, $\boldsymbol{\zeta}_t := \mathbf{U}^\top \boldsymbol{\xi}_t$. In this eigenbasis the dynamics decouple:

954
$$\mathbf{z}_t = \tilde{\mathbf{A}} \mathbf{z}_{t-1} + \tilde{\mathbf{G}} \boldsymbol{\zeta}_{t-1}, \quad \tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{I} - \eta \boldsymbol{\Lambda} & -\eta \mu \mathbf{I} \\ \boldsymbol{\Lambda} & \mu \mathbf{I} \end{bmatrix}, \quad \tilde{\mathbf{G}} = \begin{bmatrix} -\eta \mathbf{I} \\ \mathbf{I} \end{bmatrix}, \quad \text{Cov}(\boldsymbol{\zeta}_t) = \boldsymbol{\Gamma}.$$

955

956 Hence each eigendirection i follows a 2×2 ‘heavy-ball’ system with curvature $\lambda = \lambda_i$ and noise
957 variance $\gamma = \gamma_i$:

958
$$\mathbf{A}(\lambda) = \begin{bmatrix} 1 - \eta \lambda & -\eta \mu \\ \lambda & \mu \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} -\eta \\ 1 \end{bmatrix}, \quad \mathbf{Q}(\gamma) = \mathbf{G} \gamma \mathbf{G}^\top = \begin{bmatrix} \gamma \eta^2 & -\gamma \eta \\ -\gamma \eta & \gamma \end{bmatrix}.$$

959

960 Let $\mathbf{S} = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$ be the stationary joint covariance in this mode, solving $\mathbf{S} = \mathbf{A}(\lambda) \mathbf{S} \mathbf{A}(\lambda)^\top +$
961 $\mathbf{Q}(\gamma)$. Solving the resulting linear system in x, y, z (unique under stability) gives the parameter
962 variance
963

964
$$x = \frac{\gamma \eta (1 + \mu)}{\lambda (1 - \mu) (2(1 + \mu) - \eta \lambda)}.$$

965

966 Therefore, in the eigenbasis the stationary parameter covariance is diagonal with entries
967

968
$$\frac{\eta}{1 - \mu} \cdot \frac{\gamma_i}{\lambda_i (2 - \frac{\eta}{1 + \mu} \lambda_i)} = \left(\lambda_i (2 - \frac{\eta}{1 + \mu} \lambda_i) \right)^{-1} \frac{\eta}{1 - \mu} \gamma_i,$$

969

972 and conjugating back by \mathbf{U} yields
 973

$$974 \quad \Sigma = \left[\mathbf{H}^* \left(2\mathbf{I} - \frac{\eta}{1+\mu} \mathbf{H}^* \right) \right]^{-1} \frac{\eta}{1-\mu} \mathbf{C},$$

$$975$$

$$976$$

977 which is exactly equation 13.

978 *Stability condition.* For the scalar mode, the characteristic polynomial of $\mathbf{A}(\lambda)$ is $t^2 - (1 - \eta\lambda + \mu)t + \mu$. All roots lie in the open unit disk iff $|\mu| < 1$ and $0 < \eta\lambda < 2(1 + \mu)$ (e.g., Jury criterion).
 979 Since $\mu \in [0, 1)$, this equivalently requires $0 < \frac{\eta}{1+\mu}\lambda_i < 2$ for every i . Under this condition, the
 980 stationary covariance exists and is finite. \square
 981

983 B.3 FORMAL STATEMENT & DETAILED DERIVATIONS OF THEOREM 4.7 984

985 We first present a formal version of the PAC-Bayes bound after a learning-rate change, and from
 986 this we derive the informal approximation in Theorem 4.7. The full proof of this formal statement
 987 is deferred to Appendix C, while here we focus on how it leads to the informal result.

988 **Theorem B.1** (Robust Generalization after Learning Rate Decay, Formal). *Assume that \mathbf{H}^* and \mathbf{C}
 989 are real symmetric matrices which commute, and hence are simultaneously diagonalizable by an
 990 orthogonal matrix. In particular, there exists \mathbf{U} such that*

$$991 \quad \mathbf{H}^* = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\top, \quad \mathbf{C} = \mathbf{U} \boldsymbol{\Gamma} \mathbf{U}^\top,$$

$$992$$

993 with $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_m)$ and $\boldsymbol{\Gamma} = \text{diag}(\gamma_1, \dots, \gamma_m)$. Suppose the post-switch noise is time-
 994 invariant. Let $\sigma_i^2(t+k)$ denote the modal variances given explicitly by
 995

$$996 \quad \sigma_i^2(t+k) = p_{i,k}^2 x_i^{(1)} + 2 p_{i,k} q_{i,k} y_i^{(1)} + q_{i,k}^2 z_i^{(1)} \\ 997 \quad + \frac{\eta_2^2 \gamma_i}{(r_{i,+}^{(2)} - r_{i,-}^{(2)})^2} \left[\frac{(r_{i,+}^{(2)})^2 (1 - (r_{i,+}^{(2)})^{2k})}{1 - (r_{i,+}^{(2)})^2} + \frac{(r_{i,-}^{(2)})^2 (1 - (r_{i,-}^{(2)})^{2k})}{1 - (r_{i,-}^{(2)})^2} - \frac{2\mu(1-\mu^k)}{1-\mu} \right],$$

$$998$$

$$999$$

$$1000$$

1001 where

$$1002 \quad r_{i,\pm}^{(2)} = \frac{1 - \eta_2 \lambda_i + \mu \pm \sqrt{(1 - \eta_2 \lambda_i + \mu)^2 - 4\mu}}{2},$$

$$1003$$

$$1004 \quad p_{i,k} = \frac{(r_{i,+}^{(2)} - \mu)(r_{i,+}^{(2)})^k + (\mu - r_{i,-}^{(2)})(r_{i,-}^{(2)})^k}{r_{i,+}^{(2)} - r_{i,-}^{(2)}}, \quad q_{i,k} = -\frac{\eta_2 \mu ((r_{i,+}^{(2)})^k - (r_{i,-}^{(2)})^k)}{r_{i,+}^{(2)} - r_{i,-}^{(2)}},$$

$$1005$$

$$1006$$

$$1007$$

1008 and the pre-switch stationary joint entries $(x_i^{(1)}, y_i^{(1)}, z_i^{(1)})$ under (η_1, μ) are

$$1009$$

$$1010 \quad x_i^{(1)} = \frac{\eta_1 \gamma_i (1 + \mu)}{\lambda_i (1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]},$$

$$1011$$

$$1012 \quad y_i^{(1)} = -\frac{\eta_1 \gamma_i}{(1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]}, \quad z_i^{(1)} = \frac{2 \gamma_i}{(1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]}.$$

$$1013$$

$$1014$$

1015 Then, for any $\beta > 0$ and $\alpha \in (0, 1)$, with probability at least $1 - \alpha$,

$$1016$$

$$1017 \quad \mathbb{E}_{\mathbf{w} \sim \mathcal{Q}} [\mathcal{R}_{\text{adv}}(\mathbf{w})] \leq \frac{1}{2} \sum_{i=1}^m \lambda_i \sigma_i^2(t+k) \\ 1018 \quad + \frac{1}{2\beta} \left(\frac{\sum_{i=1}^m \sigma_i^2(t+k)}{\sigma_{\mathcal{P}}^2} + \frac{\|\mathbf{w}^*\|_2^2}{\sigma_{\mathcal{P}}^2} - m + m \ln \sigma_{\mathcal{P}}^2 - \sum_{i=1}^m \ln \sigma_i^2(t+k) \right) \\ 1019 \\ 1020 \\ 1021 \\ 1022 \\ 1023 \\ 1024 \\ 1025 \quad + \hat{\mathcal{R}}_{\text{adv}}(\mathbf{w}^*, \mathcal{S}) + \frac{\beta C^2}{8|\mathcal{S}|} - \frac{1}{\beta} \ln \alpha. \quad (31)$$

