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ABSTRACT

We present Uni2Det, a brand new framework for unified and universal multi-
dataset training on 3D detection, enabling robust performance across diverse
domains and generalization to unseen domains. Due to substantial disparities
in data distribution and variations in taxonomy across diverse domains, train-
ing such a detector by simply merging datasets poses a significant challenge.
Motivated by this observation, we introduce multi-stage prompting modules for
multi-dataset 3D detection, which leverages prompts based on the characteristics
of corresponding datasets to mitigate existing differences. This elegant design
facilitates seamless plug-and-play integration within various advanced 3D detection
frameworks in a unified manner, while also allowing straightforward adaptation
for universal applicability across datasets. Experiments are conducted across mul-
tiple dataset consolidation scenarios involving KITTI, Waymo, and nuScenes,
demonstrating that our Uni2Det outperforms existing methods by a large margin in
multi-dataset training. Notably, results on zero-shot cross-dataset transfer validate
the generalization capability of our proposed method. Our code is available at
https://github.com/ThomasWangY/Uni2Det.

1 INTRODUCTION

With the ability to capture precise geometric information of entire scenes, LiDAR has become
an essential sensor for most autonomous vehicles. Due to the rapid development of large-scale
annotated 3D LiDAR datasets such as Waymo (Sun et al., 2020), nuScenes (Caesar et al., 2020), and
KITTI (Geiger et al., 2012), LiDAR-based models play a significant role in various critical perception
tasks for autonomous vehicles, particularly in 3D object detection. Recent studies (Lang et al., 2019;
Deng et al., 2021; Shi et al., 2020a; 2023; Chen et al., 2017; Wei et al., 2022; Yin et al., 2021; Wang
et al., 2022) have made significant advancements in 3D detection using large-scale benchmarks and
have demonstrated superior performance by leveraging precise 3D geometric information extracted
from point clouds. However, despite these breakthroughs, current LiDAR-based models typically
adhere to a paradigm of training and testing within a single dataset, which limits the source data to
a narrow domain, as shown in Figure 1(a). Deploying dataset-specific models directly onto other
datasets equipped with different LiDAR systems often leads to significant performance degradation
due to substantial domain shifts (Yang et al., 2021; 2022). Consequently, the single-dataset paradigm
fails to produce a robust and generalizable perception model, leading to poor performance on different
datasets and further impairing the generalization ability.

The availability of vast training data in 2D vision (Goyal et al., 2021; Kirillov et al., 2023; Wang
et al., 2023) has facilitated research into joint training of unified detectors for 2D perception tasks.
However, 3D vision has not fully benefited from these advancements due to significant cross-dataset
discrepancies. Thus, further exploration of multi-dataset training strategies in 3D perception tasks,
particularly 3D object detection, is urgently needed. A direct approach to designing a unified 3D
object detection framework for achieving multi-dataset training (MDT) involves merging multiple
datasets and retraining the baseline detector on the merged dataset. However, significant domain
gaps exist between 3D datasets, and directly combining multiple data sources can result in negative
transfer. Some efforts (Zhang et al., 2023) focused on 3D multi-dataset object detection have offered
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Figure 1: Illustration of different training paradigms. Single-dataset training leverages separate
detectors and heads for different datasets. Naive multi-dataset training conducts point range alignment
and partially shares the parameters within detectors, but still with dataset-specific heads. We propose
unified and universal training, where detectors and heads for different datasets are fully shared.

solutions for building a unified training paradigm for point cloud data from different domains. As
shown in Figure 1(b), the overall framework is designed in a dataset-specific manner, sharing certain
backbone parameters while employing separate normalization and head layers for different datasets.
Despite alleviating the unavoidable data-level differences to some extent, this independent paradigm
suffers from two challenges: (i) this paradigm inhibits the full mutual utilization of each dataset’s
unique features, thereby constraining the further enhancement of the model’s capabilities; (ii) the
capacity for generalization to unseen domains is constrained due to the customization of certain
network parameters specific to the trained dataset. There is a scarcity of research on both refining
the unified multi-dataset training paradigm and improving its generalization to other 3D datasets in
more real-world scenarios. Our main goals include effectively unifying the processing of diverse
larger-scale point cloud data and ensuring robust generalization of the trained model to unseen
domains. Compared to other works, we focus on developing universal techniques for managing
out-of-domain datasets. Accordingly, we define our universality as the ability of a model to be
jointly trained on a set of specific datasets and to perform zero-shot detection on new datasets using
corresponding dataset attributes as prompts, without the need for re-training.

