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ABSTRACT

Despite significant progress in adversarially robust learning, the underlying mech-
anisms that govern robust generalization remain poorly understood. We propose a
novel PAC-Bayesian framework that explicitly links adversarial robustness to the
posterior covariance of model parameters and the curvature of the adversarial loss
landscape. By characterizing discrete-time SGD dynamics near a local optimum
under quadratic loss, we derive closed-form posterior covariances for both the
stationary regime and the early phase of non-stationary transition. Our analyses
reveal how key factors, such as learning rate, gradient noise, and Hessian structure,
jointly shape robust generalization during training. Through empirical visualiza-
tions of these theoretical quantities, we fundamentally explain the phenomenon of
robust overfitting and shed light on why flatness-promoting techniques like adver-
sarial weight perturbation help to improve robustness.

1 INTRODUCTION

Adversarial robustness—the ability of deep neural networks (DNNs) to maintain performance under
worst-case perturbations—remains a fundamental challenge in machine learning. Since the discov-
ery of adversarial examples (Szegedy et al., 2013), numerous methods have been proposed aiming
to improve the resilience of DNNs (Goodfellow et al., 2014; Papernot et al., 2016; Wong & Kolter,
2018; Cohen et al., 2019). Among them, PGD-based adversarial training (AT) (Madry et al., 2017)
is most popular, which has become the de facto approach for building robust models. Nevertheless,
the mechanisms underlying robust generalization are far from fully understood. A striking manifes-
tation of this gap is the phenomenon of robust overfitting (Rice et al., 2020), where robust accuracy
on the training set steadily improves while test-time robustness increases shortly but continuously
deteriorates after learning rate decay. This paradox underscores a key open question: what factors
determine whether robustness learned during training generalizes reliably to unseen data?

Several complementary lines of research have sought to address this question. PAC-Bayesian anal-
yses have been adapted to derive non-vacuous generalization bounds in adversarial settings (Xiao
et al., 2023; Alquier et al., 2024). However, these bounds often abstract away from the actual op-
timization trajectory and adopt simple isotropic Gaussian posteriors for tractability, overlooking
structural properties of the learned model that are crucial for explaining generalization. Other works
(Foret et al., 2020; Dziugaite et al., 2021; Wang et al., 2023) connect the KL divergence term in
PAC-Bayesian bounds to curvature-related quantities of the loss landscape, suggesting that richer
prior–posterior choices can yield more informative guarantees. In particular, adversarial weight per-
turbation (AWP) (Wu et al., 2020) studied the role of curvature and flatness in the adversarial loss
landscape and designed a variant of adversarial training by iteratively perturbing the model weights,
which demonstrates strong empirical support that flatter minima help robust generalization.

Despite these efforts, the existing literature remains fragmented. PAC-Bayes bounds offer general
guarantees but lack fidelity to the learning dynamics, whereas curvature-based approaches provide
qualitative insight without rigorous predictive guarantees. Motivated by the recent theoretical works
on standard generalization by analyzing the continuous- and discrete-time dynamics of stochastic
gradient descent (SGD) (Mandt et al., 2017; Liu et al., 2021; Ziyin et al., 2021; Wu & Su, 2023;
Ziyin et al., 2024), we introduce a unified but principled framework that links optimization dynamics
with both Hessian curvature and posterior geometry through PAC-Bayesian analysis to study robust
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generalization and to account for puzzling empirical observations such as robust overfitting, while
also rationalizing the effectiveness behind flatness-promoting methods such as AWP.

Contributions. We develop a PAC-Bayesian framework that explicitly couples Hessian curvature
and posterior geometry through the finite-time dynamics of SGD in adversarial settings. Our analy-
sis begins with a compact PAC-Bayesian inequality that preserves the posterior covariance structure
(Section 3). Modeling SGD with momentum in a quadratic basin, we derive closed-form solutions
for the posterior covariance in two representative regimes—(i) a stationary regime under a fixed
learning rate and (ii) an early non-stationary transition triggered by a learning-rate drop (Section 4).
Substituting these covariances into the bound yields tractable inequalities that quantitatively predict
the evolution of robust generalization capabilities. To connect theory with practice, we conduct con-
trolled studies under standard adversarial training and adversarial weight perturbation, tracking the
Hessian spectrum, gradient-noise covariance, and the bound’s dominant terms across different train-
ing phases (Section 5). The empirical observations consistently align with our theory, underscoring
the central role of coupled curvature–posterior geometry in adversarially robust generalization.

2 RELATED WORK

Adversarial Training. Adversarial training (Madry et al., 2017), which optimizes the model pa-
rameters using SGD while leveraging projected gradient descent (PGD) to simultaneously search
for worst-case input perturbations, is a canonical approach for robustness. Despite wide adoptions,
it often exhibits robust overfitting, with test-time robust accuracy degrading while training robustness
keeps improving (Rice et al., 2020). To mitigate this, objective-level regularization such as TRADES
introduces a robustness–accuracy trade-off via a KL term (Zhang et al., 2019), and semi-supervised
variants leverage unlabeled data to expand adversarial support (Carmon et al., 2019; Gowal et al.,
2021). Complementarily, landscape-shaping methods—including adversarial weight perturbation
(AWP) and sharpness-aware minimization (SAM)—promote flatter minima by perturbing parame-
ters or minimizing neighborhood worst-case loss (Wu et al., 2020; Foret et al., 2020), highlighting
the central role of curvature in shaping robust generalization in adversarial settings.

Robust Generalization. A parallel line of research studies adversarially robust generalization from
a theoretical standpoint. PAC-Bayesian analyses for adversarial robustness (Viallard et al., 2021;
Mustafa et al., 2023; Xiao et al., 2023) derive explicit generalization bounds but model the posterior
as a static, trajectory-independent distribution, thereby overlooking how SGD dynamics shape pos-
terior geometry and curvature-dependent behavior. Stability-based approaches (Xing et al., 2021;
Xiao et al., 2022; Cullina et al., 2018; Tian & Mao, 2025) provide guarantees through uniform sta-
bility, but they abstract away the structure of the adversarial loss landscape—ignoring the curvature
and the anisotropic noise induced by SGD—and their bounds do not vary meaningfully with the
perturbation strength ϵ, thus unable to capture how increasing ϵ fundamentally alters robust general-
ization. Recent studies of robust overfitting (Fu & Wang, 2023; Mustafa et al., 2024; Liu et al., 2024)
offer valuable insights but still rely on fixed hypothesis classes or static posteriors that do not account
for the temporal evolution of training dynamics. Collectively, these theoretical frameworks capture
important aspects of robust generalization but lack a dynamic perspective that connects curvature,
gradient noise, and posterior geometry throughout the course of adversarial training.

SGD Dynamics. The generalization ability of deep networks is strongly shaped by the dynamics of
stochastic gradient descent (SGD). With a finite learning rate, SGD can be modeled as a stochastic
process where deterministic gradient flow is perturbed by minibatch noise (Mandt et al., 2017; Liu
et al., 2021). This noise is anisotropic: its covariance reflects the local loss curvature and data struc-
ture, producing characteristic fluctuations in parameter trajectories. The stationary distribution acts
as an implicit posterior whose variance is shaped by the learning rate, batch size, and Hessian spec-
trum (Ziyin et al., 2021; 2024). These noise–curvature interactions govern how SGD explores flat
versus sharp regions, thereby influencing stability and generalization. In adversarial settings, where
loss landscapes are typically sharper and more anisotropic, such interactions are amplified, motivat-
ing a dynamic view of robust generalization beyond static capacity-based bounds. In this work, we
connect the robust generalization performance of adversarially trained models with the SGD learn-
ing dynamics through a PAC-Bayesian analytical framework, aiming to explain phenomena such as
robust overfitting more fundamentally.
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3 BOUNDING ROBUST GENERALIZATION VIA PAC-BAYESIAN FRAMEWORK

3.1 PRELIMINARIES

Notation. We use lowercase boldface letters such as x to denote vectors and uppercase boldface
letters such as X for matrices. For any vector x ∈ Rd, denote by ∥x∥p with p ≥ 1 the Lp-norm of
x. For any matrix X ∈ Rm×m, Tr(X) denotes its trace, ∥X∥op its operator norm, and det(X) its
determinant. For any S, |S| denotes its cardinality. We write X ≻ 0 to indicate that X is a positive
definite matrix, and X ⪰ 0 for semi-positive definite. Let I be the identity matrix and N (µ,Σ) be
the Gaussian distribution with mean µ and covariance Σ. Given sequences {an} and {bn}, we write
an = O(bn) if there exist constants n0 ∈ Z+ and C > 0 such that an ≤ C · bn for all n ≥ n0.

In particular, we work with the following notion of adversarial risk, which closely relates to adver-
sarially robust generalization and often serves as the theoretical basis for robustness evaluation in
previous literature on adversarial ML (Madry et al., 2017; Zhang et al., 2019; Foret et al., 2020).
Definition 3.1 (Adversarial risk). Let X ⊆ Rd be the input space, Y be the output label space, fw :
X → Y be a model with w ∈ Rm being its parameters, and D be a data distribution over X × Y .
For any distance metric ∆ : X × X → R≥0 and ϵ ≥ 0, define Bϵ(0) = {δ ∈ X : ∆(δ,0) ≤ ϵ} as
the ball centered at 0 with radius ϵ measured in ∆. Then, the adversarial risk of fw is defined as:

Radv(w) := E(x,y)∼D
[
ℓadv(w,x, y)

]
, where ℓadv(w,x, y) = max

δ∈Bϵ(0)
ℓ(w,x+ δ, y). (1)

Here, ℓ(w,x, y) denotes the standard loss function (e.g., cross-entropy loss) that measures the dis-
crepancy between the model prediction ŷ = fw(x) and the ground-truth class label y.

Small adversarial risk indicates that the model fw is resilient to worst-case perturbations in Bϵ(0),
while a larger value of Radv(w) means higher vulnerability to adversarial perturbations. Note that
when ϵ = 0, adversarial riskRadv(w) is equivalent to the standard notion of risk. Aligned with prior
work (Madry et al., 2017; Rice et al., 2020), we consider ∆ as some ℓp-norm bounded distance.

