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Figure 1: POINT BRIDGE Overview. We present POINT BRIDGE, a framework that leverages unified, domain-
agnostic point-based representations to unlock the potential of large-scale synthetic simulation datasets. POINT
BRIDGE enables zero-shot sim-to-real policy transfer with minimal visual or object alignment, supports multitask
learning, and further improves performance when co-trained with small amounts of real robot data.

ABSTRACT

Robot foundation models are starting to realize some of the promise of developing
generalist robotic agents, but progress remains bottlenecked by the availability of
large-scale real-world robotic manipulation datasets. Simulation and synthetic data
generation are a promising alternative to address the need for data, but the utility
of synthetic data for training visuomotor policies still remains limited due to the
visual domain gap between the two domains. In this work, we introduce POINT
BRIDGE, a framework that uses unified domain-agnostic point-based representa-
tions to unlock the potential of synthetic simulation datasets and enable zero-shot
sim-to-real policy transfer without explicit visual or object-level alignment across
domains. POINT BRIDGE combines automated point-based representation ex-
traction via Vision-Language Models (VLMs), transformer-based policy learning,
and inference-time pipelines that balance accuracy and computational efficiency
to establish a system that can train capable real-world manipulation agents with
purely synthetic data. POINT BRIDGE can further benefit from co-training on small
sets of real-world demonstrations, training high-quality manipulation agents that
substantially outperform prior vision-based sim-and-real co-training approaches.
POINT BRIDGE yields improvements of up to 44% on zero-shot sim-to-real trans-
fer and up to 66% when co-trained with a small amount of real data. POINT
BRIDGE also facilitates multi-task learning. Videos of the robot are best viewed
at: https://pointbridge-anon.github.io/
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1 INTRODUCTION

Deep learning has recently undergone a paradigm shift, moving from narrow task-specific models to
generalist systems capable of complex reasoning (Achiam et al., 2023; Team et al., 2023; Touvron
et al., 2023), generating photorealistic images (Blattmann et al., 2023) and videos (Liu et al., 2024),
and even writing code (Li et al., 2022). This progress has been fueled by internet-scale training data
paired with scalable architectures. Lately, robot foundation models are starting to realize some of the
promise of large-scale data and the training paradigm from these domains. However, unlike vision and
language, which can directly exploit internet-scale datasets, robotics is inherently interactive: models
must learn from datasets that contain physical interactions with the real world. This makes collecting
large-scale robotic data time-consuming, prohibitively expensive, and fundamentally difficult to scale,
creating a central bottleneck for building generalist robotic intelligence.

The prevailing paradigm for robot policy learning relies on large-scale teleoperated datasets, followed
by training neural policies on them. While effective, this approach often requires months or years of
data collection and still produces datasets far smaller than those in vision and language (Goldberg,
2025). Simulation is a promising alternative to address this need for data, especially due to recent
progress. Simulation environments are becoming easier to design, with the availability of high-fidelity
physics simulators (Todorov et al., 2012; Mittal et al., 2023) and the emergence of generative AI
tools that automate asset and scene generation (Wang et al., 2023; Nasiriany et al., 2024). Recently
developed synthetic data generation tools can generate large-scale, high-quality robot manipulation
demonstration datasets in such simulation environments with minimal human effort (Dalal et al., 2023;
Mandlekar et al., 2023; Jiang et al., 2024; Garrett et al., 2024). Furthermore, recent work has shown
that such synthetic simulation datasets can easily train high-performing real-world manipulation
agents by co-training on these datasets and small numbers of real-world demonstrations (Maddukuri
et al., 2025; Wei et al., 2025; Bjorck et al., 2025), suggesting that synthetic simulation data could
potentially reduce the dependence on large real-world datasets. However, these methods can still
require careful sim and real alignment, and still rely on the presence of real-world data, owing to the
mismatched representation of data between the domains. Human videos offer another scalable and
complementary source of supervision, but again face challenges from the embodiment gap between
human and robot morphologies as well as the representation mismatch between the domains.

A recent line of work proposes task-relevant keypoint representations (Haldar & Pinto, 2025; Zhu
et al., 2024; Liu et al., 2025) as a potential solution to this domain representation gap. By abstracting
both the robot and scene into sets of keypoints, these methods enable policies that are agnostic to
raw visual appearance and generalize across objects and environment conditions. However, existing
approaches often rely on human annotations (Haldar & Pinto, 2025; Liu et al., 2025), focus on
bridging embodiment but not visual differences (Lepert et al., 2025b;a), and are often restricted to
single-task settings. We argue that such representations only scratch the surface of what is possible.

In this work, we introduce POINT BRIDGE, a framework that uses unified domain-agnostic
point-based representations to unlock the potential of synthetic simulation datasets and enable
zero-shot sim-to-real policy transfer. POINT BRIDGE trains real-world manipulation agents starting
with just a handful of teleoperated demonstrations in simulation by using synthetic data generation
tools. It then leverages advances in vision-language models (VLMs) to build unified scene represen-
tations that facilitate cross-domain policy transfer. Our core insight is that unifying representations
across simulation and real-robot teleoperation unlocks scalable sim-to-real transfer without requiring
explicit visual or object-level alignment. Such a representation further supports scaling to multi-task
policies through transformer-based architectures, providing a framework that scales with data avail-
ability. POINT BRIDGE operates in three stages. First, scenes are filtered into point cloud–based
representations aligned to a common reference frame. In simulation, this is obtained directly from
object meshes, while in real experiments, we use our automated VLM-guided pipeline for keypoint
extraction on task relevant objects. Second, a transformer-based policy architecture is trained on
these unified point clouds for policy learning. Finally, during deployment, we employ a lightweight
pipeline for scene extraction designed to minimize the sim-to-real gap, leveraging VLM filtering and
supporting multiple 3D sensing strategies to balance performance and throughput.