1026 Stability requires $0 < \frac{\eta_\ell}{1+\mu} \lambda_i < 2$ for both $\ell \in \{1, 2\}$ and all i .

1026 **Proof of Theorem 4.7.** From Theorem B.1, the robust generalization bound involves the modal
 1027 variances $\sigma_i^2(t+k)$, whose exact closed-form expression is
 1028

$$\begin{aligned} 1029 \sigma_i^2(t+k) &= p_{i,k}^2 x_i^{(1)} + 2 p_{i,k} q_{i,k} y_i^{(1)} + q_{i,k}^2 z_i^{(1)} \\ 1030 &+ \frac{\eta_2^2 \gamma_i}{(r_{i,+}^{(2)} - r_{i,-}^{(2)})^2} \left[\frac{(r_{i,+}^{(2)})^2 (1 - (r_{i,+}^{(2)})^{2k})}{1 - (r_{i,+}^{(2)})^2} + \frac{(r_{i,-}^{(2)})^2 (1 - (r_{i,-}^{(2)})^{2k})}{1 - (r_{i,-}^{(2)})^2} - \frac{2\mu(1-\mu^k)}{1-\mu} \right]. \end{aligned}$$

1033 Although algebraically explicit, this formula is rather involved. To obtain a more interpretable
 1034 approximation, we analyze its asymptotic structure.
 1035

1036 The expression shows that $\sigma_i^2(t+k)$ evolves from its pre-switch stationary level $\sigma_i^2(t)$, attained under
 1037 (η_1, μ) , towards the post-switch stationary level $\sigma_{i,*}^2(\eta_2)$ corresponding to (η_2, μ) . Since \mathbf{H}^* and \mathbf{C}
 1038 commute, they are simultaneously diagonalizable. In the joint eigenbasis, the global recursion

$$1039 \mathbf{u}_t = \mathbf{A}_2 \mathbf{u}_{t-1} + \mathbf{G}_2 \boldsymbol{\xi}_{t-1}$$

1040 decouples across eigendirections. Along the i -th eigenvector, the dynamics reduce to a 2×2 system
 1041 for the state $[w_t^{(i)} - w_i^*, h_t^{(i)}]^\top$, with transition matrix
 1042

$$1043 \mathbf{A}_i(\eta_2) = \begin{bmatrix} 1 - \eta_2 \lambda_i + \mu & -\mu \\ 1 & 0 \end{bmatrix}.$$

1044 The eigenvalues of $\mathbf{A}_i(\eta_2)$ are
 1045

$$1046 r_{i,\pm}^{(2)} = \frac{1 - \eta_2 \lambda_i + \mu \pm \sqrt{(1 - \eta_2 \lambda_i + \mu)^2 - 4\mu}}{2}.$$

1047 In the stable regime $0 < \frac{\eta_2}{1+\mu} \lambda_i < 2$, the characteristic polynomial $r^2 - (1 - \eta_2 \lambda_i + \mu)r +$
 1048 $\mu = 0$ has roots strictly inside the unit disk, i.e. $|r_{i,\pm}^{(2)}| < 1$. This stability condition ensures that
 1049 the trajectory remains bounded. Moreover, the deviation from the stationary covariance can be
 1050 expressed as a linear combination of $(r_{i,+}^{(2)})^k$ and $(r_{i,-}^{(2)})^k$, so the error term decays geometrically at
 1051 rate $\max\{|r_{i,+}^{(2)}|, |r_{i,-}^{(2)}|\} < 1$. Defining
 1052

$$1053 e^{-\rho_i} := \max\{|r_{i,+}^{(2)}|, |r_{i,-}^{(2)}|\},$$

1054 which is equivalently written as
 1055

$$1056 \rho_i = -\ln \left(\max\{|r_{i,+}^{(2)}|, |r_{i,-}^{(2)}|\} \right) > 0, \quad (32)$$

1057 we obtain the exponential interpolation
 1058

$$1059 \sigma_i^2(t+k) \approx \sigma_i^2(t) e^{-\rho_i k} + \sigma_{i,*}^2(\eta_2) (1 - e^{-\rho_i k}).$$

1060 The two endpoints admit clean leading-order approximations that are consistent with the exact sta-
 1061 tionary solutions in the small-step regime. Before the switch, the stationary variance scales as
 1062

$$1063 \sigma_i^2(t) \approx \frac{\eta_1 \gamma_i}{\lambda_i(1-\mu)},$$

1064 which is linear in η_1 . After the switch, the stationary solution under (η_2, μ) scales as
 1065

$$1066 \sigma_{i,*}^2(\eta_2) \approx \frac{\eta_2^2 \gamma_i}{\lambda_i(1-\mu)},$$

1067 which is quadratic in η_2 because the effective noise accumulation under momentum involves the
 1068 squared step size.
 1069

1070 Substituting these two approximations into the interpolation formula yields
 1071

$$1072 \sigma_i^2(t+k) \approx \frac{\eta_1 \gamma_i}{\lambda_i(1-\mu)} e^{-\rho_i k} + \frac{\eta_2^2 \gamma_i}{\lambda_i(1-\mu)} (1 - e^{-\rho_i k}),$$

1073 which is exactly the expression stated in equation 16. Finally, substituting this $\sigma_i^2(t+k)$ into the
 1074 bound of Theorem B.1 gives equation 17, completing the proof. \square
 1075

1080 B.4 PROOF OF THE STATEMENT IN REMARK 4.9
10811082 **Proof of Remark 4.9.** Assume $\mathbf{H}, \mathbf{C} \in \mathbb{R}^{m \times m}$ are real symmetric and commute, i.e. $\mathbf{H}\mathbf{C} = \mathbf{C}\mathbf{H}$.
1083 By the spectral theorem, there exists an orthonormal decomposition of \mathbb{R}^m into the eigenspaces of
1084 \mathbf{H} :

1085
$$\mathbb{R}^m = \bigoplus_{\lambda} E_{\lambda}, \quad E_{\lambda} := \ker(\mathbf{H} - \lambda \mathbf{I}).$$

1086

1087 We first show that each E_{λ} is invariant under \mathbf{C} . If $v \in E_{\lambda}$, then $\mathbf{H}v = \lambda v$. Using commutativity,
1088

1089
$$\mathbf{H}(\mathbf{C}v) = \mathbf{C}(\mathbf{H}v) = \mathbf{C}(\lambda v) = \lambda(\mathbf{C}v),$$

1090

1091 so $\mathbf{C}v \in E_{\lambda}$. Thus $\mathbf{C}(E_{\lambda}) \subseteq E_{\lambda}$ for every eigenvalue λ of \mathbf{H} .
10921093 For each λ , the restriction $\mathbf{C}|_{E_{\lambda}}$ is symmetric with respect to the Euclidean inner product and hence
1094 admits an orthonormal eigenbasis of E_{λ} . Collecting these bases across all λ yields an orthonormal
1095 basis of \mathbb{R}^m consisting of vectors that lie in some E_{λ} and are simultaneously eigenvectors of \mathbf{C} .
1096 Each such vector is therefore an eigenvector of both \mathbf{H} and \mathbf{C} .
10971098 Let \mathbf{U} be the orthogonal matrix with these basis vectors as columns. In this basis both \mathbf{H} and \mathbf{C} are
1099 diagonal:
1100

1101
$$\mathbf{U}^T \mathbf{H} \mathbf{U} = \text{diag}(\lambda_1, \dots, \lambda_m), \quad \mathbf{U}^T \mathbf{C} \mathbf{U} = \text{diag}(\gamma_1, \dots, \gamma_m).$$

1102

1103 Hence \mathbf{H} and \mathbf{C} are simultaneously diagonalizable and share an orthonormal set of eigenvectors. \square
11041105 C PROOF OF THEOREM B.1
11061107 **Proof of Theorem B.1.** *Decoupling under commutativity.* Since \mathbf{H}^* and \mathbf{C} are real symmetric and
1108 commute, there exists an orthogonal matrix \mathbf{U} such that
1109

1110
$$\mathbf{H}^* = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T, \quad \mathbf{C} = \mathbf{U} \boldsymbol{\Gamma} \mathbf{U}^T,$$