The following lemma, proven in Appendix A.1, establishes a generic robust generalization bound
relating adversarial risk to its empirical counterpart through a PAC-Bayesian framework. PAC-Bayes
bounds have been pivotal in understanding the standard generalization of ML models (McAllester,
1999; Neyshabur et al., 2017; Dziugaite & Roy, 2017; Xiao et al., 2023; Alquier et al., 2024).
Lemma 3.2 (PAC-Bayesian Robust Generalization Bound). LetD be a probability distribution over
X × Y and S be a set of examples i.i.d. sampled from D. Suppose P is a data-independent prior
distribution defined over the model parameter space W . For any β > 0, any α ∈ (0, 1) and any
posterior distribution Q supported onW , with probability at least 1− α, we have

Ew∼Q
[
Radv(w)

]
≤ Ew∼Q

[
1

|S|
∑

(x,y)∈S

ℓadv(w,x, y)

]
+

1

β
KL(Q∥P) + βC2

8|S|
− 1

β
lnα, (2)

where KL(Q || P) denotes the Kullback–Leibler (KL) divergence between the posterior Q and the
prior P , and C is a constant derived by Hoeffding’s inequality that bounds the loss range.

In the following discussions, we write R̂adv(w,S) =
∑

(x,y)∈S ℓadv(w,x, y)/|S| as the empirical
adversarial loss of fw with S, and we use d,m to denote the dimensions of the input spaceX and the
parameter spaceW , respectively for ease of presentation. Note that the robust generalization bound
derived in Equation 2 characterizes a general relationship betweenRadv(w) and R̂adv(w,S), which
holds for any data-independent prior P and any posterior distribution Q. Assuming the prior P to
be independent of S ensures the applicability of Fubini’s theorem, which has been widely adopted
in the literature for establishing PAC-Bayes bounds (Mbacke et al., 2023; Alquier et al., 2024). For
adversarial training algorithms, the prior P can be understood as the weight initialization, while the
posterior Q can be viewed as the distribution of model parameters at a certain training epoch.

3.2 RELATING ROBUST GENERALIZATION TO HESSIAN AND POSTERIOR STRUCTURE

So far, we’ve established a generic upper bound on robust generalization. To further digest Lemma
3.2, we need to set the prior P and the posteriorQ properly such that the right-hand side of Equation
2 can be simplified into an analytical form while being sufficiently tight to yield useful insights.
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Specifically, we first introduce the following assumption regarding the prior and the posterior.
Assumption 3.3 (Gaussian Prior & Posterior). We assume both P and Q follow Gaussian distribu-
tions: P = N (0, σ2

PI) and Q = N (µQ,ΣQ), where σP ∈ R+, µQ ∈ Rm and ΣQ ≻ 0.

For the ease of presentation, we assume the posterior is a single Gaussian distribution for the fol-
lowing derivations. However, we note that our theoretical results and proof techniques can be easily
generalized to scenarios where Q is modeled as a mixture of Gaussians (Corollary 3.8).

The following lemma, proven in Appendix A.2, illustrates how the KL divergence term in Equation
2 can be simplified into an analytically tractable expression using Assumption 3.3.
Lemma 3.4. Let the prior P = N

(
0, σ2

PI
)

and the posterior Q = N
(
µQ,ΣQ

)
. Then, we have

KL(Q∥P) = Tr(ΣQ)

2σ2
P

+
∥µQ∥22
2σ2

P
− m

2
+

m

2
lnσ2

P −
1

2
ln detΣQ. (3)

Compared to the commonly-adopted assumption that both P and Q are spherical Gaussians (Grun-
wald et al., 2021; Jin et al., 2022; Mbacke et al., 2023), assuming an isotropic Gaussian prior while
allowing a general Gaussian posterior enables an analytically tractable yet less restrictive expression
of the KL divergence term. Since the robust generalization bound derived in Lemma 3.2 holds for
any data-independent prior and posterior, setting P = N (0, σ2

PI),Q = N (µQ,ΣQ) does not com-
promise the validity of the bound. Such choices retain the simplicity of a closed-form KL divergence
while capturing anisotropic parameter variability through the full covariance matrix ΣQ.

In addition, to deal with the first empirical adversarial loss term on the right-hand side of Equation
2, we introduce the following quadratic loss assumption regarding the posterior Q, which enables
us to further connect the expected empirical adversarial loss to the Hessian and posterior structure.
Assumption 3.5 (Quadratic Loss). We assume there exist a local optimum w∗ ∈ Rm such that for
any w ∼ Q, R̂adv(w,S) can be characterized by the following quadratic loss defined at w∗:

R̂adv(w,S) = R̂adv(w
∗,S) + 1

2
(w −w∗)⊤H∗(w −w∗), (4)

where H∗ is the Hessian matrix with the empirical adversarial loss R̂adv(w,S) at the local optimum
w∗. For simplicity, we assume the Hessian matrix at w∗ is positive definite1, namely H∗ ≻ 0.

The quadratic loss assumption has been adopted in prior works for formalizing the learning dynam-
ics of ML models (Bartlett et al., 2021; Liu et al., 2021; Ziyin et al., 2021; Suri et al., 2024; Ziyin
et al., 2024). Imposing such an assumption not only simplifies the derivations but also can largely
capture the dynamics of deep learning models used in practice. For instance, the stationary dynamics
of SGD can be viewed as having a quadratic potential near a local minimum (Liu et al., 2021).
Lemma 3.6. Under Assumptions 3.3 and 3.5, we can simplify the expected adversarial loss as:

Ew∼Q
[
R̂adv(w,S)

]
= R̂adv(w

∗,S) + 1

2
(µQ −w∗)⊤H∗(µQ −w∗) +

1

2
Tr(H∗ΣQ). (5)

Lemma 3.6, proven in Appendix A.3, suggests that close to a local minimum w∗, the expected em-
pirical adversarial loss under Q is primarily governed by the distance between µQ and w∗ induced
by H∗, plus the trace of the multiplication of the Hessian and the posterior covariance Tr(H∗ΣQ).

By expressing the KL divergence and the expected empirical adversarial loss terms using Equation
3 and Equation 5 in the robust generalization bound in Lemma 3.2, we obtain the following result.
Theorem 3.7 (Robust Generalization with Gaussians & Quadratic Loss). Under the same set of
conditions as assumed in Lemmas 3.2, 3.4 and 3.6, with probability at least 1− α, we have

Ew∼Q[Radv(w)] ≤ 1

2
Tr(H∗ΣQ) +

1

2
(µQ −w∗)⊤H∗(µQ −w∗) + R̂adv(w

∗,S)

+
1

2β

(
Tr(ΣQ)

σ2
P

+
∥µQ∥22
σ2
P
−m+m lnσ2

P − ln detΣQ

)
+

βC2

8|S|
− 1

β
lnα. (6)

1Technically, we can only ensure H∗ is a positive semidefinite matrix; however, one can easily enforce it
to be positive definite by adding a small L2 weight-norm regularization term to the empirical adversarial loss,
which is a typical implementation adopted in practice for training ML models.
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Although the perturbation strength ϵ does not explicitly appear on the right hand side of Equation
6, it will implicitly affect the bound through the Hessian matrix H∗ and posterior parameters (µQ,
ΣQ), as long as we are analyzing algorithms trained to minimize the empirical adversarial loss. The
hyperparameter β balances empirical adversarial loss, KL divergence, and complexity penalty. In
practice, β is often chosen by cross-validation or proportional to

√
|S| so that all β-involved terms

are of comparable order. Among all the terms in Equation 6, R̂adv(w
∗,S), C, α, m, and σ2

P can
be viewed as constants once the learning setup is decided. The remaining components–such as the
matrix trace terms Tr(H∗ΣQ) and Tr(ΣQ), the weight norm ∥µQ∥22, and the log-determinant term
ln detΣQ–depend on the posterior distribution Q, which will be largely affected by optimization
and learning dynamics. As we will illustrate in Section 4, these quantities will be the primary factors
explaining the underlying mechanisms of adversarially robust generalization.

Assumptions 3.3 and 3.5 assume the posterior is a single Gaussian centered around a local optimum.
In practice, however, the posterior learned by adversarial training may be distributed across multiple
regions in the model parameter space. To accommodate this, we relax the assumptions and extend
our analysis to a more general family of Gaussian mixture posterior distributions. The corresponding
robust generalization bound is derived in Corollary 3.8, with the full proof deferred to Appendix A.4.

Corollary 3.8 (Robust Generalization with Gaussian Mixtures & Locally Quadratic Loss). Let P =
N (0, σ2

PI) be the prior, and let the posterior be a mixture of Gaussians with the form:

Q =

L∑
ℓ=1

πℓQℓ, where Qℓ = N (µℓ,Σℓ),

L∑
ℓ=1

πℓ = 1, and πℓ ≥ 0. (7)

For each posterior component Qℓ, assume the adversarial loss is locally quadratic at a respective
local optimal point w∗

ℓ . For any β > 0 and α ∈ (0, 1), with probability at least 1− α, we have

Ew∼Q[Radv(w)] ≤
L∑

ℓ=1

πℓ

[
R̂adv(w

∗
ℓ ,S) +

1

2
(µℓ −w∗

ℓ )
⊤H∗

ℓ (µℓ −w∗
ℓ ) +

1

2
Tr(H∗

ℓΣℓ)

]

+

L∑
ℓ=1

πℓ

2β

(
Tr(Σℓ)

σ2
P

+
∥µℓ∥22
σ2
P
−m+m lnσ2

P − ln detΣℓ

)
+

βC2

8|S|
− 1

β
lnα. (8)

4 HOW LEARNING DYNAMICS SHAPE ROBUST GENERALIZATION?

In the previous section, we’ve established an upper bound on robust generalization in Theorem 3.7,
relating the population adversarial risk to the curvature of the empirical adversarial loss H∗ and the
covariance matrix of the posterior distribution ΣQ, through a PAC-Bayesian framework. However,
it is still difficult to comprehend what the posteriorQ really means in the context of robust learning.
Therefore, we propose to investigate the behavior of the posterior mean µQ and covariance ΣQ for
models learned during adversarial training with stochastic gradient descent (SGD) optimizers.

More specifically, we analyze the learning dynamics of SGD with Polyak momentum. The iterative
updates of model parameters during SGD can be cast into a dynamical system: for t = 1, 2, . . . ,

gt = H∗(wt−1 −w∗) + ξt−1, ht = µht−1 + gt, wt = wt−1 − ηht, (9)

where η > 0 is the learning rate and µ ∈ [0, 1) denotes the momentum hyperparameter. In Equation
9, H∗(wt−1 −w∗) can be understood as the expected gradient incurred by SGD with respect to the
empirical adversarial loss R̂adv(w,S) assumed in Equation 4, while the extra ξt−1 term denotes the
mini-batch gradient noise with E[ξt−1] = 0. Throughout this section, we interpret the posterior Q
as the data-dependent distribution of the SGD iterates wt conditioned on the training set S, either at
stationarity or at a finite iteration t. We use Ct−1 = E[ξt−1ξ

⊤
t−1] to denote its covariance.

