Under review as submission to TMLR

Masked multi-prediction for multi-aspect anomaly detection

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we address the anomaly detection problem in the context of heterogeneous
normal observations and propose an approach that accounts for this heterogeneity. Although
prediction-based methods are common to learn normality, the vast majority of previous work
predicts a single outcome, which is generally not sufficient to account for the multiplicity
of possible normal observations. To address this issue, we introduce a new masked multi-
prediction (MMP) approach that produces multiple likely normal outcomes, and show both
theoretically and experimentally that it improves normality learning and leads to a better
anomaly detection performance. In addition, we observed that normality can be character-
ized from multiple aspects, depending on the types of anomalies we would like to detect.
Therefore, we propose an adaptation (MMP-AMS) of our approach to cover multiple as-
pects of normality such as appearance, motion, semantics and location. Since we model
each aspect separately, our approach has the advantage of being interpretable and modular,
as we can select only a subset of normality aspects. The experiments conducted on several
benchmarks show the effectiveness of the proposed approach.

1 Introduction

Anomaly detection in the context of videos is crucial for many applications such as video surveillance or
autonomous driving for instance. However, it is still an open research problem due to several challenges.
The first one is the scarcity of anomaly examples and the lack of their corresponding annotations. Indeed, by
definition, anomalies are unexpected and usually diverse, therefore, it is infeasible to collect enough represen-
tative samples. This makes classical supervised methods ineffective due to the class imbalance issue. Thus,
this problem is often considered from the One-Class perspective where a model of normality is learned from
normal data only and detects anomalies as outliers. One-class anomaly detection methods can be grouped
according to how they model normal data, either explicitly or implicitly. In the first category, anomalies
are detected by measuring their compatibility with a normality model. This category includes probabilistic
methods such as diffusion models (Flaborea et al| (2023); Wyatt et al.| (2022)) or GANs (Ravanbakhsh et al.
(2017); [Liu et al.| (2018])) which learn a probabilistic model of normality. At inference, samples with low
likelihood given the learned density function are considered as anomalies. Another popular family of explicit
approaches are distance-based methods (Ramachandra et al.| (2022)); [Singh et al.| (2023])). Those methods
learn an embedding space and the corresponding metric, to ensure that abnormal data are far apart from the
normal data. Other approaches perform clustering in some low dimensional space (lonescu et al. (2019a);
Wang et al.| (2020); Tonescu et al.| (2019b))) to define normality regions, and the anomaly is deduced from
the distance to them. Recent approaches such as [Park et al.| (2020)); |Gong et al| (2019); [Liu et al. (2021);
Bergaoui et al.| (2022) model the normality via a discrete set of prototypes in the latent space. On the other
hand, many existing approaches learn normality patterns implicitly via self-supervised pretext tasks that
consider different aspects of normality such as appearance and motion (Georgescu et al. (2021a)); [Barbalau
et al.| (2022)); Wang et al.| (2022))). A model is trained on normal data only via those pretext tasks. For a
given test sample, the abnormality score can be inferred from the model’s inability to perform the task cor-
rectly. There are two main families of éimplicit approaches in the video anomaly detection (VAD) literature:
reconstruction-based (Gong et al.| (2019); |Park et al.| (2020); Bergaoui et al.| (2022)); Georgescu et al.| (2021b))
and future prediction-based (Liu et al. (2018; |2021)); [Dong et al.| (2020); Nguyen & Meunier| (2019); [Naji
et al.| (2022); Tang et al. (2020)). Reconstruction-based approaches generally train a neural network which
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Figure 1: An example illustrating the motivation behind performing multi-prediction instead of a single
prediction. We generated a synthetic dataset illustrating a road scenario where a car (in white) is at an
intersection, and can perform two actions (turning left or right) which generates two different next states.
The left figure shows a single prediction network trained to perform next position prediction, while the right
figure shows another one trained to perform multiple predictions using our proposed loss functions.

reproduces the normal training data from a low dimensional space. The fundamental assumption is that
the model will not be able to generalize well to anomalies. Differently, future prediction-based approaches
train a model to predict a future outcome given the past. The choice between reconstruction-based and
prediction-based methods involves trade-offs. While the former reconstruct training data well, they also
tend to reconstruct anomalies due to the generalization abilities of neural networks (Gong et al.| (2019)). On
the contrary, the latter tend to predict anomalies poorly, as the model cannot simply reproduce the input
as with reconstruction-based methods. However, these methods have difficulty predicting normal future
scenarios because of their diversity. Indeed, many existing future-prediction methods perform single pre-
diction, which is often not enough to characterize all possible future outcomes (Babaeizadeh et al. (2018)).
To illustrate this point, let us consider a road scenario (Figure , where the task consists in modeling the
normal set of car trajectories. If the current state is an intersection, the car can turn left or right. Both cases
are normal, but it is impossible to cover both possibilities with a single prediction. In addition, this leads to
an abnormal prediction (Figure [1|left). In order to solve this problem, we propose to better model the dis-
tribution of possible future scenarios by training a model to perform multiple predictions instead of a single
one. In order to cover normal possibilities, we use the nearest neighbor loss (Guzman-rivera et al.| (2012);
Bhattacharyya et al| (2018); Nguyen et al. (2018)), which is often used in the setting of multiple choice
learning, and we introduce a new non-participation loss that ensures a balanced training of all predictors.
Our approach offers the advantages of prediction-based methods in terms of poor anomaly prediction, and
improves normality learning through multi-prediction. This enables better discrimination between normal
and abnormal samples.