To achieve these goals, we propose Unified and Universal framework for 3D Detection (Uni2Det),
which integrates multi-stage prompting modules applicable to any LiDAR dataset and various 3D
object detection baselines used in autonomous driving. As shown in Figure 1(c), our approach
enhances performance by learning parameters shared across datasets, referred to as unified and
universal training. It utilizes diverse prompts, such as intrinsic dataset attributes that are easily
obtained from target datasets but cannot be automatically learned. Due to inherent discrepancies
in large-scale 3D datasets, we perform point distribution correction during voxelization to learn
unified point and voxel representations across datasets, centered on mean-shifted batch normalization.
Furthermore, handling data with varying statistical distributions within the backbone remains a
challenging problem. To mitigate variations in data distribution, particularly from the perspective
of point range, we introduce BEV-based range masking that acts on BEV features. This approach
provides prior signals for the 2D convolutional network, enabling it to effectively handle point clouds
from different datasets in a unified manner. Additionally, we observe that the same category exhibits
statistical differences across datasets, which hinders the effectiveness of a universal detection head
to some extent. To this end, we learn object-conditional residuals as prompts acting on each RoI
feature, integrating features from pre-trained heads with new knowledge about the target domain. Our
method does not simply combine disparate modules but should be regarded as an integrated system.
It allows different components of the 3D detection framework to leverage dataset-specific prior
prompts, compensating for inter-dataset variations without requiring multiple branches. Benefiting
from it, models can fully utilize diverse datasets for joint training, thereby improving in-domain
detection performance. At the same time, the prior characteristics of unseen datasets can also be
leveraged within a unified network as encoded prompts, enabling better out-of-domain generalization.
Furthermore, this framework facilitates seamless plug-and-play integration within various advanced
3D detection frameworks while allowing direct adaptation for universal applicability across datasets.

Our main contributions consist of three parts:
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• We introduce a novel training paradigm for 3D object detection which focuses on unified
and universal multi-dataset training, aiming at enhancing the performance in MDT settings.

• We present Uni2Det, a novel framework on 3D detection with multi-stage prompting modules
for prompting various components in a detector including voxelization, backbone and head,
enabling robust performance across diverse domains and generalization to unseen domains.

• Experiments conducted across multiple dataset consolidation scenarios involving KITTI,
Waymo, and nuScenes demonstrate that Uni2Det significantly outperforms existing methods
in multi-dataset training, especially on the generalization capability of the model.

2 RELATED WORKS

2.1 LIDAR-BASED 3D OBJECT DETECTION

LiDAR-based 3D object detection aims to produce a collection of 3D bounding boxes along with their
associated object categories using a LiDAR point cloud. Current LiDAR-based 3D object detection
research (Lang et al., 2019; Shi et al., 2020a; 2019; 2023; Yan et al., 2018; Shi et al., 2020b) can be
broadly categorized into point-based methods, voxel-based methods, and hybrid point-voxel-based
methods. Point-based methods, such as Point-RCNN (Shi et al., 2019) and 3DSSD (Yang et al., 2020)
generate feature maps directly from raw point clouds, thereby leveraging more accurate geometry
information compared to previous methods. Unlike point-based methods, Voxel-based methods
like VoxelNet (Zhou & Tuzel, 2018) and SECOND (Yan et al., 2018) initially voxelize the input
point cloud, transforming irregular LiDAR points into ordered voxels, and then extract features
using 3D convolutions. PointPillars (Lang et al., 2019) encodes the input point cloud into pillars
and employs 2D convolutions for feature extraction. Voxel-RCNN (Deng et al., 2021) analyzes
the advantages of voxel features and explores a balanced trade-off between detection accuracy and
inference speed. Additionally, some studies attempt to merge the advantages of point-based and
voxel-based representations. PV-RCNN (Shi et al., 2020a) and PV-RCNN++ (Shi et al., 2023)
leverage both multi-scale 3D voxel CNN features and PointNet-based features, consolidating them
into a concise set of keypoints using a newly proposed voxel set abstraction layer. Nevertheless,
all the aforementioned detectors are trained and evaluated using separate 3D datasets, leading to
significant degradation in detection accuracy when applied to other different datasets.

2.2 MULTI-DATASET TRAINING

In recent years, training on multiple diverse datasets has emerged as an effective strategy for en-
hancing model robustness. Multi-dataset training has been previously investigated in the image
domain, particularly in tasks such as object detection (Zhou et al., 2022; Wang et al., 2019) and
image segmentation (Lambert et al., 2020). For perception tasks (Dai et al., 2021; Gong et al.,
2021; Zhao et al., 2020), dataset unification involves consolidating various semantic concepts. Early
studies (Lambert et al., 2020; Zhao et al., 2020; Xu et al., 2020) have focused on merging taxonomy
information and training models on a unified label space. MSeg (Lambert et al., 2020) manually
unified the taxonomies of different semantic segmentation datasets and resolved inconsistent anno-
tations between them. Universal-RCNN (Xu et al., 2020) trains a partitioned detector on multiple
large datasets and modeled class relations using an inter-dataset attention module. To reduce the
annotation cost associated with unifying the label space, recent studies (Zhou et al., 2022; Wang
et al., 2019) have explored the use of dataset-specific supervision. Although joint training of a unified
detector has been studied in 2D perception tasks, further exploration in 3D perception tasks, such
as 3D object detection, remains urgently needed. Uni3D (Zhang et al., 2023) attempts to design
a framework in a dataset-specific manner, sharing certain backbone parameters while employing
separate normalization and head layers for different datasets. PPT (Wu et al., 2024) proposes a novel
framework for multi-dataset synergistic learning in 3D representation learning that supports multiple
pre-training paradigms with prompt-driven normalization. However, its learning of dataset-specific
prompts relies on an automatic approach that does not incorporate intrinsic characteristics of the
dataset, which are not sufficiently universal since it requires new parameters for each new dataset.
OneDet3D (Wang et al., 2024) seeks to achieve universality by integrating indoor and outdoor datasets
into a unified framework, employing an open-vocabulary strategy for object detection. Despite its
merits, OneDet3D’s experiments on outdoor datasets are limited exclusively to the car category rather
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Figure 2: Illustration of the overall framework of Uni2Det. The multi-stage prompting modules are
employed as the core component to make the detection more unified and universal.