We demonstrate the effectiveness of POINT BRIDGE on six real-world tasks, using data collected
through simulation and real robot teleoperation. Our main findings are as follows:
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1. We develop POINT BRIDGE, a framework that uses unified domain-agnostic point-based represen-
tations to harness synthetic simulation data and enable zero-shot sim-to-real policy transfer.

2. POINT BRIDGE contains novel components including (1) a VLM-based point extraction pipeline
that bridges the visual sim-to-real gap with minimal human effort, and (2) multiple inference-time
pipelines to adapt to different user needs with respect to performance and throughout.

3. POINT BRIDGE improves by 39% and 44% on single-task and multitask zero-shot sim-to-real
transfer. When co-trained with a small amount of real data, POINT BRIDGE improves over prior
works by 61% and 66% in single-task and multitask settings, respectively. (Section 5.2, 5.3).

4. We present a systematic analysis of key design choices in POINT BRIDGE (Section 5.4).

All of our datasets, training, and evaluation code will be made publicly available. Videos of our
trained policies are best viewed at: https://pointbridge-anon.github.io/.

2 RELATED WORK

2.1 STRUCTURED REPRESENTATIONS

Structured representations of scene elements enable more efficient and semantically meaningful
learning. Common techniques include segmentation into bounding boxes (Devin et al., 2018; Zhu
et al., 2023b) and object pose estimation (Tremblay et al., 2018; Tyree et al., 2022). Bounding boxes
show promise but suffer from overfitting to specific instances, while pose estimation is less prone to
this but requires separate models per object. Point clouds (Zhu et al., 2023a; Bauer et al., 2021) are a
popular alternative but their unstructured nature complicates learning spatial relationships. Recently,
key points (Levy et al., 2025; Ju et al., 2024; Huang et al., 2024; Haldar & Pinto, 2025; Fang et al.,
2025; Ren et al., 2025) have gained traction for policy learning due to their generalizability and
support for direct human prior injection (Bharadhwaj et al., 2024b;a), contrasting with approaches
that first learn representations from human videos followed by robot teleoperation data (Nair et al.,
2022; Wu et al., 2023; Ma et al., 2022; 2023; Karamcheti et al., 2023).

2.2 DATA COLLECTION AND GENERATION FOR ROBOTICS

Robot teleoperation (Mandlekar et al., 2018; Wu et al., 2024; Zhao et al., 2023b; Iyer et al., 2024) is
a popular method for collecting task demonstrations – here, humans use a teleoperation device to
control a robot and guide it through tasks. Several efforts (Brohan et al., 2022; Ebert et al., 2021;
Brohan et al., 2023) have scaled up this paradigm by using a large number of human operators
and robot arms over extended periods of time (e.g., months). Some works have also allowed for
robot-free data collection with specialized hardware (Chi et al., 2024; Fang et al., 2023; Shafiullah
et al., 2023), but human effort is still required for data collection. Other works seek to generate
datasets automatically using pre-programmed demonstrators in simulation (Dalal et al., 2023; James
et al., 2020; Ha et al., 2023), but scaling these approaches to a larger variety of tasks can be difficult.

2.3 LEARNING MANIPULATION FROM HUMAN DEMONSTRATIONS

Behavioral Cloning (BC) (Pomerleau, 1988; Ross et al., 2011) is a method for learning policies offline
from demonstrations using supervised learning. Recent advances in BC have demonstrated success in
learning policies for both long-horizon tasks (Mandlekar et al., 2021; 2020; Shridhar et al., 2021) and
multi-task scenarios (Haldar et al., 2024; Bharadhwaj et al., 2023a; Padalkar et al., 2023; Bharadhwaj
et al., 2024b;a). However, most of these approaches rely on image-based representations (Zhang
et al., 2018; Haldar et al., 2024; Chi et al., 2023; Bharadhwaj et al., 2023b; Padalkar et al., 2023),
which limits their ability to generalize to new objects and function effectively outside of controlled
lab environments. A way to make policies generalize better is to leverage offline data augmentation
to increase the size of the training dataset for learning policies (Zhan et al., 2021; Yu et al., 2023;
Chen et al., 2023; Bharadhwaj et al., 2023a; Zhao et al., 2025).

3
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2.4 SIM-TO-REAL POLICY TRANSFER

Sim-to-real policy transfer aims to enable models trained in simulation to perform well in the real
world. A common method is domain randomization (Zhu et al., 2018; Andrychowicz et al., 2020;
Handa et al., 2023), which introduces variability in simulation to train policies robust to simulation-
reality gaps. However, it often requires careful tuning and substantial human effort to define effective
randomization ranges. Another approach minimizes this gap by enhancing simulation fidelity via
system identification (Ramos et al., 2019; Muratore et al., 2022; Lim et al., 2022; Memmel et al.,
2024; Kumar et al., 2021; Evans et al., 2022) and digital twins (Jiang et al., 2022; Torne et al.,
2024), aligning simulation with real dynamics. These methods also demand significant manual effort,
limiting their applicability across diverse tasks. Recent work trains real-world manipulation policies
using mixed simulation and real data (Bjorck et al., 2025; Nasiriany et al., 2024; Zitkovich et al.,
2023; Ankile et al., 2024), outperforming policies trained on real data alone. Moreover, simulation
data need not perfectly match reality, making this a compelling alternative.