Another VAD challenge is that, in order to detect anomalies, it is necessary to determine normality. However,
the definition of what is considered normal depends on the context and the application, which also influences
the choice of normality aspects to be modeled (e.g. appearance, motion, etc.). While certain aspects of
normality are not relevant to detect anomalies for some applications (e.g. the location of a person on a
sidewalk when the objective is to detect violence), they tend to be crucial in others (e.g. the location
of a person when the objective is to detect jaywalking). Therefore, we model several object-level aspects
such as appearance, motion and class-semantics, as well as location-related anomalies. Our approach is
interpretable and modular, since it assigns an anomaly score for each aspect. This allows us to adapt our
method to applications that require only a subset of the aspects to be modeled while providing information
about the anomaly type. In summary, our contributions are as follows: 1) a novel and generic masked
multi-prediction (MMP) approach for anomaly detection in the context of heterogeneous normal data; 2)
an adaptation of MMP to model multiple normality aspects (MMP-AMS); 3) a new non-participation loss
to better model the multiplicity of normal scenarios; 4) a theoretical analysis and experiments showing the
effectiveness of our methodology.

2 Related work

Multi-prediction learning: also known as multiple choice learning (Lee et al.| (2016); Dey et al.| (2015)); Lee
et al.| (2017); Guzmén-rivera et al| (2012)) or multiple hypotheses learning (Rupprecht et al. (2017); [Nguyen|
et al| (2018)), is a task where multiple models are learned to produce diverse predictions. During training,
samples are assigned to the minimum loss predictor. This technique has been used for tasks involving aleatoric
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uncertainty such as future prediction (Bhattacharyya et al.| (2018))), human pose estimation (Rupprecht et al.
(2017)), image segmentation (Guzmén-rivera et al.| (2012); Dey et al. (2015))). In the context of anomaly
detection in images (a.k.a novelty detection), Nguyen et al| (2018)) proposed a multiple hypothesis auto-
encoder which performs multiple reconstructions. Differently from Nguyen et al| (2018), we perform masked
multi-prediction by combining masking with multi-prediction in order to limit the capacity of the model to
recover anomalies. We also propose a new non-participation loss that penalizes only the predictors that do
not participate in training, and show both theoretically and empirically that it improves the coverage of
normal possibilities. In addition, our framework learns multiple aspects of normality, enabling it to detect
the corresponding anomaly types in the context of videos. To our knowledge, our work is the first to propose
a multiple-prediction approach for VAD.

Video anomaly detection: most implicit VAD approaches use self-supervised learning to model normality.
The model is trained on a given task using normal data only and it is expected not to generalize well to
abnormal samples. Usually, these tasks are designed to characterize a certain aspect of normal data such
as appearance or motion, which allows the model to detect the corresponding anomaly types. [Hasan et al.
(2016)) were one of the first to propose a reconstruction-based method by training an auto-encoder to recover
handcrafted appearance and motion features. As pointed out by |Gong et al| (2019), auto-encoders are
able to reconstruct anomalies due to the extrapolation capabilities of deep learning models, which is not
suitable for distinguishing between normal and abnormal samples. The reconstruction task can be further
constrained using a memory module as proposed in (Gong et al.| (2019))). |Georgescu et al| (2021b)) proposed
to train a model via an adversarial objective function, where normal data is well reconstructed and some
pseudo-anomalies are explicitly mis-reconstructed. A major self-supervised paradigm to learn normality
consists in training a model to perform future frame prediction. |Liu et al| (2018) trained a generator
using an adversarial objective function to predict a future frame and its optical flow given few past frames.
Ravanbakhsh et al.| (2017)) trained two generators to perform image-to-image translation between RGB
and optical flow modalities in order to learn both appearance and motion normality. |Liu et al. (2021)
introduced a hybrid framework for frame prediction and optical flow reconstruction at the object-level by
making use of a pretrained object detector. During inference, the anomaly score is computed based on a
sampled future object-level frame. However, one sample may not be representative of the full distribution of
future scenarios. In order to cover various modes of this distribution, we propose to train our framework to
produce diverse and representative predictions, using the nearest neighbor loss (Guzmén-rivera et al.| (2012)))
and our novel non-participation loss. Similarly to [Liu et al| (2021]), we propose to model normality at the
object-level to provide better robustness to scene changes and background variety. Recent works introduced
other self-supervised tasks for object-level normality learning such as spatio-temporal jigsaw puzzle (Wang
et al.[(2022)), video event completion (Yu et al.|(2020)) or random patch inpainting (Barbalau et al.| (2022);
Huang et al.| (2022)). Barbalau et al.| (2022)); |Georgescu et al.| (2021a) proposed to combine multiple tasks
such as arrow-of-time prediction, motion irregularity, middle-frame prediction and knowledge distillation to
characterize object-level normality. Differently from these previous works, our approach performs multiple
predictions instead of a single one for each normality aspect. Furthermore, our method can detect location-
dependent anomalies which have not been addressed in the aforementioned methods. To our knowledge,
only |Doshi & Yilmaz| (2020) addressed the modeling of location attributes at the object-level. The authors
proposed a non-parametric model of hand-crafted object-level features which included the object position.
Differently, we model the distribution of normal bounding boxes separately for each object class which allows
to detect class-wise location anomalies.