than utilizing a broader range of categories for both training and inference. To address these issues,
we propose Uni2Det for 3D detection, which integrates multi-stage prompting modules applicable to
any LiDAR dataset and various 3D detection baselines, enabling robust performance across domains
and generalization to unseen domains. Our method leverages the dataset’s inherent properties, such
as point cloud distribution and range, which are easily obtainable in other datasets and is inherently
more generalizable than other methods.

3 METHOD

The overall framework is shown in Figure 2. We first describe our problem setting and the multi-
dataset evaluation method in Sec. 3.1. Next, we introduce our multi-stage prompt learning modules
for multi-dataset 3D detection, from various components in detectors including Voxelization in Sec.
3.2, Backbone in Sec. 3.3 and Head in Sec. 3.4.

3.1 PRELIMINARY

In the realm of 3D object detection, the task involves analyzing an input frame of LiDAR points to
predict associated labels, including categories and orientated bounding boxes. Training an object
detection model F with its parameter Θ on a single dataset typically involves a straightforward
approach: minimizing the 3D detection loss ℓ over a set of point clouds x and its corresponding
ground truth y from the dataset D:

min
Θ

E(x,y)∈D [ℓ(F(x; Θ), y)] . (1)

Suppose that a dataset is characterized by a joint probability distribution PXY over the input point
cloud and label space X × Y . In the scope of multi-dataset training (MDT), we possess N datasets
{Di}Ni=1 originating from diverse domains. Each Di is linked to a distinct data distribution P i

XY .
The goal of MDT is to utilize multiple labeled datasets for training a unified model F : X → Y ,
aiming for increased generalizability and minimized prediction errors across various domains. One
straightforward strategy entails merging all datasets into a substantially larger one, denoted as
Dmerge = D1 ∪ D2 ∪ · · · ∪ DN . While datasets may feature distinct label spaces, our training and
evaluation are limited to categories relevant to autonomous driving scenarios: vehicle, pedestrian,
and cyclist. Consequently, the label space Y can be shared across various domains. This approach
optimizes the same loss function over the expanded dataset Dmerge:

min
Θ

E(x,y)∈Dmerge
[ℓ(F(x; Θ), y)] (2)

In the following sections, we present the design of our Uni2Det and show how to train a 3D perception
model that performs well on seen datasets and generalizes to unseen datasets.
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3.2 PROMPT FOR VOXELIZATION: POINT DISTRIBUTION CORRECTION

The discrepancy in point distribution among different datasets poses a significant challenge in multi-
dataset training. We use KITTI as an example. Since point features are typically related to coordinates
in the ego-coordinate system, the feature channel corresponding to the x-axis consistently has values
greater than 0 in KITTI. As a result, differences between KITTI and other datasets cause variations
in the point cloud feature distribution, which in turn influences the training process across multiple
datasets. To address data-level discrepancies in large-scale annotated 3D LiDAR datasets, we aim to
develop simple modules during voxelization. These modules will enable existing 3D detectors to
learn universal point and voxel representations across diverse datasets, as shown in Figure 3(a).

Point representation learning Instead of relying on coordinates as point features, certain studies
have explored effective methods of fusing information from various viewpoints. This is achieved
through a learnable network incorporating a linear layer and batch normalization. However, in
this approach, the batch normalization process does not account for MDT training scheme, where
points within the batch come from frames in various datasets having large statistic differences. To
address this, we introduce a new normalization approach termed “Mean-shifted batch normalization”
to perform instance-level feature correction. Compatible with any 3D detectors, this method can
alleviate statistical differences in features extracted by standard 2D or 3D backbones.

Mean-shifted batch normalization After the linear layer, we obtain a batch of point features
represented as P = {p11, p12, ..., pij , ..., pMNM

} from M frames. Here, pij denotes the j-th point
feature, and Ni represents the total number of points in the i-th frame. Conventional BN carries
out normalization across all frames (instances) under the assumption that all data follows the same
distribution. However, two frames may exhibit disparate point ranges due to the different sensors in
use and even if they come from the same sensor, the distribution of points may still be highly random.
To address this, under the MDT setting, we argue that instance-level statistics are also crucial and
introduce mean-shifted batch normalization. Subsequently, samples from each dataset are regularized
using the basic mean µ with an adjustment from the current instance-specific mean µi, as follows:

p̂ij =
pij − αµi − (1− α)µ

√
σ + ϵ

, (3)

where µ and σ denote the channel-wise mean and variance of the feature set P , which are employed
for conventional channel-wise feature normalization to ensure the input data conforms to zero-mean
and unit-variance, and ϵ is added to ensure numerical stability. Here we maintain the sharing of
variance σ. α ∈ [0, 1] is a balancing ratio for the shifted mean. When α = 0, it is equivalent to
performing the regular BN operation, while α = 1, the normalization procedure disregards the
basic mean and relies solely on instance-level statistics. The subsequent transformation step for p̂ij
remains the same as in conventional batch normalization. This approach allows us to learn universal
point and voxel representations across diverse datasets with instance-level statistics as regularization.
Compared with PPT (Wu et al., 2024) and Uni3D (Zhang et al., 2023), our approach operates only
at the voxelization stage, using low-level point cloud distribution as a dataset attribute to prompt
and regularize features. The advantage of feature uniformity ensures that the training of subsequent
model parts is not negatively affected by feature differences between datasets.