3 PREREQUISITES

Learning from Demonstrations. The goal of imitation learning is to learn a behavior policy
π : O → A from a dataset of N expert demonstrations, denoted as T e = {(ot, at)Tt=0}Nn=1, where
ot ∈ O and at ∈ A represent the observation and action at timestep t, and T is the horizon length
of each episode. The behavior policy is trained using Behavior Cloning (Pomerleau, 1988) by
maximizing the log-likelihood of expert actions, i.e.,

θ∗ = argmax
θ

N∑
n=1

T∑
t=0

log πθ(a
n
t | ont ),

where πθ is the parameterized policy and θ are the learnable parameters.

Problem Statement Our goal is to leverage a source dataset Dsrc = {τ isrc}Ni=1 of human demonstra-
tions for a task M in simulation, where each trajectory τ isrc = {(ot, at)}Tt=0 consists of observations
ot ∈ O and expert actions at ∈ A. Using synthetic data generation techniques (Mandlekar et al.,
2023), we expand Dsrc into a larger dataset Dsim. The objective is to learn policies πθ : O → A on
this data that can be deployed zero-shot in the real world. We also consider the case where a small
set of real-world demonstrations Dreal is available, enabling policies to be jointly trained on both
simulated and real data to improve transfer. Finally, we explore the multitask setting, where a single
policy is trained across multiple tasks {M1, . . . ,MK} conditioned on task-specific instructions.

Simulation Assumptions For synthetic data generation in simulation, we make the following
assumptions: (1) The dataset includes policy actions A consisting of continuous end-effector pose
commands and a discrete gripper command. This allows each demonstration to be treated as a
sequence of target poses for a task-space controller. (2) Each task involves a set of manipulable
objects {O1, . . . , Ok}. (3) During data collection, the pose of each object can be observed or
estimated before the robot makes contact.

Real-World Assumptions In real-world experiments, we assume a calibrated scene with known
camera intrinsics and extrinsics. All 3D observations are expressed in a consistent reference frame,
aligned with the robot arm’s base frame at every timestep.

4 POINT BRIDGE

POINT BRIDGE introduces a unified scene representation that enables sim-to-real policy transfer with
minimal alignment, incorporates co-training with real-world data, and facilitates multitask learning.
An overview of the framework is provided below, with details discussed in the following sections.

4.1 OVERVIEW

POINT BRIDGE begins with a small dataset of human demonstrations Dsrc, which is expanded into a
larger dataset Dsim using synthetic data generation (Mandlekar et al., 2023). We also consider an

4
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Figure 2: Point Extraction Pipeline Overview. Given a scene image and task description, Gemini (Team
et al., 2023) identifies the task-relevant objects, which are then localized using Molmo (Deitke et al., 2024) and
SAM-2 (Ravi et al., 2024) Subsequently, 3D keypoints on these objects are generated by uniformly sampling 2D
keypoints on the image and projecting them into 3D using depth from Foundation Stereo (Wen et al., 2025),
together with camera intrinsics and extrinsics.

optional setting where a small set of real-world demonstrations Dreal is available for co-training. All
observations are converted into a compact point-based representation P , serving as input to policies
mapping observations to actions. In simulation, these representations are obtained directly from
the simulator, while in the real world, they are extracted via a VLM-guided scene filtering pipeline.
During deployment, the same VLM pipeline provides task-relevant points in real time for policy
inference. The resulting policies enable zero-shot sim-to-real transfer, joint training with real data,
and multitask learning. Details about each component are provided in the subsequent sections.

4.2 DATA COLLECTION AND SYNTHETIC DATA GENERATION

For our simulated tasks, we use the MimicLabs suite (Saxena et al., 2025) to construct atomic
tasks, each involving different pairs of object instances. For each task, we collect a small set
of human demonstrations Dsrc, which are then expanded into a much larger dataset Dsim using
MimicGen (Mandlekar et al., 2023), a synthetic data generation technique. MimicGen adapts each
demonstration segment to novel scenes by applying a constant SE(3) transformation T

o′i
W (T oi

W )−1,

where T oi
W is the pose of the source object oi in the world frame, and T

o′i
W is the pose of the same

object in the target scene. The inverse transformation (T oi
W )−1 maps from the world frame to the

source object’s local frame, and the full product maps poses from the source object’s frame to the
target object’s frame in the new scene. This transformation preserves the relative geometry between
the end effector and the object from the source demonstration when adapting to new object poses. As
a result, MimicGen enables a small set of demonstrations to be multiplied many times over with novel
object configurations and types, supporting generalizable policy learning on large-scale datasets.

4.3 POINT EXTRACTION

Each observation in the dataset is now distilled into a compact set of task-relevant 3D keypoints.
These keypoints serve as the unified representation used for downstream policy learning. The pipeline
comprises two stages: (1) identifying task-relevant objects in the scene, and (2) extracting 3D
keypoints for those objects. An overview of this pipeline is shown in Figure 2.

VLM-Guided Scene Filtering Given an initial scene image I0 and a natural language task de-
scription L, we first use Gemini-2.5-flash to identify the set of task-relevant objects in the
scene, denoted as {l1, . . . , lk}. For example, for the command “put the bowl on the plate”, the
model returns the object set bowl, plate. After determining the object categories, we employ Molmo-
7B (Deitke et al., 2024) to localize these objects as pixels {op1 , . . . , opk} in the image.1 These pixel
coordinates serve as initialization for SAM2 (Ravi et al., 2024), which extracts 2D segmentation
masks {m1

0, . . . ,m
k
0} for each identified object. For subsequent frames in the trajectory, we leverage

SAM2’s built-in memory to propagate masks consistently and track objects robustly over time,
enabling reliable handling of occlusions during both data collection and deployment.