3 Masked multi-prediction for normality modeling: a preliminary study

In this section, we introduce our masked multi-prediction (MMP) approach and motivate it theoretically
and experimentally in the context of anomaly detection. We first demonstrate the importance of multi-
prediction compared to single prediction. Then, we show the impact of the loss choice to ensure diversity and
likelihood of predictions. Finally, we discuss the importance of spatial and temporal masking in improving
anomaly detection performance. The proofs of all propositions are provided in the supplementary material.
Preliminary experiments to support our analysis have been carried out on the following datasets:
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Figure 2: Overview of our methodology: the masked multi-prediction network (MMP) denoted by f receives
a masked sample X s and produces n likely predictions: f(X) = (X (k)) ke[1,n] Which are compared to the
original sample X. The model is trained using Lyn and Lyp. At inference only £y is used.

Synthetic roads dataset: This dataset is used to show the impact of performing multi-prediction instead
of single prediction in the context of anomaly detection. Indeed, we generated a synthetic dataset (Figure
illustrating a road scenario in which a car is at the intersection of m roads. In the normal case, the car
moves towards one of the roads. More precisely, we assume that the x axis is oriented from left to right and
that the y axis is oriented from bottom to top. We indicate the position of the car by its 2D coordinates
(x,y). Our synthetic roads dataset consists of sequences of 2 pairs of coordinates indicating the position of
the car at times ¢ and ¢ + 1. We will assume that the car is always at position p; = (0,0) at time ¢ and

that it uniformly moves to one of the following positions at time ¢+ 1: (pﬁl = (1, 21 1)) o]’ The
i€1,m

m—1

parameter m > 2 indicates the number of roads the car can take.

MNIST: (LeCun et al.| (2010)) this dataset is used for showing the importance of masking. It contains
handwritten digits from 0 to 9. As this dataset was not designed for the one-class setting, it is adaptated
by considering a particular class as normal in each case. We use the training-testing split of the dataset and
perform training only on samples from the class considered normal. During inference, all test data are used.
Test samples from the class on which the model has been trained are considered normal, and other classes
are considered abnormal.

3.1 Multi-prediction vs. single prediction

In the following analysis, we will focus on the general problem of sample prediction (denoted by X) given a
masked input X = X ©® M, where M is the mask applied to X. The sample prediction problem boils down
to learning the conditional probability distribution Q = P(X|Xj/), which can be done using a model that
receives as input a masked sample X, and generates candidate samples according to P(X|X ;). However,
learning this distribution via a single prediction model does not capture its multi-modality as shown in
Figure[I] Indeed, a single prediction model g is generally trained to predict a sample X by minimizing:

»Csingle(g(XIW)vX) £ Hg(XM) - XH (1)

However, since X is not deterministic given Xj;, the network minimizes:

Liingle(9(Xnm)) £ Ex~q(llg(Xar) — X||) (2)

This loss can be interpreted as the average distance across all possible samples X ~ Q. If mean squared
error (MSE) is used, the global minimum of the loss is achieved by a model g* that predicts the conditional
expectation of X:

Proposition 1. Let g be a single prediction model trained using the Lo norm. The minimum loss is achieved
for a model g* that predicts the conditional expectation:

9" (Xn) = E(X|Xnr)

This shows that the output of a single prediction model is an average of possible samples (X ~ Q) in the
best case, which is sub-optimal. In order to better cover normal possibilities, we propose to train a masked
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multi-prediction model (MMP): f = (f®), f@ .. f)) = (f(k))ke[[l,nﬂ to predict n likely possibilities using
the nearest neighbor objective function (Guzman-rivera et al. (2012)). An illustration of MMP is provided
in Figure 2l The nearest neighbor loss penalizes only the distance to the closest prediction. Formally, the
loss between the set of predictions f(Xn) = (f(k)(XM))ke[[Ln]] and a sample X can be written as follows:

Lyn(f(Xum), X) =  in 1F* (X)) — X (3)
€[1,n]

The corresponding expected loss across all possible samples X ~ Q is:

Lyn(f(Xum)) £ Exg(Lan(f(Xar), X)) (4)

Training a MMP model using the previous loss can achieve a better fitting of normal data (i.e a lower training
loss) as shown in the following proposition:

Proposition 2. Let X a sample from P, F the space of self-maps of [0, 1]CXHXW and f* €

arg min LNN (f(Xar)). The minimum expected loss is lower when using multi-prediction than when
F=(f®) e n)€F™
using single prediction:

ENN(]C*(XM)) S Esingle(g*(XM))

Moreover, a MMP network trained using the nearest neighbor loss provides a better anomaly detection
performance than a single prediction model, as shown in section and as demonstrated in the case of the
synthetic roads dataset. Indeed, Proposition 3 shows that a MMP network trained using the nearest neighbor
objective function £y can theoretically achieve a perfect anomaly detection score on the synthetic roads
dataset, if it reaches the global minimum of the training loss, whereas a single prediction model cannot, even
if the global minimum is reached.