1111

1112 with $\boldsymbol{\Lambda} = \text{diag}(\lambda_1, \dots, \lambda_m)$ and $\boldsymbol{\Gamma} = \text{diag}(\gamma_1, \dots, \gamma_m)$. Transforming to this joint eigenbasis
1113 decouples the global $2m$ -dimensional recursion into m independent 2×2 linear systems, one for
1114 each mode i .
11151116 *Unrolling the trajectory.* Along the i -th eigendirection, the state is $\mathbf{x}_s^{(i)} = [w_s^{(i)} - w_i^*, h_s^{(i)}]^T$ and
1117 evolves as
1118

1119
$$\mathbf{x}_s^{(i)} = \mathbf{A}_i(\eta_2) \mathbf{x}_{s-1}^{(i)} + \boldsymbol{\xi}_{s-1}^{(i)}, \quad \mathbf{A}_i(\eta_2) = \begin{bmatrix} 1 - \eta_2 \lambda_i + \mu & -\mu \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{\xi}_{s-1}^{(i)} = \begin{bmatrix} -\eta_2 \zeta_{s-1}^{(i)} \\ 0 \end{bmatrix},$$

1120

1121 with noise variance $\mathbb{E}[(\zeta_{s-1}^{(i)})^2] = \gamma_i$. By iteration,
1122

1123
$$\boldsymbol{\Sigma}_{t+k}^{(i)} = \mathbf{A}_i(\eta_2)^k \boldsymbol{\Sigma}_t^{(i)} (\mathbf{A}_i(\eta_2)^k)^T + \sum_{j=0}^{k-1} \mathbf{A}_i(\eta_2)^j \mathbf{Q}_i (\mathbf{A}_i(\eta_2)^j)^T, \quad \mathbf{Q}_i = \eta_2^2 \gamma_i \mathbf{e}_1 \mathbf{e}_1^T.$$

1124

1125 *Pre-switch stationary initialization.* At time t , the covariance is stationary under (η_1, μ) ; the unique
1126 solution to the Lyapunov equation gives
1127

1128
$$\begin{aligned} x_i^{(1)} &= \frac{\eta_1 \gamma_i (1 + \mu)}{\lambda_i (1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]}, \\ y_i^{(1)} &= -\frac{\eta_1 \gamma_i}{(1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]}, \\ z_i^{(1)} &= \frac{2 \gamma_i}{(1 - \mu) [2(1 + \mu) - \eta_1 \lambda_i]}. \end{aligned}$$

1129

1130 Thus $\boldsymbol{\Sigma}_t^{(i)} = S_i^{(1)} = \begin{bmatrix} x_i^{(1)} & y_i^{(1)} \\ y_i^{(1)} & z_i^{(1)} \end{bmatrix}$.
11311132 *Closed form of the modal variance.* Diagonalizing $\mathbf{A}_i(\eta_2)$ gives roots
1133

1134
$$r_{i,\pm}^{(2)} = \frac{1 - \eta_2 \lambda_i + \mu \pm \sqrt{(1 - \eta_2 \lambda_i + \mu)^2 - 4\mu}}{2},$$

1134 and the first-row coefficients

$$1135 \quad p_{i,k} = \frac{(r_{i,+}^{(2)} - \mu)(r_{i,+}^{(2)})^k + (\mu - r_{i,-}^{(2)})(r_{i,-}^{(2)})^k}{r_{i,+}^{(2)} - r_{i,-}^{(2)}}, \quad q_{i,k} = -\frac{\eta_2 \mu ((r_{i,+}^{(2)})^k - (r_{i,-}^{(2)})^k)}{r_{i,+}^{(2)} - r_{i,-}^{(2)}}.$$

1136
1137
1138
1139
1140
Similarly, define $v_{i,j} = \frac{(r_{i,-}^{(2)})^{j+1} - (r_{i,+}^{(2)})^{j+1}}{r_{i,+}^{(2)} - r_{i,-}^{(2)}}$. Then the variance of parameter $w^{(i)}$ is

$$1141 \quad \sigma_i^2(t+k) = p_{i,k}^2 x_i^{(1)} + 2 p_{i,k} q_{i,k} y_i^{(1)} + q_{i,k}^2 z_i^{(1)} + \eta_2^2 \gamma_i \sum_{j=0}^{k-1} v_{i,j}^2 \\ 1142 \quad = p_{i,k}^2 x_i^{(1)} + 2 p_{i,k} q_{i,k} y_i^{(1)} + q_{i,k}^2 z_i^{(1)} \\ 1143 \quad + \frac{\eta_2^2 \gamma_i}{(r_{i,+}^{(2)} - r_{i,-}^{(2)})^2} \left[\frac{(r_{i,+}^{(2)})^2 (1 - (r_{i,+}^{(2)})^{2k})}{1 - (r_{i,+}^{(2)})^2} + \frac{(r_{i,-}^{(2)})^2 (1 - (r_{i,-}^{(2)})^{2k})}{1 - (r_{i,-}^{(2)})^2} - \frac{2\mu(1 - \mu^k)}{1 - \mu} \right],$$

1144
1145
1146
1147
1148
1149
which matches the statement of Theorem B.1.

1150
1151
1152
1153
Substitution into the PAC-Bayes framework. The quadratic expansion of the adversarial loss and the Catoni PAC-Bayes bound with Gaussian KL divergence were already established in Theorem 3.7. Plugging in the modal variances $\{\sigma_i^2(t+k)\}_{i=1}^m$ derived above into that general bound yields inequality equation 31.

1154
1155
1156
1157
Stability. Finally, the condition $0 < \frac{\eta_\ell}{1+\mu} \lambda_i < 2$ for both $\ell \in \{1, 2\}$ and all i is precisely the Jury stability criterion for the heavy-ball characteristic polynomial, which guarantees $|r_{i,\pm}^{(2)}| < 1$ and hence convergence of the geometric series in the covariance expression. \square

1158 D EXPERIMENT SETTINGS

1159
1160
1161 We use the CIFAR-10 dataset (Krizhevsky et al., 2009) with standard train splits. Inputs are scaled to $[0, 1]$ and normalized channel-wise. Data augmentation includes random cropping with 4-pixel padding and random horizontal flipping. In additional experiments, we also evaluate on CIFAR-100 (Krizhevsky et al., 2009) and SVHN(Netzer et al., 2011) to verify the generality of our findings.

1162
1163
1164
1165 We consider PreActResNet-18 (He et al., 2016) as the backbone model. Training uses momentum SGD ($\mu = 0.9$) with weight decay 5×10^{-4} . The initial learning rate is 0.1, decayed to 0.01 at epoch 100 and to 0.001 at epoch 150, following a piecewise schedule. Training runs for 200 epochs with batch size 128. In supplementary experiments, we additionally use WideResNet-34-10 (Zagoruyko & Komodakis, 2016) as an alternative architecture.

1166
1167
1168
1169
1170 For robustness, we adopt PGD adversarial training (Madry et al., 2017) as the default baseline. We generate ℓ_∞ adversarial perturbations with $\epsilon = 8/255$, step size 2/255, 10 attack iterations, and 1 random restart. For computational efficiency, we approximate curvature and gradient-noise statistics using a small number of randomly sampled mini-batches. We average the loss over $m = 128$ batches when estimating the top- k Hessian eigenpairs (with $k = 20$), perform 30 power iterations for each eigenpair, and compute gradient covariances from 128 batches to obtain noise statistics. This stochastic approximation is sufficient to capture the dominant spectral structure while keeping runtime feasible.