1In our experiments, Gemini-2.5-flash was effective for text-based object identification but less
reliable for spatial localization, motivating the use of a specialized VLM for the pointing task. As multi-modal
VLMs advance, a unified model could eventually replace this modular approach.
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3D Projection of Task Objects For each timestep t, N 2D object points P2D
t are sampled uniformly

from each object segmentation mask mi
t, ∀i ∈ {1, . . . , k}. A stereo image pair of the scene is then

used to compute depth Id
t with Foundation Stereo (Wen et al., 2025). This depth map, along

with camera intrinsics and extrinsics, lifts P2D
t to 3D. FoundationStereo generally produces less

noisy depth than commodity RGB-D sensors, especially for shiny or transparent objects. To reduce
redundancy while maintaining coverage, we apply farthest point sampling to downsample each object
to M (≪ N ) representative points. Finally, all object points are transformed into the robot base
frame using camera extrinsics. We denote the final set as P3D

t .

Considerations for simulation data In simulation, we bypass VLM-based detection and directly
sample 3D points from task-relevant object meshes. However, mesh-based sampling covers all object
surfaces, while real cameras only capture visible surfaces from specific viewpoints. To bridge this
gap, we replicate real camera setups by applying the corresponding extrinsic (R, t) and intrinsic (K)
parameters. Each mesh point Xmesh is projected to the image plane as x̃ = K[R|t]Xmesh, and the
pixel coordinate is x = (x̃1/x̃3, x̃2/x̃3). We then use the ground-truth depth map D(x) to lift the
point back to 3D: Xcam = D(x)K−1 [x 1]. These points are transformed into the robot’s base frame
for consistency. Finally, to account for sensor noise absent in simulation, we inject Gaussian noise
with a 1 cm standard deviation into the point clouds to improve robustness to real-world observations.

Robot Representation Similar to Haldar & Pinto (2025), we represent the robot end effector
as a set of keypoints on the gripper. Given the robot pose T t

r at timestep t, we define N rigid
transformations T about this pose and compute the pose at each robot keypoint T t

r such that

(T t
r )

i = T t
r · T i, ∀i ∈ {1, ..., N} (1)

The positions of the robot key points (Pt
r)

i ∀i ∈ {1, ..., N} are then extracted from these poses.

4.4 POLICY LEARNING

We use BAKU (Haldar et al., 2024) for policy learning . Robot points Pr and object points Po are
combined into a point cloud P , encoded with a PointNet (Qi et al., 2017) encoder. For multitask
learning, we also input a language embedding L, encoded using the 6-layer MiniLM (Wang et al.,
2020) from Sentence Transformers (Reimers & Gurevych, 2019). The encoded representations
serve as input to a BAKU transformer policy with a deterministic action head that outputs the robot
end-effector pose and gripper state. Mathematically,

Ot−H:t = {Pt−H:t
r , Pt−H:t

o , L}
Ât+1 = π(·| Ot−H:t)

(2)

where H is the history length, π the learned policy, and A the predicted action. Following prior work
in policy learning (Zhao et al., 2023a; Chi et al., 2023), we use action chunking with exponential
temporal averaging to ensure smoothness of the predicted tracks. The policy is optimized with mean
squared error (MSE) over ground-truth and predicted actions.

4.5 POLICY INFERENCE

During real-world deployment, the initial scene image I0 and task instruction L are used to obtain
2D object keypoints P2D

0 , which are projected to 3D using scene depth and camera parameters.
Section 4.3 describes our primary approach with stereo images and Foundation Stereo, but we also
support depth from commodity RGB-D sensors and point triangulation from two RGB cameras (Hal-
dar & Pinto, 2025). For RGB-D sensors, depth comes directly from the sensor depth map. For
triangulation, 2D keypoints from one camera view are transferred to the other via MAST3R (Leroy
et al., 2024), and Co-Tracker (Karaev et al., 2023) tracks them throughout the trajectory. 3D keypoints
P3D
0 are then computed by triangulating tracked corresponding 2D points from multiple views and

transforming them into the robot base frame. In subsequent timesteps, Co-Tracker separately tracks
2D keypoints P2D

t in both views, followed by multi-view triangulation to extract P3D
t in the base

frame. This flexible pipeline with multiple depth sensing strategies enables the same trained policy to
be deployed across diverse real setups. We compare performance across strategies in Section 5.4.
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Stack bowls Put mug on plate

Put bowl on plate Fold towel

Close drawer Put bowl in oven

Figure 3: Tasks. Real-world rollouts showing POINT BRIDGE’s ability on 6 real-world tasks.

5 EXPERIMENTS

We provide details on our experimental setup (Sec. 5.1) and subsequently show how POINT BRIDGE
effectively enables zero-shot sim-to-real policy transfer from synthetic simulation data (Sec. 5.2) and
how POINT BRIDGE performance can be improved even further with a small amount of real-world
data (Sec. 5.3). Finally, we conduct a systematic analysis of the components in POINT BRIDGE
(Sec. 5.4). We have included additional experiments and analysis in Appendix A.2.

5.1 EXPERIMENTAL SETUP

We evaluate manipulation tasks with significant variability in object type and placement, under
minimal visual and object alignment between simulation and reality. We use Deoxys (Zhu et al.,
2022) at 20 Hz as the robot controller. Real-world experiments are conducted on a Franka Research 3
arm with a Franka Hand gripper. Demonstrations are collected at 20 Hz using RoboTurk (Mandlekar
et al., 2018) in simulation and Open Teach (Iyer et al., 2024) in the real world, and subsampled to
10 Hz for training. For sensing, we use an Intel RealSense RGB-D and a ZED 2i stereo camera.
Policies trained with POINT BRIDGE and FoundationStereo for depth estimation run at 5 Hz, while
image-based baselines reach 15 Hz. In total, we perform 1410 real-world evaluations across
varied task settings to benchmark performance.