3.3 PROMPT FOR BACKBONE: BEV-BASED RANGE MASKING

In the realm of modeling point clouds in the MDT setting, learning unified features from diverse
sources and domains poses a significant challenge due to variations in the point range and data
distribution across different datasets. To address this challenge, we introduce BEV-based range
masking acting on BEV features to effectively handle point clouds from different datasets, as shown
in Figure 3(b).

Given the preconfigured point range (x1, y1, x2, y2) for producing BEV features with an aligned
coordinate system, where x1 < x2, y1 < y2, we can infer a binary mask for each dataset based on its
point range. The purpose of this mask is to explicitly indicate whether the regions or grids on the
BEV plane are inside the point range of the frame. Suppose H and W are the spatial shape of the
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Figure 3: Illustration of multi-stage prompting modules, including three modules for prompting
different components of the detector.
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Having the mapped point range on the BEV plane (xi
1
′
, yi1

′
, xi

2
′
, yi2

′
), we can obtain mask M i ∈

RH×W for the i-th dataset by:

M i
m,n =

{
1 if xi

1

′ ≤ m ≤ xi
2

′
, yi1

′ ≤ n ≤ yi2
′

0 if others.
(5)

Given a frame of point clouds from the i-th dataset, our approach concatenates BEV features with the
corresponding masks M i along the feature dimension before each 2D convolutional layer. Using
this prior signal, the network can effectively adapt to point clouds from various datasets, avoiding
excessive focus on the area outside the relevant regions, thereby maintaining the integrity of crucial
information. This integration provides a solution for the unified backbone to model features across
datasets, which not only preserves dataset-specific information but also enhances the robustness and
adaptability of feature modeling.

3.4 PROMPT FOR HEAD: OBJECT-CONDITIONAL RESIDUAL LEARNING

The prompting modules in previous stages facilitate the framework to become more ‘unified’. On the
other hand, learning a general detection head is crucial in designing a ‘universal’ framework. Since
previous works use multiple dataset-specific detection heads for prediction, such designs cannot be
directly transferred to new datasets and therefore cannot be considered universal. In this section, we
explore the potential of a universal detection head for predicting point clouds from diverse domains
without dataset-specific branches. However, directly training a detection head on multiple datasets
poses challenges. As noted in previous works, the same category exhibits statistical differences across
datasets, motivating us to design prompts to mitigate the distribution gap. Consequently, we introduce
object-level residual learning, inspired by (Yu et al., 2023), on RoI features, integrating them from
pre-trained heads with new knowledge about the target domain, as shown in Figure 3(c). Instead of
learning a set of object-agnostic task residuals, we argue that learning object-conditional residuals is
more effective and transferable to unseen domains as prompts.

Given a batch of RoI features X = {xi}Ni=1 from frames of different datasets and their labels
Y = {yi}Ni=1, where yi = j if feature xi is from a frame of the j-th dataset, we feed each RoI
feature xi into a residual function f to obtain object-conditional residual ri. The generation process is
formulated as ri = f(SG(xi)), where SG indicates the stop-gradient operation to prevent hindering
the regular learning of RoI features. Since the generated residuals should be relevant to the domain
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or dataset to which the feature belongs, we design a discriminator D, implemented by an MLP,
to distinguish these residuals, using the dataset ID as a prior label. The discrimination process is
formulated as ŷi = D(ri). We use the cross-entropy loss to measure the discrimination loss Ldis

between the predicted label set Ŷ = {ŷi}Ni=1 and the ground truth label set Y , which is further added
to the regular detection loss Ldet as the final loss. By learning such object-conditional residuals,
we can enhance the original RoI feature with prior dataset-specific characteristics by x̂i = xi + ri,
and models will tend to make predictions according to a specific distribution, thus mitigating the
influence of statistical differences in taxonomy across datasets.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Our experiments are conducted on three commonly used autonomous driving datasets:
Waymo (Sun et al., 2020), nuScenes (Caesar et al., 2020), and KITTI (Geiger et al., 2012).
Waymo (Sun et al., 2020) stands out as the largest dataset with over 230,000 annotated 64-beam
LiDAR frames gathered from six US cities. nuScenes (Caesar et al., 2020) comprises 28,130 training
samples and 6,019 validation samples collected using 32-beam LiDAR. KITTI (Geiger et al., 2012)
includes 7,481 annotated LiDAR frames collected via 64-beam LiDAR. These datasets exhibit varia-
tions in data-level distributions arising from disparities in LiDAR types, geographic location of data
acquisition, and variations in the definition of categorical annotations.