1178 E SPECTRAL ESTIMATION DETAILS

1179
1180 To obtain the Hessian spectrum, we approximate the Hessian on a vector v via the identity

$$1181 \quad \mathbf{H}v = \nabla_w (\nabla_w \mathcal{L}(w)^\top v),$$

1182
1183
1184
1185
1186 which can be computed efficiently by automatic differentiation without explicitly forming \mathbf{H} . We then apply power iteration with Gram–Schmidt orthogonalization to extract the top- k eigenvectors $\{v_i\}$, and estimate their associated eigenvalues using the Rayleigh quotient,

$$1187 \quad \lambda_i = \frac{v_i^\top (\mathbf{H}v_i)}{v_i^\top v_i}.$$

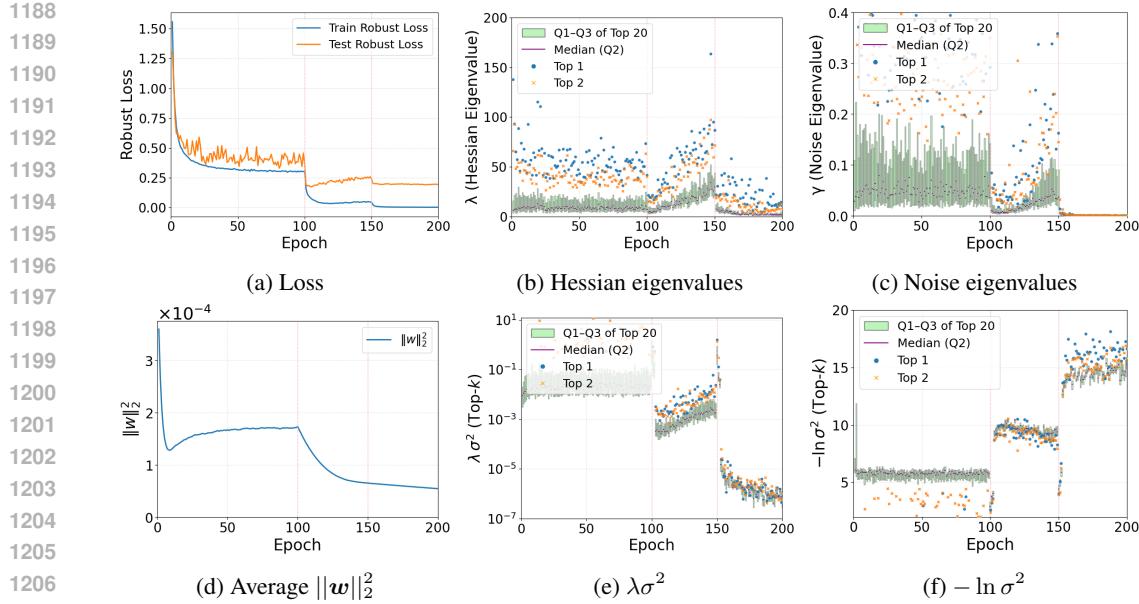


Figure 4: Additional results for standard training (i.e., $\epsilon = 0$) batch size 128 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 98.47% to 99.98%, and the test robust accuracy increases from 93.09% to 95.13%.

This procedure is consistent with established practice for large-scale curvature estimation (Dangel et al., 2019; Yao et al., 2020). For the posterior structure, we consider the stochastic gradients at the mini-batch level, $\mathbf{g}_b = \nabla_{\mathbf{w}} \mathcal{L}_b(\mathbf{w})$. Projecting these gradients onto the subspace spanned by the leading Hessian eigenvectors $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_k]$ yields the projected quantities $\mathbf{p}_b = \mathbf{V}^\top \mathbf{g}_b \in \mathbb{R}^k$. Their covariance matrix is $\Gamma = \text{Cov}[\mathbf{p}_b]$, whose diagonal entries $\gamma_i = \Gamma_{ii}$ quantify the variance of stochastic gradients along the principal curvature directions. By construction, this definition ensures that λ_i characterizes curvature while γ_i represents the corresponding noise magnitude in the same eigendirections. This approach follows recent empirical observations that gradient-noise covariance tends to align with the Hessian eigenspectrum in neural networks (Jastrzebski et al., 2018; Ziyin et al., 2025), allowing for a direct analysis of curvature–noise interactions.

F ADDITIONAL EXPERIMENTS AND ANALYSES

F.1 GENERALIZABILITY STUDY

Figure 4 presents additional results for standard training on CIFAR-10. Here, both the Hessian eigenvalues $\{\lambda_i\}$ and noise covariance eigenvalues $\{\gamma_i\}$ remain much smaller and evolve more smoothly, without the sharp curvature escalation like adversarial training. For completeness, we also vary the perturbation strength ϵ to evaluate their impact on the Hessian and noise eigenvalues. Figures 5–8 present the results for $\epsilon \in \{2/255, 4/255, 12/255, 16/255\}$. We also run experiments with varying batch sizes from $\{64, 256\}$, with the corresponding results shown in Figures 9 and 10.

In addition, we conduct experiments to test the generalizability of our findings across other image benchmarks, including CIFAR-100 (Figure 11) and SVHN (Figure 12), as well as different learning algorithms, such as adversarial training on a larger WideResNet-34-10 architecture (Figure 13) and semi-supervised adversarial training (Figure 14).

Overall, the ablation studies across perturbation radii, batch sizes, datasets, and architectures reveal a highly consistent picture. Increasing the perturbation strength ϵ primarily amplifies the curvature of the adversarial loss landscape, leading to larger Hessian eigenvalues with only mild changes in gradient noise levels. In contrast, varying the batch size mainly rescales the noise eigenvalues $\{\gamma_i\}$ while leaving the curvature spectrum largely unchanged. These orthogonal effects precisely match the roles of curvature and noise predicted by our PAC-Bayesian analysis.

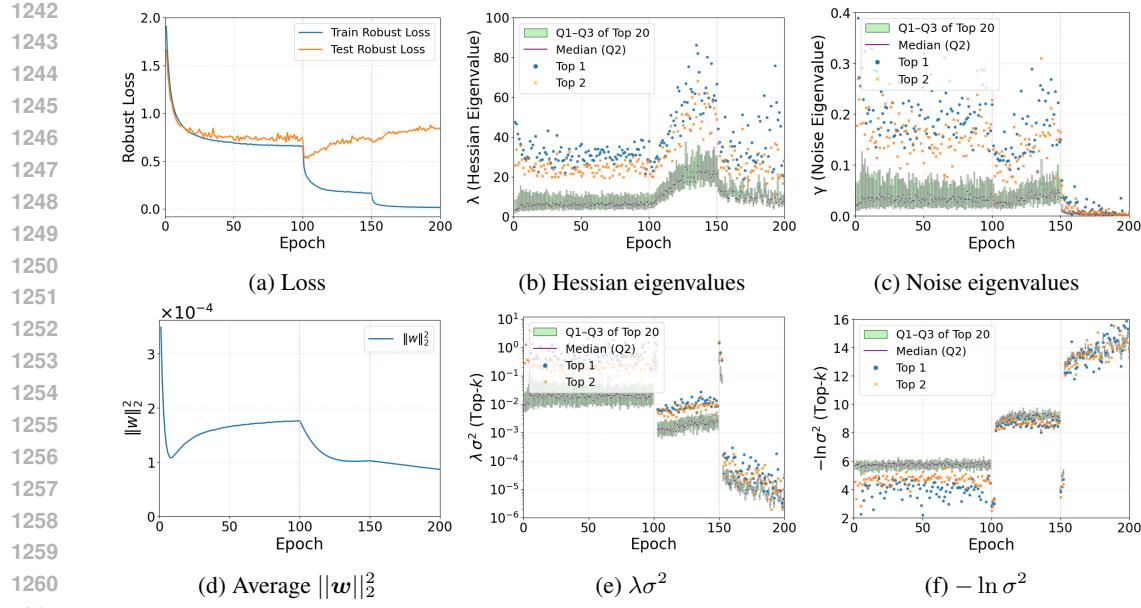


Figure 5: Additional results for adversarial training with batch size 128, $\epsilon = 2/255$ and PGD step size $1/255$ on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 93.73% to 99.48%, and the test robust accuracy increases from 78.17% to 80.07%.