Environment Design and Data Generation For our simulated experiments, we use the MimicLabs
task suite (Saxena et al., 2025) to design 3 atomic tasks - bowl on plate, mug on plate,
and stack bowls. Each task includes 4 different object instance pairs. For every pair, a human
demonstrator provides 5 demonstrations, which are scaled up to 300 using MimicGen (Mandlekar
et al., 2023), resulting in a total of 1200 demonstrations per task in simulation. For co-training, we
supplement this with 45 teleoperated demonstrations in the real world across three additional object
pairs, illustrating cross-domain variability. For real tasks such as fold towel, close drawer,
and put bowl in oven, we only collect real-world data (20 demonstrations on a real robot). We
provide additional details about policy learning considerations and task descriptions in Appendix A.2.

5.2 ZERO-SHOT SIM-TO-REAL TRANSFER WITH MINIMAL ALIGNMENT

We evaluate POINT BRIDGE for zero-shot sim-to-real transfer on 3 simulated tasks. Table 1 and
Table 2 present the single-task and multitask results, respectively. Each configuration consists of
10 rollouts across 3 object-instance pairs, totaling 30 evaluations. For POINT BRIDGE, we use 128
points per object extracted using the VLM filtering pipeline . Our key findings are summarized below.

POINT BRIDGE enables zero-shot sim-to-real transfer with minimal visual alignment. As
illustrated in Figure 1, our simulation and real-world setups differ significantly in table appearance,

7
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Table 1: POINT BRIDGE enables zero-shot sim-to-real transfer in single task settings and shows further
performance improvements when trained with small amounts of real-world data.

Observation Modality Data Configuration Bowl on plate Mug on plate Stack bowls
Image Real 9/30 10/30 11/30

Co-Train Sim 2/30 17/30 14/30

POINT BRIDGE Real 25/30 25/30 24/30
Zero-Shot Sim 23/30 21/30 24/30
Co-Train Sim 29/30 30/30 29/30

Table 2: POINT BRIDGE supports both zero-shot sim-to-real transfer and sim-real co-training in multi-task
settings. Notably, multi-task learning shows improvements in performance over single-task training.

Observation Modality Data Configuration Bowl on plate Mug on plate Stack bowls
Image Real 10/30 11/30 11/30

Co-Train Sim 6/30 10/30 15/30
POINT BRIDGE Real 22/30 26/30 24/30

Zero-shot Sim 25/30 23/30 24/30
Co-Train Sim 30/30 30/30 30/30

backgrounds, and lighting. Despite these differences, POINT BRIDGE’s scene-filtering strategy
produces domain-invariant representations, outperforming the strongest baseline by 39% in single-task
transfer and 44% in multitask transfer. This stands in contrast to prior approaches, which often require
carefully aligned scenes and reality (Maddukuri et al., 2025) or photorealistic simulators (Mittal et al.,
2023) to achieve policy transfer. Image-based sim-to-real policies fail entirely in the zero-shot setting,
and thus are excluded from the reported results for clarity.

POINT BRIDGE enables zero-shot sim-to-real policy transfer across diverse object instances.
Figure 1 compares objects used in simulation versus deployment. Even under large discrepancies
in visual appearance, POINT BRIDGE requires only minimal object alignment to transfer policies
effectively. Additionally, by leveraging FoundationStereo for depth estimation, POINT BRIDGE
is able to handle visually challenging objects such as transparent or reflective items, unlike depth
sensing from RGB-D cameras, which typically struggles with such items.

POINT BRIDGE enables multitask zero-shot sim-to-real transfer. We evaluate both single-task
and multitask variants of POINT BRIDGE, where the multitask policy is conditioned on natural
language instructions. Since POINT BRIDGE operates on filtered point cloud representations and
is language-conditioned, it generalizes naturally to the multitask setting. Empirically, the multitask
policy achieves comparable or better performance than single-task policies, demonstrating scalability
across diverse tasks.

5.3 COMPATIBILITY OF POINT BRIDGE WITH REAL DATA

In this section, we study the effect of jointly training policies with simulated and real-world data.
This paradigm, often called co-training, has been widely explored in sim-to-real (Maddukuri et al.,
2025) and human-to-robot transfer (Haldar & Pinto, 2025). Our key findings are summarized below.

Co-training with real robot data further improves real-world performance. We collect 45
teleoperated demonstrations on a real robot for three tasks and jointly train POINT BRIDGE with 1200
simulated demonstrations per task, using an 80–20 simulation-to-real ratio. Results across single-task
(Table 1) and multitask (Table 2) show that adding real data consistently boosts performance by up to
30%. By comparison, image-based co-training methods yield a mixed outcome – likely because our
simulation and real setups are not as visually aligned as in prior works that assume access to digital-
cousin environments in simulation (Maddukuri et al., 2025). Overall, POINT BRIDGE outperforms
image-based co-training by 61% in single-task and 66% in multitask settings, highlighting its ability
to leverage small amounts of real data alongside large-scale simulation.
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Table 4: Study of key designs decisions in POINT BRIDGE.

Category Variant Bowl on plate Mug on plate Stack bowls
Depth Sensing Point Tracking 5/30 7/30 6/30

RGB-D 15/30 12/30 13/30
Foundation Stereo 23/30 21/30 24/30

Camera alignment Aligned 23/30 21/30 24/30
Ground truth 12/30 7/30 6/30

Table 3: Performance of POINT BRIDGE on
real tasks with soft and articulated objects.