Built upon the update rule defined by Equation 9, the following lemma, proven in Appendix B.1,
characterizes how the posterior covariance ΣQ is updated during the optimization process of SGD.

Lemma 4.1 (State-Space Representation & Covariance Propagation). Consider the dynamical sys-
tem induced by SGD defined in Equation 9 with learning rate η > 0 and momentum µ ∈ [0, 1).

5
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Denote by the joint state vector ut =

[
wt −w∗

ht

]
∈ R2m, then we have

ut = Aut−1 +Gξt−1, where A =

[
I− ηH −ηµI

H µI

]
, G =

[
−ηI
I

]
. (10)

Suppose at the initial state, the (posterior) distribution of the model parameters has covariance Σt

(i.e., at time step t), then after running k ≥ 1 steps of SGD with momentum, we have

Σt+k = ΠAk Σt (A
k)⊤Π⊤ +

k−1∑
j=0

(ΠAjG)Ct+k−1−j (ΠAjG)⊤, (11)

where Π = [ I 0 ] denotes the projection operator mapping to the first state.

Equipped with the dynamical view of SGD dynamics derived in Lemma 4.1, we now introduce two
variations of the PAC-Bayesian robust generalization bound under: (i) the stationary regime (Section
4.1), where the posterior reaches a steady state, and (ii) the early transition phase from stationary to
non-stationary state (Section 4.2), which is often triggered by a learning rate change. Both scenarios
are highly relevant to explaining the robust overfitting phenomenon detailed in Rice et al. (2020).

4.1 STATIONARY REGIME

Recall that the remaining task is to analyze the posterior mean and covariance (µQ,ΣQ) such that
we can understand all the technical terms in the PAC-Bayesian robust generalization bound in The-
orem 3.7. The following two lemmas, proven in Appendix B.2, characterize how the mean and
covariance are derived from SGD dynamics under the stationary regime.

Lemma 4.2 (Stationary Mean). Under Assumptions 3.3 and 3.5, suppose the posteriorQ reaches a
steady state with stationary mean µ = limt→∞ E(wt), then we have µ = w∗.

Lemma 4.3 (Stationary Covariance). Under the same conditions as in Lemma 4.2, suppose both the
stationary covariance Σ = limt→∞ Cov(wt) and the noise covariance C = limt→∞ Ct exist and
are finite. Then, the following equation holds:

Σ = ΠΣjoint, where Σjoint satisfies Σjoint = AΣjointA
⊤ +GCG⊤, (12)

where Π, A, and G are defined in Lemma 4.1. In addition, if the noise covariance C commutes
with the Hessian H∗, then the stationary covariance Σ has a closed-form solution:

Σ =

[
H∗
(
2I− η

1 + µ
H∗
)]−1

η

1− µ
C. (13)

Remark 4.4. Assuming C commutes with H∗ under the stationary regime aligns with empirical
observations that gradient noise covariance tends to align with the Hessian eigenspectrum during
representation formation in neural networks (Ziyin et al., 2025). Denote by {λ1, λ2, . . . , λm} and
{γ1, γ2, . . . , γm} the two sets of eigenvalues of H∗ and C, respectively. As shown in the proof of
Lemma 4.3, the set of eigenvalues of the stationary covariance Σ is given by:

∀i ∈ {1, 2, . . . ,m}, σ2
i =

η

1− µ
· γi

λi ·
(
2− η

1+µλi

) , (14)

where σ2
i stands for the i-th eigenvalue of Σ. Note that the stability condition of Equation 14 requires

that 0 < λi <
2(1+µ)

η for any i. Otherwise, the stationary covariance Σ does not exist. Since both
the Hessian H∗ and the noise covariance C implicitly depend on the perturbation strength ϵ, altering
the value of ϵ will correspondingly influence the structure of stationary covariance Σ.

We can prove the following theorem by applying the stationary mean and covariance formulations
in the above lemmas to the PAC-Bayesian robust generalization bound in Theorem 3.7.

Theorem 4.5 (Robust Generalization under Stationary Regime). Assume the same conditions as
used in Theorem 3.7 and Lemma 4.1. Suppose the posterior Q reaches a stationary state, and C

6
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commutes with H∗. Then, for any β > 0 and α ∈ (0, 1), with probability at least 1− α, we have

Ew∼Q[Radv(w)] ≤ 1

2

m∑
i=1

λi σ
2
i +

1

2β

(∑m
i=1 σ

2
i

σ2
P

+
∥w∗∥22
σ2
P
−

m∑
i=1

lnσ2
i

)

+ R̂adv(w
∗,S) + 1

2β

(
−m+m lnσ2

P
)
+

βC2

8|S|
− 1

β
lnα, (15)

where λi, γi and σi are the i-th eigenvalues of H∗,C and Σ, respectively defined in Remark 4.4.

Remark 4.6. Assuming the posterior Q reaches a stationary state during the optimization of ad-
versarial loss using SGD, Theorem 4.5 suggests that the PAC-Bayesian robust generalization bound
depends on analytical terms related to the Hessian and noise covariance eigenvalues (λi, γi), along
with learning parameters such as learning rate η and momentum µ. As we will illustrate in Section 5,
the dominant terms in Equation 15 will be the multiplicative term

∑
i λiσ

2
i and the log-determinant

term−
∑

i lnσ
2
i , since the (top) eigenvalues of the Hessian matrix H∗ can be order-wise larger than

those of C, and the value of the posterior covariance eigenvalues σi defined by Equation 14 are
usually very small, especially after the learning rate step decay during adversarial training.

4.2 INITIAL PHASE OF NON-STATIONARY TRANSITION

While the stationary posterior distribution derived in Section 4.1 explains a lot about the SGD dy-
namics and leads to grounded interpretations, one might also be interested in how the key theoretical
quantities evolve if the stationary assumption breaks. This is particularly important for explaining
the robust overfitting phenomenon (Rice et al., 2020)–it remains an open question why the test robust
error drops immediately after the first learning rate decay step but steadily increases afterward.

The following theorem, whose formal version and proof are in Appendix B.3, shows how the pos-
terior covariance ΣQ behaves in the early non-stationary transient phase. We consider a scenario
where the SGD-induced dynamical system (Equation 9) reaches a stationary state with learning rate
η1 until time step t, whereas at step t+ 1, the learning rate is reduced to η2 for future SGD steps.

Theorem 4.7 (Robust Generalization after Learning Rate Decay: Informal). Assume the same con-
ditions as used in Theorem 3.7 and Lemma 4.1. Suppose Q reaches a stationary state for SGD with
(η1, µ) at time step t and C commutes with H∗. After reducing the learning rate from η1 to η2 and
running k steps of SGD, the i-th eigenvalue of the posterior covariance can be approximated as:

σ2
i (t+k) ≈ η1γi

λi(1− µ)
e−ρik +

η22γi
λi(1− µ)

(
1− e−ρik

)
, (16)

where λi, γi are the i-th Hessian and noise covariance eigenvalues at time t, respectively and ρi > 0
is the decaying factor depending on (η2, µ, λi). For clarity, we refer to the first term in equation 16
as the propagation term, since it transports the covariance from the previous equilibrium, and to
the second term as the injected term, since it reflects the newly injected gradient noise after the
learning-rate change. In addition, with probability at least 1− α, we have

Ew∼Q[Radv(w)] ≤ 1

2

m∑
i=1

λi σ
2
i (t+ k) +

1

2β

(∑m
i=1 σ

2
i (t+ k)

σ2
P

+
∥w∗∥22
σ2
P
−

m∑
i=1

lnσ2
i (t+ k)

)

+ R̂adv(w
∗,S) + 1

2β

(
−m+m lnσ2

P
)
+

βC2

8|S|
− 1

β
lnα. (17)

Remark 4.8. The decaying factor ρi is formally defined in Equation 32 (Appendix B.3). Theo-
rem 4.7 characterizes how the covariance of the posterior Q changes in the early transition phase
to a non-stationary state due to learning rate drop, under the condition that C and H∗ share the
same eigenspace. Similar to our analysis in Remark 4.6, one can expect that

∑
i λi σ

2
i (t+k) and

−
∑

i lnσ
2
i (t+k) remain the dominating factors. Note that η1 controls the initial equilibrium, η2

the final equilibrium, λi the curvature sensitivity, γi the noise level, and k the interpolation horizon.
In the early or transient phase (small k), propagation terms dominate, especially when momentum
µ or step size η2 are not small. In contrast, in the late phase (large k), the injected term becomes
dominant, and σ2

i (t+k) converges to the new stationary covariance determined by (η2, µ, λi).
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(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average Weight Norm (e) λσ2 (f) − lnσ2

Figure 1: Curves of Hessian and posterior parameters derived from our generalization bounds under
standard AT on CIFAR-10. Vertical dashed lines mark learning rate decays at epochs 100 and 150.
From epoch 150 to 200, the train robust accuracy increases from 61.81% to 75.96%, while the test
robust accuracy decreases from 50.27% to 46.71%, indicating aggravated robust overfitting.

Remark 4.9. Our closed-form derivations of the stationary and non-stationary covariance behavior
(Theorems 4.5 and 4.7) build on the assumption that C commutes with H∗. Such a commutative
assumption has also been adopted in several previous works for simplifying the analysis of the SGD
dynamics (Liu et al., 2021; Ziyin et al., 2021; Suri et al., 2024). One can prove that if H∗ and
C are commutative, they share the same set of eigenbases (see Appendix B.4 for rigorous proof).
When the models are optimized through stochastic gradient descent, prior theoretical literature has
found evidence that the eigenspace between the loss Hessian and the gradient noise covariance is
largely aligned with each other (Ziyin et al., 2021; 2024; Arous et al., 2024; Ziyin et al., 2025).
Nevertheless, there are no theoretical guarantees that these two matrices will always be aligned. If
the commutative assumption is violated, our robust generalization bounds may become less accurate.

5 EXPERIMENTS

In this section, we aim to answer three central questions through empirical evaluations: (i) how
Hessian and posterior structure evolve under standard adversarial training (Section 5.1), (ii) how
robustness-enhancing methods, such as adversarial weight perturbation (AWP), differ in their be-
havior (Section 5.2), and (iii) whether the commutativity and alignment assumptions hold (Section
5.3). We approximate the leading Hessian eigenvalues {λi} and the gradient noise eigenvalues {γi}
using the procedure described in Appendix E. To be more specific, we compute the top-k Hessian
and top-k noise covariance eigenvalues as follows:

∀i ∈ {1, 2, . . . , k}, λi =
v⊤
i Hvi

v⊤
i vi

, γi =
[
Cov(V⊤gb)

]
ii
, (18)

where vi is the i-th eigenvector of Hessian H at the evaluated epoch, gb stands for the per-batch
gradient, and V = [v1,v2, . . . ,vk] is the eigenspace spanned by the top k Hessian eigenvectors.
Detailed settings and additional experiments are provided in Appendices D and F, respectively.