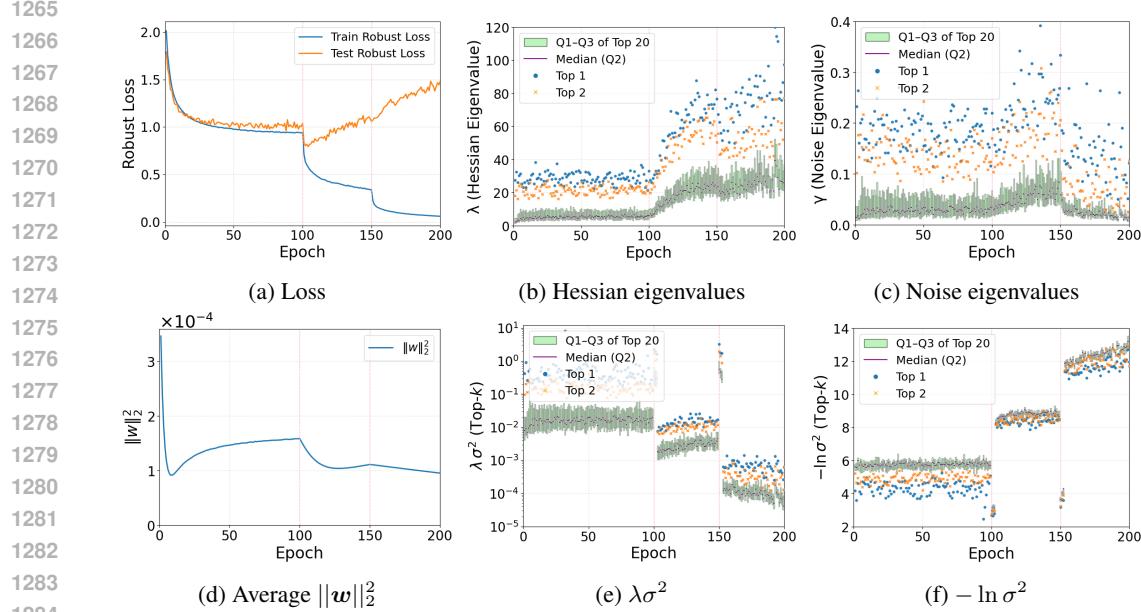
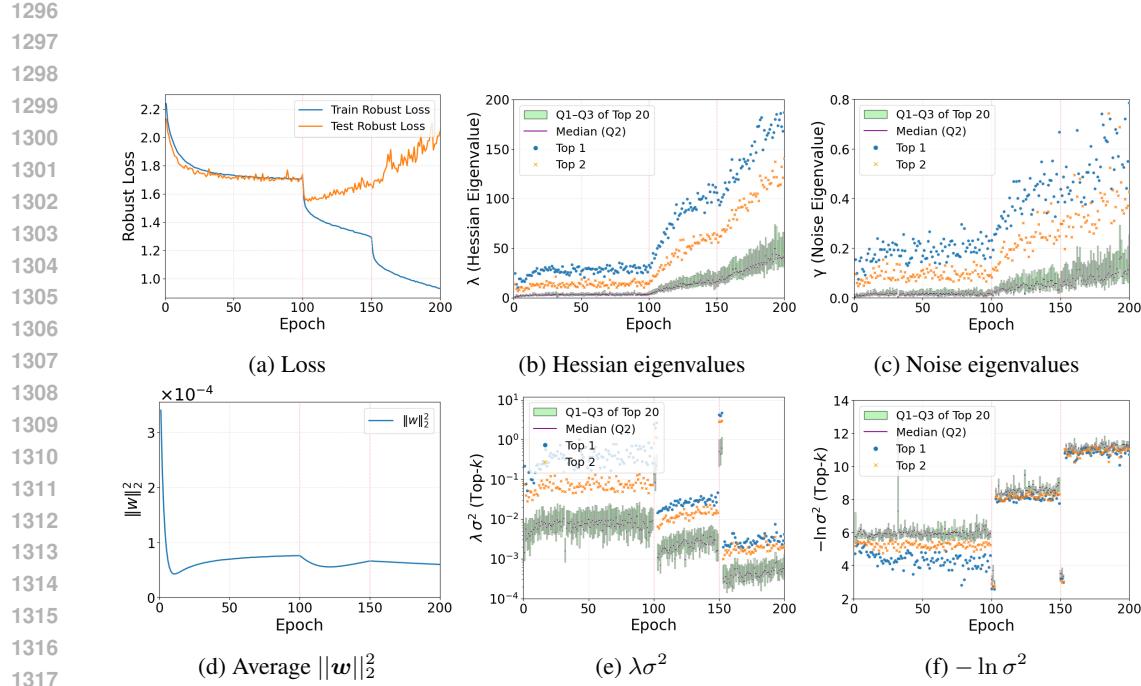


Figure 6: Additional results for adversarial training with batch size 128, $\epsilon = 4/255$ and PGD step size $1/255$ on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 85.82% to 97.82%, and the test robust accuracy increases from 66.16% to 66.99%.

Moreover, the same qualitative patterns persist on CIFAR-100, SVHN, and WideResNet-34-10: learning-rate drops trigger sharp curvature escalation, shrink posterior variances, and inflate the dominant spectral terms in our bound, thereby reproducing the characteristic onset of robust overfitting. Taken together, the results demonstrate that the coupled evolution of curvature and posterior geometry—rather than dataset- or architecture-specific artifacts—is a universal mechanism governing adversarially robust generalization.



1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 7: Additional results for adversarial training with batch size 128, $\epsilon = 12/255$ and PGD step size 3/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 48.38% to 60.65%, while the test robust accuracy decreases from 39.75% to 35.94%.