Task Success rate

Fold towel 17/20
Close drawer 18/20
Bowl in oven 16/20

POINT BRIDGE supports tasks involving soft and ar-
ticulated objects. Table 3 reports results for training
single-task POINT BRIDGE policies on three tasks involv-
ing soft objects (towel) and articulated objects (drawer,
oven). For each task, we collect 20 demonstrations via
real robot teleoperation. Overall, POINT BRIDGE achieves
an 85% success rate across these tasks, highlighting its

effectiveness beyond rigid-object manipulation.

5.4 SYSTEM ANALYSIS

Table 4 presents a study of key design decisions in POINT BRIDGE, with insights summarized below.

Depth estimation for policy inference During inference, 2D keypoints from the VLM pipeline are
lifted to 3D using the depth strategies in Section 4.5. We observe that Foundation Stereo offers the
best performance, running at 5 Hz and remaining robust on reflective surfaces. In contrast, multi-view
triangulation with MAST3R yields noisy correspondences in dense point clouds, while added point
tracking further slows inference to 2.5 Hz with 128 points per object. RGB-D cameras also run at
5 Hz but suffer from noise, missing regions, degraded accuracy at distance, and poor handling of
reflective objects. Overall, accurate depth estimation is critical, with stereo vision proving the most
reliable and practical choice for sim-to-real transfer in POINT BRIDGE.

Effect on camera view on policy performance In simulation, we can uniformly sample ground-
truth object points over the entire object, whereas in the real world, point clouds depend on the
camera viewpoint and only capture visible surfaces. This creates a mismatch between uniformly
sampled points in simulation and view-dependent points in reality. We find that training with camera-
aligned points in simulation – generated using real-world camera extrinsics – significantly improves
sim-to-real transfer over training on uniformly sampled points.

Additional experiments and analysis have been included in Appendix A.2.2.

6 LIMITATIONS & CONCLUSION

In this work, we introduced POINT BRIDGE, a framework that employs domain-agnostic point-based
representations to exploit synthetic simulation datasets, enabling zero-shot sim-to-real transfer with
minimal visual alignment, supporting co-training with real data, and facilitating multitask policy
learning. We recognize a few limitations of this work.

Limitations (1) POINT BRIDGE depends on VLMs and other vision models, making it vulnerable
to their failures; as these models advance, we expect corresponding improvements in robustness. (2)
POINT BRIDGE requires camera pose alignment between simulation and reality to avoid distribution
mismatch. A remedy is to train with diverse simulated viewpoints, which can be scaled via synthetic
generation tools such as MimicGen (Mandlekar et al., 2023). (3) Point-based abstractions aid
generalization but discard critical scene context, limiting performance in cluttered environments.
Hybrid representations that preserve sparse contextual cues could address this gap.
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7 REPRODUCIBILITY STATEMENT

For reproducibility, we have included our experiment hyperparameters along with our hardware
specifications and policy through in Appendix A.2. All of our datasets, environments, and training
and evaluation code will also be made publicly available.
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A APPENDIX

A.1 COMPARISON WITH POINT POLICY

In this section, we provide a comparison between Point Policy (Haldar & Pinto, 2025) and POINT
BRIDGE. While both methods attempt to solve cross-domain policy learning using key points, there
are significant differences between the two approaches.

1. While Point Policy primarily focuses on zero-shot human-to-robot transfer, POINT BRIDGE is
mainly focused on enabling sim-to-real transfer.

2. Point Policy requires manual human annotations for each task, which limits its scalability. In
contrast, POINT BRIDGE leverages a VLM-based pipeline for automated point extraction, enabling
it to scale to novel tasks without additional human effort.

3. Point Policy relies on point tracking combined with multi-view triangulation to obtain 3D key-
points. This approach faces two challenges: (1) tracking speed decreases as the number of points
increases, and (2) errors in multi-view correspondence can degrade triangulation accuracy. By
contrast, POINT BRIDGE employs 2D segmentation tracking with SAM-2 (Ravi et al., 2024),
which is fast (20Hz on 512× 512 images) and whose throughput is unaffected by the number of
object points. Further, SAM-2 includes a memory module which aids in dealing with occlusions
during deployment.

4. In terms of architecture, Point Policy encodes each point track history as an individual transformer
token. Instead, POINT BRIDGE uses the PointNet (Qi et al., 2017) encoder to represent the entire
3D point cloud as a single embedding. This design parallels the distinction between ViTs and
CNNs for image encoding, where ViTs treat individual pixels as tokens and are generally more
data-hungry.

5. While Point Policy is limited to single-task training, POINT BRIDGE functions in multi-task
settings.

A.2 EXPERIMENTS

Data Generation and Scaling in Simulation For our simulated experiments, we use the MimicLabs
task suite (Saxena et al., 2025) to design 3 atomic tasks, each including 4 different object instance
pairs. For every pair, a human demonstrator provides 5 demonstrations, which are scaled up to 300
using MimicGen (Mandlekar et al., 2023). POINT BRIDGE unlocks the potential of such large-scale
synthetic data generation by enabling zero-shot sim-to-real transfer. For task design in simulation,
we utilize assets from RoboCasa (Nasiriany et al., 2024), focusing primarily on pick-and-place
task transfer from simulation. More complex articulated tasks (e.g., opening ovens) are difficult to
transfer to the real world due to unrealistic asset dynamics – for instance, simulated ovens often
open with a simple handle push unlike real ovens that require pressing a button at varying locations.
Addressing this gap would require more realistic simulation assets (Lightwheel, 2025) along with
training across diverse object variants, which we leave for future work. In this work, we primarily
focus on establishing visual invariance across simulation and the real world, enabling cross-domain
zero-shot policy transfer.