Proposition 3. A MMP model with a number of predictors corresponding to the number of roads m and
reaching the global minimum training loss using Lyn, achieves an AUC of 100% on the synthetic roads
dataset. On the other hand, a single prediction model achieving the global minimum training loss using
Lsingle cannot achieve an AUC of 100%.

3.2 Impact of loss functions
3.2.1 Nearest neighbor loss

The choice of the nearest neighbor objective function is important to ensure diversity of predictions and a
better fit to normal data (Guzmén-rivera et al.| (2012))). Indeed, if we use instead a naive objective function
Lyaive =+ 2oke[in] %) (Xpr) — X||. The diversity of predictions is lost, which amounts to making a single
prediction, as shown in the following proposition:

Proposition 4. Let L, i (f(Xnr)) the expected loss corresponding to Lyaive(f(Xar), X) :

Lnaive(f (X)) = Ex~g % Z 1f* (Xar) — X (5)
kel,n]

In case of Lo norm, the minimum expected loss is achieved by a MMP model: f* = (f*(k))ke[[lm]] such that
(Vk € [1,n]) : f*®(Xar) = B(X|X1s), which is similar to perform single prediction.
3.2.2 Non-participation loss

In practice, P(X|X)s) is often intractable, highly dimensional and we have only access to samples from
it (e.g. the future frame observed in a video). Therefore, it is infeasible to train the network via
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Lyn(f(Xar)), since it involves an expectation over all possible samples X, which is difficult to com-
pute. Instead, we train the network via Lyn(f(Xar),X), where X is the actual observed sample.
This loss encourages the model to produce diverse predictions in order to reduce the distance between
the sampled data point X and its nearest neighbor f*7)(X,,) where k* = argmin, ||f*)(Xa) — X|.
Nevertheless, this objective function only optimizes
the best among all predictions (f*7)(Xy;)). Thus,
the model receives a sparse signal which may lead
to optimizing only predictors which are selected as
nearest neighbors during training. Other predictors
remain far from the data subspace, as they are never
selected and therefore never optimized. In order to
overcome this issue, we introduce a novel objective
function called the non-participation loss in order to
optimize these predictors. More specifically, we col-
lect the indices of unoptimized predictors U C [[1,n]
that were not selected as nearest neighbors in the
last epoch of training (a small threshold ¢ is used in
practice, cf. Section . Then, we optimize those

predictors : ( ff(f ))pEM via the non-participation loss
that can be written as:

Lyp(f(Xa), X) 2 P (X)) = X (6)

peU LT A

MMP

Rec.

JeuLioN

MMP

Rec.

MMP

Rec.

Jewouqy

MMP

Thus, we train the network via a weighted combi- Figure 3: Visualization of two normal samples (class
nation of the two losses £ £ Lyn + AMyp. The 7) and two abnormal samples (classes 4 and 2) from
following proposition shows that adding the non- MNIST. The first column indicates the input of the
participation objective to the nearest neighbor loss model, the second column shows the predictions of two
can Only decrease the prediction error: models: MMP (ours) which receives a masked input
and preforms multiple predictions, and a reconstruc-
tion network (Rec.) which receives a non-masked in-
put and preforms a single reconstruction. The nearest
predictions are circled in green. The third column in-
dicates the corresponding ground truth.

Proposition 5. Let X the training dataset com-
posed from normal samples. We denote by f =
(f(k))ke[[l,n]] a MMP model optimized via the near-
est neighbor objective Lyn and achieving a loss
Lyn(f(Xun), X) on a sample X € X. Let f =
(f(k))ke[[l,n]] a MMP model resulting from train-
ing the non-optimized predictors of f via the non-
participation loss Lnp, and Lxn(f(Xar), X) the loss of f on a sample X. We have (VX € X):

Lan(F(Xn), X) < Lun(F(Xu), X)

3.3 Impact of masking

The role of masking is to ensure that the model does not learn the trivial identity function, which would result
in a good reconstruction of both normal and abnormal samples, and therefore a poor discrimination between
them. Indeed, masking forces the model to learn the specificities of normal data in order to predict well
normal samples while having a poor prediction of abnormal samples. This would result in a better detection
of anomalies. It is important to note that masking can be applied either spatially or temporally. For example,
patch masking, illustrated in Figure 3] is a clear example of spatial masking. On the other hand, in the case
of future frame prediction based on a current frame, masking is implicitly performed at the temporal level.
In this case, the sample X can be considered as a pair of the current and next frames: (Xp, Xp) and the
masked sample X, is the current frame Xp. In order to illustrate the importance of masking, we carried
out a comparison between our masked multi-prediction model (MMP) and a reconstruction network, both
trained on a single class from MNIST (Figure . The training details are provided in the supplementary
material. Different masking strategies are presented in Tables We observe that when masking is used,
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Table 1: Influence of masking strategies on anomaly detection performance.

(a) Influence of patch size of masks on anomaly de-
tection performance (Mean AUC) on MNIST, using
75% percentage masking.

Exp. Patch size Mean AUC
el 8 x 8 89.0%
e2 16 x 16 94.0%
e3 32 x 32 90.2%

(b) Influence of the percentage of pixels masked
on anomaly detection performance (Mean AUC) on
MNIST, using a patch size of 16 x 16.