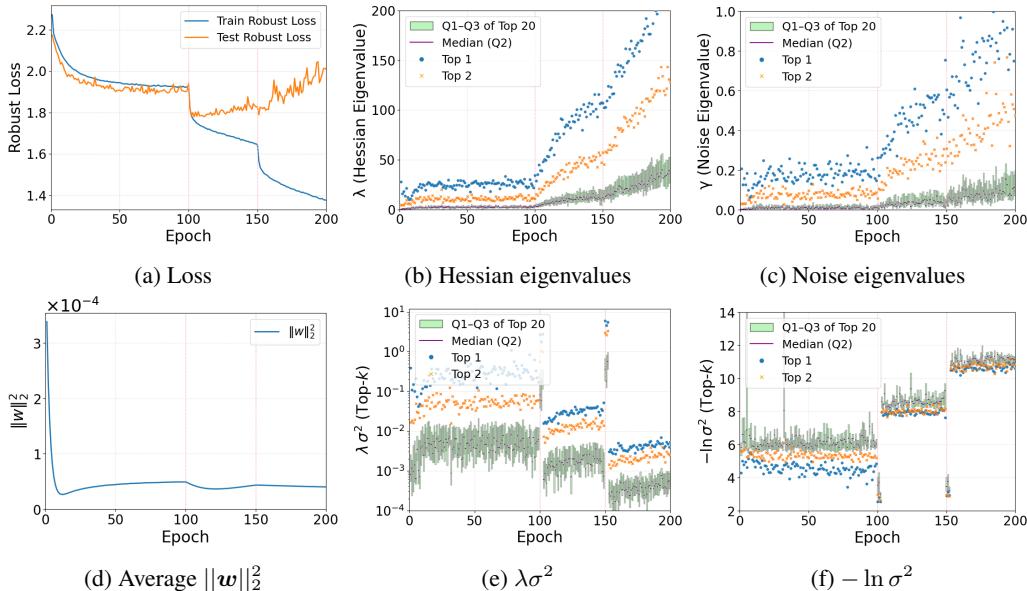
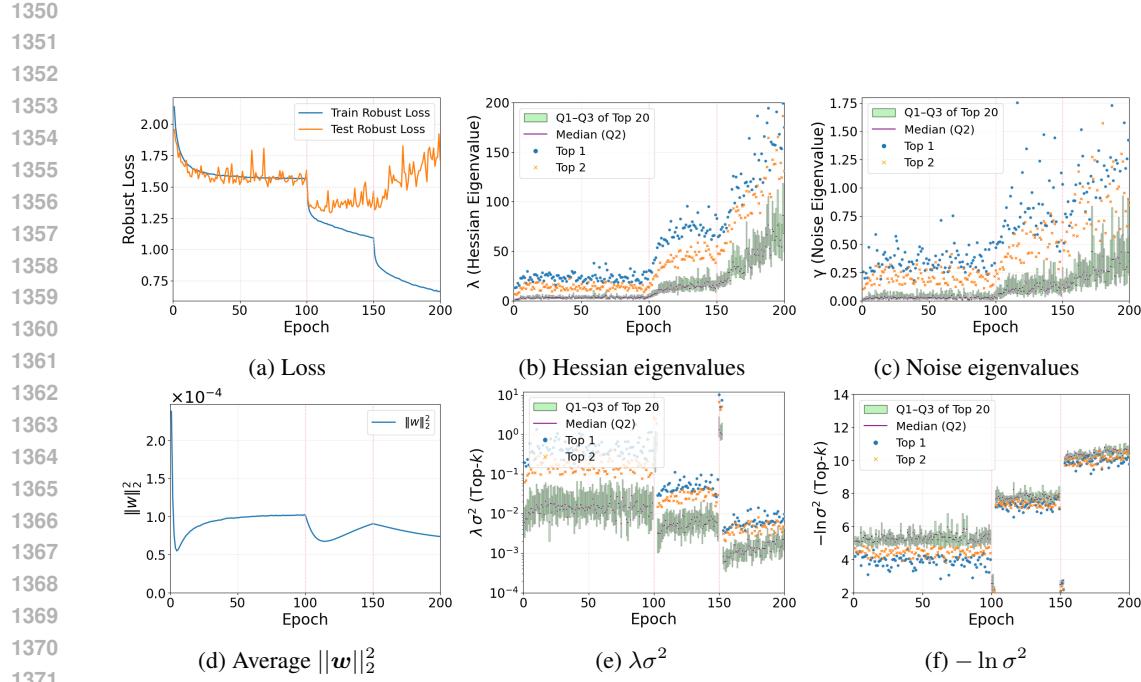
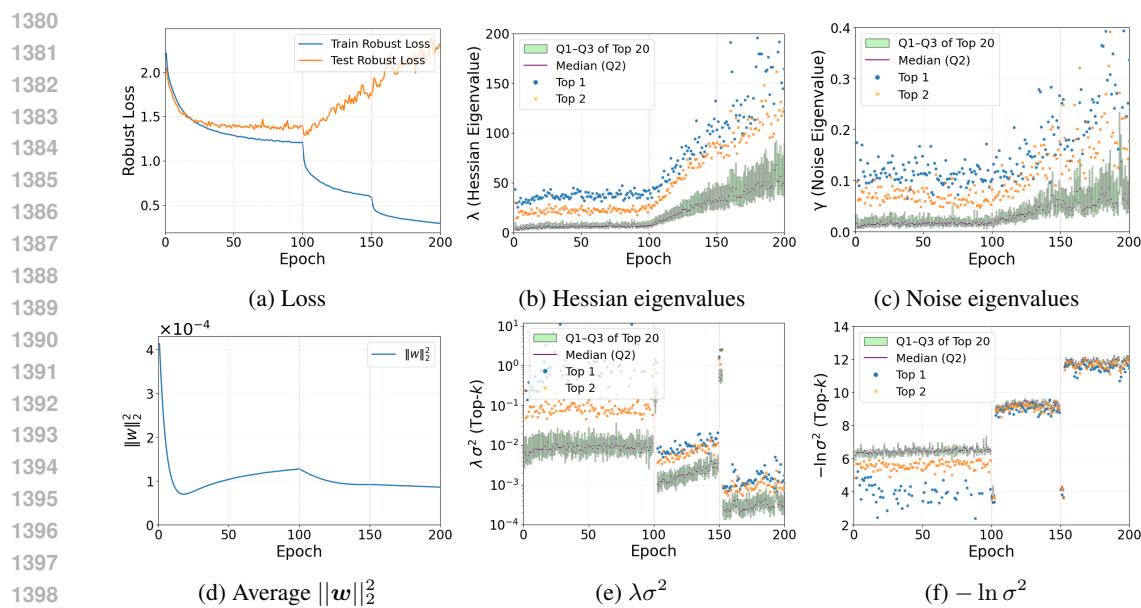


Figure 8: Additional results for adversarial training with batch size 128, $\epsilon = 16/255$ and PGD step size 4/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 36.83% to 44.98%, while the test robust accuracy decreases from 34.01% to 32.37%.



1372 Figure 9: Additional results for adversarial training with batch size 64 and $\epsilon = 8/255$ on CIFAR-10.
1373 From epoch 150 to 200, the train robust accuracy increases from 56.61% to 71.72%, while the test
1374 robust accuracy decreases from 47.34% to 46.36%.



1400 Figure 10: Additional results for adversarial training with batch size 256 and $\epsilon = 8/255$ on CIFAR-10.
1401 From epoch 150 to 200, the train robust accuracy increases from 73.87% to 86.71%, while the test
1402 robust accuracy decreases from 46.91% to 43.41%.

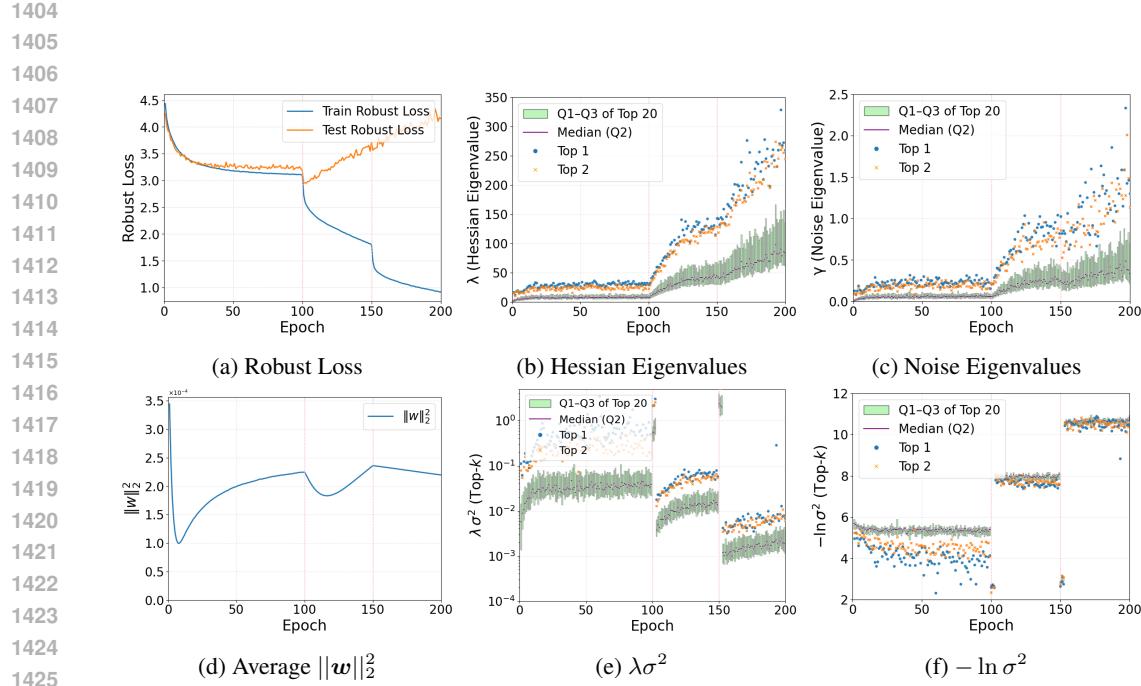


Figure 11: Additional results for adversarial training with batch size 128 and $\epsilon = 8/255$ on CIFAR-100. From epoch 150 to 200, the train robust accuracy increases from 48.54% to 72.90%, while the test robust accuracy slightly decreases from 21.86% to 21.32%.