Considerations for Policy Learning Our experiments use ZED 2i stereo cameras with depth
estimated via FoundationStereo. While the vanilla model for FoundationStereo is slow for closed-
loop control, the TensorRT-optimized version achieves up to 10 Hz on an NVIDIA RTX 5090 GPU.
Since this GPU resides on a separate machine from the robot, we use high-speed Ethernet for low-
latency communication, primarily for image transfer, resulting in an overall control frequency of
5 Hz. When using depth from an RGB-D camera, the models run directly on the robot’s NVIDIA
Quadro RTX 8000 GPU, also operating at 5 Hz.

Task Descriptions We evaluate POINT BRIDGE across a diverse set of tasks, with rollouts on
the real robot depicted in Figure 3. Each task involves substantial spatial variation and multiple
distinct object instances, with significant differences between the simulation and real objects. For the
tasks bowl on plate, mug on plate, and stack bowls, we generate 1200 demonstrations
in simulation spanning four object-instance pairs. For co-training, we supplement this with 45
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teleoperated demonstrations in the real world across three additional object pairs, illustrating cross-
domain variability. For real tasks such as fold towel, close drawer, and put bowl in
oven, we only collect real-world data (20 demonstrations on a real robot), as aligned simulation
assets are unavailable.

A.2.1 HYPERPARAMETERS

The hyperparameters for POINT BRIDGE have been provided in Table 5.

Table 5: List of hyperparameters.

Parameter Value

Learning rate 1e−4

Image size 672× 448 (for Foundation Stereo Tensor RT version)

Batch size 16

Optimizer Adam

Number of training steps 300000

Hidden dim 256

Observation history length 1

Action head Deterministic

Action chunk length 40 (with training data at 10Hz)

# keypoints per object 128

A.2.2 ADDITIONAL EXPERIMENTS AND SYSTEM ANALYSIS

Comparison with point cloud and point track baselines We compare the single-task, zero-shot
sim-to-real transfer performance of POINT BRIDGE with a point cloud baseline, BAKU-PCD, and a
point track baseline, Point Policy (Haldar & Pinto, 2025). For BAKU-PCD, we use the BAKU (Haldar
et al., 2024) architecture with unfiltered point cloud inputs containing 512 scene points, encoded using
a PointNet (Qi et al., 2017) encoder similar to POINT BRIDGE. We observe that including the table
and the curtains surrounding the real robot setup results in zero success rates, so we manually restrict
the work area to exclude these elements from the point cloud for BAKU-PCD. Notably, this kind of
filtering is performed automatically by the VLM-based point extraction pipeline in POINT BRIDGE.
Point Policy (Haldar & Pinto, 2025) uses a sparse set of semantically meaningful points, labeled by
a human user on a canonical image, as input. At evaluation time, it uses semantic correspondence
to locate the corresponding points in the target scene, and then Co-Tracker (Karaev et al., 2023) is
used to track these initialized points across the trajectory. We find that semantic correspondence
between simulated and real images performs poorly, resulting in zero success rates for Point Policy
in the zero-shot sim-to-real setting. These results have been presented in Table 6. Overall, we find
that POINT BRIDGE’s automated keypoint extraction enables significantly more robust sim-to-real
transfer than previous point cloud and point track baselines.

Sensitivity to calibration changes between training and deployment The results in Table 1 and
Table 2 assume that the camera viewpoints are identical between simulation and the real world. To
relax this assumption, we synthetically generate the segmented point clouds used by POINT BRIDGE
from eight distinct camera views positioned around the robot in simulation. For each view, we
extract a 3D segmented point cloud and transform it to the robot’s base frame using the relevant
camera extrinsics. This variation captures different occlusion patterns and increases the model’s
robustness to camera viewpoint changes that may occur between training and deployment. The
results in Table 7 evaluate single-task zero-shot sim-to-real transfer under such viewpoint variations
between simulation and real. Notably, even without matched camera viewpoints between simulation
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Table 6: Comparison between single-task zero-shot sim-to-real performance of POINT BRIDGE and baselines
using an unfiltered point cloud and point tracks as input.

Method Bowl on plate Mug on plate Stack bowls
BAKU-PCD 6/30 9/30 12/30
Point Policy (Haldar & Pinto, 2025) 0/30 0/30 0/30
POINT BRIDGE 23/30 21/30 24/30

Table 7: Comparison between single-task zero-shot sim-to-real performance of POINT BRIDGE with and without
identical camera views between simulation and the real-world.

POINT BRIDGE Bowl on plate Mug on plate Stack bowls
w/ identical camera views 23/30 21/30 24/30
w/ randomized camera views 12/30 12/30 18/30

and reality, POINT BRIDGE attains an average success rate of approximately 47% across three tasks.
We observe a drop in performance when transitioning from matched to randomized viewpoints. This
opens up an important direction for future work: developing methods that achieve robustness to
viewpoint-dependent discrepancies in 3D point distributions for policy learning.

Effect of background distractors To evaluate the robustness of our scene filtering pipeline (Sec-
tion 4.3), we compare zero-shot single-task sim-to-real transfer performance for BAKU-PCD (using
unfiltered point cloud inputs; see "Comparison with point cloud and point track baselines" earlier)
and POINT BRIDGE both with and without background distractors. Results are presented in Table 8,
with representative distractor examples shown in Figure 4. We observe that BAKU-PCD, relying
on unfiltered point clouds, is highly susceptible to distractor objects, yielding a zero success rate
under these conditions. In contrast, POINT BRIDGE, which incorporates scene filtering, maintains
performance on par with the distractor-free scenario and exhibits strong robustness to background
clutter.