5.1 STANDARD ADVERSARIAL TRAINING

We begin by examining the Hessian and posterior covariance structure induced by standard adver-
sarial training (AT) (Madry et al., 2017). Figure 1 summarizes the evolution of robust loss, spectral
quantities, and the key PAC-Bayesian terms throughout training. Figures 1b and 1c demonstrate
the evolution dynamics of the top-20 Hessian eigenvalues {λi} and the top-20 noise covariance

8
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(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average Weight Norm (e) λσ2 (f) − lnσ2

Figure 2: Learning curves of Hessian and posterior parameters under AWP on CIFAR-10. From
epoch 150 to 200, the train robust accuracy increases from 48.01% to 50.00%, while the test robust
accuracy increases from 54.03% to 55.49%, confirming AWP’s strong robust generalization ability.

eigenvalues {γi}, respectively. We report their top-2, median, first and third quantile statistics for
each training epoch. We observe that Hessian eigenvalues {λi} increase sharply after each learning
rate decay at epochs 100 and 150, leading to an increasingly heavy-tailed spectrum, whereas the
noise covariance {γi} also increases after learning rate drops, but their growth is much smaller. In
addition, Figures 1e and 1f report the behavior of the two dominating factors derived in Section 4:
{λiσ

2
i } and {− lnσ2

i }. While λσ2 decreases after each learning rate decay, the increase in − lnσ2

is much larger in magnitude. Consequently, the overall robust generalization bound increases, coin-
ciding with the onset of robust overfitting, depicted in Figure 1a. We also plot the learning curve for
the average weight norm 1

m∥w∥
2
2 in Figure 1d, showing their stability throughout training.

It is worth noting that immediately after the learning rate drops (epochs 100–102 and 150–152), the
training dynamics enter a non-stationary transient regime while the iterates remain within the same
basin. In this phase, the bound is governed by Theorem 4.7 rather than the stationary form of Theo-
rem 4.5. Consistent with this prediction, we observe that the bound exhibits a temporary downward
trend before rising again. This “drop-then-rise” behavior perfectly mirrors the empirical pattern in
robust test loss, which decreases briefly after each decay before increasing, thereby reinforcing our
theoretical interpretation of robust overfitting.

To study the generalizability of our findings, we choose ϵ from {0, 2, 4, 12, 16}/255 with batch size
128, as well as varying the batch size from {64, 256}with ϵ = 8/255. Figures 5 to 10 summarize the
results: increasing ϵ mainly affects the curvature spectrum, whereas changing the batch size primar-
ily modulates the noise eigenvalues. Moreover, we conduct additional experiments on CIFAR-100
(Figure 11) and SVHN (Figure 12), as well as with a different architecture, WideResNet-34-10 (Fig-
ure 13). In all cases, we consistently observe robust overfitting together with the same qualitative
trends: λ and γ both increase after learning rate drop, posterior covariances σ2 shrink, and the dom-
inating components λσ2 and − lnσ2 evolve in a manner that explains the emergence of overfitting.

5.2 ADVERSARIAL WEIGHT PERTURBATION

We study the dynamics of the key quantities under AWP on CIFAR-10. Figure 2 shows that AWP is
highly effective: robust overfitting does not occur, and the test robust loss remains stable throughout
training. Compared to standard AT, both the Hessian eigenvalues {λi} and the noise eigenvalues
aligned with Hessian directions {γi} are substantially smaller in magnitude. In addition, they are
more evenly spread across directions, with the top values showing larger separation, but all remain-
ing concentrated at low levels. This indicates that curvature and gradient-noise variances are both
suppressed, leading to posterior variances {σ2

i } that are larger than in AT. Consequently, the two
dominating terms λσ2 and − lnσ2 are significantly reduced, yielding a smaller overall bound. We

9
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(a) AT Commutativity (b) AWP Commutativity (c) AT Alignment (d) AWP Alignment
Figure 3: Comparison of commutativity and alignment properties under AT and AWP.

observe similar trends for semi-supervised adversarial training algorithms (Figure 14), resulting in
consistently smaller bounds.

To facilitate a clearer comparison, we report the numerical differences between AT and AWP in
terms of the derived bounds (Tables 1 and 2). Due to space limits, we provide the result tables in
Appendix F. Both the aggregated quantity

∑
i λiσ

2
i and −

∑
i lnσ

2
i and the growth from Top-10

to Top-20 are consistently smaller under AWP than under AT. This indicates that AWP’s bounds
are substantially tighter, perfectly aligning with the empirical finding that AWP significantly out-
performs AT, thereby validating our theoretical claims. Moreover, by comparing Table 1 (stationary
regime) and Table 2 (initial phase of non-stationary transition), we notice that at the onset of learning
rate decay, the bounds decrease for both AT and AWP. This explains why training and test robust
losses drop at the beginning of decay. However, once the training re-enters the stationary regime, the
bound under AT increases markedly, whereas the bound under AWP remains relatively stable. Ac-
cording to Theorems 4.5 and 4.7, these spectral terms inherently track the evolution of the model’s
robust generalization capability under adversarial training, explaining both the initial robustness
improvement after learning-rate decay and the later robust overfitting phenomenon (Figure 1a).

5.3 COMMUTATIVITY AND ALIGNMENT ASSUMPTIONS

We examine the commutativity and alignment assumptions underlying our theoretical analyses. Fig-
ure 3 reports our results under standard AT and AWP. Figures 3a and 3b report the metrics evaluating
the degree of commutativity, including the ratio of diagonal to off-diagonal energy, the relative norm
of the commutator, and the maximum absolute off-diagonal entry. These quantities remain small
throughout training, indicating that Hessian and noise covariance are highly commutative. In addi-
tion, Figures 3c and 3d measure alignment using cosine similarities between the top eigenvectors.
Under AT, we observe consistently strong alignment with some fluctuations, while AWP yields even
higher and more stable alignment across epochs. These results confirm that both commutativity and
alignment assumptions largely hold empirically, and further highlight that AWP not only suppresses
curvature and noise magnitudes but also improves the structural alignment between them.

If the commutativity assumption breaks, then the two matrices cannot be simultaneously diagonal-
ized, and the spectral quantities {λi, γi} would no longer represent matched curvature–noise pairs.
As a consequence, the posterior covariance could exhibit uncontrolled cross-terms, making the PAC-
Bayesian bound less interpretable and potentially much looser. Similarly, if alignment were absent,
the principal directions of stochastic gradient noise would not coincide with those of curvature.
This mismatch would spread noise across directions with different curvatures, leading to inefficient
exploration, less reliable stationary approximations, and weaker predictive power of our framework.

6 CONCLUSION

We developed a PAC-Bayesian framework that explicitly links the posterior distribution of model
parameters to the robust generalization capabilities of adversarially trained models. Using the frame-
work, we connect optimization dynamics and robust generalization by deriving closed-form poste-
rior covariances for two representative training regimes and integrating them into a compact bound.
Across diverse empirical configurations, we validate the usefulness of our theoretical results, high-
lighting the posterior geometry as a unifying principle for understanding and improving adversari-
ally robust generalization. Promising future directions include extending our theoretical analysis to
more general settings, such as adaptive learning rate optimizers or non-quadratic loss landscapes,
and studying whether our insights can be leveraged to design better robust learning methods.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All of our theoretical results
are stated with precise assumptions in the main paper, and their proofs are detailed in Appendices A-
B. Experimental settings, including datasets, model architectures, training procedures, and spectral
estimation details, are provided in Section D. Our code and implementations are available at this
anonymized url, which contains scripts to reproduce all the figures and tables reported in the paper.
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A PROOFS OF MAIN THEORETICAL RESULTS IN SECTION 3

A.1 PROOF OF LEMMA 3.2

To prove Lemma 3.2, we first state a general PAC-Bayes inequality, also known as Catoni’s
bound (Catoni, 2003).
Lemma A.1 (PAC-Bayes Bound (Catoni’s bound)). Let α ∈ (0, 1), β > 0, and D be any distribu-
tion over X × Y . LetW be a parameter space and P be a data-independent prior onW . Consider
any measurable loss ℓ : W × X × Y → [0, C] bounded by C > 0. Given an i.i.d. sample set
S = {(xi, yi)}|S|

i=1 drawn from D, for any posterior Q onW , with probability at least 1 − α over
the draw of S,

Ew∼QE(x,y)∼D
[
ℓ(w;x, y)

]
≤ Ew∼Q

[
1
|S|

∑
(x,y)∈S

ℓ(w;x, y)
]
+

βC2

8|S|
+

KL(Q∥P) + ln 1
α

β
.

Proof of Lemma 3.2. We instantiate Lemma A.1 with the adversarial loss

ℓ̃(w;x, y) := ℓadv(w,x, y) = max
δ∈Bε(0)

ℓ(w; x+ δ, y) ,

where the base loss ℓ is bounded by C and the perturbation set Bε(0) is fixed. Since ℓ ∈ [0, C], the
maximization preserves boundedness, so ℓ̃ ∈ [0, C]. Measurability follows directly from that of ℓ
and the continuity of (x, δ) 7→ ℓ(w;x+ δ, y).

Applying Lemma A.1 to ℓ̃ yields

Ew∼QE(x,y)∼D
[
ℓadv(w,x, y)

]
≤ Ew∼Q

[
1
|S|

∑
(x,y)∈S

ℓadv(w,x, y)
]
+
βC2

8|S|
+
KL(Q∥P) + ln 1

α

β
.

The left-hand side is exactly Ew∼Q[Radv(w)], and the empirical term is
Ew∼Q

[
1
|S|
∑

(x,y)∈S ℓadv(w,x, y)
]
. Rearranging the remaining terms gives inequality equa-

tion 2, which completes the proof.

A.2 PROOF OF LEMMA 3.4

Proof of Lemma 3.4. By definition,

KL(Q∥P) =
∫

q(w) ln
q(w)

p(w)
dw = Ew∼Q[ln q(w)− ln p(w)] .

The density functions of P and Q are

p(w) =
1

(2π)m/2 σm
P

exp

(
− 1

2σ2
P
w⊤w

)
,

q(w) =
1

(2π)m/2 det(ΣQ)1/2
exp
(
− 1

2 (w − µQ)
⊤Σ−1

Q (w − µQ)
)
.