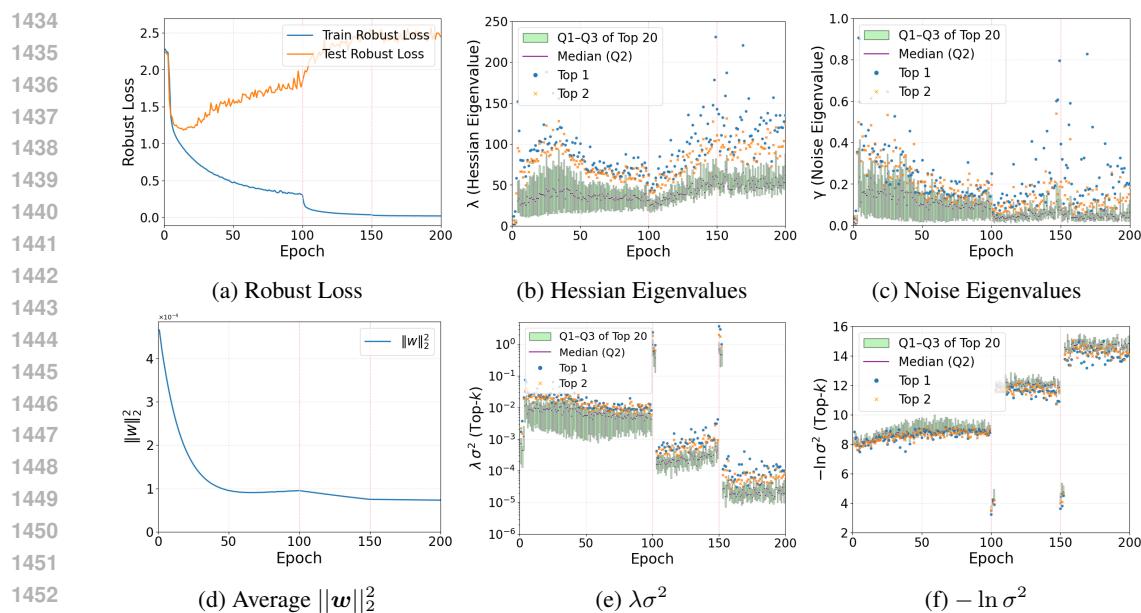


Figure 12: Additional results for adversarial training with batch size 128 and $\epsilon = 8/255$ on SVHN. From epoch 150 to 200, the train robust accuracy increases from 98.59% to 99.28%, while the test robust accuracy slightly increases from 54.06% to 54.31%.

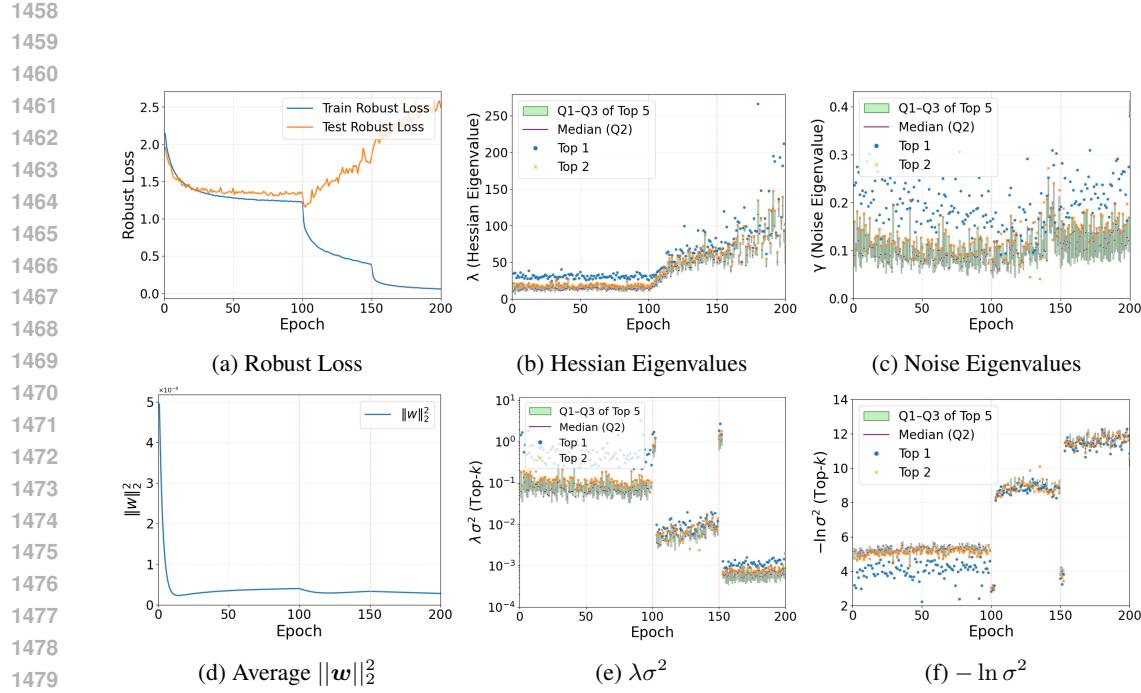
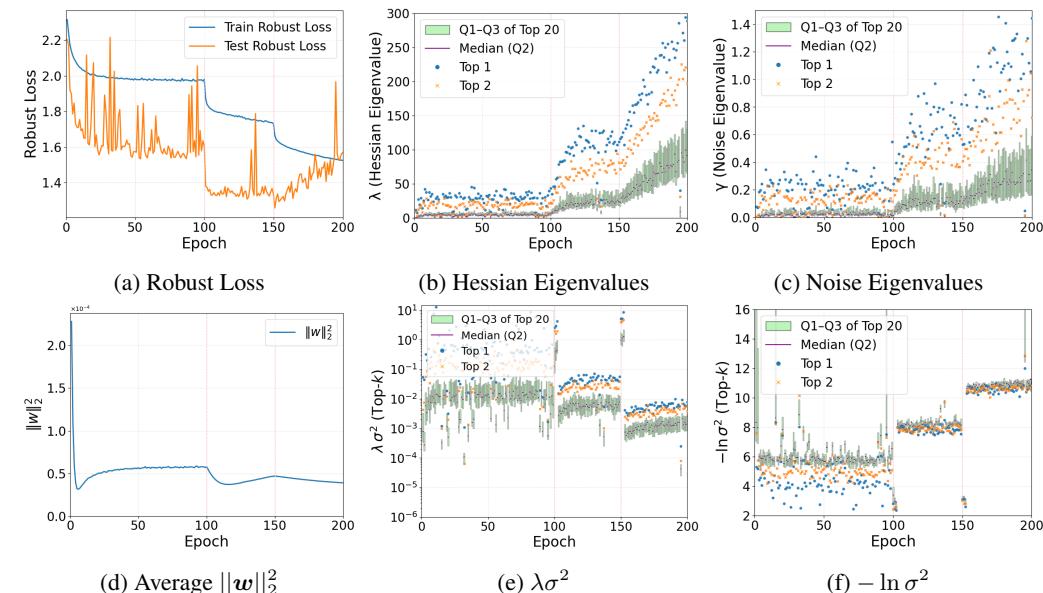


Table 1: Evaluation of AT and AWP at Stationary Regime.

Method	Epoch	LR	Robust Loss		Top-10		Top-20	
			Train	Test	$\sum_i \lambda_i \sigma_i^2$	$-\sum_i \ln \sigma_i^2$	$\sum_i \lambda_i \sigma_i^2$	$-\sum_i \ln \sigma_i^2$
AT	98	0.1000	1.4417	1.5115	0.7392	55.2797	0.7869	119.6521
	99	0.1000	1.4448	1.5202	0.7691	54.5511	0.8319	116.6751
	148	0.0100	0.9568	1.3784	0.1224	81.9588	0.1564	166.0552
	149	0.0100	0.9450	1.3684	0.1138	81.7163	0.1462	166.8927
	198	0.0010	0.5651	1.6828	0.0149	110.5211	0.0187	226.3246
	199	0.0010	0.5647	1.7991	0.0176	109.8221	0.0228	224.3322
	98	0.1000	1.5845	1.4217	0.3878	52.3761	0.4245	111.8577
	99	0.1000	1.5827	1.4138	0.3528	54.0705	0.3734	116.7480
	148	0.0100	1.3735	1.2468	0.0598	79.1922	0.0678	165.7136
	149	0.0100	1.3711	1.2463	0.0578	79.0380	0.0670	165.8011
AWP	198	0.0010	1.3076	1.2237	0.0060	104.0535	0.0071	211.4283
	199	0.0010	1.3061	1.2191	0.0069	102.8904	0.0082	210.2709

Table 2: Evaluation of AT and AWP at Initial Phase of Non-Stationary Transition.