Generalization to held-out objects As shown in Table 1 and Table 2, POINT BRIDGE demonstrates
strong zero-shot sim-to-real transfer to novel real-world objects unseen in simulation, achieving 76%
and 80% success rates in single-task and multi-task scenarios, respectively. Co-training with both
simulated and real data further raises success rates to 98% (single task) and 100% (multi-task) for
objects present in the real dataset, likely due to reducing geometric disparities between synthetic and
real instances. Beyond these results, we also evaluate the co-trained POINT BRIDGE policies on held-
out objects missing from both simulated and real training sets – a stricter measure of generalization
to novel object instances. As shown in Table 9, multi-task success rates on held-out objects remain
high at 97% on unseen objects compared to 100% for those encountered during training, with failures
mainly occurring for bowls which were much larger than those in the training data. These results
highlight the robustness of POINT BRIDGE to entirely novel object instances. Rollout videos on
held-out object instances are available on https://pointbridge-anon.github.io/.

Effect of number of points We evaluate the impact of the number of object points on policy
performance in simulation across three configurations: 10, 64, and 128 points per object. These
results are included in Table 10. While overall performance remains similar across these settings, 64
points per object yields the best performance. Notably, all configurations achieve over 86% success,
demonstrating that POINT BRIDGE is effective across both sparse and dense point cloud regimes.

Effect of action representation We compare the performance of POINT BRIDGE across two action
representations: pose regression and point track prediction. For point track prediction, we follow
Point Policy (Haldar & Pinto, 2025) and predict a future chunk of end-effector points (described
in Section 4.3) instead of future pose sequences. These results are reported in Table 10. Unlike
Point Policy, which reported gains from point track prediction, we observe comparable performance
between the two representations. A likely reason is the difference in dataset scale – Point Policy used
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Table 8: Comparison between single-task zero-shot sim-to-real performance of POINT BRIDGE and BAKU-PCD
in the presence of background distractors.

Method Background
distractors Bowl on plate Mug on plate Stack bowls

BAKU-PCD ✗ 6/30 9/30 12/30
✓ 0/30 0/30 0/30

POINT BRIDGE ✗ 23/30 21/30 24/30
✓ 22/30 20/30 25/30

Bowl on plate Mug on plate Stack bowls

Figure 4: Examples of background distractors in real-robot setup.

at most 30 demonstrations per task, whereas our experiments leverage 1200 simulated demonstrations
per task, potentially reducing the relative benefit of point track supervision.

Latency analysis for VLM-guided scene filtering pipeline Table 11 summarizes the measured
runtimes for each component of the VLM-guided scene filtering pipeline. The analysis is divided into
two phases: initialization and per-step execution. During initialization, all required models are loaded
and executed at the start of the trajectory, taking approximately 9 seconds – a one-time overhead that
occurs only before the first policy step and is thus acceptable. For subsequent steps, only SAM2 (Ravi
et al., 2024) (object mask tracking) and Foundation Stereo (Wen et al., 2025) (depth computation) are
invoked, bringing the per-step runtime down to around 0.115 seconds and enabling real-time policy
deployment.

Robustness analysis for VLM-guided scene filtering pipeline For all tasks in this work, the
VLM-guided scene filtering pipeline consistently achieves high success rates. We do not filter our
reported results for failures of the used VLMs or vision foundation models (VFMs). Hence, all
success rate obtained are despite any foundation model failures that might occur. To quantify the
robustness, we consider the three sim-to-real tasks - bowl on plate, mug on plate, and stack bowls -
and place the objects in 20 randomized positions. For each position, we deploy the scene extraction
pipeline and record filtering successes and failures. For bowl on plate, there was only one failure
among the 20 trials when the metallic bowl was occluded by the robot gripper in its initiazation
position. For mug on plate, all trials succeeded in filtering out the mug and the plate on the table. For
stack bowls, there was only one failure among the 20 trials where Molmo Deitke et al. (2024) could
not find the small white bowl placed on the table. These failure cases have been illustrated in Figure 5.
Despite very low VLM error rates for the tasks considered in the paper, we acknowledge that the
failure rates might go up, especially with cluttered scenes or scenes with multiple similar-looking
objects. A systematic study of VLM failures would be interesting for future research.
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Table 9: Performance of multi-task co-trained POINT BRIDGE on a held-out set of object instances introduced at
test time.

POINT BRIDGE Bowl on plate Mug on plate Stack bowls
Same objects 30/30 30/30 30/30

Held-out objects 28/30 29/30 30/30

Table 10: A systematic analysis of the effect of the number of object points and action representation on POINT
BRIDGE performance

Category Variant Bowl on plate Mug on plate Stack bowls
# Object points 10 0.95 0.8 0.92

64 0.96 0.95 0.92
128 0.9 0.8 0.9

Action prediction Pose 23/30 21/30 24/30
Points 24/30 24/30 24/30

Table 11: Latency analysis of the VLM-guided scene filtering pipeline

Mode Step Time
(in seconds)

Initialization Gemini Query ∼1.95
Molmo ∼4.8

SAM Init ∼2.4
Total time ∼9.15

Per step Foundation Stereo ∼0.07
SAM Tracking ∼0.045

Total time ∼0.115

(a) Bowl on plate (b) Stack bowls

Figure 5: Examples of failure cases of the VLM-guided scene filtering pipeline.
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