Exp. Masking percentage Mean AUC
ed 0% 85.9%
eb 25% 90.4%
eb 50% 91.3%
e7 5% 94.0%

the recovery of abnormal patterns is more difficult than that of normal patterns, resulting in better anomaly
detection performance (e7 vs e4 in Table . Moreover, it can be seen that a high percentage of masking
is advantageous for anomaly detection on MNIST. However, a compromise arises when selecting the patch
size for masks. Specifically, as the patch size increases, the prediction task becomes more challenging, since
the model is required to predict a more global information.

4 Multi-aspect normality modeling

In this section, we present our masked multi-
prediction framework for modeling appearance, mo-
tion and semantics (MMP-AMS), which is an adap-
tation of MMP to VAD. An illustration of our frame-
work is presented in Figure[d] First we introduce the
notations for this section:

We denote the normality aspects as follows: F' for
future frame prediction (appearance), O for opti-
cal flow prediction (motion), C for class prediction
(semantics), and Bx,By,Bg,Bw for the bounding
boxes center coordinates, height and width respec-
tively (location). We denote by A one of these as-
pects which can belong to the set of appearance,
motion and semantics aspects: I' = {F, O, C} or lo-
cation aspects: © = {Bx, By, By, Bw}. fa is the
network used for modeling an aspect A, if a net-
work is used for multiple aspects we denote it as
fa, where A is the set of modeled aspects. Let X
be a normal object extracted from a frame at time ¢,
following the normality distribution P and having a
bounding box with center coordinates (Xpg,, X, ),
height Xp, and width Xp, . The image of X at
times ¢ (Present) and ¢ + 1 (Future) are denoted
respectively by (Xp, Xr). The masked current im-
age of X is denoted by Xyrp £ Xp ® M, where M
is the mask applied to Xp and ® is the Hadamard
product. The one-hot encoding of object classes and
the object-level forward optical flow are denoted by
X, Xo respectively.

4.1 Overview of MMP-AMS

hy

) a
¥

E '
] (1) (2 o(n
XA XA) XA)
Xp Xa o J

y

Lan(fa(Xnp) Xa)+MCnp(fa(Xarp), Xa)

Figure 4: Overview of the proposed masked multi-
prediction framework applied to appearance, motion
and semantics (MMP-AMS). We show the model pre-
dictions for an aspect A, which can be one of the fol-
lowing aspects: future frame prediction F' (appear-
ance), optical flow prediction O (motion) or class pre-
diction C' (semantics). We consider A = F' in the
illustration. The network receives a masked image at
time ¢ and produces multiple predictions ()A(gk))ke[[l,n]]
for an aspect A. The model is trained using £y and
Lyp. At inference only £y is used. Networks of the
same color share parameters.

Our framework learns the appearance, motion and semantics aspects of normality, by predicting multiple
future frames as well as the corresponding optical flow and class vectors given a masked current frame. In
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this way, the model learns: appearance features via unmasking, motion features via future prediction and
semantic features through class prediction. For each aspect, the model performs multiple predictions in
order to take into account the diversity of normal data w.r.t to each aspect. We model the three aspects:
I' = {F,0,C} via three MMP networks (fa)aer (one for each aspect). Therefore, the full model can be

written as: fr £ (fa)aer = ((fﬁ‘k))ke[[l’"]]),qer' The model predicts respectively different possible future

frames ()A(ék))ke[[l,n]], optical flows (Xék))keﬂ17nﬂ and classes (Xék))keﬂ17nﬂ given a masked current frame X/ p.

The k-th prediction for an aspect A € T" is given by: )A(gk) £ f,(axk) (Xarp). The full model fr is trained to
minimize the nearest neighbor loss and the non-participation loss for each of the three aspects. Specifically,
the following sum is minimized:

Lr(fr(Xmp), X) £ Z LNN(fa(Xmp), Xa) + Mnp(fa(Xmp), Xa) (7)
Aer

4.2 Network design

In order to allow the number of predictions to be varied without changing the total number of model
parameters, we introduce a novel architecture which consists of a recurrent neural network R, a first state

predictor P as well as three state conditional networks (fa)aer = ((fA(X]\/[p7 hk))ke[[l nH)A (illustrated
, er

in Figure . For each aspect A, we propose to replace the predictors ( fﬁ,’”)kemﬂ by a state conditional
network f4 which receives as input the masked frame X;p as well as a state hy generated using the recurrent
neural network R. Therefore, k-th predictor fgk) is equivalent to conditioning the network f4 on the state
hi. Formally, we have (VA € {F,0,C}) : X = f(Xpp) = fa(Xarp, i) = fa(Xarp, R(hie—1)). The
recurrent architecture ensures that the hidden state hj contains information about previously predicted
states, and encourages the model to explore new normality regions in order to minimize the nearest neighbor
error. The networks architectures and training pseudo-code are provided in the supplementary material.