Implementation details The experiments are conducted using OpenPCDet (Team et al., 2020).
Particularly, we note that differences in point cloud range significantly degrade cross-dataset detection
accuracy. Therefore, we align the point cloud range of all datasets to [75.2, 75.2]m for the X and
Y axes and [2, 4]m for the Z-axis. In all experimental settings, we follow Uni3D (Zhang et al.,
2023) and employ the standard optimization techniques utilized by PV-RCNN (Shi et al., 2020a)
and VoxelRCNN (Deng et al., 2021). For the balancing ratio α in our proposed mean-shifted batch
normalization, we set α = 0.1 for VoxelRCNN and α = 0.5 for PV-RCNN. This involves using the
Adam optimizer with an initial learning rate of 0.01 and implementing the OneCycle learning rate
decay strategy. The network is trained across 8 NVIDIA A800 GPUs, with a total training epoch set
to 30. For the experiments on Waymo-KITTI and nuScenes-KITTI consolidations, the weight decay
is set to 0.01, while for Waymo-nuScenes consolidation, it is set to 0.001. We utilize only 20% of the
uniformly sampled frames on Waymo dataset for model training.

Evaluation metric. We utilize the official tools to evaluate the performance of all baselines and our
method, following (Zhang et al., 2023). For Waymo, we use Average Precision (AP) and Average
Precision re-weighted by Heading (APH) for each class, based on the LEVEL 1 metric. For KITTI
and nuScenes, we report Average Precision (AP) in both Bird’s Eye View (BEV) and 3D over 40
recall positions, with moderate case results for KITTI. AP is evaluated with an IoU threshold of 0.7 for
the car category (Vehicle on Waymo) and 0.5 for pedestrian and cyclist categories. All experimental
results presented in this paper are reported on the official validation set.

4.2 RESULTS OF ZERO-SHOT EVALUATION ON UNSEEN DATASETS

To comprehensively assess the universal design of our framework, we perform a zero-shot evaluation
on several unseen 3D datasets using different detection models. Our approach, Uni2Det, is compared
against two main baselines. First, we benchmark it against the ”Source Only” model, which only
uses the source domain for training, and against a robust generalization method, SN (Wang et al.,
2020), within the single-source generalization setting. Additionally, we extend the comparison to
the dual-source generalization scenario, evaluating Uni2Det against simple data-merging strategies
and Uni3D, along with its variants. We also attempt to integrate SN into our method with extra
statistical supervision on the target domain. As shown in Table 1, our Uni2Det is proved to achieve
more generalized representations on a single dataset as well, further enhancing performance based on
SN. This is because our universal framework effectively utilizes the prior information associated with
target datasets so as to perform better adaptation. For the dual-source generalization, we discover
the trend that using a single detection head in Uni3D yields superior generalization performance
compared to employing multiple detection heads. This suggests that training the detection head
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Table 1: Results of zero-shot evaluation on unseen datasets. We report the results of the Car (Vehicle
on Waymo) category under the IoU threshold of 0.7 and utilize APBEV /AP3D over 40 recall positions
on KITTI. Source Only denotes that the model is trained on the source domain and directly tested
on the target domain. S.H. for Uni3D (Zhang et al., 2023) indicates using a single head instead of
dataset-specific heads as a variant.

Single-Source Generalization Dual-Source Generalization

Method Waymo → KITTI Method Waymo + nuScenes → KITTI
Detector mAP Detector mAP

Source Only PV-RCNN 61.18 / 22.01 Data Merging PV-RCNN 69.07 / 36.17
SN PV-RCNN 69.92 / 60.17 Data Merging (w/ SN) PV-RCNN 72.43 / 59.91
Uni2Det (w/ SN) PV-RCNN 72.41 / 63.96 Uni3D PV-RCNN 71.46 / 37.83
Source Only Voxel-RCNN 64.88 / 19.90 Uni3D (w/ M.H) PV-RCNN 71.79 / 38.82
SN Voxel-RCNN 75.83 / 55.50 Uni3D (w/ S.H., SN) PV-RCNN 73.48 / 60.51
Uni2Det (w/ SN) Voxel-RCNN 76.34 / 57.85 Uni2Det PV-RCNN 72.39 / 40.12

Method nuScenes → KITTI Uni2Det (w/ SN) PV-RCNN 75.57 / 64.09
Detector mAP Data Merging Voxel-RCNN 69.02 / 36.57

Source Only PV-RCNN 68.15 / 37.17 Data Merging (w/ SN) Voxel-RCNN 72.32 / 52.94
SN PV-RCNN 60.48 / 49.47 Uni3D Voxel-RCNN 72.68 / 39.65
Uni2Det (w/ SN) PV-RCNN 66.75 / 55.43 Uni3D (w/ M.H) Voxel-RCNN 73.12 / 40.57
Source Only Voxel-RCNN 69.41 / 33.48 Uni3D (w/ S.H., SN) Voxel-RCNN 75.69 / 53.46
SN Voxel-RCNN 67.05 / 48.06 Uni2Det Voxel-RCNN 74.07 / 43.76
Uni2Det (w/ SN) Voxel-RCNN 71.02 / 50.94 Uni2Det (w/ SN) Voxel-RCNN 78.63 / 58.24

across multiple domains enhances its generalization ability and mitigates overfitting to any single
domain. Building on this insight, our Uni2Det framework employs multi-stage prompts to enable
more unified and universal training, which not only boosts zero-shot generalization performance but
also maintains a competitive edge in in-domain tasks. By comparing the overall results, we confirm
that Uni2Det significantly improves generalization performance when incorporating new datasets,
demonstrating its potential for robust 3D detection across varying domains.