Method	Epoch	LR	Robust Loss		Top-10		Top-20	
			Train	Test	$\sum_i \lambda_i \sigma_i^2$	$-\sum_i \ln \sigma_i^2$	$\sum_i \lambda_i \sigma_i^2$	$-\sum_i \ln \sigma_i^2$
AT	100	0.0100	1.4447	1.4568	7.1910	26.5496	8.4420	57.9231
	101	0.0100	1.2653	1.2717	6.6961	28.1169	8.0763	60.1948
	102	0.0100	1.2016	1.2732	7.5940	27.9818	9.8374	57.4486
	150	0.0010	0.9466	1.3881	19.7690	31.1946	25.2198	65.3582
	151	0.0010	0.8242	1.4036	19.3195	31.2056	25.1003	65.2913
	152	0.0010	0.7798	1.4614	18.1461	32.4100	24.8218	66.7165
	100	0.0100	1.5810	1.4095	4.6366	26.3079	5.0578	86.3721
	101	0.0100	1.4798	1.3057	4.7988	26.4234	5.6639	57.1908
	102	0.0100	1.4496	1.3153	4.5107	26.3610	5.1733	59.2366
	150	0.0010	1.3709	1.2578	10.5189	27.6671	11.5429	88.3216
AWP	151	0.0010	1.3397	1.2394	9.8622	28.2500	11.1231	62.2065
	152	0.0010	1.3303	1.2350	9.6732	28.1511	11.0591	62.7482

F.2 VERIFYING THE SPECTRAL STRUCTURE OF OUR BOUNDS

We first empirically validate the two theoretical regimes considered in Section 4. Table 1 corresponds to the stationary setting of Theorem 4.5, where the posterior distribution \mathcal{Q} has reached equilibrium during adversarial training under a fixed learning rate. Under this regime, the PAC-Bayesian robust generalization bound takes the following form if only keeping the dominating terms:

$$\frac{1}{2} \sum_i \lambda_i \sigma_i^2 + \frac{1}{2\beta} \left(-\sum_i \ln \sigma_i^2 \right),$$

with the curvature-variance term unscaled and the log-determinant term attenuated by $1/\beta$, where β is often set to the order of the square root of the sample set size ($\sqrt{|\mathcal{S}|}$) to balance the related terms in the PAC-Bayesian bound. The data in Table 1 exhibit exactly this behaviour: within each stationary plateau, both spectral terms evolve smoothly, and their relative magnitudes match the theoretical prediction that $\sum_i \lambda_i \sigma_i^2$ dominates unless posterior variance has collapsed substantially.

Table 2 characterizes the non-stationary transition behavior of adversarial training algorithms governed by Theorem 4.7. Immediately after a learning-rate decay, the stationary covariance condition no longer applies, and each σ_i^2 becomes a mixture of a decaying propagation term and an injected noise term evaluated at the smaller step size. This produces the predicted sharp, non-monotonic shifts: an abrupt decrease in $-\sum_i \ln \sigma_i^2$ and a slight increase in $\sum_i \lambda_i \sigma_i^2$. These discontinuities

1566 appear only at decay points and are absent in stationary phases, providing direct experimental
 1567 confirmation of the transient covariance dynamics.

1568 F.3 CONNECTING ROBUST OVERTFITTING TO LEARNING RATE DECAY

1570 Having established that the empirical dynamics match both stationary and transient theory, we now
 1571 connect these dynamics to the emergence of robust overfitting. In stationary phases, curvature and
 1572 covariance evolve gradually: $\sum_i \lambda_i \sigma_i^2$ contracts as the optimizer enters narrower regions of the land-
 1573 scape, and $-\sum_i \ln \sigma_i^2$ grows as the posterior becomes more concentrated. Decreasing the learning
 1574 rate will disrupt this balance. The transient mixture of propagation and injected components induces
 1575 an immediate reduction in the overall covariance scale, driving a sharp decrease in $-\sum_i \ln \sigma_i^2$ that
 1576 outweighs the mild increase in $\sum_i \lambda_i \sigma_i^2$, thereby producing the initial drop in robust test loss.

1577 As optimization continues with the smaller learning rate, adversarial curvature grows, while the
 1578 posterior variance continues to shrink. Eventually, $-\sum_i \ln \sigma_i^2$ increases rapidly enough to domi-
 1579 nate the shrinking curvature–variance term, reversing the direction of the bound and producing the
 1580 subsequent rise in robust test loss. From a geometric perspective, these spectral dynamics describe
 1581 a transition from a broad, weakly curved basin to an increasingly sharp and anisotropic one. The
 1582 contraction of $\sum_i \lambda_i \sigma_i^2$ reflects the narrowing of the basin, while the growth of $-\sum_i \ln \sigma_i^2$ signals
 1583 collapse into a low-dimensional subspace. This geometric tightening underlies the full “drop–then–
 1584 rise” pattern characterizing robust overfitting.

1585 In contrast, adversarial weight perturbation (AWP) fundamentally alters this geometry. By suppress-
 1586 ing curvature amplification and preventing posterior collapse, it keeps both spectral terms within a
 1587 moderate range. Consequently, the curvature–variance term remains dominant across training, and
 1588 the combined spectral expression decreases monotonically, explaining why AWP avoids the overfit-
 1589 ting dynamics observed in standard adversarial training.

1590 F.4 FURTHER DISCUSSION WITH VARYING ϵ AND BATCH SIZE.

1592 Although our primary analysis focuses on learning-rate decay, the same spectral mechanism also
 1593 predicts how adversarial radius ϵ and batch size influence robust generalization. Increasing ϵ steep-
 1594ens the adversarial loss landscape, enlarging the dominant curvature directions and accelerating
 1595 posterior contraction. This amplifies the growth of $-\sum_i \ln \sigma_i^2$ and reduces $\sum_i \lambda_i \sigma_i^2$ more aggres-
 1596 sively, pushing the optimizer into the log-determinant-dominated regime earlier in training. The
 1597 resulting degradation in robust test loss mirrors the rise phase of the learning-rate–induced pattern.

1598 Batch size acts through the gradient-noise spectrum. Larger batches reduce stochastic variability,
 1599 leading to smaller stationary variances σ_i^2 via Equation 14 and hastening the onset of the collapse
 1600 regime in which the log-determinant term dominates. Smaller batches inject more noise, maintain
 1601 larger posterior variances, and thereby delay entry into this regime. Across these ablations, the
 1602 qualitative evolution of $\sum_i \lambda_i \sigma_i^2$ and $-\sum_i \ln \sigma_i^2$ consistently mirrors the spectral behaviour observed
 1603 under learning-rate decay. These results provide additional evidence that robust overfitting arises
 1604 precisely when adversarial curvature intensifies while posterior covariance collapses, regardless of
 1605 which hyperparameter induces these geometric shifts.

1606 G LLM USAGE

1608 Large Language Models (LLMs) were employed solely for proofreading purposes in the preparation
 1609 of this manuscript. Specifically, the LLM was used to detect and correct typographical errors and
 1610 minor grammatical issues. Its role was restricted to ensuring the textual accuracy and consistency of
 1611 the manuscript.

1612 It is important to emphasize that the LLM was not involved in the conception of ideas, theoretical
 1613 development, data analysis, or interpretation of results. All scientific content, including methodol-
 1614 ogy, experiments, and conclusions, was entirely the responsibility of the authors. The use of the
 1615 LLM was strictly limited to linguistic refinement at the level of typo correction and proofreading.

1616 The authors take full responsibility for the content of the manuscript, including any sections proof-
 1617 read by the LLM. The application of the LLM adhered to ethical guidelines and did not contribute
 1618 to plagiarism, scientific misconduct, or the generation of original scientific content.