4.3 Location module

In order to detect location related anomalies, we learn the distribution of object positions for each normal
class using a simple Gaussian model. More specifically, given a class X, we model the distribution of
bounding box centers (Xp,,Xp, ), height and width (Xg,,Xp, ) of objects belonging to X¢, using 4
Gaussians: N(aa(X¢),Ba(Xc)) for A € © = {Bx,By,Bu,Bw}. The mean as(X¢) and the standard
deviation S4(X¢) for a given dimension A are predicted by a network fo using the negative log-likelihood
loss:

(XAQA(XC))2 (8)

Lo(fo(Xc), X) = % D_ log(Ba(Xc)) + Ba(Xc)

Aco

4.4 Anomaly scoring

At inference time, we perform the same pre-processing steps on a test sample and compute the appearance,
motion and semantics anomaly scores St(X) as well as the location anomaly scores Sg(X) by summing the
z-scores of the prediction errors across aspects. This allows balancing the contribution of each aspect to the
anomaly score. More formally, given an object X at frame F;:

SR(X) 2 Z wAﬁNN(fA(XMP),XA) — A 9) So(xX)2 Z wAENLL(XA; (aa,Ba)) — pra (10)

OA A

Aerl A€O

where fa, 4, B4 are the networks and parameters after training. pa4 and o4 are respectively the expectation
and the standard deviation of the loss function which is either £Lyn or Ly estimated from normal training
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data for a given aspect A. w4 is the weight assigned to each aspect, which may vary depending on the
application. The final anomaly score is a weighted combination of the appearance, motion, semantics and
location anomaly scores: S(X) £ Sp(X) +vSe(X). The parameter v can be chosen depending on whether
we aim to detect location anomalies. The frame level score for a frame is the maximum object-level score in
the frame.

5 Experimental study

5.1 Datasets and evaluation metrics

We adopt the following metrics: the Region-Based Detection Criterion (RBDC) and the Track-Based De-
tection Criterion (TBDC) introduced by Ramachandra & Jones (2020) as an alternative to frame-level AUC
widely used in the literature. The latter metric measures the anomaly detection performance at the temporal
level only. However, it does not evaluate the capacity of the model to localize anomalies spatially because it
does not penalize false positive regions detected in abnormal frames as pointed out by [Ramachandra & Jones
(2020). We perform experiments on the most commonly used datasets for the one-class and object-centric
scenario. UCSDped2 (Mahadevan et al.| (2010))) is a single scene dataset which includes anomalies such
as riding a bike and driving a vehicle on a sidewalk. Ramachandra & Jones| (2020]) provided region-level
and track-level annotations for the RBDC and TBDC metrics. ShanghaiTech (Luo et al.|(2017))) contains
scenes of different backgrounds. Anomalies include jumping, running, or stalking on a sidewalk. The region-
level and track-level annotations are provided |Georgescu et al.| (2021b). CUHK Avenue (Lu et al.[ (2013))
is a single scene dataset which consists of videos with abnormal events such as running or walking towards
the camera. We use the improved set of annotations proposed by Ramachandra & Jones| (2020]) which take
into account some static anomalies that where not considered in the original annotations.

5.2 Implementation details

For a fair comparison to other object-centric approaches, Yolov3 (Redmon & Farhadi| (2018])) pretrained on
MSCOCO is applied for object detection, using the implementation of MMDetection (Chen et al.| (2019))
with an objectness threshold of 0.5 for UCSDped2 since objects have low resolutions and 0.7 for Avenue
and ShanghaiTech. The set of objects detected by the used implementation contained very small false
positives which are filtered out based on their area (lower than 350 pixels). Optical flow maps are computed
using the official implementation of FlowNet2 (Reda et al. (2017)) as in (Liu et al|(2021)). For anomaly
scoring, we keep only the optical flow magnitudes since the optical flow orientation maps are not precise
enough to be predicted for small displacements. The detected objects as well as the corresponding optical
flow maps are resized to 64x64. For the mask M, we remove 50% of pixels using a grid of 4x4 pixels.
Regarding the distance used for anomaly scoring in Section [4] we use the L, distance for RGB and optical
flow, as well as the cross entropy loss for class probabilities. We train the network for 150 epochs for
UCSDped2 and Avenue and for 400 epochs for ShanghaiTech using Adam optimizer with a learning rate of
10~3 with a batch size of 640 for the biggest dataset ShanghaiTech and 64 for UCSDped2 and Avenue. We
set (v, wr, Wp, We, WBy, WBy , WB, , Wy, A) = (0,1,1,1,1,1,1,1,0.1) for UCSDped2 and ShanghaiTech and
(1,1,0.1,0.1,1,1,1,1,0.1) for Avenue. We explain the parameters choices in For the non-participation
loss, we select predictors which have a participation below § = 5%. Regarding the inference time, our
model processes a batch of objects in a frame taken from Avenue in 18ms on a single Nvidia-Titan-X GPU.
Therefore, it satisfies the real-time constraints, given real-time object detector and optical flow extractor
that can run in parallel. Furthermore, the method requires access to one future frame only to compute the
anomaly score which allows online application.

5.3 Evaluation results

This section presents the results (Table [2)) of our method on the benchmarks UCSDped2, Avenue, Shang-
haiTech with respect to recent state-of-the-art object-centric methods. Qualitative results are provided in
the supplementary material.
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Table 2: Comparison of our approach to state-of-the-art object-centric VAD methods on RBDC and TBDC
(%). Best results are in bold, second best are underlined.