4.3 RESULTS OF MULTI-DATASET 3D OBJECT DETECTION

To evaluate the unified design of our framework, we conduct experiments on the two-dataset combi-
nation of three widely-used autonomous driving datasets: Waymo (Sun et al., 2020), KITTI (Geiger
et al., 2012), and nuScenes (Caesar et al., 2020), and report our results in Table 2 with comparison to
baselines demonstrated in (Zhang et al., 2023). We summarize our findings in three points.

Firstly, performance improvement from multi-dataset training is guaranteed for Uni2Det. In some
cases, the previous state-of-the-art Uni3D shows worse results under multi-dataset training than when
trained on a single dataset (e.g., results on Waymo under Waymo-nuScenes consolidation), indicating
that Uni3D did not fully and effectively utilize data from multiple datasets for training. In contrast,
our Uni2Det avoids this issue and ensures improved performance with additional datasets for training,
demonstrating excellent scalability.

Secondly, a dataset-agnostic head is feasible instead of the dataset-specific head. Although the
improved results of Uni3D compared to simply merging datasets demonstrate the benefits of learning
dataset-specific detection heads, our work addresses the poor performance issue with a single detection
head through a unified paradigm, proving the feasibility of learning a dataset-agnostic detection
head. Using more training data from different datasets to train a single detection head in our unified
paradigm is more likely to enhance detection performance.

Lastly, Uni2Det is considered a more robust and unified framework for multi-dataset training. Across
all dataset combinations, our Uni2Det consistently outperforms Uni3D, demonstrating the effective-
ness of our approach in a multi-dataset setting. This result also indicates that our unified training
paradigm is stable and robust, capable of converting point cloud data from any source domains
or datasets into a more unified distribution through prompts for better prediction. However, our
method shows lower AP when inferring some categories (e.g., results for Car on nuScenes under
KITTI-nuScenes consolidation). Despite this, considering the boost from other categories within the
dataset, it maintains an overall improvement across each dataset.
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Table 2: Results of joint training on different dataset consolidations. Following Uni3D (Zhang
et al., 2023), we report the car (Vehicle on Waymo), pedestrian, and cyclist results under the IoU
threshold of 0.7, 0.5, and 0.5, respectively, and utilize AP/APH of LEVEL 1 metric on Waymo,
and APBEV /AP3D over 40 recall positions on nuScenes and KITTI. P.T. indicates pre-training the
baseline detector on the other dataset, and fine-tune the detector on the current dataset. D.M. stands
for simply merging data from different datasets as the training data. The best detection results are
marked using bold. Here we adopt Voxel-RCNN as the baseline detector. Due to the page limitation,
we present the experimental results based on PV-RCNN in Appendix.

Waymo-nuScenes Consolidation

Trained on Method
Tested on Waymo Tested on nuScenes

Vehicle Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
Waymo w/ P.T. 75.46/74.99 74.58/68.06 65.92/64.98 71.99/69.34 34.34/21.95 2.84/1.57 0.09/0.02 12.42/7.85

nuScenes w/ P.T. 6.11/5.90 0.77/0.56 0.01/0.01 2.30/2.16 55.23/39.14 23.65/16.47 8.51/5.80 29.13/20.47

Both W&N
D.M. 66.67/66.23 60.36/54.08 52.03/51.25 59.69/57.19 51.40/31.68 15.04/9.99 5.40/3.87 23.95/15.18

Uni3D 75.26/74.77 75.46/68.75 65.02/63.12 71.91/68.88 60.18/42.23 30.08/24.37 14.60/12.32 34.95/26.31
Uni2Det 76.13/75.66 77.27/71.84 66.40/65.46 73.27/70.99 60.26/41.84 31.17/25.31 17.17/14.42 36.20/27.19

KITTI-nuScenes Consolidation

Trained on Method
Tested on KITTI Tested on nuScenes

Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
KITTI w/ P.T. 89.90/81.25 59.49/56.17 54.55/54.15 67.98/63.86 12.89/5.52 0.24/0.18 0.05/0.03 4.39/1.91

nuScenes w/ P.T. 71.61/40.64 39.67/29.99 7.29/6.88 39.52/25.84 53.57/39.65 24.93/21.17 11.42/9.95 29.97/23.59

Both K&N
D.M. 89.24/73.72 61.03/54.55 62.71/59.92 70.99/62.73 41.88/20.48 12.58/8.32 1.77/0.97 18.74/9.92

Uni3D 90.09/83.10 62.99/58.30 70.20/68.10 74.43/69.83 59.25/41.51 29.12/23.18 15.16/13.16 34.51/25.95
Uni2Det 90.60/84.16 68.40/64.47 68.74/65.68 75.91/71.44 58.09/39.68 31.10/25.83 20.56/17.53 36.58/27.68