Taking logs, we obtain

ln p(w) = −m
2 ln(2π)−m lnσP − 1

2σ2
P
w⊤w,

ln q(w) = −m
2 ln(2π)− 1

2 ln det(ΣQ)− 1
2 (w − µQ)

⊤Σ−1
Q (w − µQ).

Hence,

KL(Q∥P) = Ew∼Q

[
− 1

2 ln det(ΣQ)− 1
2 (w − µQ)

⊤Σ−1
Q (w − µQ) +m lnσP + 1

2σ2
P
w⊤w

]
.

14
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Since w ∼ N (µQ,ΣQ), the following standard identities hold.

First, by the definition of covariance,

EQ
[
(w − µQ)(w − µQ)

⊤] = ΣQ.

Multiplying both sides by Σ−1
Q and taking the trace yields

EQ
[
(w − µQ)

⊤Σ−1
Q (w − µQ)

]
= Tr

(
Σ−1

Q ΣQ
)
= m,

since Tr(Im) = m.

Second, expanding w⊤w around its mean gives

w⊤w = (w − µQ + µQ)
⊤(w − µQ + µQ) = ∥w − µQ∥22 + 2µ⊤

Q(w − µQ) + ∥µQ∥22.

Taking expectations, the cross term vanishes (since E[w − µQ] = 0), so

EQ
[
w⊤w

]
= EQ

[
∥w − µQ∥22

]
+ ∥µQ∥22.

By definition of covariance,
EQ
[
∥w − µQ∥22

]
= Tr(ΣQ) .

Thus,
EQ
[
w⊤w

]
= Tr(ΣQ) + ∥µQ∥22,

where ∥µQ∥22 denotes the squared Euclidean norm of the posterior mean vector.

Plugging these into the expression above gives

KL(Q∥P) = − 1
2 ln det(ΣQ)− 1

2m+m lnσP + 1
2σ2

P

(
Tr(ΣQ) + ∥µQ∥22

)
,

which is equivalent to the stated form in Lemma 3.4.

A.3 PROOF OF LEMMA 3.6

Proof of Lemma 3.6. Under Assumption 3.5, the empirical adversarial risk admits a quadratic form
around the empirical minimizer w∗ with Hessian H∗ ⪰ 0:

R̂adv(w,S) = R̂adv(w
∗,S) + 1

2 (w −w∗)⊤H∗(w −w∗), (19)

where the linear term vanishes because∇wR̂adv(w
∗,S) = 0.

Taking expectation over w ∼ Q = N (µQ,ΣQ) and using equation 19 gives

Ew∼Q

[
R̂adv(w,S)

]
= R̂adv(w

∗,S) + 1
2 Ew∼Q

[
(w −w∗)⊤H∗(w −w∗)

]
.

Write the second term using the second-moment identity

Ew∼Q
[
(w −w∗)(w −w∗)⊤

]
= ΣQ + (µQ −w∗)(µQ −w∗)⊤,

which holds for any Gaussian (and more generally any distribution with mean µQ and covariance
ΣQ). Hence,

Ew∼Q
[
(w −w∗)⊤H∗(w −w∗)

]
= Tr

(
H∗ E

[
(w −w∗)(w −w∗)⊤

])
= Tr(H∗ΣQ) + Tr

(
H∗(µQ −w∗)(µQ −w∗)⊤

)
= Tr(H∗ΣQ) + (µQ −w∗)⊤H∗(µQ −w∗),

where we used identity Tr(Auu⊤) = u⊤Au.

Combining the above displays yields

Ew∼Q
[
R̂adv(w,S)

]
= R̂adv(w

∗,S) + 1
2 (µQ −w∗)⊤H∗(µQ −w∗) + 1

2Tr(H
∗ΣQ),

which is exactly equation 5.

15
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A.4 PROOF OF COROLLARY 3.8

Proof of Corollary 3.8. We start with the most general PAC-Bayesian bound in Lemma 3.2, since
it holds for any posterior distribution Q. For any β > 0 and any α ∈ (0, 1), with probability at least
1− α over the finite sample set S, we have

Ew∼Q[Radv(w)] ≤ Ew∼Q

[
1

|S|
∑

(x,y)∈S

ℓadv(w,x, y)

]
+

1

β
KL(Q∥P) + βC2

8|S|
− 1

β
lnα. (20)

We now instantiate this bound by choosing the posterior to be a mixture of Gaussian distributions
specified in Equation 7 and the prior P = N (0, σ2

PI).

Step 1: Decomposition of the empirical adversarial loss. By the definition of expectations under
mixture distributions, for any measurable function f :W → R,

Ew∼Q[f(w)] =

L∑
ℓ=1

πℓ Ew∼Qℓ
[f(w)]. (21)

Applying Equation 21 to f(w) = R̂adv(w,S) gives

Ew∼Q
[
R̂adv(w,S)

]
=

L∑
ℓ=1

πℓ Ew∼Qℓ

[
R̂adv(w,S)

]
. (22)

For each Gaussian component Qℓ, note that we assume R̂adv(w,S) can be locally approximated
around the basin-specific critical point w∗

ℓ by a quadratic form with Hessian H∗
ℓ . Thus, applying

Lemma 3.6 applies to each component, we obtain

Ew∼Qℓ

[
R̂adv(w,S)

]
= R̂adv(w

∗
ℓ ,S) +

1

2
(µℓ −w∗

ℓ )
⊤H∗

ℓ (µℓ −w∗
ℓ ) +

1

2
Tr(H∗

ℓΣℓ). (23)

Substituting Equation 23 into Equation 22 yields the mixture-expanded empirical loss:

Ew∼Q[R̂adv(w,S)] =
L∑

ℓ=1

πℓ

[
R̂adv(w

∗
ℓ ,S) + 1

2 (µℓ −w∗
ℓ )

⊤H∗
ℓ (µℓ −w∗

ℓ ) +
1
2Tr(H

∗
ℓΣℓ)

]
.

(24)

Step 2: KL divergence upper bound for the mixture posterior. Since KL divergence is convex
in its first argument, the mixture posterior Q =

∑L
ℓ=1 πℓQℓ satisfies

KL(Q∥P) = KL
( L∑

ℓ=1

πℓQℓ

∥∥∥P) ≤ L∑
ℓ=1

πℓ KL(Qℓ ∥P), (25)

where the inequality follows from the definition KL divergence and the log sum inequality. For each
Qℓ = N (µℓ,Σℓ), Lemma 3.4 provides the closed-form expression:

KL(Qℓ ∥P) =
Tr(Σℓ)

2σ2
P

+
∥µℓ∥22
2σ2

P
− m

2
+

m

2
lnσ2

P −
1

2
ln detΣℓ. (26)

Multiplying Equation 25 by 1/β and substituting Equation 26 yields

1

β
KL(Q∥P) ≤

L∑
ℓ=1

πℓ

2β

(
Tr(Σℓ)

σ2
P

+
∥µℓ∥22
σ2
P
−m+m lnσ2

P − ln detΣℓ

)
. (27)

Finally, we substitute the empirical-loss expansion (Equation 24) and the KL bound (Equation 27)
into Equation 20. Noticing that the remaining terms βC2

8|S| and− 1
β lnα do not depend on ℓ, we obtain

Ew∼Q[Radv(w)] ≤
L∑

ℓ=1

πℓ

[
R̂adv(w

∗
ℓ ,S) + 1

2 (µℓ −w∗
ℓ )

⊤H∗
ℓ (µℓ −w∗

ℓ ) +
1
2Tr(H

∗
ℓΣℓ)

]
+

L∑
ℓ=1

πℓ

2β

(
Tr(Σℓ)

σ2
P

+
∥µℓ∥22
σ2
P
−m+m lnσ2

P − ln detΣℓ

)
+

βC2

8|S|
− 1

β
lnα.

This expression matches exactly the bound asserted in Corollary 3.8, completing the proof.

16
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B PROOFS OF MAIN THEORETICAL RESULTS IN SECTION 4

B.1 PROOF OF LEMMA 4.1

Proof of Lemma 4.1. State-space form. From the updates in equation 9,

ht = µht−1 +H∗(wt−1 −w∗) + ξt−1,

wt −w∗ = (wt−1 −w∗)− ηht

= (I− ηH∗)(wt−1 −w∗)− ηµht−1 − η ξt−1.

Stacking the two lines with the joint state ut :=

[
wt −w∗

ht

]
∈ R2m, we obtain the linear time-

varying system

ut = Aut−1 +G ξt−1, A =

[
I− ηH∗ −ηµ I

H∗ µ I

]
, G =

[
−ηI
I

]
,

which is exactly equation 10.

Unrolling the trajectory. We claim that for every k ≥ 1,

ut+k = Akut +

k−1∑
j=0

AjG ξt+k−1−j . (28)

For k = 1 this is just the one-step recursion. Assume equation 28 holds for some k; multiply by A
and add Gξt+k to get

ut+k+1 = Ak+1ut +

k−1∑
j=0

Aj+1G ξt+k−1−j +Gξt+k = Ak+1ut +

k∑
j=0

AjG ξt+k−j ,

i.e., equation 28 with k ← k + 1.

Joint covariance. Let St := Cov(ut) = E[(ut−Eut)(ut−Eut)
⊤]. Using equation 28, bilinearity

of covariance, and Cov(MX,NY ) = M Cov(X,Y )N⊤ for deterministic M,N , we have

St+k = Cov(Akut) +

k−1∑
j=0

Cov(AjG ξt+k−1−j) + 2Cov
(
Akut,

k−1∑
j=0

AjG ξt+k−1−j

)
+

∑
0≤j ̸=ℓ≤k−1

Cov
(
AjG ξt+k−1−j , A

ℓG ξt+k−1−ℓ

)
.

Assume the mini-batch noises {ξt}t≥0 are zero-mean with finite second moments, Ct := Cov(ξt) ∈
Rm×m, independent across time, and for each t, ξt is independent of the past σ-algebra Ft :=
σ(u0, ξ0, . . . , ξt−1). Then Cov(ut, ξt+r) = 0 for all r ≥ 0, which nullifies the cross term. For
j ̸= ℓ, independence implies Cov(ξt+k−1−j , ξt+k−1−ℓ) = 0, killing the double sum. Hence

St+k = AkSt(A
k)⊤ +

k−1∑
j=0

AjGCt+k−1−j G
⊤(Aj)⊤. (29)

Parameter covariance via projection. Let Π := [ I 0 ] ∈ Rm×2m denote the projection onto the
parameter component, so that wt+k−w∗ = Πut+k. By linearity of covariance under deterministic
transforms,

Σt+k = Cov(wt+k −w∗) = Cov(Πut+k) = ΠSt+k Π
⊤.