UCSDped2 ShanghaiTech Avenue

Method

RBDC TBDC RBDC TBDC RBDC TBDC
Tonescu et al.|(2019a) 52.8 72.9 20.7 44.5 15.8 27.0
Liu et al.|(2021) - - - - 41.1 86.2
Georgescu et al.|(2021b) 69.2 93.2 41.3 78.8 65.1 66.9
Georgescu et al.|(2021a) 72.8 91.2 42.8 83.9 57.0 58.3
Bergaoui et al.|(2022) 80.1 95.4 51.5 82.2 75.8 70.0
Naji et al.|(2022) 77.2 98.5 51.6 84.6 75.3 73.4
Georgescu et al.[(2021a) + [Ristea et al.|(2022) - - 40.6 83.5 66.0 64.9
Liu et al.|(2018) + [Ristea et al.|(2022) - - 18.5 60.2 20.1 62.3
Liu et al.|(2021) + Ristea et al.|(2022) - - 45.5 84.5 62.3 89.3
Barbalau et al.|(2022) - - 47.1 85.6 47.8 85.2
Ours (MMP-AMS w/o location module) 84.0 99.0 55.9 85.7 67.4 68.0
Ours (MMP-AMS w/ location module) 80.5 94.2 52.6 83.1 7T 74.2

UCSDped2. On this dataset, MMP-AMS outperforms previous works on RBDC (43.9p.p), and reaches
the state-of-the-art on TBDC. It can be seen that the optical flow prediction is particularly relevant for this
dataset (cf. ablation study in Section due to the fact that most anomalies have abnormal motion.

ShanghaiTech. Unlike other datasets, this one contains multiple scenes for training and testing. Neverthe-
less it shares a similar normal context across scenes. Since our method is object-centric, it is less sensitive
to scene changes. MMP-AMS achieves a significant improvement (+4.3p.p) in terms of RBDC and slightly
outperforms other methods on TBDC. The improvements in terms of anomaly localization can be explained
by two factors. First, the choice of aspects allows us to detect appearance, semantics and behavior anomalies
(cf. ablation study in Section . Second, we found that multi-prediction is beneficial for this dataset,
which is explained by a high scene complexity leading to a multiplicity of normal scenarios.

Avenue. This dataset is challenging because it contains several types of anomalies, such as human behavior
and unusual objects. In addition, unlike previous datasets, it contains location-dependent anomalies. It is
important to note that no method consistently outperforms the others in all metrics. However, MMP-AMS
combined with the location module provides a good compromise between RBDC and TBDC. More specif-
ically, our approach achieves the best performance in terms of RBDC (41.9p.p) and a moderate TBDC.
The performance on TBDC can be explained by the fact that our method involves a small temporal context
(only two frames), while approaches that surpass ours use a temporal context of at least four consecutive
frames. Nevertheless, our method achieves the best TBDC (+0.8 p.p) among methods which use a similar
temporal window (Georgescu et al.| (2021b)); Bergaoui et al,| (2022); Naji et al. (2022))). The good perfor-
mance in RBDC is partly due to simultaneously taking into account the appearance, motion and location
aspects which are relevant for this dataset. Moreover, MMP-AMS alone outperforms methods designed for
appearance and motion anomalies (Georgescu et al. (2021bsa); [Barbalau et al.| (2022); |Liu et al.| (2021));
Ristea et al.| (2022); Tonescu et al.| (2019a))) in terms of RBDC. When combined with the location module, it
outperforms all methods under consideration. This shows the complementarity of our two modules for this
dataset.

5.4 Discussion
5.4.1 Impact of multi-prediction

As mentioned in the introduction, there are trade-offs between reconstruction-based methods and future
prediction-based methods. While the former reconstruct training data well, they also tend to reconstruct
anomalies. On the contrary, the latter predict anomalies poorly, however, they predict less well normal
data. Our approach embraces advantages of both families. Indeed, as our model has only access to

10
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a masked current image, it cannot recover anomalies well, and thanks to multi-prediction, it fits nor-
mal data better than single-prediction methods, as shown in Proposition 1. In order to empirically ver-
ify our claims, we compared MMP-AMS performing only one prediction (vl in Table with the same
framework performing multiple predictions (v2,v3,v4 in Table [3). We observe in Table [3] that a multi-
prediction network achieves a lower prediction error than a single prediction network only when Ly is
used ((v2,v3,v4) vs vl). On the one hand, we observe that the model actually produces similar predic-
tions when trained with £,,4,pe (v2 in Table [3]), which is coherent with Proposition 4. On the other hand,
when we train the model using Ly, it produces a higher diversity of predictions (v3, v4 in Table .
Indeed, Ly encourages predictor specialization,

since it penalizes only the best guess. This ob-

servation is consistent with Proposition 1. Nev- 6 n
ertheless, optimizing Lyn alone leads to the non- o ;:
participation (v3 in Tab. of some predictors in :Z 68
the training, since they are never selected as near- ées o /"’\‘
est neighbors. This explains the introduction of the 64 &)
non-participation loss Ly p (v4 in Table[3) which en- Zz :i
sures that all branches get optimized. Empirically, i i i i

2 3 2 3
Number of predictions Number of predictions

we notice that it allows the model to better fit nor-

mal data since it helps to decrease the prediction Figure 5: Influence of the number of predictions on

loss and increases diversity. In terms of anomaly NMP-AMS performance (RBDC, TBDC % scores on
detection performance, we trained the MMP-AMS Avenue).

framework to predict up to 4 predictions on Avenue

(Figure . We can observe a significant increase in

all metrics (RBDC: +4.1p.p, TBDC: +1.8p.p) until 3 predictions. However, in the case of 4 predictions,
performance decreases slightly but remains superior to that of a single prediction. This suggests that 3
predictions are enough to model the diversity of normality for this dataset.