KITTI-Waymo Consolidation

Trained on Method
Tested on KITTI Tested on Waymo

Car Pedestrian Cyclist mAP Vehicle Pedestrian Cyclist mAP
KITTI w/ P.T. 89.51/81.41 60.30/57.10 55.53/51.34 68.45/63.28 8.70/8.62 19.14/16.01 21.87/20.83 16.57/15.15
Waymo w/ P.T. 64.84/19.99 62.58/59.01 56.44/49.43 61.29/42.81 72.76/72.26 72.42/64.94 63.27/62.23 69.48/66.48

Both K&W
D.M. 74.53/32.11 60.11/54.85 59.69/55.94 64.78/47.63 74.35/73.85 74.80/68.39 64.87/63.95 71.34/68.73

Uni3D 90.03/82.39 62.51/57.01 69.52/66.30 74.02/68.57 74.83/74.33 74.79/68.24 66.83/65.82 72.15/69.46
Uni2Det 90.30/84.23 64.30/61.03 71.15/69.18 75.25/71.48 75.35/74.77 76.64/71.22 67.03/65.73 73.01/70.57

Table 3: Results of jointly training the Voxel-
RCNN on three datasets.

Trained on
Tested on

KITTI NuScenes Waymo Avg.

KITTI 70.04/66.09 3.84/1.58 12.69/11.47 28.86/26.38
nuScenes 32.64/17.70 28.99/22.20 14.63/14.04 25.42/17.98
Waymo 64.00/45.27 12.38/6.34 71.84/69.23 49.41/40.28
Uni3D 72.19/67.46 35.06/26.48 71.95/69.28 59.73/54.41

Uni2Det 76.04/72.61 34.03/25.44 72.45/70.20 60.84/56.08

Table 4: Ablation study of prompts in different
stages of Uni2Det based on Voxel-RCNN.

Method Voxelization Backbone Head KITTI Waymo

Baseline 72.73/69.94 71.09/69.12

Ours

✓ 73.84/70.56 71.71/69.73
✓ 73.43/70.19 71.52/69.43

✓ 73.95/70.43 71.73/69.82
✓ ✓ 74.96/70.95 72.29/69.93
✓ ✓ ✓ 75.25/71.48 73.01/70.57

4.4 FURTHER ANALYSIS

Results on Waymo-KITTI-nuScenes Consolidations. Table 3 shows the results of jointly training
Voxel-RCNN on Waymo-KITTI-nuScenes consolidations. We report average AP over all categories
within the dataset. Our Uni2Det demonstrates high detection results on KITTI and Waymo, on which
the results of Uni3D do not differ much from those on the single dataset. Overall, more balanced and
consistent boosts on different datasets can be observed in Uni2Det on average APBEV and AP3D.

Ablation on prompts in different stages. We investigate the influence of prompts in different
stages of Uni2Det, including voxelization, backbone, and head. The evaluation setting follows the
KITTI-Waymo consolidation in Table 2. As shown in Table 4, the prompt modules implemented at
each stage enhance performance compared to the baseline. Notably, the point distribution correction
at the voxelization stage shows the most significant improvement among all stages. This demonstrates
that learning unified low-level point features is crucial for MDT and serves as a foundation for
subsequent prompting stages. We also observe that gradually adding prompts stage-by-stage results in
noticeable performance gains for each stage, reflecting the complementarity between the prompting
modules. At last, using prompts from all stages together achieves a significant improvement compared
to the baseline.
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Figure 4: Illustration of statistical distribution differences of object size (length, width, and height) in
KITTI between the ground truth and the predictions of Uni2Det with and without object-conditional
residual learning (OCRL) module.

Ablation on object-conditional residual learning. We investigate the statistical distribution
differences of object size in KITTI between the ground truth and the predictions of Uni2Det with
and without object-conditional residual learning (OCRL) module. As shown in Figure 4, it is
evident that our method, particularly with the OCRL module, more closely approximates the ground
truth distribution, especially in terms of mean and variance, thereby reducing statistical differences
across datasets and mitigating potential performance degradation. However, this module may also
misidentify the discriminative domain for samples from out-of-domain scenes in certain cases, leading
to ambiguous residuals that may cause inaccurate bounding box predictions.

Ablation on normalization strategies. We conduct abla-
tion studies of normalization strategies in PPT (Wu et al.,
2024), Uni3D (Zhang et al., 2023) and our Uni2Det on
the Waymo-KITTI consolidation based on Voxel-RCNN, as
shown in Table 5. There are no other well-designed modules
and only with a single detection head for fair comparison.
Our proposed mean-shifted batch normalization is more ad-
vantageous, especially on KITTI where only the front view is
provided, and it is important to note that the other two com-
pared methods are not conducive to generalization scenarios,
which further highlights our strengths.

Table 5: Ablation on normalization
strategies based on Voxel-RCNN.

Method KITTI Waymo

Baseline 72.73/69.94 71.09/69.12
Uni3D 73.01/70.12 71.45/69.23
PPT 73.25/70.09 71.73/69.46
Uni2Det 73.84/70.56 71.71/69.73

5 CONCLUSION

We introduce Uni2Det, a novel framework designed for unified and universal multi-dataset training
in 3D detection which utilizes multi-stage prompting modules to harmonize differences between
datasets by leveraging dataset-specific characteristics, ensuring robust performance across various
domains and effective generalization to new domains. Our work is promising to enhance performance
across various domains and facilitate effective generalization to new ones in 3D detection, which has
the potential to advance fields like autonomous driving.