Substituting equation 29 and distributing Π across each term gives

Σt+k = ΠAkSt(A
k)⊤Π⊤ +

k−1∑
j=0

(
ΠAjG

)
Ct+k−1−j

(
ΠAjG

)⊤
,

which is exactly equation 11.
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B.2 PROOFS OF LEMMAS IN SUBSECTION 4.1

Proof of Lemma 4.2. According to Equation 4 and the posterior Gaussian distribution, we have

Ew∼Q
[
∇w R̂adv(w,S)

]
= Ew∼Q

[
H∗(w −w∗)

]
= H∗(µQ −w∗). (30)

Note that we assume the posterior Q is stationary and is obtained via performing SGD algorithms
on R̂adv(w,S). This immediately implies that the expected adversarial loss gradient has to be a
zero vector, namely Ew∼Q

[
∇w R̂adv(w,S)

]
= 0; otherwise, running another step of SGD will

break the stationary assumption. Based on Equation 30, we have H∗(µQ − w∗) = 0. Since H∗

is the Hessian of a local optimum, it is therefore a positive definite matrix, which further implies
µQ = w∗.

Proof of Lemma 4.3. Joint Lyapunov equation and projection. From Lemma 4.1, the stacked state

ut =

[
wt −w∗

ht

]
∈ R2m obeys the linear recursion

ut = Aut−1 +G ξt−1, A =

[
I− ηH∗ −ηµ I

H∗ µ I

]
, G =

[
−ηI
I

]
,

with zero-mean, temporally independent noise {ξt} of covariance Ct = Cov(ξt). Iterating yields
ut = Atu0 +

∑t−1
j=0 A

jG ξt−1−j . Taking covariances, using independence across time and inde-
pendence from the past, gives

Σjoint
t = AtΣjoint

0 (At)⊤ +

t−1∑
j=0

AjGCt−1−j G
⊤(Aj)⊤.

Assuming the limits Σjoint = limt→∞ Σjoint
t and C = limt→∞ Ct exist and are finite, and the sys-

tem is mean-square stable (e.g., ρ(A) < 1), we obtain the unique solution of the discrete Lyapunov
equation

Σjoint = AΣjoint A
⊤ +GCG⊤.

Let Π = [ I 0 ] ∈ Rm×2m be the projection onto the parameter component; then Σ = Cov(wt) =
ΠΣjoint Π

⊤, which proves equation 12.

Closed form under commutativity. Assume H∗ and C are real symmetric and commute. Then
there exists an orthogonal U such that H∗ = UΛU⊤, C = UΓU⊤ with Λ = diag(λ1, . . . , λm)
and Γ = diag(γ1, . . . , γm). Define the block-orthogonal transform T := diag(U,U) and rotated
state/noise zt := T⊤ut, ζt := U⊤ξt. In this eigenbasis the dynamics decouple:

zt = Ã zt−1 + G̃ ζt−1, Ã =

[
I− ηΛ −ηµ I

Λ µ I

]
, G̃ =

[
−ηI
I

]
, Cov(ζt) = Γ.

Hence each eigendirection i follows a 2 × 2 “heavy-ball” system with curvature λ = λi and noise
variance γ = γi:

A(λ) =

[
1− ηλ −ηµ

λ µ

]
, G =

[
−η
1

]
, Q(γ) = G γG⊤ =

[
γη2 −γη
−γη γ

]
.

Let S =

[
x y
y z

]
be the stationary joint covariance in this mode, solving S = A(λ)SA(λ)⊤ +

Q(γ). Solving the resulting linear system in x, y, z (unique under stability) gives the parameter
variance

x =
γ η(1 + µ)

λ(1− µ)
(
2(1 + µ)− ηλ

) .
Therefore, in the eigenbasis the stationary parameter covariance is diagonal with entries

η

1− µ
· γi

λi

(
2− η

1+µλi

) =
(
λi

(
2− η

1+µλi

))−1 η

1− µ
γi,

18
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and conjugating back by U yields

Σ =

[
H∗
(
2I− η

1 + µ
H∗
) ]−1

η

1− µ
C,

which is exactly equation 13.

Stability condition. For the scalar mode, the characteristic polynomial of A(λ) is t2 − (1 − ηλ +
µ)t+ µ. All roots lie in the open unit disk iff |µ| < 1 and 0 < ηλ < 2(1 + µ) (e.g., Jury criterion).
Since µ ∈ [0, 1), this equivalently requires 0 < η

1+µλi < 2 for every i. Under this condition, the
stationary covariance exists and is finite.

B.3 FORMAL STATEMENT & DETAILED DERIVATIONS OF THEOREM 4.7

We first present a formal version of the PAC-Bayes bound after a learning-rate change, and from
this we derive the informal approximation in Theorem 4.7. The full proof of this formal statement
is deferred to Appendix C, while here we focus on how it leads to the informal result.

Theorem B.1 (Robust Generalization after Learning Rate Decay, Formal). Assume that H∗ and C
are real symmetric matrices which commute, and hence are simultaneously diagonalizable by an
orthogonal matrix. In particular, there exists U such that

H∗ = UΛU⊤, C = UΓU⊤,

with Λ = diag(λ1, . . . , λm) and Γ = diag(γ1, . . . , γm). Suppose the post-switch noise is time-
invariant. Let σ2

i (t+k) denote the modal variances given explicitly by

σ2
i (t+k) = p2i,k x

(1)
i + 2 pi,k qi,k y

(1)
i + q2i,k z

(1)
i

+
η22 γi(

r
(2)
i,+ − r

(2)
i,−
)2
[
(r

(2)
i,+)

2
(
1− (r

(2)
i,+)

2k
)

1− (r
(2)
i,+)

2
+

(r
(2)
i,−)

2
(
1− (r

(2)
i,−)

2k
)

1− (r
(2)
i,−)

2
− 2µ (1− µk)

1− µ

]
,

where

r
(2)
i,± =

1− η2λi + µ±
√
(1− η2λi + µ)2 − 4µ

2
,

pi,k =
(r

(2)
i,+ − µ) (r

(2)
i,+)

k + (µ− r
(2)
i,−) (r

(2)
i,−)

k

r
(2)
i,+ − r

(2)
i,−

, qi,k = −
η2µ
(
(r

(2)
i,+)

k − (r
(2)
i,−)

k
)

r
(2)
i,+ − r

(2)
i,−

,

and the pre-switch stationary joint entries (x(1)
i , y

(1)
i , z

(1)
i ) under (η1, µ) are

x
(1)
i =

η1γi(1 + µ)

λi(1− µ) [ 2(1 + µ)− η1λi ]
,

y
(1)
i = − η1γi

(1− µ) [ 2(1 + µ)− η1λi ]
, z

(1)
i =

2 γi
(1− µ) [ 2(1 + µ)− η1λi ]

.

Then, for any β > 0 and α ∈ (0, 1), with probability at least 1− α,

Ew∼Q[Radv(w)] ≤ 1

2

m∑
i=1

λi σ
2
i (t+k)

+
1

2β

(∑m
i=1 σ

2
i (t+k)

σ2
P

+
∥w∗∥22
σ2
P
−m+m lnσ2

P −
m∑
i=1

lnσ2
i (t+k)

)

+ R̂adv(w
∗,S) + βC2

8|S|
− 1

β
lnα. (31)

Stability requires 0 < ηℓ

1+µλi < 2 for both ℓ ∈ {1, 2} and all i.
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Proof of Theorem 4.7. From Theorem B.1, the robust generalization bound involves the modal
variances σ2

i (t+k), whose exact closed-form expression is

σ2
i (t+k) = p2i,k x

(1)
i + 2 pi,k qi,k y

(1)
i + q2i,k z

(1)
i

+
η22 γi(

r
(2)
i,+ − r

(2)
i,−
)2
[
(r

(2)
i,+)

2
(
1− (r

(2)
i,+)

2k
)

1− (r
(2)
i,+)

2
+

(r
(2)
i,−)

2
(
1− (r

(2)
i,−)

2k
)

1− (r
(2)
i,−)

2
− 2µ (1− µk)

1− µ

]
.

Although algebraically explicit, this formula is rather involved. To obtain a more interpretable
approximation, we analyze its asymptotic structure.

The expression shows that σ2
i (t+k) evolves from its pre-switch stationary level σ2

i (t), attained under
(η1, µ), towards the post-switch stationary level σ2

i,⋆(η2) corresponding to (η2, µ). Since H∗ and C
commute, they are simultaneously diagonalizable. In the joint eigenbasis, the global recursion

ut = A2ut−1 +G2ξt−1

decouples across eigendirections. Along the i-th eigenvector, the dynamics reduce to a 2× 2 system
for the state [w

(i)
t − w∗

i , h
(i)
t ]⊤, with transition matrix

Ai(η2) =

[
1− η2λi + µ −µ

1 0

]
.

The eigenvalues of Ai(η2) are

r
(2)
i,± =

1− η2λi + µ±
√
(1− η2λi + µ)2 − 4µ

2
.

In the stable regime 0 < η2

1+µλi < 2, the characteristic polynomial r2 − (1 − η2λi + µ)r +

µ = 0 has roots strictly inside the unit disk, i.e. |r(2)i,±| < 1. This stability condition ensures that
the trajectory remains bounded. Moreover, the deviation from the stationary covariance can be
expressed as a linear combination of (r(2)i,+)

k and (r
(2)
i,−)

k, so the error term decays geometrically at

rate max{|r(2)i,+|, |r
(2)
i,−|} < 1. Defining

e−ρi := max{|r(2)i,+|, |r
(2)
i,−|},

which is equivalently written as

ρi = − ln
(
max{|r(2)i,+|, |r

(2)
i,−|}

)
> 0, (32)

we obtain the exponential interpolation

σ2
i (t+k) ≈ σ2

i (t) e
−ρik + σ2

i,⋆(η2) (1− e−ρik).

The two endpoints admit clean leading-order approximations that are consistent with the exact sta-
tionary solutions in the small-step regime. Before the switch, the stationary variance scales as

σ2
i (t) ≈

η1γi
λi(1− µ)

,

which is linear in η1. After the switch, the stationary solution under (η2, µ) scales as

σ2
i,⋆(η2) ≈

η22γi
λi(1− µ)

,

which is quadratic in η2 because the effective noise accumulation under momentum involves the
squared step size.