Table 3: Comparison between different training loss functions using the metrics participation, diversity and
prediction loss computed for normal samples from Avenue using the RGB modality. The participation is the
selection frequency of a predictor. The diversity (x10?) is the average pixelwise distance between predictions
from two different predictors (higher is better). The prediction loss is the nearest neighbor loss (lower is
better). Green and red respectively indicate best and worst results.

Training metrics

Variant Losses Participation Diversity 1 Prediction
loss |
vl (1 pred.) Loyaive = LNN 100% 0 0.164
v2 (3 pred.) Laive 29%, 13%, 58% 0.03 0.165
v3 (3 pred.) LN 65%, 35%, 0% 1.4 0.159
v4 (3 pred.) Lyn +ALNnp 35%, 51%, 14% 1.8 0.157

5.4.2 Impact of the choice of normality aspects

In MMP-AMS, we introduced multiple aspects to capture diverse types of normality patterns. This allows
the model to jointly learn spatio-temporal fine grained patterns via unmasking and future prediction, as
well as the object-level semantics through class prediction. Those aspects are complementary, especially for
datasets that contain diverse appearance, motion and semantics anomaly types such as ShanghaiTech. This
results in performance improvement when incrementally adding more aspects in the normality modeling (a2,
a3, ad in Table. We notice that class and optical flow predictions are less relevant for Avenue dataset. This
can be explained by two reasons: 1) most anomalies on this dataset are done by humans for which the class
information is not relevant to detect anomalies; 2) optical flow predictions are not enough to characterize
complex motion patterns in the scene that would require additional 3D information. Therefore, we give them
less weight for anomaly scoring (cf. weights w4 detailed in Section . Regarding the masking of the input

11
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Table 4: RBDC and TBDC scores in % obtained by incrementally combining the aspects in MMP-AMS.
Best performances are in bold. The normality aspects are denoted as follows: F' for future frame prediction,
O for optical flow prediction, C for class prediction.

Ablation  Set of aspects UCSDped2 ShanghaiTech Avenue
RBDC TBDC RBDC TBDC RBDC TBDC
al {F(w/o mask) } = 61.9 82.1 47.2 82.2 67.5 66.7
a2 {F} 66.8 85.1 48.4 83.4 68.2 66.7
a3 {F,C} 76.7 94.9 53.8 83.2 68.5 67.5
ad {F,C,0} 84.0 99.0 55.9 85.7 67.4 68.0

(cf. a2 vs. al in Table , we can observe that it is beneficial for all datasets especially for UCSDped2. This
suggests that constraining the prediction task by masking the input makes the prediction even harder for
abnormal objects, which leads to a better discrimination between normal and abnormal samples. Concerning
the location module, modeling the distribution of bounding boxes (cf. Table [2)) significantly improves the
results for Avenue dataset. This can be explained by the fact that some anomalies in Avenue are related
to the position with respect to the camera, which is not the case for UCSDped2 and ShanghaiTech, that
do not include location-dependent anomalies in the definition of what is considered as abnormal. For the
sake of consistency with the definition of anomalies in these datasets, the location aspect is not taken into
account (cf. parameter v = 0 as detailed in Section . These results show the importance of defining the
aspects of normality that are relevant to each user application, in order to achieve optimal anomaly detection
performance. As our approach models these aspects via separate networks, it allows aspects of normality
to be weighted according to their relevance to the types of anomalies to be detected. This also provides an
end-user explanation of which aspects cause an anomaly score that would trigger an alarm.

5.4.3 Limitations and Future work

One downside of our approach is that it depends on supervised object detectors which are usually trained in
a closed world manner. However, for some applications, anomaly detection can be aimed at finding objects
not seen during training. To address this, it would be interesting to expand our method using open-set object
detectors, which are better at adapting to out-of-distribution objects. This could reduce the number of missed
anomalies caused by missed detection. Moreover, our method can be improved by adding further normality
aspects, which are useful for a given application. For example, it would be interesting to model long-term
dependencies such as trajectories. This improvement is valuable for spotting anomalies like loitering, where
having a longer context is crucial for an accurate identification.

6 Conclusion

In this work, we addressed the problem of modeling a heterogeneous and multi-aspect normality. For this
purpose, we proposed a masked multiple prediction approach (MMP) that is adapted to the multiplicity
of possible scenarios. We showed both theoretically and experimentally that modeling the distribution of
normal data via multiple predictions improves normality learning and anomaly detection performance. We
also discussed the importance of determining the relevant aspects of normality for a given application in
order to achieve satisfactory performance, and proposed to model several important aspects of normality
such as appearance, motion, semantics and localization. As we model each aspect separately, our approach
has the advantage of being both interpretable and modular.
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