Limitation and discussion. We identify a limitation in our approach, which relies on the assumption
of an identical set of categories across different datasets. This limitation impedes the detection of
diverse label spaces with more varied categories. We propose that refining categories by subdividing
objects based on size to create a unified label space or mapping unseen classes to existing categories
using prior knowledge (e.g., object size) both facilitate zero-shot generalization. Additionally, open-
vocabulary 3D detection, enhanced by textual prompts, can expand the range of detectable categories.
We expect that future research building on our work will contribute to the development of unified,
universal 3D detection systems. Moreover, our method has not yet been applied to indoor datasets,
and we aim to make it more versatile and effective across diverse applications.
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APPENDIX

A EXTRA EXPERIMENTS

Results of multi-dataset 3D object detection based on PV-RCNN. We present the experimental
results for the two-dataset combination of three autonomous driving datasets using PV-RCNN, as
shown in Table 6. The conclusions are consistent with those in Table 2, further demonstrating that
Uni2Det is a more robust and unified framework for multi-dataset training.

Table 6: Results of joint training on different dataset consolidations based on PV-RCNN. The
experiment and evaluation settings follow Table 2.

Waymo-nuScenes Consolidation

Trained on Method
Tested on Waymo Tested on nuScenes

Vehicle Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
Waymo w/ P.T. 74.77/74.26 73.32/66.31 64.06/63.05 70.72/67.87 33.86/17.47 2.88/1.53 0.04/0.01 12.26/6.34

nuScenes w/ P.T. 44.59/44.24 7.67/6.33 8.77/8.58 20.34/19.72 57.92/41.53 24.32/17.31 11.52/9.19 31.25/22.68

Both W&N
D.M. 66.22/65.75 55.41/49.29 56.50/55.48 59.38/56.84 48.67/30.43 12.66/8.12 1.67/1.04 21.00/13.20

Uni3D 75.54/74.90 74.12/66.90 63.28/62.12 70.98/67.97 60.77/42.66 27.44/21.85 13.50/11.87 33.90/25.46
Uni2Det 76.03/75.53 76.24/70.29 64.97/63.95 72.41/69.92 61.38/42.76 28.60/22.49 15.10/12.90 35.03/26.05

KITTI-nuScenes Consolidation

Trained on Method
Tested on KITTI Tested on nuScenes

Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
KITTI w/ P.T. 89.26/83.14 60.56/55.90 63.60/62.88 71.14/67.31 13.43/5.61 0.69/0.27 0.04/0.00 4.72/1.96

nuScenes w/ P.T. 69.40/38.25 33.24/24.88 1.68/1.61 34.77/21.58 53.24/36.72 20.65/17.09 8.95/7.58 27.61/20.46

Both K&N
D.M. 87.79/77.95 55.52/48.29 59.15/55.10 67.49/60.45 41.29/21.57 10.21/7.08 1.23/1.15 17.58/9.93

Uni3D 89.77/85.49 60.03/55.58 69.03/66.10 72.94/69.06 59.08/41.67 25.27/19.26 12.26/10.83 32.20/23.92
Uni2Det 90.52/85.36 61.73/58.53 71.76/69.29 74.67/71.06 58.30/41.21 29.11/24.00 12.62/10.93 33.34/25.38

KITTI-Waymo Consolidation

Trained on Method
Tested on KITTI Tested on Waymo

Car Pedestrian Cyclist mAP Vehicle Pedestrian Cyclist mAP
KITTI w/ P.T. 89.40/83.42 62.69/58.86 59.96/59.43 70.68/67.24 8.75/8.64 12.12/9.90 9.20/8.76 10.02/6.10
Waymo w/ P.T. 69.25/25.91 59.16/55.92 56.09/50.50 61.50/44.11 71.08/70.54 70.12/62.91 62.37/61.40 67.86/64.95

Both K&W
D.M. 87.49/68.35 62.84/60.06 68.09/65.75 72.81/64.72 50.68/50.31 58.76/52.59 55.14/54.17 54.86/52.36

Uni3D 89.42/83.15 60.85/57.49 71.61/65.88 73.96/68.84 75.07/74.54 72.95/66.08 63.80/62.92 70.61/67.85
Uni2Det 90.70/84.65 61.02/58.33 72.86/71.26 74.86/71.41 75.43/74.92 74.96/69.20 65.57/64.49 71.99/69.54

Ablation on the balancing ratio. We conduct ablation studies regarding the hyperparameter
balancing ratio α based on different 3D detectors, based on AP3D metrics of KITTI on the Waymo-
KITTI consolidation, as shown in Figure 5. When α = 0.1 for PV-RCNN and α = 0.5 for
Voxel-RCNN, the performance can be optimal. Since Voxel-RCNN mainly relies on voxelized point
cloud data and is more sensitive to the distribution of point clouds, the balancing ratio for point
feature correction needs to be larger.

Figure 5: Ablation on the balancing ratio based on PV-RCNN and Voxel-RCNN, based on AP3D

metrics of KITTI on the Waymo-KITTI consolidation.
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