Substituting these two approximations into the interpolation formula yields

σ2
i (t+k) ≈ η1γi

λi(1− µ)
e−ρik +

η22γi
λi(1− µ)

(
1− e−ρik

)
,

which is exactly the expression stated in equation 16. Finally, substituting this σ2
i (t+k) into the

bound of Theorem B.1 gives equation 17, completing the proof.
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B.4 PROOF OF THE STATEMENT IN REMARK 4.9

Proof of Remark 4.9. Assume H,C ∈ Rm×m are real symmetric and commute, i.e. HC = CH.
By the spectral theorem, there exists an orthonormal decomposition of Rm into the eigenspaces of
H:

Rm =
⊕
λ

Eλ, Eλ := ker(H− λI).

We first show that each Eλ is invariant under C. If v ∈ Eλ, then Hv = λv. Using commutativity,

H(Cv) = C(Hv) = C(λv) = λ(Cv),

so Cv ∈ Eλ. Thus C(Eλ) ⊆ Eλ for every eigenvalue λ of H.

For each λ, the restriction C|Eλ
is symmetric with respect to the Euclidean inner product and hence

admits an orthonormal eigenbasis of Eλ. Collecting these bases across all λ yields an orthonormal
basis of Rm consisting of vectors that lie in some Eλ and are simultaneously eigenvectors of C.
Each such vector is therefore an eigenvector of both H and C.

Let U be the orthogonal matrix with these basis vectors as columns. In this basis both H and C are
diagonal:

U⊤HU = diag(λ1, . . . , λm), U⊤CU = diag(γ1, . . . , γm).

Hence H and C are simultaneously diagonalizable and share an orthonormal set of eigenvectors.

C PROOF OF THEOREM B.1

Proof of Theorem B.1. Decoupling under commutativity. Since H∗ and C are real symmetric and
commute, there exists an orthogonal matrix U such that

H∗ = UΛU⊤, C = UΓU⊤,

with Λ = diag(λ1, . . . , λm) and Γ = diag(γ1, . . . , γm). Transforming to this joint eigenbasis
decouples the global 2m-dimensional recursion into m independent 2 × 2 linear systems, one for
each mode i.

Unrolling the trajectory. Along the i-th eigendirection, the state is x(i)
s = [w

(i)
s − w∗

i , h
(i)
s ]⊤ and

evolves as

x(i)
s = Ai(η2)x

(i)
s−1 + ξ

(i)
s−1, Ai(η2) =

[
1− η2λi + µ −µ

1 0

]
, ξ

(i)
s−1 =

[
−η2ζ(i)s−1

0

]
,

with noise variance E[(ζ(i)s−1)
2] = γi. By iteration,

Σ
(i)
t+k = Ai(η2)

k Σ
(i)
t

(
Ai(η2)

k
)⊤

+

k−1∑
j=0

Ai(η2)
j Qi

(
Ai(η2)

j
)⊤

, Qi = η22γi e1e
⊤
1 .

Pre-switch stationary initialization. At time t, the covariance is stationary under (η1, µ); the unique
solution to the Lyapunov equation gives

x
(1)
i =

η1γi(1 + µ)

λi(1− µ) [ 2(1 + µ)− η1λi ]
,

y
(1)
i = − η1γi

(1− µ) [ 2(1 + µ)− η1λi ]
,

z
(1)
i =

2 γi
(1− µ) [ 2(1 + µ)− η1λi ]

.

Thus Σ(i)
t = S

(1)
i =

[
x
(1)
i y

(1)
i

y
(1)
i z

(1)
i

]
.

Closed form of the modal variance. Diagonalizing Ai(η2) gives roots

r
(2)
i,± =

1− η2λi + µ±
√
(1− η2λi + µ)2 − 4µ

2
,
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and the first-row coefficients

pi,k =
(r

(2)
i,+ − µ)(r

(2)
i,+)

k + (µ− r
(2)
i,−)(r

(2)
i,−)

k

r
(2)
i,+ − r

(2)
i,−

, qi,k = −
η2µ
(
(r

(2)
i,+)

k − (r
(2)
i,−)

k
)

r
(2)
i,+ − r

(2)
i,−

.

Similarly, define vi,j =
(r

(2)
i,−)j+1−(r

(2)
i,+)j+1

r
(2)
i,+−r

(2)
i,−

. Then the variance of parameter w(i) is

σ2
i (t+k) = p2i,k x

(1)
i + 2 pi,k qi,k y

(1)
i + q2i,k z

(1)
i + η22γi

k−1∑
j=0

v2i,j

= p2i,k x
(1)
i + 2 pi,k qi,k y

(1)
i + q2i,k z

(1)
i

+
η22γi

(r
(2)
i,+ − r

(2)
i,−)

2

[
(r

(2)
i,+)

2(1− (r
(2)
i,+)

2k)

1− (r
(2)
i,+)

2
+

(r
(2)
i,−)

2(1− (r
(2)
i,−)

2k)

1− (r
(2)
i,−)

2
− 2µ(1− µk)

1− µ

]
,

which matches the statement of Theorem B.1.

Substitution into the PAC-Bayes framework. The quadratic expansion of the adversarial loss and the
Catoni PAC-Bayes bound with Gaussian KL divergence were already established in Theorem 3.7.
Plugging in the modal variances {σ2

i (t+k)}mi=1 derived above into that general bound yields in-
equality equation 31.

Stability. Finally, the condition 0 < ηℓ

1+µλi < 2 for both ℓ ∈ {1, 2} and all i is precisely the Jury

stability criterion for the heavy-ball characteristic polynomial, which guarantees |r(2)i,±| < 1 and
hence convergence of the geometric series in the covariance expression.

D EXPERIMENT SETTINGS

We use the CIFAR-10 dataset (Krizhevsky et al., 2009) with standard train splits. Inputs are scaled
to [0, 1] and normalized channel-wise. Data augmentation includes random cropping with 4-pixel
padding and random horizontal flipping. In additional experiments, we also evaluate on CIFAR-100
(Krizhevsky et al., 2009) and SVHN(Netzer et al., 2011) to verify the generality of our findings.

We consider PreActResNet-18 (He et al., 2016) as the backbone model. Training uses momentum
SGD (µ = 0.9) with weight decay 5×10−4. The initial learning rate is 0.1, decayed to 0.01 at epoch
100 and to 0.001 at epoch 150, following a piecewise schedule. Training runs for 200 epochs with
batch size 128. In supplementary experiments, we additionally use WideResNet-34-10 (Zagoruyko
& Komodakis, 2016) as an alternative architecture.

For robustness, we adopt PGD adversarial training (Madry et al., 2017) as the default baseline. We
generate ℓ∞ adversarial perturbations with ϵ = 8/255, step size 2/255, 10 attack iterations, and 1
random restart. For computational efficiency, we approximate curvature and gradient-noise statistics
using a small number of randomly sampled mini-batches. We average the loss over m = 128
batches when estimating the top-k Hessian eigenpairs (with k = 20), perform 30 power iterations
for each eigenpair, and compute gradient covariances from 128 batches to obtain noise statistics.
This stochastic approximation is sufficient to capture the dominant spectral structure while keeping
runtime feasible.

E SPECTRAL ESTIMATION DETAILS

To obtain the Hessian spectrum, we approximate the Hessian on a vector v via the identity

Hv = ∇w

(
∇wL(w)⊤v

)
,

which can be computed efficiently by automatic differentiation without explicitly forming H. We
then apply power iteration with Gram–Schmidt orthogonalization to extract the top-k eigenvectors
{vi}, and estimate their associated eigenvalues using the Rayleigh quotient,

λi =
v⊤
i (Hvi)

v⊤
i vi

.
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(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 4: Additional results for standard training (i.e., ϵ = 0) batch size 128 on CIFAR-10. From
epoch 150 to 200, the train robust accuracy increases from 98.47% to 99.98%, and the test robust
accuracy increases from 93.09% to 95.13%.

This procedure is consistent with established practice for large-scale curvature estimation (Dangel
et al., 2019; Yao et al., 2020). For the posterior structure, we consider the stochastic gradients at
the mini-batch level, gb = ∇wLb(w). Projecting these gradients onto the subspace spanned by the
leading Hessian eigenvectors V = [v1, . . . ,vk] yields the projected quantities pb = V⊤gb ∈ Rk.
Their covariance matrix is Γ = Cov[pb], whose diagonal entries γi = Γii quantify the variance of
stochastic gradients along the principal curvature directions. By construction, this definition ensures
that λi characterizes curvature while γi represents the corresponding noise magnitude in the same
eigendirections. This approach follows recent empirical observations that gradient-noise covariance
tends to align with the Hessian eigenspectrum in neural networks (Jastrzebski et al., 2018; Ziyin
et al., 2025), allowing for a direct analysis of curvature–noise interactions.

F ADDITIONAL EXPERIMENTS AND ANALYSES

F.1 GENERALIZABILITY STUDY

Figure 4 presents additional results for standard training on CIFAR-10. Here, both the Hessian
eigenvalues {λi} and noise covariance eigenvalues {γi} remain much smaller and evolve more
smoothly, without the sharp curvature escalation like adversarial training. For completeness, we
also vary the perturbation strength ϵ to evaluate their impact on the Hessian and noise eigenvalues.
Figures 5-8 present the results for ϵ ∈ {2/255, 4/255, 12/255, 16/255}. We also run experiments
with varying batch sizes from {64, 256}, with the corresponding results shown in Figures 9 and 10.

In addition, we conduct experiments to test the generalizability of our findings across other image
benchmarks, including CIFAR-100 (Figure 11) and SVHN (Figure 12), as well as different learning
algorithms, such as adversarial training on a larger WideResNet-34-10 architecture (Figure 13) and
semi-supervised adversarial training (Figure 14).

Overall, the ablation studies across perturbation radii, batch sizes, datasets, and architectures reveal
a highly consistent picture. Increasing the perturbation strength ϵ primarily amplifies the curvature
of the adversarial loss landscape, leading to larger Hessian eigenvalues with only mild changes in
gradient noise levels. In contrast, varying the batch size mainly rescales the noise eigenvalues {γi}
while leaving the curvature spectrum largely unchanged. These orthogonal effects precisely match
the roles of curvature and noise predicted by our PAC-Bayesian analysis.
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(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 5: Additional results for adversarial training with batch size 128, ϵ = 2/255 and PGD step
size 1/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 93.73%
to 99.48%, and the test robust accuracy increases from 78.17% to 80.07%.

(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 6: Additional results for adversarial training with batch size 128, ϵ = 4/255 and PGD step
size 1/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 85.82%
to 97.82%, and the test robust accuracy increases from 66.16% to 66.99%.

Moreover, the same qualitative patterns persist on CIFAR-100, SVHN, and WideResNet-34-10:
learning-rate drops trigger sharp curvature escalation, shrink posterior variances, and inflate the
dominant spectral terms in our bound, thereby reproducing the characteristic onset of robust over-
fitting. Taken together, the results demonstrate that the coupled evolution of curvature and posterior
geometry—rather than dataset- or architecture-specific artifacts—is a universal mechanism govern-
ing adversarially robust generalization.
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(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 7: Additional results for adversarial training with batch size 128, ϵ = 12/255 and PGD step
size 3/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 48.38%
to 60.65%, while the test robust accuracy decreases from 39.75% to 35.94%.

(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 8: Additional results for adversarial training with batch size 128, ϵ = 16/255 and PGD step
size 4/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from 36.83%
to 44.98%, while the test robust accuracy decreases from 34.01% to 32.37%.
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(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 9: Additional results for adversarial training with batch size 64 and ϵ = 8/255 on CIFAR-10.
From epoch 150 to 200, the train robust accuracy increases from 56.61% to 71.72%, while the test
robust accuracy decreases from 47.34% to 46.36%.

(a) Loss (b) Hessian eigenvalues (c) Noise eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 10: Additional results for adversarial training with batch size 256 and ϵ = 8/255 on CIFAR-
10. From epoch 150 to 200, the train robust accuracy increases from 73.87% to 86.71%, while the
test robust accuracy decreases from 46.91% to 43.41%.
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(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 11: Additional results for adversarial training with batch size 128 and ϵ = 8/255 on CIFAR-
100. From epoch 150 to 200, the train robust accuracy increases from 48.54% to 72.90%, while the
test robust accuracy slightly decreases from 21.86% to 21.32%.

(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 12: Additional results for adversarial training with batch size 128 and ϵ = 8/255 on SVHN.
From epoch 150 to 200, the train robust accuracy increases from 98.59% to 99.28%, while the test
robust accuracy slightly increases from 54.06% to 54.31%.
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(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 13: Additional results for adversarial training on CIFAR-10 with WideResNet-34-10. From
epoch 150 to 200, the train robust accuracy increases from 82.91% to 97.71%, while the test robust
accuracy stays around 48.28% to 48.37%.

(a) Robust Loss (b) Hessian Eigenvalues (c) Noise Eigenvalues

(d) Average ||w||22 (e) λσ2 (f) − lnσ2

Figure 14: Results for semi-supervised adversarial training (Carmon et al., 2019) with batch size
128 and ϵ = 8/255 on CIFAR-10. From epoch 150 to 200, the train robust accuracy increases from
32.25% to 39.42%, while the test robust accuracy decreases from 50.83% to 48.39%.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of AT and AWP at Stationary Regime.

Method Epoch LR Robust Loss Top-10 Top-20
Train Test

∑
i λiσ

2
i −

∑
i lnσ

2
i

∑
i λiσ

2
i −

∑
i lnσ

2
i

AT

98 0.1000 1.4417 1.5115 0.7392 55.2797 0.7869 119.6521
99 0.1000 1.4448 1.5202 0.7691 54.5511 0.8319 116.6751

148 0.0100 0.9568 1.3784 0.1224 81.9588 0.1564 166.0552
149 0.0100 0.9450 1.3684 0.1138 81.7163 0.1462 166.8927

198 0.0010 0.5651 1.6828 0.0149 110.5211 0.0187 226.3246
199 0.0010 0.5647 1.7991 0.0176 109.8221 0.0228 224.3322

AWP

98 0.1000 1.5845 1.4217 0.3878 52.3761 0.4245 111.8577
99 0.1000 1.5827 1.4138 0.3528 54.0705 0.3734 116.7480

148 0.0100 1.3735 1.2468 0.0598 79.1922 0.0678 165.7136
149 0.0100 1.3711 1.2463 0.0578 79.0380 0.0670 165.8011

198 0.0010 1.3076 1.2237 0.0060 104.0535 0.0071 211.4283
199 0.0010 1.3061 1.2191 0.0069 102.8904 0.0082 210.2709

Table 2: Evaluation of AT and AWP at Initial Phase of Non-Stationary Transition.

Method Epoch LR Robust Loss Top-10 Top-20
Train Test

∑
i λiσ

2
i −

∑
i lnσ

2
i

∑
i λiσ

2
i −

∑
i lnσ

2
i

AT

100 0.0100 1.4447 1.4568 7.1910 26.5496 8.4420 57.9231
101 0.0100 1.2653 1.2717 6.6961 28.1169 8.0763 60.1948
102 0.0100 1.2016 1.2732 7.5940 27.9818 9.8374 57.4486

150 0.0010 0.9466 1.3881 19.7690 31.1946 25.2198 65.3582
151 0.0010 0.8242 1.4036 19.3195 31.2056 25.1003 65.2913
152 0.0010 0.7798 1.4614 18.1461 32.4100 24.8218 66.7165

AWP

100 0.0100 1.5810 1.4095 4.6366 26.3079 5.0578 86.3721
101 0.0100 1.4798 1.3057 4.7988 26.4234 5.6639 57.1908
102 0.0100 1.4496 1.3153 4.5107 26.3610 5.1733 59.2366

150 0.0010 1.3709 1.2578 10.5189 27.6671 11.5429 88.3216
151 0.0010 1.3397 1.2394 9.8622 28.2500 11.1231 62.2065
152 0.0010 1.3303 1.2350 9.6732 28.1511 11.0591 62.7482

F.2 VERIFYING THE SPECTRAL STRUCTURE OF OUR BOUNDS

We first empirically validate the two theoretical regimes considered in Section 4. Table 1 corre-
sponds to the stationary setting of Theorem 4.5, where the posterior distributionQ has reached equi-
librium during adversarial training under a fixed learning rate. Under this regime, the PAC-Bayesian
robust generalization bound takes the following form if only keeping the dominating terms:

1

2

∑
i

λiσ
2
i +

1

2β

(
−
∑
i

lnσ2
i

)
,

with the curvature–variance term unscaled and the log-determinant term attenuated by 1/β, where β
is often set to the order of the square root of the sample set size (

√
|S|) to balance the related terms in

the PAC-Bayesian bound. The data in Table 1 exhibit exactly this behaviour: within each stationary
plateau, both spectral terms evolve smoothly, and their relative magnitudes match the theoretical
prediction that

∑
i λiσ

2
i dominates unless posterior variance has collapsed substantially.

Table 2 characterizes the non-stationary transition behavior of adversarial training algorithms gov-
erned by Theorem 4.7. Immediately after a learning-rate decay, the stationary covariance condition
no longer applies, and each σ2

i becomes a mixture of a decaying propagation term and an injected
noise term evaluated at the smaller step size. This produces the predicted sharp, non-monotonic
shifts: an abrupt decrease in −

∑
i lnσ

2
i and a slight increase in

∑
i λiσ

2
i . These discontinuities
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appear only at decay points and are absent in stationary phases, providing direct experimental con-
firmation of the transient covariance dynamics.

F.3 CONNECTING ROBUST OVERFITTING TO LEARNING RATE DECAY

Having established that the empirical dynamics match both stationary and transient theory, we now
connect these dynamics to the emergence of robust overfitting. In stationary phases, curvature and
covariance evolve gradually:

∑
i λiσ

2
i contracts as the optimizer enters narrower regions of the land-

scape, and −
∑

i lnσ
2
i grows as the posterior becomes more concentrated. Decreasing the learning

rate will disrupt this balance. The transient mixture of propagation and injected components induces
an immediate reduction in the overall covariance scale, driving a sharp decrease in −

∑
i lnσ

2
i that

outweighs the mild increase in
∑

i λiσ
2
i , thereby producing the initial drop in robust test loss.

As optimization continues with the smaller learning rate, adversarial curvature grows, while the
posterior variance continues to shrink. Eventually, −

∑
i lnσ

2
i increases rapidly enough to domi-

nate the shrinking curvature–variance term, reversing the direction of the bound and producing the
subsequent rise in robust test loss. From a geometric perspective, these spectral dynamics describe
a transition from a broad, weakly curved basin to an increasingly sharp and anisotropic one. The
contraction of

∑
i λiσ

2
i reflects the narrowing of the basin, while the growth of −

∑
i lnσ

2
i signals

collapse into a low-dimensional subspace. This geometric tightening underlies the full “drop–then–
rise” pattern characterizing robust overfitting.

In contrast, adversarial weight perturbation (AWP) fundamentally alters this geometry. By suppress-
ing curvature amplification and preventing posterior collapse, it keeps both spectral terms within a
moderate range. Consequently, the curvature–variance term remains dominant across training, and
the combined spectral expression decreases monotonically, explaining why AWP avoids the overfit-
ting dynamics observed in standard adversarial training.

F.4 FURTHER DISCUSSION WITH VARYING ϵ AND BATCH SIZE.

Although our primary analysis focuses on learning-rate decay, the same spectral mechanism also
predicts how adversarial radius ϵ and batch size influence robust generalization. Increasing ϵ steep-
ens the adversarial loss landscape, enlarging the dominant curvature directions and accelerating
posterior contraction. This amplifies the growth of −

∑
i lnσ

2
i and reduces

∑
i λiσ

2
i more aggres-

sively, pushing the optimizer into the log-determinant–dominated regime earlier in training. The
resulting degradation in robust test loss mirrors the rise phase of the learning-rate–induced pattern.

Batch size acts through the gradient-noise spectrum. Larger batches reduce stochastic variability,
leading to smaller stationary variances σ2

i via Equation 14 and hastening the onset of the collapse
regime in which the log-determinant term dominates. Smaller batches inject more noise, maintain
larger posterior variances, and thereby delay entry into this regime. Across these ablations, the qual-
itative evolution of

∑
i λiσ

2
i and −

∑
i lnσ

2
i consistently mirrors the spectral behaviour observed

under learning-rate decay. These results provide additional evidence that robust overfitting arises
precisely when adversarial curvature intensifies while posterior covariance collapses, regardless of
which hyperparameter induces these geometric shifts.

G LLM USAGE

Large Language Models (LLMs) were employed solely for proofreading purposes in the preparation
of this manuscript. Specifically, the LLM was used to detect and correct typographical errors and
minor grammatical issues. Its role was restricted to ensuring the textual accuracy and consistency of
the manuscript.

It is important to emphasize that the LLM was not involved in the conception of ideas, theoretical
development, data analysis, or interpretation of results. All scientific content, including methodol-
ogy, experiments, and conclusions, was entirely the responsibility of the authors. The use of the
LLM was strictly limited to linguistic refinement at the level of typo correction and proofreading.

The authors take full responsibility for the content of the manuscript, including any sections proof-
read by the LLM. The application of the LLM adhered to ethical guidelines and did not contribute
to plagiarism, scientific misconduct, or the generation of original scientific content.
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